blob: 561ceea1d880191e44ed68f1cebf897606f69ce2 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LoopPredication pass tries to convert loop variant range checks to loop
11// invariant by widening checks across loop iterations. For example, it will
12// convert
13//
14// for (i = 0; i < n; i++) {
15// guard(i < len);
16// ...
17// }
18//
19// to
20//
21// for (i = 0; i < n; i++) {
22// guard(n - 1 < len);
23// ...
24// }
25//
26// After this transformation the condition of the guard is loop invariant, so
27// loop-unswitch can later unswitch the loop by this condition which basically
28// predicates the loop by the widened condition:
29//
30// if (n - 1 < len)
31// for (i = 0; i < n; i++) {
32// ...
33// }
34// else
35// deoptimize
36//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000037// It's tempting to rely on SCEV here, but it has proven to be problematic.
38// Generally the facts SCEV provides about the increment step of add
39// recurrences are true if the backedge of the loop is taken, which implicitly
40// assumes that the guard doesn't fail. Using these facts to optimize the
41// guard results in a circular logic where the guard is optimized under the
42// assumption that it never fails.
43//
44// For example, in the loop below the induction variable will be marked as nuw
45// basing on the guard. Basing on nuw the guard predicate will be considered
46// monotonic. Given a monotonic condition it's tempting to replace the induction
47// variable in the condition with its value on the last iteration. But this
48// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49//
50// for (int i = b; i != e; i++)
51// guard(i u< len)
52//
53// One of the ways to reason about this problem is to use an inductive proof
54// approach. Given the loop:
55//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000056// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000057// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000058// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000059// I.INC = I + Step
60// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000061// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000062// }
63//
64// where B(x) and G(x) are predicates that map integers to booleans, we want a
65// loop invariant expression M such the following program has the same semantics
66// as the above:
67//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000068// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000069// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000070// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000071// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000072// guard(G(0) && M);
73// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000074// }
75//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000076// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077//
78// Informal proof that the transformation above is correct:
79//
80// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000081// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000082//
83// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000084// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000085// And the condition above can be simplified to G(Start) && M.
86//
87// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000088// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000089//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000090// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000091// iteration:
92//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000093// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000094// G(I) is true because the backedge is guarded by this condition.
95//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000096// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000097//
98// Note that we can use anything stronger than M, i.e. any condition which
99// implies M.
100//
Anna Thomas7b360432017-12-04 15:11:48 +0000101// When S = 1 (i.e. forward iterating loop), the transformation is supported
102// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000103// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000104// B(X) = latchStart + X <pred> latchLimit,
105// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000106// * The guard condition is of the form
107// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000108//
Anna Thomas7b360432017-12-04 15:11:48 +0000109// For the ult latch comparison case M is:
110// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000112//
Anna Thomas7b360432017-12-04 15:11:48 +0000113// The only way the antecedent can be true and the consequent can be false is
114// if
115// X == guardLimit - 1 - guardStart
116// (and guardLimit is non-zero, but we won't use this latter fact).
117// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118// latchStart + guardLimit - 1 - guardStart u< latchLimit
119// and its negation is
120// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000121//
Anna Thomas7b360432017-12-04 15:11:48 +0000122// In other words, if
123// latchLimit u<= latchStart + guardLimit - 1 - guardStart
124// then:
125// (the ranges below are written in ConstantRange notation, where [A, B) is the
126// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000127//
Anna Thomas7b360432017-12-04 15:11:48 +0000128// forall X . guardStart + X u< guardLimit &&
129// latchStart + X u< latchLimit =>
130// guardStart + X + 1 u< guardLimit
131// == forall X . guardStart + X u< guardLimit &&
132// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133// guardStart + X + 1 u< guardLimit
134// == forall X . (guardStart + X) in [0, guardLimit) &&
135// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136// (guardStart + X + 1) in [0, guardLimit)
137// == forall X . X in [-guardStart, guardLimit - guardStart) &&
138// X in [-latchStart, guardLimit - 1 - guardStart) =>
139// X in [-guardStart - 1, guardLimit - guardStart - 1)
140// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000141//
Anna Thomas7b360432017-12-04 15:11:48 +0000142// So the widened condition is:
143// guardStart u< guardLimit &&
144// latchStart + guardLimit - 1 - guardStart u>= latchLimit
145// Similarly for ule condition the widened condition is:
146// guardStart u< guardLimit &&
147// latchStart + guardLimit - 1 - guardStart u> latchLimit
148// For slt condition the widened condition is:
149// guardStart u< guardLimit &&
150// latchStart + guardLimit - 1 - guardStart s>= latchLimit
151// For sle condition the widened condition is:
152// guardStart u< guardLimit &&
153// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000154//
Anna Thomas7b360432017-12-04 15:11:48 +0000155// When S = -1 (i.e. reverse iterating loop), the transformation is supported
156// when:
157// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000158// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000159// * The guard condition is of the form
160// G(X) = X - 1 u< guardLimit
161//
162// For the ugt latch comparison case M is:
163// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164//
165// The only way the antecedent can be true and the consequent can be false is if
166// X == 1.
167// If X == 1 then the second half of the antecedent is
168// 1 u> latchLimit, and its negation is latchLimit u>= 1.
169//
170// So the widened condition is:
171// guardStart u< guardLimit && latchLimit u>= 1.
172// Similarly for sgt condition the widened condition is:
173// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000174// For uge condition the widened condition is:
175// guardStart u< guardLimit && latchLimit u> 1.
176// For sge condition the widened condition is:
177// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000178//===----------------------------------------------------------------------===//
179
180#include "llvm/Transforms/Scalar/LoopPredication.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000181#include "llvm/Analysis/BranchProbabilityInfo.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000182#include "llvm/Analysis/LoopInfo.h"
183#include "llvm/Analysis/LoopPass.h"
184#include "llvm/Analysis/ScalarEvolution.h"
185#include "llvm/Analysis/ScalarEvolutionExpander.h"
186#include "llvm/Analysis/ScalarEvolutionExpressions.h"
187#include "llvm/IR/Function.h"
188#include "llvm/IR/GlobalValue.h"
189#include "llvm/IR/IntrinsicInst.h"
190#include "llvm/IR/Module.h"
191#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000192#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000193#include "llvm/Support/Debug.h"
194#include "llvm/Transforms/Scalar.h"
195#include "llvm/Transforms/Utils/LoopUtils.h"
196
197#define DEBUG_TYPE "loop-predication"
198
199using namespace llvm;
200
Anna Thomas1d02b132017-11-02 21:21:02 +0000201static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
202 cl::Hidden, cl::init(true));
203
Anna Thomas7b360432017-12-04 15:11:48 +0000204static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
205 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000206
207static cl::opt<bool>
208 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
209 cl::Hidden, cl::init(false));
210
211// This is the scale factor for the latch probability. We use this during
212// profitability analysis to find other exiting blocks that have a much higher
213// probability of exiting the loop instead of loop exiting via latch.
214// This value should be greater than 1 for a sane profitability check.
215static cl::opt<float> LatchExitProbabilityScale(
216 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
217 cl::desc("scale factor for the latch probability. Value should be greater "
218 "than 1. Lower values are ignored"));
219
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000220namespace {
221class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000222 /// Represents an induction variable check:
223 /// icmp Pred, <induction variable>, <loop invariant limit>
224 struct LoopICmp {
225 ICmpInst::Predicate Pred;
226 const SCEVAddRecExpr *IV;
227 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000228 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
229 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000230 : Pred(Pred), IV(IV), Limit(Limit) {}
231 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000232 void dump() {
233 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
234 << ", Limit = " << *Limit << "\n";
235 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000236 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000237
238 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000239 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000240
241 Loop *L;
242 const DataLayout *DL;
243 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000244 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000245
Anna Thomas68797212017-11-03 14:25:39 +0000246 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000247 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
248 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
249 ICI->getOperand(1));
250 }
251 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
252 Value *RHS);
253
254 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000255
Anna Thomas68797212017-11-03 14:25:39 +0000256 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000257 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
258 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
259 Instruction *InsertAt);
260
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000261 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
262 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000263 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
264 LoopICmp RangeCheck,
265 SCEVExpander &Expander,
266 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000267 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
268 LoopICmp RangeCheck,
269 SCEVExpander &Expander,
270 IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000271 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
272
Anna Thomas9b1176b2018-03-22 16:03:59 +0000273 // If the loop always exits through another block in the loop, we should not
274 // predicate based on the latch check. For example, the latch check can be a
275 // very coarse grained check and there can be more fine grained exit checks
276 // within the loop. We identify such unprofitable loops through BPI.
277 bool isLoopProfitableToPredicate();
278
Anna Thomas1d02b132017-11-02 21:21:02 +0000279 // When the IV type is wider than the range operand type, we can still do loop
280 // predication, by generating SCEVs for the range and latch that are of the
281 // same type. We achieve this by generating a SCEV truncate expression for the
282 // latch IV. This is done iff truncation of the IV is a safe operation,
283 // without loss of information.
284 // Another way to achieve this is by generating a wider type SCEV for the
285 // range check operand, however, this needs a more involved check that
286 // operands do not overflow. This can lead to loss of information when the
287 // range operand is of the form: add i32 %offset, %iv. We need to prove that
288 // sext(x + y) is same as sext(x) + sext(y).
289 // This function returns true if we can safely represent the IV type in
290 // the RangeCheckType without loss of information.
291 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
292 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
293 // so.
294 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000295
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000296public:
Anna Thomas9b1176b2018-03-22 16:03:59 +0000297 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
298 : SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000299 bool runOnLoop(Loop *L);
300};
301
302class LoopPredicationLegacyPass : public LoopPass {
303public:
304 static char ID;
305 LoopPredicationLegacyPass() : LoopPass(ID) {
306 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
307 }
308
309 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000310 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000311 getLoopAnalysisUsage(AU);
312 }
313
314 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
315 if (skipLoop(L))
316 return false;
317 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000318 BranchProbabilityInfo &BPI =
319 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
320 LoopPredication LP(SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000321 return LP.runOnLoop(L);
322 }
323};
324
325char LoopPredicationLegacyPass::ID = 0;
326} // end namespace llvm
327
328INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
329 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000330INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000331INITIALIZE_PASS_DEPENDENCY(LoopPass)
332INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
333 "Loop predication", false, false)
334
335Pass *llvm::createLoopPredicationPass() {
336 return new LoopPredicationLegacyPass();
337}
338
339PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
340 LoopStandardAnalysisResults &AR,
341 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000342 const auto &FAM =
343 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
344 Function *F = L.getHeader()->getParent();
345 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
346 LoopPredication LP(&AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000347 if (!LP.runOnLoop(&L))
348 return PreservedAnalyses::all();
349
350 return getLoopPassPreservedAnalyses();
351}
352
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000353Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000354LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
355 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000356 const SCEV *LHSS = SE->getSCEV(LHS);
357 if (isa<SCEVCouldNotCompute>(LHSS))
358 return None;
359 const SCEV *RHSS = SE->getSCEV(RHS);
360 if (isa<SCEVCouldNotCompute>(RHSS))
361 return None;
362
363 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
364 if (SE->isLoopInvariant(LHSS, L)) {
365 std::swap(LHS, RHS);
366 std::swap(LHSS, RHSS);
367 Pred = ICmpInst::getSwappedPredicate(Pred);
368 }
369
370 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
371 if (!AR || AR->getLoop() != L)
372 return None;
373
374 return LoopICmp(Pred, AR, RHSS);
375}
376
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000377Value *LoopPredication::expandCheck(SCEVExpander &Expander,
378 IRBuilder<> &Builder,
379 ICmpInst::Predicate Pred, const SCEV *LHS,
380 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000381 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
382
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000383 Type *Ty = LHS->getType();
384 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000385
386 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
387 return Builder.getTrue();
388
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000389 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
390 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
391 return Builder.CreateICmp(Pred, LHSV, RHSV);
392}
393
Anna Thomas1d02b132017-11-02 21:21:02 +0000394Optional<LoopPredication::LoopICmp>
395LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
396
397 auto *LatchType = LatchCheck.IV->getType();
398 if (RangeCheckType == LatchType)
399 return LatchCheck;
400 // For now, bail out if latch type is narrower than range type.
401 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
402 return None;
403 if (!isSafeToTruncateWideIVType(RangeCheckType))
404 return None;
405 // We can now safely identify the truncated version of the IV and limit for
406 // RangeCheckType.
407 LoopICmp NewLatchCheck;
408 NewLatchCheck.Pred = LatchCheck.Pred;
409 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
410 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
411 if (!NewLatchCheck.IV)
412 return None;
413 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000414 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
415 << "can be represented as range check type:"
416 << *RangeCheckType << "\n");
417 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
418 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000419 return NewLatchCheck;
420}
421
Anna Thomas68797212017-11-03 14:25:39 +0000422bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000423 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000424}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000425
Anna Thomas68797212017-11-03 14:25:39 +0000426bool LoopPredication::CanExpand(const SCEV* S) {
427 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
428}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000429
Anna Thomas68797212017-11-03 14:25:39 +0000430Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
431 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
432 SCEVExpander &Expander, IRBuilder<> &Builder) {
433 auto *Ty = RangeCheck.IV->getType();
434 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000435 // guardStart u< guardLimit &&
436 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000437 // where <pred> depends on the latch condition predicate. See the file
438 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000439 // guardLimit - guardStart + latchStart - 1
440 const SCEV *GuardStart = RangeCheck.IV->getStart();
441 const SCEV *GuardLimit = RangeCheck.Limit;
442 const SCEV *LatchStart = LatchCheck.IV->getStart();
443 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000444
445 // guardLimit - guardStart + latchStart - 1
446 const SCEV *RHS =
447 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
448 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000449 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
450 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000451 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000452 return None;
453 }
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000454 auto LimitCheckPred =
455 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000456
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000457 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
458 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
459 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000460
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000461 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000462 auto *LimitCheck =
463 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
Anna Thomas68797212017-11-03 14:25:39 +0000464 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000465 GuardStart, GuardLimit, InsertAt);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000466 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000467}
Anna Thomas7b360432017-12-04 15:11:48 +0000468
469Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
470 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
471 SCEVExpander &Expander, IRBuilder<> &Builder) {
472 auto *Ty = RangeCheck.IV->getType();
473 const SCEV *GuardStart = RangeCheck.IV->getStart();
474 const SCEV *GuardLimit = RangeCheck.Limit;
475 const SCEV *LatchLimit = LatchCheck.Limit;
476 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
477 !CanExpand(LatchLimit)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000478 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000479 return None;
480 }
481 // The decrement of the latch check IV should be the same as the
482 // rangeCheckIV.
483 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
484 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000485 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
486 << *PostDecLatchCheckIV
487 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000488 return None;
489 }
490
491 // Generate the widened condition for CountDownLoop:
492 // guardStart u< guardLimit &&
493 // latchLimit <pred> 1.
494 // See the header comment for reasoning of the checks.
495 Instruction *InsertAt = Preheader->getTerminator();
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000496 auto LimitCheckPred =
497 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Anna Thomas7b360432017-12-04 15:11:48 +0000498 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
499 GuardStart, GuardLimit, InsertAt);
500 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
501 SE->getOne(Ty), InsertAt);
502 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
503}
504
Anna Thomas68797212017-11-03 14:25:39 +0000505/// If ICI can be widened to a loop invariant condition emits the loop
506/// invariant condition in the loop preheader and return it, otherwise
507/// returns None.
508Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
509 SCEVExpander &Expander,
510 IRBuilder<> &Builder) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000511 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
512 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000513
514 // parseLoopStructure guarantees that the latch condition is:
515 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
516 // We are looking for the range checks of the form:
517 // i u< guardLimit
518 auto RangeCheck = parseLoopICmp(ICI);
519 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000520 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000521 return None;
522 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000523 LLVM_DEBUG(dbgs() << "Guard check:\n");
524 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000525 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000526 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
527 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000528 return None;
529 }
530 auto *RangeCheckIV = RangeCheck->IV;
531 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000532 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000533 return None;
534 }
535 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
536 // We cannot just compare with latch IV step because the latch and range IVs
537 // may have different types.
538 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000539 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000540 return None;
541 }
542 auto *Ty = RangeCheckIV->getType();
543 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
544 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000545 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
546 "corresponding to range type: "
547 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000548 return None;
549 }
550
551 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000552 // At this point, the range and latch step should have the same type, but need
553 // not have the same value (we support both 1 and -1 steps).
554 assert(Step->getType() ==
555 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
556 "Range and latch steps should be of same type!");
557 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000558 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000559 return None;
560 }
Anna Thomas68797212017-11-03 14:25:39 +0000561
Anna Thomas7b360432017-12-04 15:11:48 +0000562 if (Step->isOne())
563 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
564 Expander, Builder);
565 else {
566 assert(Step->isAllOnesValue() && "Step should be -1!");
567 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
568 Expander, Builder);
569 }
Anna Thomas68797212017-11-03 14:25:39 +0000570}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000571
572bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
573 SCEVExpander &Expander) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000574 LLVM_DEBUG(dbgs() << "Processing guard:\n");
575 LLVM_DEBUG(Guard->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000576
577 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
578
579 // The guard condition is expected to be in form of:
580 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000581 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000582 // widened across loop iterations. Widening these conditions remember the
583 // resulting list of subconditions in Checks vector.
584 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
585 SmallPtrSet<Value *, 4> Visited;
586
587 SmallVector<Value *, 4> Checks;
588
589 unsigned NumWidened = 0;
590 do {
591 Value *Condition = Worklist.pop_back_val();
592 if (!Visited.insert(Condition).second)
593 continue;
594
595 Value *LHS, *RHS;
596 using namespace llvm::PatternMatch;
597 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
598 Worklist.push_back(LHS);
599 Worklist.push_back(RHS);
600 continue;
601 }
602
603 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
604 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
605 Checks.push_back(NewRangeCheck.getValue());
606 NumWidened++;
607 continue;
608 }
609 }
610
611 // Save the condition as is if we can't widen it
612 Checks.push_back(Condition);
613 } while (Worklist.size() != 0);
614
615 if (NumWidened == 0)
616 return false;
617
618 // Emit the new guard condition
619 Builder.SetInsertPoint(Guard);
620 Value *LastCheck = nullptr;
621 for (auto *Check : Checks)
622 if (!LastCheck)
623 LastCheck = Check;
624 else
625 LastCheck = Builder.CreateAnd(LastCheck, Check);
626 Guard->setOperand(0, LastCheck);
627
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000628 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000629 return true;
630}
631
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000632Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
633 using namespace PatternMatch;
634
635 BasicBlock *LoopLatch = L->getLoopLatch();
636 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000637 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000638 return None;
639 }
640
641 ICmpInst::Predicate Pred;
642 Value *LHS, *RHS;
643 BasicBlock *TrueDest, *FalseDest;
644
645 if (!match(LoopLatch->getTerminator(),
646 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
647 FalseDest))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000648 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000649 return None;
650 }
651 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
652 "One of the latch's destinations must be the header");
653 if (TrueDest != L->getHeader())
654 Pred = ICmpInst::getInversePredicate(Pred);
655
656 auto Result = parseLoopICmp(Pred, LHS, RHS);
657 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000658 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000659 return None;
660 }
661
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000662 // Check affine first, so if it's not we don't try to compute the step
663 // recurrence.
664 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000665 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000666 return None;
667 }
668
669 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000670 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000671 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000672 return None;
673 }
674
Anna Thomas68797212017-11-03 14:25:39 +0000675 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000676 if (Step->isOne()) {
677 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
678 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
679 } else {
680 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000681 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
682 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000683 }
Anna Thomas68797212017-11-03 14:25:39 +0000684 };
685
686 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000687 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
688 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000689 return None;
690 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000691 return Result;
692}
693
Anna Thomas1d02b132017-11-02 21:21:02 +0000694// Returns true if its safe to truncate the IV to RangeCheckType.
695bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
696 if (!EnableIVTruncation)
697 return false;
698 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
699 DL->getTypeSizeInBits(RangeCheckType) &&
700 "Expected latch check IV type to be larger than range check operand "
701 "type!");
702 // The start and end values of the IV should be known. This is to guarantee
703 // that truncating the wide type will not lose information.
704 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
705 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
706 if (!Limit || !Start)
707 return false;
708 // This check makes sure that the IV does not change sign during loop
709 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
710 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
711 // IV wraps around, and the truncation of the IV would lose the range of
712 // iterations between 2^32 and 2^64.
713 bool Increasing;
714 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
715 return false;
716 // The active bits should be less than the bits in the RangeCheckType. This
717 // guarantees that truncating the latch check to RangeCheckType is a safe
718 // operation.
719 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
720 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
721 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
722}
723
Anna Thomas9b1176b2018-03-22 16:03:59 +0000724bool LoopPredication::isLoopProfitableToPredicate() {
725 if (SkipProfitabilityChecks || !BPI)
726 return true;
727
728 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
729 L->getExitEdges(ExitEdges);
730 // If there is only one exiting edge in the loop, it is always profitable to
731 // predicate the loop.
732 if (ExitEdges.size() == 1)
733 return true;
734
735 // Calculate the exiting probabilities of all exiting edges from the loop,
736 // starting with the LatchExitProbability.
737 // Heuristic for profitability: If any of the exiting blocks' probability of
738 // exiting the loop is larger than exiting through the latch block, it's not
739 // profitable to predicate the loop.
740 auto *LatchBlock = L->getLoopLatch();
741 assert(LatchBlock && "Should have a single latch at this point!");
742 auto *LatchTerm = LatchBlock->getTerminator();
743 assert(LatchTerm->getNumSuccessors() == 2 &&
744 "expected to be an exiting block with 2 succs!");
745 unsigned LatchBrExitIdx =
746 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
747 BranchProbability LatchExitProbability =
748 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
749
750 // Protect against degenerate inputs provided by the user. Providing a value
751 // less than one, can invert the definition of profitable loop predication.
752 float ScaleFactor = LatchExitProbabilityScale;
753 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000754 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000755 dbgs()
756 << "Ignored user setting for loop-predication-latch-probability-scale: "
757 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000758 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000759 ScaleFactor = 1.0;
760 }
761 const auto LatchProbabilityThreshold =
762 LatchExitProbability * ScaleFactor;
763
764 for (const auto &ExitEdge : ExitEdges) {
765 BranchProbability ExitingBlockProbability =
766 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
767 // Some exiting edge has higher probability than the latch exiting edge.
768 // No longer profitable to predicate.
769 if (ExitingBlockProbability > LatchProbabilityThreshold)
770 return false;
771 }
772 // Using BPI, we have concluded that the most probable way to exit from the
773 // loop is through the latch (or there's no profile information and all
774 // exits are equally likely).
775 return true;
776}
777
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000778bool LoopPredication::runOnLoop(Loop *Loop) {
779 L = Loop;
780
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000781 LLVM_DEBUG(dbgs() << "Analyzing ");
782 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000783
784 Module *M = L->getHeader()->getModule();
785
786 // There is nothing to do if the module doesn't use guards
787 auto *GuardDecl =
788 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
789 if (!GuardDecl || GuardDecl->use_empty())
790 return false;
791
792 DL = &M->getDataLayout();
793
794 Preheader = L->getLoopPreheader();
795 if (!Preheader)
796 return false;
797
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000798 auto LatchCheckOpt = parseLoopLatchICmp();
799 if (!LatchCheckOpt)
800 return false;
801 LatchCheck = *LatchCheckOpt;
802
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000803 LLVM_DEBUG(dbgs() << "Latch check:\n");
804 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000805
Anna Thomas9b1176b2018-03-22 16:03:59 +0000806 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000807 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000808 return false;
809 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000810 // Collect all the guards into a vector and process later, so as not
811 // to invalidate the instruction iterator.
812 SmallVector<IntrinsicInst *, 4> Guards;
813 for (const auto BB : L->blocks())
814 for (auto &I : *BB)
815 if (auto *II = dyn_cast<IntrinsicInst>(&I))
816 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
817 Guards.push_back(II);
818
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000819 if (Guards.empty())
820 return false;
821
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000822 SCEVExpander Expander(*SE, *DL, "loop-predication");
823
824 bool Changed = false;
825 for (auto *Guard : Guards)
826 Changed |= widenGuardConditions(Guard, Expander);
827
828 return Changed;
829}