blob: cebb2f936fa8f8802602a7b18189fe70842def76 [file] [log] [blame]
Hal Finkelbf45efd2013-11-16 23:59:05 +00001//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a simple loop reroller.
11//
12//===----------------------------------------------------------------------===//
13
Hal Finkelbf45efd2013-11-16 23:59:05 +000014#include "llvm/Transforms/Scalar.h"
James Molloy64419d42015-01-29 21:52:03 +000015#include "llvm/ADT/MapVector.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000016#include "llvm/ADT/STLExtras.h"
Elena Demikhovsky9914dbd2016-02-22 09:38:28 +000017#include "llvm/ADT/BitVector.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000018#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000020#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AliasSetTracker.h"
22#include "llvm/Analysis/LoopPass.h"
23#include "llvm/Analysis/ScalarEvolution.h"
24#include "llvm/Analysis/ScalarEvolutionExpander.h"
25#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000026#include "llvm/Analysis/TargetLibraryInfo.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000027#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/DataLayout.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000029#include "llvm/IR/Dominators.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000030#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000034#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Transforms/Utils/LoopUtils.h"
37
38using namespace llvm;
39
Chandler Carruth964daaa2014-04-22 02:55:47 +000040#define DEBUG_TYPE "loop-reroll"
41
Hal Finkelbf45efd2013-11-16 23:59:05 +000042STATISTIC(NumRerolledLoops, "Number of rerolled loops");
43
44static cl::opt<unsigned>
45MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
46 cl::desc("The maximum increment for loop rerolling"));
47
James Molloye805ad92015-02-12 15:54:14 +000048static cl::opt<unsigned>
49NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
50 cl::Hidden,
51 cl::desc("The maximum number of failures to tolerate"
52 " during fuzzy matching. (default: 400)"));
53
Hal Finkelbf45efd2013-11-16 23:59:05 +000054// This loop re-rolling transformation aims to transform loops like this:
55//
56// int foo(int a);
57// void bar(int *x) {
58// for (int i = 0; i < 500; i += 3) {
59// foo(i);
60// foo(i+1);
61// foo(i+2);
62// }
63// }
64//
65// into a loop like this:
66//
67// void bar(int *x) {
68// for (int i = 0; i < 500; ++i)
69// foo(i);
70// }
71//
72// It does this by looking for loops that, besides the latch code, are composed
73// of isomorphic DAGs of instructions, with each DAG rooted at some increment
74// to the induction variable, and where each DAG is isomorphic to the DAG
75// rooted at the induction variable (excepting the sub-DAGs which root the
76// other induction-variable increments). In other words, we're looking for loop
77// bodies of the form:
78//
79// %iv = phi [ (preheader, ...), (body, %iv.next) ]
80// f(%iv)
81// %iv.1 = add %iv, 1 <-- a root increment
82// f(%iv.1)
83// %iv.2 = add %iv, 2 <-- a root increment
84// f(%iv.2)
85// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
86// f(%iv.scale_m_1)
87// ...
88// %iv.next = add %iv, scale
89// %cmp = icmp(%iv, ...)
90// br %cmp, header, exit
91//
92// where each f(i) is a set of instructions that, collectively, are a function
93// only of i (and other loop-invariant values).
94//
95// As a special case, we can also reroll loops like this:
96//
97// int foo(int);
98// void bar(int *x) {
99// for (int i = 0; i < 500; ++i) {
100// x[3*i] = foo(0);
101// x[3*i+1] = foo(0);
102// x[3*i+2] = foo(0);
103// }
104// }
105//
106// into this:
107//
108// void bar(int *x) {
109// for (int i = 0; i < 1500; ++i)
110// x[i] = foo(0);
111// }
112//
113// in which case, we're looking for inputs like this:
114//
115// %iv = phi [ (preheader, ...), (body, %iv.next) ]
116// %scaled.iv = mul %iv, scale
117// f(%scaled.iv)
118// %scaled.iv.1 = add %scaled.iv, 1
119// f(%scaled.iv.1)
120// %scaled.iv.2 = add %scaled.iv, 2
121// f(%scaled.iv.2)
122// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
123// f(%scaled.iv.scale_m_1)
124// ...
125// %iv.next = add %iv, 1
126// %cmp = icmp(%iv, ...)
127// br %cmp, header, exit
128
129namespace {
James Molloy64419d42015-01-29 21:52:03 +0000130 enum IterationLimits {
Elena Demikhovsky9914dbd2016-02-22 09:38:28 +0000131 /// The maximum number of iterations that we'll try and reroll.
132 IL_MaxRerollIterations = 32,
James Molloy64419d42015-01-29 21:52:03 +0000133 /// The bitvector index used by loop induction variables and other
James Molloyf1473592015-02-11 09:19:47 +0000134 /// instructions that belong to all iterations.
135 IL_All,
James Molloy64419d42015-01-29 21:52:03 +0000136 IL_End
137 };
138
Hal Finkelbf45efd2013-11-16 23:59:05 +0000139 class LoopReroll : public LoopPass {
140 public:
141 static char ID; // Pass ID, replacement for typeid
142 LoopReroll() : LoopPass(ID) {
143 initializeLoopRerollPass(*PassRegistry::getPassRegistry());
144 }
145
Craig Topper3e4c6972014-03-05 09:10:37 +0000146 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000147
Craig Topper3e4c6972014-03-05 09:10:37 +0000148 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000149 AU.addRequired<TargetLibraryInfoWrapperPass>();
Chandler Carruth31088a92016-02-19 10:45:18 +0000150 getLoopAnalysisUsage(AU);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000151 }
152
James Molloy64419d42015-01-29 21:52:03 +0000153 protected:
Hal Finkelbf45efd2013-11-16 23:59:05 +0000154 AliasAnalysis *AA;
155 LoopInfo *LI;
156 ScalarEvolution *SE;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000157 TargetLibraryInfo *TLI;
158 DominatorTree *DT;
Justin Bogner843fb202015-12-15 19:40:57 +0000159 bool PreserveLCSSA;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000160
161 typedef SmallVector<Instruction *, 16> SmallInstructionVector;
162 typedef SmallSet<Instruction *, 16> SmallInstructionSet;
163
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000164 // Map between induction variable and its increment
165 DenseMap<Instruction *, int64_t> IVToIncMap;
Lawrence Hu1befea22016-04-30 00:51:22 +0000166 // For loop with multiple induction variable, remember the one used only to
167 // control the loop.
168 Instruction *LoopControlIV;
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000169
170 // A chain of isomorphic instructions, identified by a single-use PHI
Hal Finkelbf45efd2013-11-16 23:59:05 +0000171 // representing a reduction. Only the last value may be used outside the
172 // loop.
173 struct SimpleLoopReduction {
174 SimpleLoopReduction(Instruction *P, Loop *L)
175 : Valid(false), Instructions(1, P) {
176 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
177 add(L);
178 }
179
180 bool valid() const {
181 return Valid;
182 }
183
184 Instruction *getPHI() const {
185 assert(Valid && "Using invalid reduction");
186 return Instructions.front();
187 }
188
189 Instruction *getReducedValue() const {
190 assert(Valid && "Using invalid reduction");
191 return Instructions.back();
192 }
193
194 Instruction *get(size_t i) const {
195 assert(Valid && "Using invalid reduction");
196 return Instructions[i+1];
197 }
198
199 Instruction *operator [] (size_t i) const { return get(i); }
200
201 // The size, ignoring the initial PHI.
202 size_t size() const {
203 assert(Valid && "Using invalid reduction");
204 return Instructions.size()-1;
205 }
206
207 typedef SmallInstructionVector::iterator iterator;
208 typedef SmallInstructionVector::const_iterator const_iterator;
209
210 iterator begin() {
211 assert(Valid && "Using invalid reduction");
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000212 return std::next(Instructions.begin());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000213 }
214
215 const_iterator begin() const {
216 assert(Valid && "Using invalid reduction");
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000217 return std::next(Instructions.begin());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000218 }
219
220 iterator end() { return Instructions.end(); }
221 const_iterator end() const { return Instructions.end(); }
222
223 protected:
224 bool Valid;
225 SmallInstructionVector Instructions;
226
227 void add(Loop *L);
228 };
229
230 // The set of all reductions, and state tracking of possible reductions
231 // during loop instruction processing.
232 struct ReductionTracker {
233 typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
234
235 // Add a new possible reduction.
NAKAMURA Takumid0e13af2014-10-28 11:54:52 +0000236 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
Hal Finkelbf45efd2013-11-16 23:59:05 +0000237
238 // Setup to track possible reductions corresponding to the provided
239 // rerolling scale. Only reductions with a number of non-PHI instructions
240 // that is divisible by the scale are considered. Three instructions sets
241 // are filled in:
242 // - A set of all possible instructions in eligible reductions.
243 // - A set of all PHIs in eligible reductions
NAKAMURA Takumid0e13af2014-10-28 11:54:52 +0000244 // - A set of all reduced values (last instructions) in eligible
245 // reductions.
Hal Finkelbf45efd2013-11-16 23:59:05 +0000246 void restrictToScale(uint64_t Scale,
247 SmallInstructionSet &PossibleRedSet,
248 SmallInstructionSet &PossibleRedPHISet,
249 SmallInstructionSet &PossibleRedLastSet) {
250 PossibleRedIdx.clear();
251 PossibleRedIter.clear();
252 Reds.clear();
253
254 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
255 if (PossibleReds[i].size() % Scale == 0) {
256 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
257 PossibleRedPHISet.insert(PossibleReds[i].getPHI());
NAKAMURA Takumi335a7bc2014-10-28 11:53:30 +0000258
Hal Finkelbf45efd2013-11-16 23:59:05 +0000259 PossibleRedSet.insert(PossibleReds[i].getPHI());
260 PossibleRedIdx[PossibleReds[i].getPHI()] = i;
NAKAMURA Takumi5af50a52014-10-28 11:54:05 +0000261 for (Instruction *J : PossibleReds[i]) {
262 PossibleRedSet.insert(J);
263 PossibleRedIdx[J] = i;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000264 }
265 }
266 }
267
268 // The functions below are used while processing the loop instructions.
269
270 // Are the two instructions both from reductions, and furthermore, from
271 // the same reduction?
272 bool isPairInSame(Instruction *J1, Instruction *J2) {
273 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
274 if (J1I != PossibleRedIdx.end()) {
275 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
276 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
277 return true;
278 }
279
280 return false;
281 }
282
283 // The two provided instructions, the first from the base iteration, and
284 // the second from iteration i, form a matched pair. If these are part of
285 // a reduction, record that fact.
286 void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
287 if (PossibleRedIdx.count(J1)) {
288 assert(PossibleRedIdx.count(J2) &&
289 "Recording reduction vs. non-reduction instruction?");
290
291 PossibleRedIter[J1] = 0;
292 PossibleRedIter[J2] = i;
293
294 int Idx = PossibleRedIdx[J1];
295 assert(Idx == PossibleRedIdx[J2] &&
296 "Recording pair from different reductions?");
Hal Finkel67107ea2013-11-17 01:21:54 +0000297 Reds.insert(Idx);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000298 }
299 }
300
301 // The functions below can be called after we've finished processing all
302 // instructions in the loop, and we know which reductions were selected.
303
Hal Finkelbf45efd2013-11-16 23:59:05 +0000304 bool validateSelected();
305 void replaceSelected();
306
307 protected:
308 // The vector of all possible reductions (for any scale).
309 SmallReductionVector PossibleReds;
310
311 DenseMap<Instruction *, int> PossibleRedIdx;
312 DenseMap<Instruction *, int> PossibleRedIter;
313 DenseSet<int> Reds;
314 };
315
James Molloyf1473592015-02-11 09:19:47 +0000316 // A DAGRootSet models an induction variable being used in a rerollable
317 // loop. For example,
318 //
319 // x[i*3+0] = y1
320 // x[i*3+1] = y2
321 // x[i*3+2] = y3
322 //
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000323 // Base instruction -> i*3
James Molloyf1473592015-02-11 09:19:47 +0000324 // +---+----+
325 // / | \
326 // ST[y1] +1 +2 <-- Roots
327 // | |
328 // ST[y2] ST[y3]
329 //
330 // There may be multiple DAGRoots, for example:
331 //
332 // x[i*2+0] = ... (1)
333 // x[i*2+1] = ... (1)
334 // x[i*2+4] = ... (2)
335 // x[i*2+5] = ... (2)
336 // x[(i+1234)*2+5678] = ... (3)
337 // x[(i+1234)*2+5679] = ... (3)
338 //
339 // The loop will be rerolled by adding a new loop induction variable,
340 // one for the Base instruction in each DAGRootSet.
341 //
342 struct DAGRootSet {
343 Instruction *BaseInst;
344 SmallInstructionVector Roots;
345 // The instructions between IV and BaseInst (but not including BaseInst).
346 SmallInstructionSet SubsumedInsts;
347 };
348
James Molloy5f255eb2015-01-29 13:48:05 +0000349 // The set of all DAG roots, and state tracking of all roots
350 // for a particular induction variable.
351 struct DAGRootTracker {
352 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
353 ScalarEvolution *SE, AliasAnalysis *AA,
Justin Bogner843fb202015-12-15 19:40:57 +0000354 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
355 bool PreserveLCSSA,
Lawrence Hu1befea22016-04-30 00:51:22 +0000356 DenseMap<Instruction *, int64_t> &IncrMap,
357 Instruction *LoopCtrlIV)
Justin Bogner843fb202015-12-15 19:40:57 +0000358 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
Lawrence Hu1befea22016-04-30 00:51:22 +0000359 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
360 LoopControlIV(LoopCtrlIV) {}
James Molloy5f255eb2015-01-29 13:48:05 +0000361
362 /// Stage 1: Find all the DAG roots for the induction variable.
363 bool findRoots();
364 /// Stage 2: Validate if the found roots are valid.
365 bool validate(ReductionTracker &Reductions);
366 /// Stage 3: Assuming validate() returned true, perform the
367 /// replacement.
368 /// @param IterCount The maximum iteration count of L.
369 void replace(const SCEV *IterCount);
370
371 protected:
Elena Demikhovsky9914dbd2016-02-22 09:38:28 +0000372 typedef MapVector<Instruction*, BitVector> UsesTy;
James Molloy64419d42015-01-29 21:52:03 +0000373
James Molloyf1473592015-02-11 09:19:47 +0000374 bool findRootsRecursive(Instruction *IVU,
375 SmallInstructionSet SubsumedInsts);
376 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
377 bool collectPossibleRoots(Instruction *Base,
378 std::map<int64_t,Instruction*> &Roots);
James Molloy5f255eb2015-01-29 13:48:05 +0000379
James Molloy64419d42015-01-29 21:52:03 +0000380 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
James Molloy5f255eb2015-01-29 13:48:05 +0000381 void collectInLoopUserSet(const SmallInstructionVector &Roots,
382 const SmallInstructionSet &Exclude,
383 const SmallInstructionSet &Final,
384 DenseSet<Instruction *> &Users);
385 void collectInLoopUserSet(Instruction *Root,
386 const SmallInstructionSet &Exclude,
387 const SmallInstructionSet &Final,
388 DenseSet<Instruction *> &Users);
389
James Molloye805ad92015-02-12 15:54:14 +0000390 UsesTy::iterator nextInstr(int Val, UsesTy &In,
391 const SmallInstructionSet &Exclude,
392 UsesTy::iterator *StartI=nullptr);
James Molloyf1473592015-02-11 09:19:47 +0000393 bool isBaseInst(Instruction *I);
394 bool isRootInst(Instruction *I);
James Molloye805ad92015-02-12 15:54:14 +0000395 bool instrDependsOn(Instruction *I,
396 UsesTy::iterator Start,
397 UsesTy::iterator End);
Lawrence Hud3d51062016-01-25 19:43:45 +0000398 void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount);
Lawrence Hu1befea22016-04-30 00:51:22 +0000399 void updateNonLoopCtrlIncr();
James Molloy64419d42015-01-29 21:52:03 +0000400
James Molloy5f255eb2015-01-29 13:48:05 +0000401 LoopReroll *Parent;
402
403 // Members of Parent, replicated here for brevity.
404 Loop *L;
405 ScalarEvolution *SE;
406 AliasAnalysis *AA;
407 TargetLibraryInfo *TLI;
Justin Bogner843fb202015-12-15 19:40:57 +0000408 DominatorTree *DT;
409 LoopInfo *LI;
410 bool PreserveLCSSA;
James Molloy5f255eb2015-01-29 13:48:05 +0000411
412 // The loop induction variable.
413 Instruction *IV;
414 // Loop step amount.
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000415 int64_t Inc;
James Molloy5f255eb2015-01-29 13:48:05 +0000416 // Loop reroll count; if Inc == 1, this records the scaling applied
417 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
418 // If Inc is not 1, Scale = Inc.
419 uint64_t Scale;
James Molloy5f255eb2015-01-29 13:48:05 +0000420 // The roots themselves.
James Molloyf1473592015-02-11 09:19:47 +0000421 SmallVector<DAGRootSet,16> RootSets;
James Molloy5f255eb2015-01-29 13:48:05 +0000422 // All increment instructions for IV.
423 SmallInstructionVector LoopIncs;
James Molloy64419d42015-01-29 21:52:03 +0000424 // Map of all instructions in the loop (in order) to the iterations
James Molloyf1473592015-02-11 09:19:47 +0000425 // they are used in (or specially, IL_All for instructions
James Molloy64419d42015-01-29 21:52:03 +0000426 // used in the loop increment mechanism).
427 UsesTy Uses;
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000428 // Map between induction variable and its increment
429 DenseMap<Instruction *, int64_t> &IVToIncMap;
Lawrence Hu1befea22016-04-30 00:51:22 +0000430 Instruction *LoopControlIV;
James Molloy5f255eb2015-01-29 13:48:05 +0000431 };
432
Lawrence Hu1befea22016-04-30 00:51:22 +0000433 // Check if it is a compare-like instruction whose user is a branch
434 bool isCompareUsedByBranch(Instruction *I) {
435 auto *TI = I->getParent()->getTerminator();
436 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
437 return false;
438 return I->hasOneUse() && TI->getOperand(0) == I;
439 };
440
441 bool isLoopControlIV(Loop *L, Instruction *IV);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000442 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
443 void collectPossibleReductions(Loop *L,
444 ReductionTracker &Reductions);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000445 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
446 ReductionTracker &Reductions);
447 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000448}
Hal Finkelbf45efd2013-11-16 23:59:05 +0000449
450char LoopReroll::ID = 0;
451INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
Chandler Carruth31088a92016-02-19 10:45:18 +0000452INITIALIZE_PASS_DEPENDENCY(LoopPass)
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000453INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Hal Finkelbf45efd2013-11-16 23:59:05 +0000454INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
455
456Pass *llvm::createLoopRerollPass() {
457 return new LoopReroll;
458}
459
460// Returns true if the provided instruction is used outside the given loop.
461// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
462// non-loop blocks to be outside the loop.
463static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
James Molloy64419d42015-01-29 21:52:03 +0000464 for (User *U : I->users()) {
Chandler Carruthcdf47882014-03-09 03:16:01 +0000465 if (!L->contains(cast<Instruction>(U)))
Hal Finkelbf45efd2013-11-16 23:59:05 +0000466 return true;
James Molloy64419d42015-01-29 21:52:03 +0000467 }
Hal Finkelbf45efd2013-11-16 23:59:05 +0000468 return false;
469}
470
Lawrence Hud3d51062016-01-25 19:43:45 +0000471static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE,
472 const SCEV *SCEVExpr,
473 Instruction &IV) {
474 const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr);
475
476 // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)),
477 // Return c1.
478 if (!MulSCEV && IV.getType()->isPointerTy())
479 if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) {
480 const PointerType *PTy = cast<PointerType>(IV.getType());
481 Type *ElTy = PTy->getElementType();
482 const SCEV *SizeOfExpr =
483 SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy);
484 if (IncSCEV->getValue()->getValue().isNegative()) {
485 const SCEV *NewSCEV =
486 SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr);
487 return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV));
488 } else {
489 return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr));
490 }
491 }
492
493 if (!MulSCEV)
494 return nullptr;
495
496 // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant,
497 // Return c.
498 const SCEVConstant *CIncSCEV = nullptr;
499 for (const SCEV *Operand : MulSCEV->operands()) {
500 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) {
501 CIncSCEV = Constant;
502 } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) {
503 Type *AllocTy;
504 if (!Unknown->isSizeOf(AllocTy))
505 break;
506 } else {
507 return nullptr;
508 }
509 }
510 return CIncSCEV;
511}
512
Lawrence Hu1befea22016-04-30 00:51:22 +0000513// Check if an IV is only used to control the loop. There are two cases:
514// 1. It only has one use which is loop increment, and the increment is only
515// used by comparison and the PHI, and the comparison is only used by branch.
516// 2. It is used by loop increment and the comparison, the loop increment is
517// only used by the PHI, and the comparison is used only by the branch.
518bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
519
520 unsigned IVUses = IV->getNumUses();
521 if (IVUses != 2 && IVUses != 1)
522 return false;
523
524 for (auto *User : IV->users()) {
525 int32_t IncOrCmpUses = User->getNumUses();
526 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
527
528 // User can only have one or two uses.
529 if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
530 return false;
531
532 // Case 1
533 if (IVUses == 1) {
534 // The only user must be the loop increment.
535 // The loop increment must have two uses.
536 if (IsCompInst || IncOrCmpUses != 2)
537 return false;
538 }
539
540 // Case 2
541 if (IVUses == 2 && IncOrCmpUses != 1)
542 return false;
543
544 // The users of the IV must be a binary operation or a comparison
545 if (auto *BO = dyn_cast<BinaryOperator>(User)) {
546 if (BO->getOpcode() == Instruction::Add) {
547 // Loop Increment
548 // User of Loop Increment should be either PHI or CMP
549 for (auto *UU : User->users()) {
550 if (PHINode *PN = dyn_cast<PHINode>(UU)) {
551 if (PN != IV)
552 return false;
553 }
554 // Must be a CMP
555 else if (!isCompareUsedByBranch(dyn_cast<Instruction>(UU)))
556 return false;
557 }
558 } else
559 return false;
560 // Compare : can only have one use, and must be branch
561 } else if (!IsCompInst)
562 return false;
563 }
564 return true;
565}
566
Hal Finkelbf45efd2013-11-16 23:59:05 +0000567// Collect the list of loop induction variables with respect to which it might
568// be possible to reroll the loop.
569void LoopReroll::collectPossibleIVs(Loop *L,
570 SmallInstructionVector &PossibleIVs) {
571 BasicBlock *Header = L->getHeader();
572 for (BasicBlock::iterator I = Header->begin(),
573 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
574 if (!isa<PHINode>(I))
575 continue;
Lawrence Hud3d51062016-01-25 19:43:45 +0000576 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000577 continue;
578
579 if (const SCEVAddRecExpr *PHISCEV =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000580 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
Hal Finkelbf45efd2013-11-16 23:59:05 +0000581 if (PHISCEV->getLoop() != L)
582 continue;
583 if (!PHISCEV->isAffine())
584 continue;
Lawrence Hud3d51062016-01-25 19:43:45 +0000585 const SCEVConstant *IncSCEV = nullptr;
586 if (I->getType()->isPointerTy())
587 IncSCEV =
588 getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I);
589 else
590 IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
591 if (IncSCEV) {
592 const APInt &AInt = IncSCEV->getValue()->getValue().abs();
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000593 if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc))
Hal Finkelbf45efd2013-11-16 23:59:05 +0000594 continue;
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000595 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000596 DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
597 << "\n");
Lawrence Hu1befea22016-04-30 00:51:22 +0000598
599 if (isLoopControlIV(L, &*I)) {
600 assert(!LoopControlIV && "Found two loop control only IV");
601 LoopControlIV = &(*I);
602 DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I << " = "
603 << *PHISCEV << "\n");
604 } else
605 PossibleIVs.push_back(&*I);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000606 }
607 }
608 }
609}
610
611// Add the remainder of the reduction-variable chain to the instruction vector
612// (the initial PHINode has already been added). If successful, the object is
613// marked as valid.
614void LoopReroll::SimpleLoopReduction::add(Loop *L) {
615 assert(!Valid && "Cannot add to an already-valid chain");
616
617 // The reduction variable must be a chain of single-use instructions
618 // (including the PHI), except for the last value (which is used by the PHI
619 // and also outside the loop).
620 Instruction *C = Instructions.front();
James Molloy4c7deb22015-02-16 17:01:52 +0000621 if (C->user_empty())
622 return;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000623
624 do {
Chandler Carruthcdf47882014-03-09 03:16:01 +0000625 C = cast<Instruction>(*C->user_begin());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000626 if (C->hasOneUse()) {
627 if (!C->isBinaryOp())
628 return;
629
630 if (!(isa<PHINode>(Instructions.back()) ||
631 C->isSameOperationAs(Instructions.back())))
632 return;
633
634 Instructions.push_back(C);
635 }
636 } while (C->hasOneUse());
637
638 if (Instructions.size() < 2 ||
639 !C->isSameOperationAs(Instructions.back()) ||
Chandler Carruthcdf47882014-03-09 03:16:01 +0000640 C->use_empty())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000641 return;
642
643 // C is now the (potential) last instruction in the reduction chain.
James Molloy64419d42015-01-29 21:52:03 +0000644 for (User *U : C->users()) {
Hal Finkelbf45efd2013-11-16 23:59:05 +0000645 // The only in-loop user can be the initial PHI.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000646 if (L->contains(cast<Instruction>(U)))
647 if (cast<Instruction>(U) != Instructions.front())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000648 return;
James Molloy64419d42015-01-29 21:52:03 +0000649 }
Hal Finkelbf45efd2013-11-16 23:59:05 +0000650
651 Instructions.push_back(C);
652 Valid = true;
653}
654
655// Collect the vector of possible reduction variables.
656void LoopReroll::collectPossibleReductions(Loop *L,
657 ReductionTracker &Reductions) {
658 BasicBlock *Header = L->getHeader();
659 for (BasicBlock::iterator I = Header->begin(),
660 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
661 if (!isa<PHINode>(I))
662 continue;
663 if (!I->getType()->isSingleValueType())
664 continue;
665
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000666 SimpleLoopReduction SLR(&*I, L);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000667 if (!SLR.valid())
668 continue;
669
670 DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
671 SLR.size() << " chained instructions)\n");
672 Reductions.addSLR(SLR);
673 }
674}
675
676// Collect the set of all users of the provided root instruction. This set of
677// users contains not only the direct users of the root instruction, but also
678// all users of those users, and so on. There are two exceptions:
679//
680// 1. Instructions in the set of excluded instructions are never added to the
681// use set (even if they are users). This is used, for example, to exclude
682// including root increments in the use set of the primary IV.
683//
684// 2. Instructions in the set of final instructions are added to the use set
685// if they are users, but their users are not added. This is used, for
686// example, to prevent a reduction update from forcing all later reduction
687// updates into the use set.
James Molloy5f255eb2015-01-29 13:48:05 +0000688void LoopReroll::DAGRootTracker::collectInLoopUserSet(
Hal Finkelbf45efd2013-11-16 23:59:05 +0000689 Instruction *Root, const SmallInstructionSet &Exclude,
690 const SmallInstructionSet &Final,
691 DenseSet<Instruction *> &Users) {
692 SmallInstructionVector Queue(1, Root);
693 while (!Queue.empty()) {
694 Instruction *I = Queue.pop_back_val();
695 if (!Users.insert(I).second)
696 continue;
697
698 if (!Final.count(I))
Chandler Carruthcdf47882014-03-09 03:16:01 +0000699 for (Use &U : I->uses()) {
700 Instruction *User = cast<Instruction>(U.getUser());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000701 if (PHINode *PN = dyn_cast<PHINode>(User)) {
702 // Ignore "wrap-around" uses to PHIs of this loop's header.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000703 if (PN->getIncomingBlock(U) == L->getHeader())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000704 continue;
705 }
NAKAMURA Takumi335a7bc2014-10-28 11:53:30 +0000706
Hal Finkelbf45efd2013-11-16 23:59:05 +0000707 if (L->contains(User) && !Exclude.count(User)) {
708 Queue.push_back(User);
709 }
710 }
711
712 // We also want to collect single-user "feeder" values.
713 for (User::op_iterator OI = I->op_begin(),
714 OIE = I->op_end(); OI != OIE; ++OI) {
715 if (Instruction *Op = dyn_cast<Instruction>(*OI))
716 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
717 !Final.count(Op))
718 Queue.push_back(Op);
719 }
720 }
721}
722
723// Collect all of the users of all of the provided root instructions (combined
724// into a single set).
James Molloy5f255eb2015-01-29 13:48:05 +0000725void LoopReroll::DAGRootTracker::collectInLoopUserSet(
Hal Finkelbf45efd2013-11-16 23:59:05 +0000726 const SmallInstructionVector &Roots,
727 const SmallInstructionSet &Exclude,
728 const SmallInstructionSet &Final,
729 DenseSet<Instruction *> &Users) {
730 for (SmallInstructionVector::const_iterator I = Roots.begin(),
731 IE = Roots.end(); I != IE; ++I)
James Molloy5f255eb2015-01-29 13:48:05 +0000732 collectInLoopUserSet(*I, Exclude, Final, Users);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000733}
734
735static bool isSimpleLoadStore(Instruction *I) {
736 if (LoadInst *LI = dyn_cast<LoadInst>(I))
737 return LI->isSimple();
738 if (StoreInst *SI = dyn_cast<StoreInst>(I))
739 return SI->isSimple();
740 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
741 return !MI->isVolatile();
742 return false;
743}
744
James Molloyf1473592015-02-11 09:19:47 +0000745/// Return true if IVU is a "simple" arithmetic operation.
746/// This is used for narrowing the search space for DAGRoots; only arithmetic
747/// and GEPs can be part of a DAGRoot.
748static bool isSimpleArithmeticOp(User *IVU) {
749 if (Instruction *I = dyn_cast<Instruction>(IVU)) {
750 switch (I->getOpcode()) {
751 default: return false;
752 case Instruction::Add:
753 case Instruction::Sub:
754 case Instruction::Mul:
755 case Instruction::Shl:
756 case Instruction::AShr:
757 case Instruction::LShr:
758 case Instruction::GetElementPtr:
759 case Instruction::Trunc:
760 case Instruction::ZExt:
761 case Instruction::SExt:
762 return true;
763 }
764 }
765 return false;
766}
767
768static bool isLoopIncrement(User *U, Instruction *IV) {
769 BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
Lawrence Hud3d51062016-01-25 19:43:45 +0000770
771 if ((BO && BO->getOpcode() != Instruction::Add) ||
772 (!BO && !isa<GetElementPtrInst>(U)))
James Molloyf1473592015-02-11 09:19:47 +0000773 return false;
774
Lawrence Hud3d51062016-01-25 19:43:45 +0000775 for (auto *UU : U->users()) {
James Molloyf1473592015-02-11 09:19:47 +0000776 PHINode *PN = dyn_cast<PHINode>(UU);
777 if (PN && PN == IV)
778 return true;
779 }
780 return false;
781}
782
783bool LoopReroll::DAGRootTracker::
784collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
785 SmallInstructionVector BaseUsers;
786
787 for (auto *I : Base->users()) {
788 ConstantInt *CI = nullptr;
789
790 if (isLoopIncrement(I, IV)) {
791 LoopIncs.push_back(cast<Instruction>(I));
792 continue;
793 }
794
795 // The root nodes must be either GEPs, ORs or ADDs.
796 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
797 if (BO->getOpcode() == Instruction::Add ||
798 BO->getOpcode() == Instruction::Or)
799 CI = dyn_cast<ConstantInt>(BO->getOperand(1));
800 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
801 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
802 CI = dyn_cast<ConstantInt>(LastOperand);
803 }
804
805 if (!CI) {
806 if (Instruction *II = dyn_cast<Instruction>(I)) {
807 BaseUsers.push_back(II);
808 continue;
809 } else {
810 DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
811 return false;
812 }
813 }
814
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000815 int64_t V = std::abs(CI->getValue().getSExtValue());
James Molloyf1473592015-02-11 09:19:47 +0000816 if (Roots.find(V) != Roots.end())
817 // No duplicates, please.
818 return false;
819
James Molloyf1473592015-02-11 09:19:47 +0000820 Roots[V] = cast<Instruction>(I);
821 }
822
823 if (Roots.empty())
824 return false;
James Molloyf1473592015-02-11 09:19:47 +0000825
826 // If we found non-loop-inc, non-root users of Base, assume they are
827 // for the zeroth root index. This is because "add %a, 0" gets optimized
828 // away.
James Molloye32d8062015-02-16 17:02:00 +0000829 if (BaseUsers.size()) {
830 if (Roots.find(0) != Roots.end()) {
831 DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
832 return false;
833 }
James Molloyf1473592015-02-11 09:19:47 +0000834 Roots[0] = Base;
James Molloye32d8062015-02-16 17:02:00 +0000835 }
James Molloyf1473592015-02-11 09:19:47 +0000836
837 // Calculate the number of users of the base, or lowest indexed, iteration.
838 unsigned NumBaseUses = BaseUsers.size();
839 if (NumBaseUses == 0)
840 NumBaseUses = Roots.begin()->second->getNumUses();
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000841
James Molloyf1473592015-02-11 09:19:47 +0000842 // Check that every node has the same number of users.
843 for (auto &KV : Roots) {
844 if (KV.first == 0)
845 continue;
846 if (KV.second->getNumUses() != NumBaseUses) {
847 DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
848 << "#Base=" << NumBaseUses << ", #Root=" <<
849 KV.second->getNumUses() << "\n");
850 return false;
851 }
852 }
853
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000854 return true;
James Molloyf1473592015-02-11 09:19:47 +0000855}
856
857bool LoopReroll::DAGRootTracker::
858findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
859 // Does the user look like it could be part of a root set?
860 // All its users must be simple arithmetic ops.
861 if (I->getNumUses() > IL_MaxRerollIterations)
862 return false;
863
864 if ((I->getOpcode() == Instruction::Mul ||
865 I->getOpcode() == Instruction::PHI) &&
866 I != IV &&
867 findRootsBase(I, SubsumedInsts))
868 return true;
869
870 SubsumedInsts.insert(I);
871
872 for (User *V : I->users()) {
873 Instruction *I = dyn_cast<Instruction>(V);
874 if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
875 continue;
876
877 if (!I || !isSimpleArithmeticOp(I) ||
878 !findRootsRecursive(I, SubsumedInsts))
879 return false;
880 }
881 return true;
882}
883
884bool LoopReroll::DAGRootTracker::
885findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
886
887 // The base instruction needs to be a multiply so
888 // that we can erase it.
889 if (IVU->getOpcode() != Instruction::Mul &&
890 IVU->getOpcode() != Instruction::PHI)
891 return false;
892
893 std::map<int64_t, Instruction*> V;
894 if (!collectPossibleRoots(IVU, V))
895 return false;
896
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000897 // If we didn't get a root for index zero, then IVU must be
James Molloyf1473592015-02-11 09:19:47 +0000898 // subsumed.
899 if (V.find(0) == V.end())
900 SubsumedInsts.insert(IVU);
901
902 // Partition the vector into monotonically increasing indexes.
903 DAGRootSet DRS;
904 DRS.BaseInst = nullptr;
905
906 for (auto &KV : V) {
907 if (!DRS.BaseInst) {
908 DRS.BaseInst = KV.second;
909 DRS.SubsumedInsts = SubsumedInsts;
910 } else if (DRS.Roots.empty()) {
911 DRS.Roots.push_back(KV.second);
912 } else if (V.find(KV.first - 1) != V.end()) {
913 DRS.Roots.push_back(KV.second);
914 } else {
915 // Linear sequence terminated.
916 RootSets.push_back(DRS);
917 DRS.BaseInst = KV.second;
918 DRS.SubsumedInsts = SubsumedInsts;
919 DRS.Roots.clear();
920 }
921 }
922 RootSets.push_back(DRS);
923
924 return true;
925}
926
James Molloy5f255eb2015-01-29 13:48:05 +0000927bool LoopReroll::DAGRootTracker::findRoots() {
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000928 Inc = IVToIncMap[IV];
James Molloy5f255eb2015-01-29 13:48:05 +0000929
James Molloyf1473592015-02-11 09:19:47 +0000930 assert(RootSets.empty() && "Unclean state!");
Lawrence Hudc8a83b2015-07-24 22:01:49 +0000931 if (std::abs(Inc) == 1) {
James Molloyf1473592015-02-11 09:19:47 +0000932 for (auto *IVU : IV->users()) {
933 if (isLoopIncrement(IVU, IV))
934 LoopIncs.push_back(cast<Instruction>(IVU));
935 }
936 if (!findRootsRecursive(IV, SmallInstructionSet()))
937 return false;
938 LoopIncs.push_back(IV);
939 } else {
940 if (!findRootsBase(IV, SmallInstructionSet()))
941 return false;
942 }
James Molloy5f255eb2015-01-29 13:48:05 +0000943
James Molloyf1473592015-02-11 09:19:47 +0000944 // Ensure all sets have the same size.
945 if (RootSets.empty()) {
946 DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
James Molloy5f255eb2015-01-29 13:48:05 +0000947 return false;
James Molloyf1473592015-02-11 09:19:47 +0000948 }
949 for (auto &V : RootSets) {
950 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
951 DEBUG(dbgs()
952 << "LRR: Aborting because not all root sets have the same size\n");
953 return false;
954 }
955 }
James Molloy5f255eb2015-01-29 13:48:05 +0000956
James Molloyf1473592015-02-11 09:19:47 +0000957 // And ensure all loop iterations are consecutive. We rely on std::map
958 // providing ordered traversal.
959 for (auto &V : RootSets) {
960 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
961 if (!ADR)
962 return false;
963
964 // Consider a DAGRootSet with N-1 roots (so N different values including
965 // BaseInst).
966 // Define d = Roots[0] - BaseInst, which should be the same as
967 // Roots[I] - Roots[I-1] for all I in [1..N).
968 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
969 // loop iteration J.
970 //
971 // Now, For the loop iterations to be consecutive:
972 // D = d * N
973
974 unsigned N = V.Roots.size() + 1;
975 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
976 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
977 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
978 DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
979 return false;
980 }
981 }
982 Scale = RootSets[0].Roots.size() + 1;
983
984 if (Scale > IL_MaxRerollIterations) {
James Molloy64419d42015-01-29 21:52:03 +0000985 DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
James Molloyf1473592015-02-11 09:19:47 +0000986 << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
James Molloy64419d42015-01-29 21:52:03 +0000987 << "\n");
988 return false;
989 }
990
James Molloyf1473592015-02-11 09:19:47 +0000991 DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
James Molloy5f255eb2015-01-29 13:48:05 +0000992
993 return true;
994}
995
James Molloy64419d42015-01-29 21:52:03 +0000996bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
997 // Populate the MapVector with all instructions in the block, in order first,
998 // so we can iterate over the contents later in perfect order.
999 for (auto &I : *L->getHeader()) {
1000 Uses[&I].resize(IL_End);
1001 }
James Molloy5f255eb2015-01-29 13:48:05 +00001002
James Molloy64419d42015-01-29 21:52:03 +00001003 SmallInstructionSet Exclude;
James Molloyf1473592015-02-11 09:19:47 +00001004 for (auto &DRS : RootSets) {
1005 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1006 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1007 Exclude.insert(DRS.BaseInst);
1008 }
James Molloy64419d42015-01-29 21:52:03 +00001009 Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1010
James Molloyf1473592015-02-11 09:19:47 +00001011 for (auto &DRS : RootSets) {
1012 DenseSet<Instruction*> VBase;
1013 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1014 for (auto *I : VBase) {
1015 Uses[I].set(0);
James Molloy64419d42015-01-29 21:52:03 +00001016 }
1017
James Molloyf1473592015-02-11 09:19:47 +00001018 unsigned Idx = 1;
1019 for (auto *Root : DRS.Roots) {
1020 DenseSet<Instruction*> V;
1021 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1022
1023 // While we're here, check the use sets are the same size.
1024 if (V.size() != VBase.size()) {
1025 DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1026 return false;
1027 }
1028
1029 for (auto *I : V) {
1030 Uses[I].set(Idx);
1031 }
1032 ++Idx;
James Molloy64419d42015-01-29 21:52:03 +00001033 }
James Molloyf1473592015-02-11 09:19:47 +00001034
1035 // Make sure our subsumed instructions are remembered too.
1036 for (auto *I : DRS.SubsumedInsts) {
1037 Uses[I].set(IL_All);
1038 }
James Molloy64419d42015-01-29 21:52:03 +00001039 }
1040
1041 // Make sure the loop increments are also accounted for.
James Molloyf1473592015-02-11 09:19:47 +00001042
James Molloy64419d42015-01-29 21:52:03 +00001043 Exclude.clear();
James Molloyf1473592015-02-11 09:19:47 +00001044 for (auto &DRS : RootSets) {
1045 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1046 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1047 Exclude.insert(DRS.BaseInst);
1048 }
James Molloy64419d42015-01-29 21:52:03 +00001049
1050 DenseSet<Instruction*> V;
1051 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1052 for (auto *I : V) {
James Molloyf1473592015-02-11 09:19:47 +00001053 Uses[I].set(IL_All);
James Molloy64419d42015-01-29 21:52:03 +00001054 }
James Molloy64419d42015-01-29 21:52:03 +00001055
1056 return true;
1057
1058}
1059
James Molloye805ad92015-02-12 15:54:14 +00001060/// Get the next instruction in "In" that is a member of set Val.
1061/// Start searching from StartI, and do not return anything in Exclude.
1062/// If StartI is not given, start from In.begin().
James Molloy64419d42015-01-29 21:52:03 +00001063LoopReroll::DAGRootTracker::UsesTy::iterator
1064LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
James Molloye805ad92015-02-12 15:54:14 +00001065 const SmallInstructionSet &Exclude,
1066 UsesTy::iterator *StartI) {
1067 UsesTy::iterator I = StartI ? *StartI : In.begin();
1068 while (I != In.end() && (I->second.test(Val) == 0 ||
1069 Exclude.count(I->first) != 0))
James Molloy64419d42015-01-29 21:52:03 +00001070 ++I;
1071 return I;
1072}
1073
James Molloyf1473592015-02-11 09:19:47 +00001074bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1075 for (auto &DRS : RootSets) {
1076 if (DRS.BaseInst == I)
1077 return true;
1078 }
1079 return false;
1080}
1081
1082bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1083 for (auto &DRS : RootSets) {
1084 if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
1085 return true;
1086 }
1087 return false;
1088}
1089
James Molloye805ad92015-02-12 15:54:14 +00001090/// Return true if instruction I depends on any instruction between
1091/// Start and End.
1092bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1093 UsesTy::iterator Start,
1094 UsesTy::iterator End) {
1095 for (auto *U : I->users()) {
1096 for (auto It = Start; It != End; ++It)
1097 if (U == It->first)
1098 return true;
1099 }
1100 return false;
1101}
1102
Weiming Zhao310770a2015-09-28 17:03:23 +00001103static bool isIgnorableInst(const Instruction *I) {
1104 if (isa<DbgInfoIntrinsic>(I))
1105 return true;
1106 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1107 if (!II)
1108 return false;
1109 switch (II->getIntrinsicID()) {
1110 default:
1111 return false;
1112 case llvm::Intrinsic::annotation:
1113 case Intrinsic::ptr_annotation:
1114 case Intrinsic::var_annotation:
1115 // TODO: the following intrinsics may also be whitelisted:
1116 // lifetime_start, lifetime_end, invariant_start, invariant_end
1117 return true;
1118 }
1119 return false;
1120}
1121
James Molloy64419d42015-01-29 21:52:03 +00001122bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
James Molloy5f255eb2015-01-29 13:48:05 +00001123 // We now need to check for equivalence of the use graph of each root with
1124 // that of the primary induction variable (excluding the roots). Our goal
1125 // here is not to solve the full graph isomorphism problem, but rather to
1126 // catch common cases without a lot of work. As a result, we will assume
1127 // that the relative order of the instructions in each unrolled iteration
1128 // is the same (although we will not make an assumption about how the
1129 // different iterations are intermixed). Note that while the order must be
1130 // the same, the instructions may not be in the same basic block.
James Molloy5f255eb2015-01-29 13:48:05 +00001131
1132 // An array of just the possible reductions for this scale factor. When we
1133 // collect the set of all users of some root instructions, these reduction
1134 // instructions are treated as 'final' (their uses are not considered).
1135 // This is important because we don't want the root use set to search down
1136 // the reduction chain.
1137 SmallInstructionSet PossibleRedSet;
1138 SmallInstructionSet PossibleRedLastSet;
1139 SmallInstructionSet PossibleRedPHISet;
1140 Reductions.restrictToScale(Scale, PossibleRedSet,
1141 PossibleRedPHISet, PossibleRedLastSet);
James Molloy5f255eb2015-01-29 13:48:05 +00001142
James Molloy64419d42015-01-29 21:52:03 +00001143 // Populate "Uses" with where each instruction is used.
1144 if (!collectUsedInstructions(PossibleRedSet))
1145 return false;
James Molloy5f255eb2015-01-29 13:48:05 +00001146
James Molloy64419d42015-01-29 21:52:03 +00001147 // Make sure we mark the reduction PHIs as used in all iterations.
1148 for (auto *I : PossibleRedPHISet) {
James Molloyf1473592015-02-11 09:19:47 +00001149 Uses[I].set(IL_All);
James Molloy64419d42015-01-29 21:52:03 +00001150 }
James Molloy5f255eb2015-01-29 13:48:05 +00001151
Lawrence Hu1befea22016-04-30 00:51:22 +00001152 // Make sure we mark loop-control-only PHIs as used in all iterations. See
1153 // comment above LoopReroll::isLoopControlIV for more information.
1154 BasicBlock *Header = L->getHeader();
1155 if (LoopControlIV && LoopControlIV != IV) {
1156 for (auto *U : LoopControlIV->users()) {
1157 Instruction *IVUser = dyn_cast<Instruction>(U);
1158 // IVUser could be loop increment or compare
1159 Uses[IVUser].set(IL_All);
1160 for (auto *UU : IVUser->users()) {
1161 Instruction *UUser = dyn_cast<Instruction>(UU);
1162 // UUser could be compare, PHI or branch
1163 Uses[UUser].set(IL_All);
1164 // Is UUser a compare instruction?
1165 if (UU->hasOneUse()) {
1166 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1167 if (BI == cast<BranchInst>(Header->getTerminator()))
1168 Uses[BI].set(IL_All);
1169 }
1170 }
1171 }
1172 }
1173
James Molloy64419d42015-01-29 21:52:03 +00001174 // Make sure all instructions in the loop are in one and only one
1175 // set.
1176 for (auto &KV : Uses) {
Weiming Zhao310770a2015-09-28 17:03:23 +00001177 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
James Molloy64419d42015-01-29 21:52:03 +00001178 DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1179 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1180 return false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001181 }
James Molloy64419d42015-01-29 21:52:03 +00001182 }
Hal Finkelbf45efd2013-11-16 23:59:05 +00001183
James Molloy64419d42015-01-29 21:52:03 +00001184 DEBUG(
1185 for (auto &KV : Uses) {
1186 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1187 }
1188 );
1189
1190 for (unsigned Iter = 1; Iter < Scale; ++Iter) {
James Molloy5f255eb2015-01-29 13:48:05 +00001191 // In addition to regular aliasing information, we need to look for
1192 // instructions from later (future) iterations that have side effects
1193 // preventing us from reordering them past other instructions with side
1194 // effects.
1195 bool FutureSideEffects = false;
1196 AliasSetTracker AST(*AA);
James Molloy5f255eb2015-01-29 13:48:05 +00001197 // The map between instructions in f(%iv.(i+1)) and f(%iv).
1198 DenseMap<Value *, Value *> BaseMap;
1199
James Molloy64419d42015-01-29 21:52:03 +00001200 // Compare iteration Iter to the base.
James Molloye805ad92015-02-12 15:54:14 +00001201 SmallInstructionSet Visited;
1202 auto BaseIt = nextInstr(0, Uses, Visited);
1203 auto RootIt = nextInstr(Iter, Uses, Visited);
James Molloy64419d42015-01-29 21:52:03 +00001204 auto LastRootIt = Uses.begin();
James Molloy5f255eb2015-01-29 13:48:05 +00001205
James Molloy64419d42015-01-29 21:52:03 +00001206 while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1207 Instruction *BaseInst = BaseIt->first;
1208 Instruction *RootInst = RootIt->first;
James Molloy5f255eb2015-01-29 13:48:05 +00001209
James Molloy64419d42015-01-29 21:52:03 +00001210 // Skip over the IV or root instructions; only match their users.
1211 bool Continue = false;
James Molloyf1473592015-02-11 09:19:47 +00001212 if (isBaseInst(BaseInst)) {
James Molloye805ad92015-02-12 15:54:14 +00001213 Visited.insert(BaseInst);
1214 BaseIt = nextInstr(0, Uses, Visited);
James Molloy64419d42015-01-29 21:52:03 +00001215 Continue = true;
1216 }
James Molloyf1473592015-02-11 09:19:47 +00001217 if (isRootInst(RootInst)) {
James Molloy64419d42015-01-29 21:52:03 +00001218 LastRootIt = RootIt;
James Molloye805ad92015-02-12 15:54:14 +00001219 Visited.insert(RootInst);
1220 RootIt = nextInstr(Iter, Uses, Visited);
James Molloy64419d42015-01-29 21:52:03 +00001221 Continue = true;
1222 }
1223 if (Continue) continue;
James Molloy5f255eb2015-01-29 13:48:05 +00001224
James Molloye805ad92015-02-12 15:54:14 +00001225 if (!BaseInst->isSameOperationAs(RootInst)) {
1226 // Last chance saloon. We don't try and solve the full isomorphism
1227 // problem, but try and at least catch the case where two instructions
1228 // *of different types* are round the wrong way. We won't be able to
1229 // efficiently tell, given two ADD instructions, which way around we
1230 // should match them, but given an ADD and a SUB, we can at least infer
1231 // which one is which.
1232 //
1233 // This should allow us to deal with a greater subset of the isomorphism
1234 // problem. It does however change a linear algorithm into a quadratic
1235 // one, so limit the number of probes we do.
1236 auto TryIt = RootIt;
1237 unsigned N = NumToleratedFailedMatches;
1238 while (TryIt != Uses.end() &&
1239 !BaseInst->isSameOperationAs(TryIt->first) &&
1240 N--) {
1241 ++TryIt;
1242 TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1243 }
1244
1245 if (TryIt == Uses.end() || TryIt == RootIt ||
1246 instrDependsOn(TryIt->first, RootIt, TryIt)) {
1247 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1248 " vs. " << *RootInst << "\n");
1249 return false;
1250 }
Lawrence Hudc8a83b2015-07-24 22:01:49 +00001251
James Molloye805ad92015-02-12 15:54:14 +00001252 RootIt = TryIt;
1253 RootInst = TryIt->first;
1254 }
1255
James Molloy64419d42015-01-29 21:52:03 +00001256 // All instructions between the last root and this root
Lawrence Hudc8a83b2015-07-24 22:01:49 +00001257 // may belong to some other iteration. If they belong to a
James Molloy64419d42015-01-29 21:52:03 +00001258 // future iteration, then they're dangerous to alias with.
Lawrence Hudc8a83b2015-07-24 22:01:49 +00001259 //
James Molloye805ad92015-02-12 15:54:14 +00001260 // Note that because we allow a limited amount of flexibility in the order
1261 // that we visit nodes, LastRootIt might be *before* RootIt, in which
1262 // case we've already checked this set of instructions so we shouldn't
1263 // do anything.
1264 for (; LastRootIt < RootIt; ++LastRootIt) {
James Molloy64419d42015-01-29 21:52:03 +00001265 Instruction *I = LastRootIt->first;
1266 if (LastRootIt->second.find_first() < (int)Iter)
1267 continue;
1268 if (I->mayWriteToMemory())
1269 AST.add(I);
1270 // Note: This is specifically guarded by a check on isa<PHINode>,
1271 // which while a valid (somewhat arbitrary) micro-optimization, is
1272 // needed because otherwise isSafeToSpeculativelyExecute returns
1273 // false on PHI nodes.
1274 if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001275 !isSafeToSpeculativelyExecute(I))
James Molloy64419d42015-01-29 21:52:03 +00001276 // Intervening instructions cause side effects.
1277 FutureSideEffects = true;
James Molloy5f255eb2015-01-29 13:48:05 +00001278 }
1279
James Molloy5f255eb2015-01-29 13:48:05 +00001280 // Make sure that this instruction, which is in the use set of this
1281 // root instruction, does not also belong to the base set or the set of
James Molloy64419d42015-01-29 21:52:03 +00001282 // some other root instruction.
1283 if (RootIt->second.count() > 1) {
1284 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1285 " vs. " << *RootInst << " (prev. case overlap)\n");
1286 return false;
James Molloy5f255eb2015-01-29 13:48:05 +00001287 }
1288
1289 // Make sure that we don't alias with any instruction in the alias set
1290 // tracker. If we do, then we depend on a future iteration, and we
1291 // can't reroll.
James Molloy64419d42015-01-29 21:52:03 +00001292 if (RootInst->mayReadFromMemory())
1293 for (auto &K : AST) {
1294 if (K.aliasesUnknownInst(RootInst, *AA)) {
1295 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1296 " vs. " << *RootInst << " (depends on future store)\n");
1297 return false;
James Molloy5f255eb2015-01-29 13:48:05 +00001298 }
1299 }
James Molloy5f255eb2015-01-29 13:48:05 +00001300
1301 // If we've past an instruction from a future iteration that may have
1302 // side effects, and this instruction might also, then we can't reorder
1303 // them, and this matching fails. As an exception, we allow the alias
1304 // set tracker to handle regular (simple) load/store dependencies.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001305 if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
1306 !isSafeToSpeculativelyExecute(BaseInst)) ||
1307 (!isSimpleLoadStore(RootInst) &&
1308 !isSafeToSpeculativelyExecute(RootInst)))) {
James Molloy64419d42015-01-29 21:52:03 +00001309 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1310 " vs. " << *RootInst <<
James Molloy5f255eb2015-01-29 13:48:05 +00001311 " (side effects prevent reordering)\n");
James Molloy64419d42015-01-29 21:52:03 +00001312 return false;
James Molloy5f255eb2015-01-29 13:48:05 +00001313 }
1314
1315 // For instructions that are part of a reduction, if the operation is
1316 // associative, then don't bother matching the operands (because we
1317 // already know that the instructions are isomorphic, and the order
1318 // within the iteration does not matter). For non-associative reductions,
1319 // we do need to match the operands, because we need to reject
1320 // out-of-order instructions within an iteration!
1321 // For example (assume floating-point addition), we need to reject this:
1322 // x += a[i]; x += b[i];
1323 // x += a[i+1]; x += b[i+1];
1324 // x += b[i+2]; x += a[i+2];
James Molloy64419d42015-01-29 21:52:03 +00001325 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
James Molloy5f255eb2015-01-29 13:48:05 +00001326
James Molloy64419d42015-01-29 21:52:03 +00001327 if (!(InReduction && BaseInst->isAssociative())) {
James Molloy5f255eb2015-01-29 13:48:05 +00001328 bool Swapped = false, SomeOpMatched = false;
James Molloy64419d42015-01-29 21:52:03 +00001329 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1330 Value *Op2 = RootInst->getOperand(j);
James Molloy5f255eb2015-01-29 13:48:05 +00001331
1332 // If this is part of a reduction (and the operation is not
1333 // associatve), then we match all operands, but not those that are
1334 // part of the reduction.
1335 if (InReduction)
1336 if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
James Molloy64419d42015-01-29 21:52:03 +00001337 if (Reductions.isPairInSame(RootInst, Op2I))
James Molloy5f255eb2015-01-29 13:48:05 +00001338 continue;
1339
1340 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
James Molloyf1473592015-02-11 09:19:47 +00001341 if (BMI != BaseMap.end()) {
James Molloy5f255eb2015-01-29 13:48:05 +00001342 Op2 = BMI->second;
James Molloyf1473592015-02-11 09:19:47 +00001343 } else {
1344 for (auto &DRS : RootSets) {
1345 if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1346 Op2 = DRS.BaseInst;
1347 break;
1348 }
1349 }
1350 }
James Molloy5f255eb2015-01-29 13:48:05 +00001351
James Molloy64419d42015-01-29 21:52:03 +00001352 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
James Molloy5f255eb2015-01-29 13:48:05 +00001353 // If we've not already decided to swap the matched operands, and
1354 // we've not already matched our first operand (note that we could
1355 // have skipped matching the first operand because it is part of a
1356 // reduction above), and the instruction is commutative, then try
1357 // the swapped match.
James Molloy64419d42015-01-29 21:52:03 +00001358 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1359 BaseInst->getOperand(!j) == Op2) {
James Molloy5f255eb2015-01-29 13:48:05 +00001360 Swapped = true;
1361 } else {
James Molloy64419d42015-01-29 21:52:03 +00001362 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1363 << " vs. " << *RootInst << " (operand " << j << ")\n");
1364 return false;
James Molloy5f255eb2015-01-29 13:48:05 +00001365 }
1366 }
1367
1368 SomeOpMatched = true;
1369 }
1370 }
1371
James Molloy64419d42015-01-29 21:52:03 +00001372 if ((!PossibleRedLastSet.count(BaseInst) &&
1373 hasUsesOutsideLoop(BaseInst, L)) ||
1374 (!PossibleRedLastSet.count(RootInst) &&
1375 hasUsesOutsideLoop(RootInst, L))) {
1376 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1377 " vs. " << *RootInst << " (uses outside loop)\n");
1378 return false;
James Molloy5f255eb2015-01-29 13:48:05 +00001379 }
1380
James Molloy64419d42015-01-29 21:52:03 +00001381 Reductions.recordPair(BaseInst, RootInst, Iter);
1382 BaseMap.insert(std::make_pair(RootInst, BaseInst));
James Molloy5f255eb2015-01-29 13:48:05 +00001383
James Molloy64419d42015-01-29 21:52:03 +00001384 LastRootIt = RootIt;
James Molloye805ad92015-02-12 15:54:14 +00001385 Visited.insert(BaseInst);
1386 Visited.insert(RootInst);
1387 BaseIt = nextInstr(0, Uses, Visited);
1388 RootIt = nextInstr(Iter, Uses, Visited);
James Molloy5f255eb2015-01-29 13:48:05 +00001389 }
James Molloy64419d42015-01-29 21:52:03 +00001390 assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
1391 "Mismatched set sizes!");
James Molloy5f255eb2015-01-29 13:48:05 +00001392 }
1393
James Molloy5f255eb2015-01-29 13:48:05 +00001394 DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
James Molloyf1473592015-02-11 09:19:47 +00001395 *IV << "\n");
James Molloy5f255eb2015-01-29 13:48:05 +00001396
Hal Finkelbf45efd2013-11-16 23:59:05 +00001397 return true;
1398}
1399
James Molloy5f255eb2015-01-29 13:48:05 +00001400void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
1401 BasicBlock *Header = L->getHeader();
1402 // Remove instructions associated with non-base iterations.
1403 for (BasicBlock::reverse_iterator J = Header->rbegin();
1404 J != Header->rend();) {
James Molloy64419d42015-01-29 21:52:03 +00001405 unsigned I = Uses[&*J].find_first();
James Molloyf1473592015-02-11 09:19:47 +00001406 if (I > 0 && I < IL_All) {
James Molloy5f255eb2015-01-29 13:48:05 +00001407 Instruction *D = &*J;
1408 DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
1409 D->eraseFromParent();
1410 continue;
1411 }
1412
1413 ++J;
1414 }
1415
Lawrence Hu1befea22016-04-30 00:51:22 +00001416 bool HasTwoIVs = LoopControlIV && LoopControlIV != IV;
1417
1418 if (HasTwoIVs) {
1419 updateNonLoopCtrlIncr();
1420 replaceIV(LoopControlIV, LoopControlIV, IterCount);
1421 } else
1422 // We need to create a new induction variable for each different BaseInst.
1423 for (auto &DRS : RootSets)
1424 // Insert the new induction variable.
1425 replaceIV(DRS.BaseInst, IV, IterCount);
Lawrence Hub917cd92016-01-25 19:36:30 +00001426
1427 SimplifyInstructionsInBlock(Header, TLI);
1428 DeleteDeadPHIs(Header, TLI);
Lawrence Hu84b61952016-01-25 18:53:39 +00001429}
1430
Lawrence Hu1befea22016-04-30 00:51:22 +00001431// For non-loop-control IVs, we only need to update the last increment
1432// with right amount, then we are done.
1433void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() {
1434 const SCEV *NewInc = nullptr;
1435 for (auto *LoopInc : LoopIncs) {
1436 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc);
1437 const SCEVConstant *COp = nullptr;
1438 if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) {
1439 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
1440 } else {
1441 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0)));
1442 if (!COp)
1443 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
1444 }
1445
1446 assert(COp && "Didn't find constant operand of LoopInc!\n");
1447
1448 const APInt &AInt = COp->getValue()->getValue();
1449 const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale);
1450 if (AInt.isNegative()) {
1451 NewInc = SE->getNegativeSCEV(COp);
1452 NewInc = SE->getUDivExpr(NewInc, ScaleSCEV);
1453 NewInc = SE->getNegativeSCEV(NewInc);
1454 } else
1455 NewInc = SE->getUDivExpr(COp, ScaleSCEV);
1456
1457 LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue());
1458 }
1459}
1460
Lawrence Hud3d51062016-01-25 19:43:45 +00001461void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst,
1462 Instruction *InstIV,
1463 const SCEV *IterCount) {
1464 BasicBlock *Header = L->getHeader();
1465 int64_t Inc = IVToIncMap[InstIV];
Lawrence Hu1befea22016-04-30 00:51:22 +00001466 bool NeedNewIV = InstIV == LoopControlIV;
1467 bool Negative = !NeedNewIV && Inc < 0;
Lawrence Hud3d51062016-01-25 19:43:45 +00001468
1469 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst));
1470 const SCEV *Start = RealIVSCEV->getStart();
1471
Lawrence Hu1befea22016-04-30 00:51:22 +00001472 if (NeedNewIV)
1473 Start = SE->getConstant(Start->getType(), 0);
1474
Lawrence Hud3d51062016-01-25 19:43:45 +00001475 const SCEV *SizeOfExpr = nullptr;
1476 const SCEV *IncrExpr =
1477 SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1);
1478 if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) {
1479 Type *ElTy = PTy->getElementType();
1480 SizeOfExpr =
1481 SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy);
1482 IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr);
1483 }
1484 const SCEV *NewIVSCEV =
1485 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1486
1487 { // Limit the lifetime of SCEVExpander.
1488 const DataLayout &DL = Header->getModule()->getDataLayout();
1489 SCEVExpander Expander(*SE, DL, "reroll");
1490 Value *NewIV =
1491 Expander.expandCodeFor(NewIVSCEV, InstIV->getType(), &Header->front());
1492
1493 for (auto &KV : Uses)
1494 if (KV.second.find_first() == 0)
1495 KV.first->replaceUsesOfWith(Inst, NewIV);
1496
1497 if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
1498 // FIXME: Why do we need this check?
1499 if (Uses[BI].find_first() == IL_All) {
1500 const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1501
Lawrence Hu1befea22016-04-30 00:51:22 +00001502 if (NeedNewIV)
1503 ICSCEV = SE->getMulExpr(IterCount,
1504 SE->getConstant(IterCount->getType(), Scale));
1505 else
1506 ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1507
Lawrence Hud3d51062016-01-25 19:43:45 +00001508 // Iteration count SCEV minus or plus 1
1509 const SCEV *MinusPlus1SCEV =
1510 SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1);
1511 if (Inst->getType()->isPointerTy()) {
1512 assert(SizeOfExpr && "SizeOfExpr is not initialized");
1513 MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr);
1514 }
1515
1516 const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV);
1517 // Iteration count minus 1
1518 Value *ICMinusPlus1 = nullptr;
1519 if (isa<SCEVConstant>(ICMinusPlus1SCEV)) {
1520 ICMinusPlus1 =
1521 Expander.expandCodeFor(ICMinusPlus1SCEV, NewIV->getType(), BI);
1522 } else {
1523 BasicBlock *Preheader = L->getLoopPreheader();
1524 if (!Preheader)
1525 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
1526 ICMinusPlus1 = Expander.expandCodeFor(
1527 ICMinusPlus1SCEV, NewIV->getType(), Preheader->getTerminator());
1528 }
1529
1530 Value *Cond =
1531 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond");
1532 BI->setCondition(Cond);
1533
1534 if (BI->getSuccessor(1) != Header)
1535 BI->swapSuccessors();
1536 }
1537 }
1538 }
1539}
1540
Hal Finkelbf45efd2013-11-16 23:59:05 +00001541// Validate the selected reductions. All iterations must have an isomorphic
1542// part of the reduction chain and, for non-associative reductions, the chain
1543// entries must appear in order.
1544bool LoopReroll::ReductionTracker::validateSelected() {
1545 // For a non-associative reduction, the chain entries must appear in order.
1546 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
1547 RI != RIE; ++RI) {
1548 int i = *RI;
1549 int PrevIter = 0, BaseCount = 0, Count = 0;
NAKAMURA Takumi5af50a52014-10-28 11:54:05 +00001550 for (Instruction *J : PossibleReds[i]) {
1551 // Note that all instructions in the chain must have been found because
1552 // all instructions in the function must have been assigned to some
1553 // iteration.
1554 int Iter = PossibleRedIter[J];
Hal Finkelbf45efd2013-11-16 23:59:05 +00001555 if (Iter != PrevIter && Iter != PrevIter + 1 &&
1556 !PossibleReds[i].getReducedValue()->isAssociative()) {
1557 DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
NAKAMURA Takumi5af50a52014-10-28 11:54:05 +00001558 J << "\n");
Hal Finkelbf45efd2013-11-16 23:59:05 +00001559 return false;
1560 }
1561
1562 if (Iter != PrevIter) {
1563 if (Count != BaseCount) {
1564 DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
1565 " reduction use count " << Count <<
1566 " is not equal to the base use count " <<
1567 BaseCount << "\n");
1568 return false;
1569 }
1570
1571 Count = 0;
1572 }
1573
1574 ++Count;
1575 if (Iter == 0)
1576 ++BaseCount;
1577
1578 PrevIter = Iter;
1579 }
1580 }
1581
1582 return true;
1583}
1584
1585// For all selected reductions, remove all parts except those in the first
1586// iteration (and the PHI). Replace outside uses of the reduced value with uses
1587// of the first-iteration reduced value (in other words, reroll the selected
1588// reductions).
1589void LoopReroll::ReductionTracker::replaceSelected() {
1590 // Fixup reductions to refer to the last instruction associated with the
1591 // first iteration (not the last).
1592 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
1593 RI != RIE; ++RI) {
1594 int i = *RI;
1595 int j = 0;
1596 for (int e = PossibleReds[i].size(); j != e; ++j)
1597 if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1598 --j;
1599 break;
1600 }
1601
1602 // Replace users with the new end-of-chain value.
1603 SmallInstructionVector Users;
James Molloy64419d42015-01-29 21:52:03 +00001604 for (User *U : PossibleReds[i].getReducedValue()->users()) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00001605 Users.push_back(cast<Instruction>(U));
James Molloy64419d42015-01-29 21:52:03 +00001606 }
Hal Finkelbf45efd2013-11-16 23:59:05 +00001607
1608 for (SmallInstructionVector::iterator J = Users.begin(),
1609 JE = Users.end(); J != JE; ++J)
1610 (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1611 PossibleReds[i][j]);
1612 }
1613}
1614
1615// Reroll the provided loop with respect to the provided induction variable.
1616// Generally, we're looking for a loop like this:
1617//
1618// %iv = phi [ (preheader, ...), (body, %iv.next) ]
1619// f(%iv)
1620// %iv.1 = add %iv, 1 <-- a root increment
1621// f(%iv.1)
1622// %iv.2 = add %iv, 2 <-- a root increment
1623// f(%iv.2)
1624// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
1625// f(%iv.scale_m_1)
1626// ...
1627// %iv.next = add %iv, scale
1628// %cmp = icmp(%iv, ...)
1629// br %cmp, header, exit
1630//
1631// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1632// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1633// be intermixed with eachother. The restriction imposed by this algorithm is
1634// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1635// etc. be the same.
1636//
1637// First, we collect the use set of %iv, excluding the other increment roots.
1638// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1639// times, having collected the use set of f(%iv.(i+1)), during which we:
1640// - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1641// the next unmatched instruction in f(%iv.(i+1)).
1642// - Ensure that both matched instructions don't have any external users
1643// (with the exception of last-in-chain reduction instructions).
1644// - Track the (aliasing) write set, and other side effects, of all
1645// instructions that belong to future iterations that come before the matched
1646// instructions. If the matched instructions read from that write set, then
1647// f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1648// f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1649// if any of these future instructions had side effects (could not be
1650// speculatively executed), and so do the matched instructions, when we
1651// cannot reorder those side-effect-producing instructions, and rerolling
1652// fails.
1653//
1654// Finally, we make sure that all loop instructions are either loop increment
1655// roots, belong to simple latch code, parts of validated reductions, part of
1656// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1657// have been validated), then we reroll the loop.
1658bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1659 const SCEV *IterCount,
1660 ReductionTracker &Reductions) {
Justin Bogner843fb202015-12-15 19:40:57 +00001661 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
Lawrence Hu1befea22016-04-30 00:51:22 +00001662 IVToIncMap, LoopControlIV);
Hal Finkelbf45efd2013-11-16 23:59:05 +00001663
James Molloy5f255eb2015-01-29 13:48:05 +00001664 if (!DAGRoots.findRoots())
Hal Finkelbf45efd2013-11-16 23:59:05 +00001665 return false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001666 DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
James Molloy5f255eb2015-01-29 13:48:05 +00001667 *IV << "\n");
Lawrence Hudc8a83b2015-07-24 22:01:49 +00001668
James Molloy5f255eb2015-01-29 13:48:05 +00001669 if (!DAGRoots.validate(Reductions))
Hal Finkelbf45efd2013-11-16 23:59:05 +00001670 return false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001671 if (!Reductions.validateSelected())
1672 return false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001673 // At this point, we've validated the rerolling, and we're committed to
1674 // making changes!
1675
1676 Reductions.replaceSelected();
James Molloy5f255eb2015-01-29 13:48:05 +00001677 DAGRoots.replace(IterCount);
Hal Finkelbf45efd2013-11-16 23:59:05 +00001678
Hal Finkelbf45efd2013-11-16 23:59:05 +00001679 ++NumRerolledLoops;
1680 return true;
1681}
1682
1683bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
Andrew Kayloraa641a52016-04-22 22:06:11 +00001684 if (skipLoop(L))
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00001685 return false;
1686
Chandler Carruth7b560d42015-09-09 17:55:00 +00001687 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
Chandler Carruth4f8f3072015-01-17 14:16:18 +00001688 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001689 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00001690 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Chandler Carruth73523022014-01-13 13:07:17 +00001691 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Justin Bogner843fb202015-12-15 19:40:57 +00001692 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
Hal Finkelbf45efd2013-11-16 23:59:05 +00001693
1694 BasicBlock *Header = L->getHeader();
1695 DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
1696 "] Loop %" << Header->getName() << " (" <<
1697 L->getNumBlocks() << " block(s))\n");
1698
Hal Finkelbf45efd2013-11-16 23:59:05 +00001699 // For now, we'll handle only single BB loops.
1700 if (L->getNumBlocks() > 1)
Zinovy Nis07ac2bd2016-03-22 13:50:57 +00001701 return false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001702
1703 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
Zinovy Nis07ac2bd2016-03-22 13:50:57 +00001704 return false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001705
1706 const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001707 const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType()));
Hal Finkelbf45efd2013-11-16 23:59:05 +00001708 DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
1709
1710 // First, we need to find the induction variable with respect to which we can
1711 // reroll (there may be several possible options).
1712 SmallInstructionVector PossibleIVs;
Lawrence Hudc8a83b2015-07-24 22:01:49 +00001713 IVToIncMap.clear();
Lawrence Hu1befea22016-04-30 00:51:22 +00001714 LoopControlIV = nullptr;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001715 collectPossibleIVs(L, PossibleIVs);
1716
1717 if (PossibleIVs.empty()) {
1718 DEBUG(dbgs() << "LRR: No possible IVs found\n");
Zinovy Nis07ac2bd2016-03-22 13:50:57 +00001719 return false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001720 }
1721
1722 ReductionTracker Reductions;
1723 collectPossibleReductions(L, Reductions);
Zinovy Nis07ac2bd2016-03-22 13:50:57 +00001724 bool Changed = false;
Hal Finkelbf45efd2013-11-16 23:59:05 +00001725
1726 // For each possible IV, collect the associated possible set of 'root' nodes
1727 // (i+1, i+2, etc.).
1728 for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
1729 IE = PossibleIVs.end(); I != IE; ++I)
1730 if (reroll(*I, L, Header, IterCount, Reductions)) {
1731 Changed = true;
1732 break;
1733 }
1734
Zinovy Nis07ac2bd2016-03-22 13:50:57 +00001735 // Trip count of L has changed so SE must be re-evaluated.
1736 if (Changed)
1737 SE->forgetLoop(L);
1738
Hal Finkelbf45efd2013-11-16 23:59:05 +00001739 return Changed;
1740}