blob: ccaf10142d51318b660e4a1fc45c0ce460ca1d96 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LoopPredication pass tries to convert loop variant range checks to loop
11// invariant by widening checks across loop iterations. For example, it will
12// convert
13//
14// for (i = 0; i < n; i++) {
15// guard(i < len);
16// ...
17// }
18//
19// to
20//
21// for (i = 0; i < n; i++) {
22// guard(n - 1 < len);
23// ...
24// }
25//
26// After this transformation the condition of the guard is loop invariant, so
27// loop-unswitch can later unswitch the loop by this condition which basically
28// predicates the loop by the widened condition:
29//
30// if (n - 1 < len)
31// for (i = 0; i < n; i++) {
32// ...
33// }
34// else
35// deoptimize
36//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000037// It's tempting to rely on SCEV here, but it has proven to be problematic.
38// Generally the facts SCEV provides about the increment step of add
39// recurrences are true if the backedge of the loop is taken, which implicitly
40// assumes that the guard doesn't fail. Using these facts to optimize the
41// guard results in a circular logic where the guard is optimized under the
42// assumption that it never fails.
43//
44// For example, in the loop below the induction variable will be marked as nuw
45// basing on the guard. Basing on nuw the guard predicate will be considered
46// monotonic. Given a monotonic condition it's tempting to replace the induction
47// variable in the condition with its value on the last iteration. But this
48// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49//
50// for (int i = b; i != e; i++)
51// guard(i u< len)
52//
53// One of the ways to reason about this problem is to use an inductive proof
54// approach. Given the loop:
55//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000056// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000057// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000058// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000059// I.INC = I + Step
60// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000061// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000062// }
63//
64// where B(x) and G(x) are predicates that map integers to booleans, we want a
65// loop invariant expression M such the following program has the same semantics
66// as the above:
67//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000068// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000069// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000070// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000071// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000072// guard(G(0) && M);
73// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000074// }
75//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000076// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000077//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000078// Informal proof that the transformation above is correct:
79//
80// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000081// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000082//
83// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000084// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000085// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000086//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000087// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000088// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000089//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000090// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000091// iteration:
92//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000093// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000094// G(I) is true because the backedge is guarded by this condition.
95//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000096// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000097//
98// Note that we can use anything stronger than M, i.e. any condition which
99// implies M.
100//
Anna Thomas7b360432017-12-04 15:11:48 +0000101// When S = 1 (i.e. forward iterating loop), the transformation is supported
102// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000103// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000104// B(X) = latchStart + X <pred> latchLimit,
105// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000106// * The guard condition is of the form
107// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000108//
Anna Thomas7b360432017-12-04 15:11:48 +0000109// For the ult latch comparison case M is:
110// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000112//
Anna Thomas7b360432017-12-04 15:11:48 +0000113// The only way the antecedent can be true and the consequent can be false is
114// if
115// X == guardLimit - 1 - guardStart
116// (and guardLimit is non-zero, but we won't use this latter fact).
117// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118// latchStart + guardLimit - 1 - guardStart u< latchLimit
119// and its negation is
120// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000121//
Anna Thomas7b360432017-12-04 15:11:48 +0000122// In other words, if
123// latchLimit u<= latchStart + guardLimit - 1 - guardStart
124// then:
125// (the ranges below are written in ConstantRange notation, where [A, B) is the
126// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000127//
Anna Thomas7b360432017-12-04 15:11:48 +0000128// forall X . guardStart + X u< guardLimit &&
129// latchStart + X u< latchLimit =>
130// guardStart + X + 1 u< guardLimit
131// == forall X . guardStart + X u< guardLimit &&
132// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133// guardStart + X + 1 u< guardLimit
134// == forall X . (guardStart + X) in [0, guardLimit) &&
135// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136// (guardStart + X + 1) in [0, guardLimit)
137// == forall X . X in [-guardStart, guardLimit - guardStart) &&
138// X in [-latchStart, guardLimit - 1 - guardStart) =>
139// X in [-guardStart - 1, guardLimit - guardStart - 1)
140// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000141//
Anna Thomas7b360432017-12-04 15:11:48 +0000142// So the widened condition is:
143// guardStart u< guardLimit &&
144// latchStart + guardLimit - 1 - guardStart u>= latchLimit
145// Similarly for ule condition the widened condition is:
146// guardStart u< guardLimit &&
147// latchStart + guardLimit - 1 - guardStart u> latchLimit
148// For slt condition the widened condition is:
149// guardStart u< guardLimit &&
150// latchStart + guardLimit - 1 - guardStart s>= latchLimit
151// For sle condition the widened condition is:
152// guardStart u< guardLimit &&
153// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000154//
Anna Thomas7b360432017-12-04 15:11:48 +0000155// When S = -1 (i.e. reverse iterating loop), the transformation is supported
156// when:
157// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000158// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000159// * The guard condition is of the form
160// G(X) = X - 1 u< guardLimit
161//
162// For the ugt latch comparison case M is:
163// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164//
165// The only way the antecedent can be true and the consequent can be false is if
166// X == 1.
167// If X == 1 then the second half of the antecedent is
168// 1 u> latchLimit, and its negation is latchLimit u>= 1.
169//
170// So the widened condition is:
171// guardStart u< guardLimit && latchLimit u>= 1.
172// Similarly for sgt condition the widened condition is:
173// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000174// For uge condition the widened condition is:
175// guardStart u< guardLimit && latchLimit u> 1.
176// For sge condition the widened condition is:
177// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000178//===----------------------------------------------------------------------===//
179
180#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000181#include "llvm/ADT/Statistic.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000182#include "llvm/Analysis/BranchProbabilityInfo.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000183#include "llvm/Analysis/LoopInfo.h"
184#include "llvm/Analysis/LoopPass.h"
185#include "llvm/Analysis/ScalarEvolution.h"
186#include "llvm/Analysis/ScalarEvolutionExpander.h"
187#include "llvm/Analysis/ScalarEvolutionExpressions.h"
188#include "llvm/IR/Function.h"
189#include "llvm/IR/GlobalValue.h"
190#include "llvm/IR/IntrinsicInst.h"
191#include "llvm/IR/Module.h"
192#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000193#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000194#include "llvm/Support/Debug.h"
195#include "llvm/Transforms/Scalar.h"
196#include "llvm/Transforms/Utils/LoopUtils.h"
197
198#define DEBUG_TYPE "loop-predication"
199
Fedor Sergeevc297e842018-10-17 09:02:54 +0000200STATISTIC(TotalConsidered, "Number of guards considered");
201STATISTIC(TotalWidened, "Number of checks widened");
202
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000203using namespace llvm;
204
Anna Thomas1d02b132017-11-02 21:21:02 +0000205static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
206 cl::Hidden, cl::init(true));
207
Anna Thomas7b360432017-12-04 15:11:48 +0000208static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
209 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000210
211static cl::opt<bool>
212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
213 cl::Hidden, cl::init(false));
214
215// This is the scale factor for the latch probability. We use this during
216// profitability analysis to find other exiting blocks that have a much higher
217// probability of exiting the loop instead of loop exiting via latch.
218// This value should be greater than 1 for a sane profitability check.
219static cl::opt<float> LatchExitProbabilityScale(
220 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
221 cl::desc("scale factor for the latch probability. Value should be greater "
222 "than 1. Lower values are ignored"));
223
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000224namespace {
225class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000226 /// Represents an induction variable check:
227 /// icmp Pred, <induction variable>, <loop invariant limit>
228 struct LoopICmp {
229 ICmpInst::Predicate Pred;
230 const SCEVAddRecExpr *IV;
231 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000232 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
233 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000234 : Pred(Pred), IV(IV), Limit(Limit) {}
235 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000236 void dump() {
237 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
238 << ", Limit = " << *Limit << "\n";
239 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000240 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000241
242 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000243 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000244
245 Loop *L;
246 const DataLayout *DL;
247 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000248 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000249
Anna Thomas68797212017-11-03 14:25:39 +0000250 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000251 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
252 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
253 ICI->getOperand(1));
254 }
255 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
256 Value *RHS);
257
258 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000259
Anna Thomas68797212017-11-03 14:25:39 +0000260 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000261 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
262 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
263 Instruction *InsertAt);
264
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000265 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
266 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000267 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
268 LoopICmp RangeCheck,
269 SCEVExpander &Expander,
270 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000271 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
272 LoopICmp RangeCheck,
273 SCEVExpander &Expander,
274 IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000275 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
276
Anna Thomas9b1176b2018-03-22 16:03:59 +0000277 // If the loop always exits through another block in the loop, we should not
278 // predicate based on the latch check. For example, the latch check can be a
279 // very coarse grained check and there can be more fine grained exit checks
280 // within the loop. We identify such unprofitable loops through BPI.
281 bool isLoopProfitableToPredicate();
282
Anna Thomas1d02b132017-11-02 21:21:02 +0000283 // When the IV type is wider than the range operand type, we can still do loop
284 // predication, by generating SCEVs for the range and latch that are of the
285 // same type. We achieve this by generating a SCEV truncate expression for the
286 // latch IV. This is done iff truncation of the IV is a safe operation,
287 // without loss of information.
288 // Another way to achieve this is by generating a wider type SCEV for the
289 // range check operand, however, this needs a more involved check that
290 // operands do not overflow. This can lead to loss of information when the
291 // range operand is of the form: add i32 %offset, %iv. We need to prove that
292 // sext(x + y) is same as sext(x) + sext(y).
293 // This function returns true if we can safely represent the IV type in
294 // the RangeCheckType without loss of information.
295 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
296 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
297 // so.
298 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000299
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000300public:
Anna Thomas9b1176b2018-03-22 16:03:59 +0000301 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
302 : SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000303 bool runOnLoop(Loop *L);
304};
305
306class LoopPredicationLegacyPass : public LoopPass {
307public:
308 static char ID;
309 LoopPredicationLegacyPass() : LoopPass(ID) {
310 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
311 }
312
313 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000314 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000315 getLoopAnalysisUsage(AU);
316 }
317
318 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
319 if (skipLoop(L))
320 return false;
321 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000322 BranchProbabilityInfo &BPI =
323 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
324 LoopPredication LP(SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000325 return LP.runOnLoop(L);
326 }
327};
328
329char LoopPredicationLegacyPass::ID = 0;
330} // end namespace llvm
331
332INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
333 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000334INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000335INITIALIZE_PASS_DEPENDENCY(LoopPass)
336INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
337 "Loop predication", false, false)
338
339Pass *llvm::createLoopPredicationPass() {
340 return new LoopPredicationLegacyPass();
341}
342
343PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
344 LoopStandardAnalysisResults &AR,
345 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000346 const auto &FAM =
347 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
348 Function *F = L.getHeader()->getParent();
349 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
350 LoopPredication LP(&AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000351 if (!LP.runOnLoop(&L))
352 return PreservedAnalyses::all();
353
354 return getLoopPassPreservedAnalyses();
355}
356
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000357Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000358LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
359 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000360 const SCEV *LHSS = SE->getSCEV(LHS);
361 if (isa<SCEVCouldNotCompute>(LHSS))
362 return None;
363 const SCEV *RHSS = SE->getSCEV(RHS);
364 if (isa<SCEVCouldNotCompute>(RHSS))
365 return None;
366
367 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
368 if (SE->isLoopInvariant(LHSS, L)) {
369 std::swap(LHS, RHS);
370 std::swap(LHSS, RHSS);
371 Pred = ICmpInst::getSwappedPredicate(Pred);
372 }
373
374 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
375 if (!AR || AR->getLoop() != L)
376 return None;
377
378 return LoopICmp(Pred, AR, RHSS);
379}
380
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000381Value *LoopPredication::expandCheck(SCEVExpander &Expander,
382 IRBuilder<> &Builder,
383 ICmpInst::Predicate Pred, const SCEV *LHS,
384 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000385 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
Fangrui Songf78650a2018-07-30 19:41:25 +0000386
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000387 Type *Ty = LHS->getType();
388 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000389
390 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
391 return Builder.getTrue();
392
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000393 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
394 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
395 return Builder.CreateICmp(Pred, LHSV, RHSV);
396}
397
Anna Thomas1d02b132017-11-02 21:21:02 +0000398Optional<LoopPredication::LoopICmp>
399LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
400
401 auto *LatchType = LatchCheck.IV->getType();
402 if (RangeCheckType == LatchType)
403 return LatchCheck;
404 // For now, bail out if latch type is narrower than range type.
405 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
406 return None;
407 if (!isSafeToTruncateWideIVType(RangeCheckType))
408 return None;
409 // We can now safely identify the truncated version of the IV and limit for
410 // RangeCheckType.
411 LoopICmp NewLatchCheck;
412 NewLatchCheck.Pred = LatchCheck.Pred;
413 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
414 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
415 if (!NewLatchCheck.IV)
416 return None;
417 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000418 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
419 << "can be represented as range check type:"
420 << *RangeCheckType << "\n");
421 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
422 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000423 return NewLatchCheck;
424}
425
Anna Thomas68797212017-11-03 14:25:39 +0000426bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000427 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000428}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000429
Anna Thomas68797212017-11-03 14:25:39 +0000430bool LoopPredication::CanExpand(const SCEV* S) {
431 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
432}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000433
Anna Thomas68797212017-11-03 14:25:39 +0000434Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
435 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
436 SCEVExpander &Expander, IRBuilder<> &Builder) {
437 auto *Ty = RangeCheck.IV->getType();
438 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000439 // guardStart u< guardLimit &&
440 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000441 // where <pred> depends on the latch condition predicate. See the file
442 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000443 // guardLimit - guardStart + latchStart - 1
444 const SCEV *GuardStart = RangeCheck.IV->getStart();
445 const SCEV *GuardLimit = RangeCheck.Limit;
446 const SCEV *LatchStart = LatchCheck.IV->getStart();
447 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000448
449 // guardLimit - guardStart + latchStart - 1
450 const SCEV *RHS =
451 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
452 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000453 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
454 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000455 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000456 return None;
457 }
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000458 auto LimitCheckPred =
459 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000460
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000461 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
462 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
463 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000464
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000465 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000466 auto *LimitCheck =
467 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
Anna Thomas68797212017-11-03 14:25:39 +0000468 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000469 GuardStart, GuardLimit, InsertAt);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000470 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000471}
Anna Thomas7b360432017-12-04 15:11:48 +0000472
473Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
474 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
475 SCEVExpander &Expander, IRBuilder<> &Builder) {
476 auto *Ty = RangeCheck.IV->getType();
477 const SCEV *GuardStart = RangeCheck.IV->getStart();
478 const SCEV *GuardLimit = RangeCheck.Limit;
479 const SCEV *LatchLimit = LatchCheck.Limit;
480 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
481 !CanExpand(LatchLimit)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000482 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000483 return None;
484 }
485 // The decrement of the latch check IV should be the same as the
486 // rangeCheckIV.
487 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
488 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000489 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
490 << *PostDecLatchCheckIV
491 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000492 return None;
493 }
494
495 // Generate the widened condition for CountDownLoop:
496 // guardStart u< guardLimit &&
497 // latchLimit <pred> 1.
498 // See the header comment for reasoning of the checks.
499 Instruction *InsertAt = Preheader->getTerminator();
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000500 auto LimitCheckPred =
501 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Anna Thomas7b360432017-12-04 15:11:48 +0000502 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
503 GuardStart, GuardLimit, InsertAt);
504 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
505 SE->getOne(Ty), InsertAt);
506 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
507}
508
Anna Thomas68797212017-11-03 14:25:39 +0000509/// If ICI can be widened to a loop invariant condition emits the loop
510/// invariant condition in the loop preheader and return it, otherwise
511/// returns None.
512Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
513 SCEVExpander &Expander,
514 IRBuilder<> &Builder) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000515 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
516 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000517
518 // parseLoopStructure guarantees that the latch condition is:
519 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
520 // We are looking for the range checks of the form:
521 // i u< guardLimit
522 auto RangeCheck = parseLoopICmp(ICI);
523 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000524 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000525 return None;
526 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000527 LLVM_DEBUG(dbgs() << "Guard check:\n");
528 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000529 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000530 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
531 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000532 return None;
533 }
534 auto *RangeCheckIV = RangeCheck->IV;
535 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000536 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000537 return None;
538 }
539 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
540 // We cannot just compare with latch IV step because the latch and range IVs
541 // may have different types.
542 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000543 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000544 return None;
545 }
546 auto *Ty = RangeCheckIV->getType();
547 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
548 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000549 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
550 "corresponding to range type: "
551 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000552 return None;
553 }
554
555 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000556 // At this point, the range and latch step should have the same type, but need
557 // not have the same value (we support both 1 and -1 steps).
558 assert(Step->getType() ==
559 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
560 "Range and latch steps should be of same type!");
561 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000562 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000563 return None;
564 }
Anna Thomas68797212017-11-03 14:25:39 +0000565
Anna Thomas7b360432017-12-04 15:11:48 +0000566 if (Step->isOne())
567 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
568 Expander, Builder);
569 else {
570 assert(Step->isAllOnesValue() && "Step should be -1!");
571 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
572 Expander, Builder);
573 }
Anna Thomas68797212017-11-03 14:25:39 +0000574}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000575
576bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
577 SCEVExpander &Expander) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000578 LLVM_DEBUG(dbgs() << "Processing guard:\n");
579 LLVM_DEBUG(Guard->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000580
Fedor Sergeevc297e842018-10-17 09:02:54 +0000581 TotalConsidered++;
582
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000583 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
584
585 // The guard condition is expected to be in form of:
586 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000587 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000588 // widened across loop iterations. Widening these conditions remember the
589 // resulting list of subconditions in Checks vector.
590 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
591 SmallPtrSet<Value *, 4> Visited;
592
593 SmallVector<Value *, 4> Checks;
594
595 unsigned NumWidened = 0;
596 do {
597 Value *Condition = Worklist.pop_back_val();
598 if (!Visited.insert(Condition).second)
599 continue;
600
601 Value *LHS, *RHS;
602 using namespace llvm::PatternMatch;
603 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
604 Worklist.push_back(LHS);
605 Worklist.push_back(RHS);
606 continue;
607 }
608
609 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
610 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
611 Checks.push_back(NewRangeCheck.getValue());
612 NumWidened++;
613 continue;
614 }
615 }
616
617 // Save the condition as is if we can't widen it
618 Checks.push_back(Condition);
619 } while (Worklist.size() != 0);
620
621 if (NumWidened == 0)
622 return false;
623
Fedor Sergeevc297e842018-10-17 09:02:54 +0000624 TotalWidened += NumWidened;
625
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000626 // Emit the new guard condition
627 Builder.SetInsertPoint(Guard);
628 Value *LastCheck = nullptr;
629 for (auto *Check : Checks)
630 if (!LastCheck)
631 LastCheck = Check;
632 else
633 LastCheck = Builder.CreateAnd(LastCheck, Check);
634 Guard->setOperand(0, LastCheck);
635
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000636 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000637 return true;
638}
639
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000640Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
641 using namespace PatternMatch;
642
643 BasicBlock *LoopLatch = L->getLoopLatch();
644 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000645 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000646 return None;
647 }
648
649 ICmpInst::Predicate Pred;
650 Value *LHS, *RHS;
651 BasicBlock *TrueDest, *FalseDest;
652
653 if (!match(LoopLatch->getTerminator(),
654 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
655 FalseDest))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000656 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000657 return None;
658 }
659 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
660 "One of the latch's destinations must be the header");
661 if (TrueDest != L->getHeader())
662 Pred = ICmpInst::getInversePredicate(Pred);
663
664 auto Result = parseLoopICmp(Pred, LHS, RHS);
665 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000666 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000667 return None;
668 }
669
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000670 // Check affine first, so if it's not we don't try to compute the step
671 // recurrence.
672 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000673 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000674 return None;
675 }
676
677 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000678 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000679 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000680 return None;
681 }
682
Anna Thomas68797212017-11-03 14:25:39 +0000683 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000684 if (Step->isOne()) {
685 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
686 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
687 } else {
688 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000689 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
690 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000691 }
Anna Thomas68797212017-11-03 14:25:39 +0000692 };
693
694 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000695 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
696 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000697 return None;
698 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000699 return Result;
700}
701
Anna Thomas1d02b132017-11-02 21:21:02 +0000702// Returns true if its safe to truncate the IV to RangeCheckType.
703bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
704 if (!EnableIVTruncation)
705 return false;
706 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
707 DL->getTypeSizeInBits(RangeCheckType) &&
708 "Expected latch check IV type to be larger than range check operand "
709 "type!");
710 // The start and end values of the IV should be known. This is to guarantee
711 // that truncating the wide type will not lose information.
712 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
713 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
714 if (!Limit || !Start)
715 return false;
716 // This check makes sure that the IV does not change sign during loop
717 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
718 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
719 // IV wraps around, and the truncation of the IV would lose the range of
720 // iterations between 2^32 and 2^64.
721 bool Increasing;
722 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
723 return false;
724 // The active bits should be less than the bits in the RangeCheckType. This
725 // guarantees that truncating the latch check to RangeCheckType is a safe
726 // operation.
727 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
728 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
729 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
730}
731
Anna Thomas9b1176b2018-03-22 16:03:59 +0000732bool LoopPredication::isLoopProfitableToPredicate() {
733 if (SkipProfitabilityChecks || !BPI)
734 return true;
735
736 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
737 L->getExitEdges(ExitEdges);
738 // If there is only one exiting edge in the loop, it is always profitable to
739 // predicate the loop.
740 if (ExitEdges.size() == 1)
741 return true;
742
743 // Calculate the exiting probabilities of all exiting edges from the loop,
744 // starting with the LatchExitProbability.
745 // Heuristic for profitability: If any of the exiting blocks' probability of
746 // exiting the loop is larger than exiting through the latch block, it's not
747 // profitable to predicate the loop.
748 auto *LatchBlock = L->getLoopLatch();
749 assert(LatchBlock && "Should have a single latch at this point!");
750 auto *LatchTerm = LatchBlock->getTerminator();
751 assert(LatchTerm->getNumSuccessors() == 2 &&
752 "expected to be an exiting block with 2 succs!");
753 unsigned LatchBrExitIdx =
754 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
755 BranchProbability LatchExitProbability =
756 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
757
758 // Protect against degenerate inputs provided by the user. Providing a value
759 // less than one, can invert the definition of profitable loop predication.
760 float ScaleFactor = LatchExitProbabilityScale;
761 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000762 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000763 dbgs()
764 << "Ignored user setting for loop-predication-latch-probability-scale: "
765 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000766 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000767 ScaleFactor = 1.0;
768 }
769 const auto LatchProbabilityThreshold =
770 LatchExitProbability * ScaleFactor;
771
772 for (const auto &ExitEdge : ExitEdges) {
773 BranchProbability ExitingBlockProbability =
774 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
775 // Some exiting edge has higher probability than the latch exiting edge.
776 // No longer profitable to predicate.
777 if (ExitingBlockProbability > LatchProbabilityThreshold)
778 return false;
779 }
780 // Using BPI, we have concluded that the most probable way to exit from the
781 // loop is through the latch (or there's no profile information and all
782 // exits are equally likely).
783 return true;
784}
785
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000786bool LoopPredication::runOnLoop(Loop *Loop) {
787 L = Loop;
788
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000789 LLVM_DEBUG(dbgs() << "Analyzing ");
790 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000791
792 Module *M = L->getHeader()->getModule();
793
794 // There is nothing to do if the module doesn't use guards
795 auto *GuardDecl =
796 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
797 if (!GuardDecl || GuardDecl->use_empty())
798 return false;
799
800 DL = &M->getDataLayout();
801
802 Preheader = L->getLoopPreheader();
803 if (!Preheader)
804 return false;
805
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000806 auto LatchCheckOpt = parseLoopLatchICmp();
807 if (!LatchCheckOpt)
808 return false;
809 LatchCheck = *LatchCheckOpt;
810
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000811 LLVM_DEBUG(dbgs() << "Latch check:\n");
812 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000813
Anna Thomas9b1176b2018-03-22 16:03:59 +0000814 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000815 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000816 return false;
817 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000818 // Collect all the guards into a vector and process later, so as not
819 // to invalidate the instruction iterator.
820 SmallVector<IntrinsicInst *, 4> Guards;
821 for (const auto BB : L->blocks())
822 for (auto &I : *BB)
823 if (auto *II = dyn_cast<IntrinsicInst>(&I))
824 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
825 Guards.push_back(II);
826
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000827 if (Guards.empty())
828 return false;
829
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000830 SCEVExpander Expander(*SE, *DL, "loop-predication");
831
832 bool Changed = false;
833 for (auto *Guard : Guards)
834 Changed |= widenGuardConditions(Guard, Expander);
835
836 return Changed;
837}