blob: 5db7577823226b640e575e89b32a6471ae7cfc6f [file] [log] [blame]
Dylan McKay7549b0a2016-11-02 06:47:40 +00001//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AVR uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AVRISelLowering.h"
16
Dylan McKay8fa6d8d2017-01-07 23:39:47 +000017#include "llvm/ADT/StringSwitch.h"
Dylan McKay7549b0a2016-11-02 06:47:40 +000018#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24#include "llvm/IR/Function.h"
25#include "llvm/Support/ErrorHandling.h"
26
27#include "AVR.h"
28#include "AVRMachineFunctionInfo.h"
Dylan McKay7203e002019-01-18 06:10:41 +000029#include "AVRSubtarget.h"
Dylan McKay7549b0a2016-11-02 06:47:40 +000030#include "AVRTargetMachine.h"
31#include "MCTargetDesc/AVRMCTargetDesc.h"
32
33namespace llvm {
34
Dylan McKay7203e002019-01-18 06:10:41 +000035AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
36 const AVRSubtarget &STI)
37 : TargetLowering(TM), Subtarget(STI) {
Dylan McKay7549b0a2016-11-02 06:47:40 +000038 // Set up the register classes.
39 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
40 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
41
42 // Compute derived properties from the register classes.
Dylan McKay7203e002019-01-18 06:10:41 +000043 computeRegisterProperties(Subtarget.getRegisterInfo());
Dylan McKay7549b0a2016-11-02 06:47:40 +000044
45 setBooleanContents(ZeroOrOneBooleanContent);
46 setBooleanVectorContents(ZeroOrOneBooleanContent);
47 setSchedulingPreference(Sched::RegPressure);
48 setStackPointerRegisterToSaveRestore(AVR::SP);
Dylan McKay80463fe2017-12-09 06:45:36 +000049 setSupportsUnalignedAtomics(true);
Dylan McKay7549b0a2016-11-02 06:47:40 +000050
51 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
52 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
53
Dylan McKayccd819a2017-02-05 21:35:45 +000054 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
55 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000056 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
57 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
58
59 for (MVT VT : MVT::integer_valuetypes()) {
60 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
61 setLoadExtAction(N, VT, MVT::i1, Promote);
62 setLoadExtAction(N, VT, MVT::i8, Expand);
63 }
64 }
65
66 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
67
Dylan McKay6bc5d5c2018-07-29 11:38:36 +000068 for (MVT VT : MVT::integer_valuetypes()) {
69 setOperationAction(ISD::ADDC, VT, Legal);
70 setOperationAction(ISD::SUBC, VT, Legal);
71 setOperationAction(ISD::ADDE, VT, Legal);
72 setOperationAction(ISD::SUBE, VT, Legal);
73 }
74
Dylan McKay7549b0a2016-11-02 06:47:40 +000075 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
76 // revert into a sub since we don't have an add with immediate instruction.
77 setOperationAction(ISD::ADD, MVT::i32, Custom);
78 setOperationAction(ISD::ADD, MVT::i64, Custom);
79
80 // our shift instructions are only able to shift 1 bit at a time, so handle
81 // this in a custom way.
82 setOperationAction(ISD::SRA, MVT::i8, Custom);
83 setOperationAction(ISD::SHL, MVT::i8, Custom);
84 setOperationAction(ISD::SRL, MVT::i8, Custom);
85 setOperationAction(ISD::SRA, MVT::i16, Custom);
86 setOperationAction(ISD::SHL, MVT::i16, Custom);
87 setOperationAction(ISD::SRL, MVT::i16, Custom);
88 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
89 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
90 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
91
Dylan McKay59e7fe32017-05-01 09:48:55 +000092 setOperationAction(ISD::ROTL, MVT::i8, Custom);
93 setOperationAction(ISD::ROTL, MVT::i16, Custom);
94 setOperationAction(ISD::ROTR, MVT::i8, Custom);
95 setOperationAction(ISD::ROTR, MVT::i16, Custom);
96
Dylan McKay7549b0a2016-11-02 06:47:40 +000097 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
98 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
99 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
100 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
101 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
102
103 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
104 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
Dylan McKay99b756e2016-12-07 12:34:47 +0000105 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
106 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000107 setOperationAction(ISD::SETCC, MVT::i8, Custom);
108 setOperationAction(ISD::SETCC, MVT::i16, Custom);
109 setOperationAction(ISD::SETCC, MVT::i32, Custom);
110 setOperationAction(ISD::SETCC, MVT::i64, Custom);
111 setOperationAction(ISD::SELECT, MVT::i8, Expand);
112 setOperationAction(ISD::SELECT, MVT::i16, Expand);
113
114 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
115
116 // Add support for postincrement and predecrement load/stores.
117 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
118 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
119 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
120 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
121 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
122 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
123 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
124 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
125
126 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
127
128 setOperationAction(ISD::VASTART, MVT::Other, Custom);
129 setOperationAction(ISD::VAEND, MVT::Other, Expand);
130 setOperationAction(ISD::VAARG, MVT::Other, Expand);
131 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
132
133 // Atomic operations which must be lowered to rtlib calls
134 for (MVT VT : MVT::integer_valuetypes()) {
135 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
136 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
137 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
138 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
139 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
140 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
141 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
142 }
143
144 // Division/remainder
145 setOperationAction(ISD::UDIV, MVT::i8, Expand);
146 setOperationAction(ISD::UDIV, MVT::i16, Expand);
147 setOperationAction(ISD::UREM, MVT::i8, Expand);
148 setOperationAction(ISD::UREM, MVT::i16, Expand);
149 setOperationAction(ISD::SDIV, MVT::i8, Expand);
150 setOperationAction(ISD::SDIV, MVT::i16, Expand);
151 setOperationAction(ISD::SREM, MVT::i8, Expand);
152 setOperationAction(ISD::SREM, MVT::i16, Expand);
153
154 // Make division and modulus custom
155 for (MVT VT : MVT::integer_valuetypes()) {
156 setOperationAction(ISD::UDIVREM, VT, Custom);
157 setOperationAction(ISD::SDIVREM, VT, Custom);
158 }
159
160 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
161 setOperationAction(ISD::MUL, MVT::i8, Expand);
162 setOperationAction(ISD::MUL, MVT::i16, Expand);
163
164 // Expand 16 bit multiplications.
165 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
166 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
167
Dylan McKay7203e002019-01-18 06:10:41 +0000168 // Expand multiplications to libcalls when there is
169 // no hardware MUL.
170 if (!Subtarget.supportsMultiplication()) {
171 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
172 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
173 }
174
Dylan McKay7549b0a2016-11-02 06:47:40 +0000175 for (MVT VT : MVT::integer_valuetypes()) {
176 setOperationAction(ISD::MULHS, VT, Expand);
177 setOperationAction(ISD::MULHU, VT, Expand);
178 }
179
180 for (MVT VT : MVT::integer_valuetypes()) {
181 setOperationAction(ISD::CTPOP, VT, Expand);
182 setOperationAction(ISD::CTLZ, VT, Expand);
183 setOperationAction(ISD::CTTZ, VT, Expand);
184 }
185
186 for (MVT VT : MVT::integer_valuetypes()) {
187 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
188 // TODO: The generated code is pretty poor. Investigate using the
189 // same "shift and subtract with carry" trick that we do for
190 // extending 8-bit to 16-bit. This may require infrastructure
191 // improvements in how we treat 16-bit "registers" to be feasible.
192 }
193
194 // Division rtlib functions (not supported)
195 setLibcallName(RTLIB::SDIV_I8, nullptr);
196 setLibcallName(RTLIB::SDIV_I16, nullptr);
197 setLibcallName(RTLIB::SDIV_I32, nullptr);
198 setLibcallName(RTLIB::SDIV_I64, nullptr);
199 setLibcallName(RTLIB::SDIV_I128, nullptr);
200 setLibcallName(RTLIB::UDIV_I8, nullptr);
201 setLibcallName(RTLIB::UDIV_I16, nullptr);
202 setLibcallName(RTLIB::UDIV_I32, nullptr);
203 setLibcallName(RTLIB::UDIV_I64, nullptr);
204 setLibcallName(RTLIB::UDIV_I128, nullptr);
205
206 // Modulus rtlib functions (not supported)
207 setLibcallName(RTLIB::SREM_I8, nullptr);
208 setLibcallName(RTLIB::SREM_I16, nullptr);
209 setLibcallName(RTLIB::SREM_I32, nullptr);
210 setLibcallName(RTLIB::SREM_I64, nullptr);
211 setLibcallName(RTLIB::SREM_I128, nullptr);
212 setLibcallName(RTLIB::UREM_I8, nullptr);
213 setLibcallName(RTLIB::UREM_I16, nullptr);
214 setLibcallName(RTLIB::UREM_I32, nullptr);
215 setLibcallName(RTLIB::UREM_I64, nullptr);
216 setLibcallName(RTLIB::UREM_I128, nullptr);
217
218 // Division and modulus rtlib functions
219 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
220 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
221 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
222 setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
223 setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
224 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
225 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
226 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
227 setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
228 setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
229
230 // Several of the runtime library functions use a special calling conv
231 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
232 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
233 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
234 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
235
236 // Trigonometric rtlib functions
237 setLibcallName(RTLIB::SIN_F32, "sin");
238 setLibcallName(RTLIB::COS_F32, "cos");
239
240 setMinFunctionAlignment(1);
241 setMinimumJumpTableEntries(INT_MAX);
242}
243
244const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
245#define NODE(name) \
246 case AVRISD::name: \
247 return #name
248
249 switch (Opcode) {
250 default:
251 return nullptr;
252 NODE(RET_FLAG);
253 NODE(RETI_FLAG);
254 NODE(CALL);
255 NODE(WRAPPER);
256 NODE(LSL);
257 NODE(LSR);
258 NODE(ROL);
259 NODE(ROR);
260 NODE(ASR);
261 NODE(LSLLOOP);
262 NODE(LSRLOOP);
263 NODE(ASRLOOP);
264 NODE(BRCOND);
265 NODE(CMP);
266 NODE(CMPC);
267 NODE(TST);
268 NODE(SELECT_CC);
269#undef NODE
270 }
271}
272
273EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
274 EVT VT) const {
275 assert(!VT.isVector() && "No AVR SetCC type for vectors!");
276 return MVT::i8;
277}
278
279SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
280 //:TODO: this function has to be completely rewritten to produce optimal
281 // code, for now it's producing very long but correct code.
282 unsigned Opc8;
283 const SDNode *N = Op.getNode();
284 EVT VT = Op.getValueType();
285 SDLoc dl(N);
286
287 // Expand non-constant shifts to loops.
288 if (!isa<ConstantSDNode>(N->getOperand(1))) {
289 switch (Op.getOpcode()) {
290 default:
291 llvm_unreachable("Invalid shift opcode!");
292 case ISD::SHL:
293 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
294 N->getOperand(1));
295 case ISD::SRL:
296 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
297 N->getOperand(1));
Dylan McKay59e7fe32017-05-01 09:48:55 +0000298 case ISD::ROTL:
299 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
300 N->getOperand(1));
301 case ISD::ROTR:
302 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
303 N->getOperand(1));
Dylan McKay7549b0a2016-11-02 06:47:40 +0000304 case ISD::SRA:
305 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
306 N->getOperand(1));
307 }
308 }
309
310 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
311 SDValue Victim = N->getOperand(0);
312
313 switch (Op.getOpcode()) {
314 case ISD::SRA:
315 Opc8 = AVRISD::ASR;
316 break;
317 case ISD::ROTL:
318 Opc8 = AVRISD::ROL;
319 break;
320 case ISD::ROTR:
321 Opc8 = AVRISD::ROR;
322 break;
323 case ISD::SRL:
324 Opc8 = AVRISD::LSR;
325 break;
326 case ISD::SHL:
327 Opc8 = AVRISD::LSL;
328 break;
329 default:
330 llvm_unreachable("Invalid shift opcode");
331 }
332
333 while (ShiftAmount--) {
334 Victim = DAG.getNode(Opc8, dl, VT, Victim);
335 }
336
337 return Victim;
338}
339
340SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
341 unsigned Opcode = Op->getOpcode();
342 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
343 "Invalid opcode for Div/Rem lowering");
Meador Inge5d3c5992017-03-24 01:57:29 +0000344 bool IsSigned = (Opcode == ISD::SDIVREM);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000345 EVT VT = Op->getValueType(0);
346 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
347
348 RTLIB::Libcall LC;
349 switch (VT.getSimpleVT().SimpleTy) {
350 default:
351 llvm_unreachable("Unexpected request for libcall!");
352 case MVT::i8:
Meador Inge5d3c5992017-03-24 01:57:29 +0000353 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000354 break;
355 case MVT::i16:
Meador Inge5d3c5992017-03-24 01:57:29 +0000356 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000357 break;
358 case MVT::i32:
Meador Inge5d3c5992017-03-24 01:57:29 +0000359 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000360 break;
361 case MVT::i64:
Meador Inge5d3c5992017-03-24 01:57:29 +0000362 LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000363 break;
Dylan McKaya35ee702018-03-19 00:55:50 +0000364 case MVT::i128:
365 LC = IsSigned ? RTLIB::SDIVREM_I128 : RTLIB::UDIVREM_I128;
366 break;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000367 }
368
369 SDValue InChain = DAG.getEntryNode();
370
371 TargetLowering::ArgListTy Args;
372 TargetLowering::ArgListEntry Entry;
373 for (SDValue const &Value : Op->op_values()) {
374 Entry.Node = Value;
375 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
Meador Inge5d3c5992017-03-24 01:57:29 +0000376 Entry.IsSExt = IsSigned;
377 Entry.IsZExt = !IsSigned;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000378 Args.push_back(Entry);
379 }
380
381 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
382 getPointerTy(DAG.getDataLayout()));
383
Leslie Zhaia1149e02017-05-12 09:08:03 +0000384 Type *RetTy = (Type *)StructType::get(Ty, Ty);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000385
386 SDLoc dl(Op);
387 TargetLowering::CallLoweringInfo CLI(DAG);
388 CLI.setDebugLoc(dl)
389 .setChain(InChain)
Nirav Daveac6081c2017-03-18 00:44:07 +0000390 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
Dylan McKay7549b0a2016-11-02 06:47:40 +0000391 .setInRegister()
Meador Inge5d3c5992017-03-24 01:57:29 +0000392 .setSExtResult(IsSigned)
393 .setZExtResult(!IsSigned);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000394
395 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
396 return CallInfo.first;
397}
398
399SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
400 SelectionDAG &DAG) const {
401 auto DL = DAG.getDataLayout();
402
403 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
404 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
405
406 // Create the TargetGlobalAddress node, folding in the constant offset.
407 SDValue Result =
408 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
409 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
410}
411
412SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
413 SelectionDAG &DAG) const {
414 auto DL = DAG.getDataLayout();
415 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
416
417 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
418
419 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
420}
421
422/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
423static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
424 switch (CC) {
425 default:
426 llvm_unreachable("Unknown condition code!");
427 case ISD::SETEQ:
428 return AVRCC::COND_EQ;
429 case ISD::SETNE:
430 return AVRCC::COND_NE;
431 case ISD::SETGE:
432 return AVRCC::COND_GE;
433 case ISD::SETLT:
434 return AVRCC::COND_LT;
435 case ISD::SETUGE:
436 return AVRCC::COND_SH;
437 case ISD::SETULT:
438 return AVRCC::COND_LO;
439 }
440}
441
442/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
443/// the given operands.
444SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
445 SDValue &AVRcc, SelectionDAG &DAG,
446 SDLoc DL) const {
447 SDValue Cmp;
448 EVT VT = LHS.getValueType();
449 bool UseTest = false;
450
451 switch (CC) {
452 default:
453 break;
454 case ISD::SETLE: {
455 // Swap operands and reverse the branching condition.
456 std::swap(LHS, RHS);
457 CC = ISD::SETGE;
458 break;
459 }
460 case ISD::SETGT: {
461 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
462 switch (C->getSExtValue()) {
463 case -1: {
464 // When doing lhs > -1 use a tst instruction on the top part of lhs
465 // and use brpl instead of using a chain of cp/cpc.
466 UseTest = true;
467 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
468 break;
469 }
470 case 0: {
471 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
472 // __zero_reg__ in lhs.
473 RHS = LHS;
474 LHS = DAG.getConstant(0, DL, VT);
475 CC = ISD::SETLT;
476 break;
477 }
478 default: {
479 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
480 // us to fold the constant into the cmp instruction.
481 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
482 CC = ISD::SETGE;
483 break;
484 }
485 }
486 break;
487 }
488 // Swap operands and reverse the branching condition.
489 std::swap(LHS, RHS);
490 CC = ISD::SETLT;
491 break;
492 }
493 case ISD::SETLT: {
494 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
495 switch (C->getSExtValue()) {
496 case 1: {
497 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
498 // __zero_reg__ in lhs.
499 RHS = LHS;
500 LHS = DAG.getConstant(0, DL, VT);
501 CC = ISD::SETGE;
502 break;
503 }
504 case 0: {
505 // When doing lhs < 0 use a tst instruction on the top part of lhs
506 // and use brmi instead of using a chain of cp/cpc.
507 UseTest = true;
508 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
509 break;
510 }
511 }
512 }
513 break;
514 }
515 case ISD::SETULE: {
516 // Swap operands and reverse the branching condition.
517 std::swap(LHS, RHS);
518 CC = ISD::SETUGE;
519 break;
520 }
521 case ISD::SETUGT: {
522 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
523 // fold the constant into the cmp instruction.
524 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
525 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
526 CC = ISD::SETUGE;
527 break;
528 }
529 // Swap operands and reverse the branching condition.
530 std::swap(LHS, RHS);
531 CC = ISD::SETULT;
532 break;
533 }
534 }
535
536 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
537 // using the default and/or/xor expansion code which is much longer.
538 if (VT == MVT::i32) {
539 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
540 DAG.getIntPtrConstant(0, DL));
541 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
542 DAG.getIntPtrConstant(1, DL));
543 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
544 DAG.getIntPtrConstant(0, DL));
545 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
546 DAG.getIntPtrConstant(1, DL));
547
548 if (UseTest) {
549 // When using tst we only care about the highest part.
550 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
551 DAG.getIntPtrConstant(1, DL));
552 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
553 } else {
554 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
555 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
556 }
557 } else if (VT == MVT::i64) {
558 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
559 DAG.getIntPtrConstant(0, DL));
560 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
561 DAG.getIntPtrConstant(1, DL));
562
563 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
564 DAG.getIntPtrConstant(0, DL));
565 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
566 DAG.getIntPtrConstant(1, DL));
567 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
568 DAG.getIntPtrConstant(0, DL));
569 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
570 DAG.getIntPtrConstant(1, DL));
571
572 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
573 DAG.getIntPtrConstant(0, DL));
574 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
575 DAG.getIntPtrConstant(1, DL));
576
577 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
578 DAG.getIntPtrConstant(0, DL));
579 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
580 DAG.getIntPtrConstant(1, DL));
581 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
582 DAG.getIntPtrConstant(0, DL));
583 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
584 DAG.getIntPtrConstant(1, DL));
585
586 if (UseTest) {
587 // When using tst we only care about the highest part.
588 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
589 DAG.getIntPtrConstant(1, DL));
590 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
591 } else {
592 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
593 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
594 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
595 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
596 }
597 } else if (VT == MVT::i8 || VT == MVT::i16) {
598 if (UseTest) {
599 // When using tst we only care about the highest part.
600 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
601 (VT == MVT::i8)
602 ? LHS
603 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
604 LHS, DAG.getIntPtrConstant(1, DL)));
605 } else {
606 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
607 }
608 } else {
609 llvm_unreachable("Invalid comparison size");
610 }
611
612 // When using a test instruction AVRcc is already set.
613 if (!UseTest) {
614 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
615 }
616
617 return Cmp;
618}
619
620SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
621 SDValue Chain = Op.getOperand(0);
622 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
623 SDValue LHS = Op.getOperand(2);
624 SDValue RHS = Op.getOperand(3);
625 SDValue Dest = Op.getOperand(4);
626 SDLoc dl(Op);
627
628 SDValue TargetCC;
629 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
630
631 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
632 Cmp);
633}
634
635SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
636 SDValue LHS = Op.getOperand(0);
637 SDValue RHS = Op.getOperand(1);
638 SDValue TrueV = Op.getOperand(2);
639 SDValue FalseV = Op.getOperand(3);
640 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
641 SDLoc dl(Op);
642
643 SDValue TargetCC;
644 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
645
646 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
647 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
648
649 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
650}
651
652SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
653 SDValue LHS = Op.getOperand(0);
654 SDValue RHS = Op.getOperand(1);
655 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
656 SDLoc DL(Op);
657
658 SDValue TargetCC;
659 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
660
661 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
662 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
663 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
664 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
665
666 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
667}
668
669SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
670 const MachineFunction &MF = DAG.getMachineFunction();
671 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
672 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
673 auto DL = DAG.getDataLayout();
674 SDLoc dl(Op);
675
676 // Vastart just stores the address of the VarArgsFrameIndex slot into the
677 // memory location argument.
678 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
679
680 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
681 MachinePointerInfo(SV), 0);
682}
683
684SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
685 switch (Op.getOpcode()) {
686 default:
687 llvm_unreachable("Don't know how to custom lower this!");
688 case ISD::SHL:
689 case ISD::SRA:
690 case ISD::SRL:
691 case ISD::ROTL:
692 case ISD::ROTR:
693 return LowerShifts(Op, DAG);
694 case ISD::GlobalAddress:
695 return LowerGlobalAddress(Op, DAG);
696 case ISD::BlockAddress:
697 return LowerBlockAddress(Op, DAG);
698 case ISD::BR_CC:
699 return LowerBR_CC(Op, DAG);
700 case ISD::SELECT_CC:
701 return LowerSELECT_CC(Op, DAG);
702 case ISD::SETCC:
703 return LowerSETCC(Op, DAG);
704 case ISD::VASTART:
705 return LowerVASTART(Op, DAG);
706 case ISD::SDIVREM:
707 case ISD::UDIVREM:
708 return LowerDivRem(Op, DAG);
709 }
710
711 return SDValue();
712}
713
714/// Replace a node with an illegal result type
715/// with a new node built out of custom code.
716void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
717 SmallVectorImpl<SDValue> &Results,
718 SelectionDAG &DAG) const {
719 SDLoc DL(N);
720
721 switch (N->getOpcode()) {
722 case ISD::ADD: {
723 // Convert add (x, imm) into sub (x, -imm).
724 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
725 SDValue Sub = DAG.getNode(
726 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
727 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
728 Results.push_back(Sub);
729 }
730 break;
731 }
732 default: {
733 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
734
735 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
736 Results.push_back(Res.getValue(I));
737
738 break;
739 }
740 }
741}
742
743/// Return true if the addressing mode represented
744/// by AM is legal for this target, for a load/store of the specified type.
745bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
746 const AddrMode &AM, Type *Ty,
Jonas Paulsson024e3192017-07-21 11:59:37 +0000747 unsigned AS, Instruction *I) const {
Dylan McKay7549b0a2016-11-02 06:47:40 +0000748 int64_t Offs = AM.BaseOffs;
749
750 // Allow absolute addresses.
751 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
752 return true;
753 }
754
755 // Flash memory instructions only allow zero offsets.
756 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
757 return false;
758 }
759
760 // Allow reg+<6bit> offset.
761 if (Offs < 0)
762 Offs = -Offs;
763 if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
764 return true;
765 }
766
767 return false;
768}
769
770/// Returns true by value, base pointer and
771/// offset pointer and addressing mode by reference if the node's address
772/// can be legally represented as pre-indexed load / store address.
773bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
774 SDValue &Offset,
775 ISD::MemIndexedMode &AM,
776 SelectionDAG &DAG) const {
777 EVT VT;
778 const SDNode *Op;
779 SDLoc DL(N);
780
781 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
782 VT = LD->getMemoryVT();
783 Op = LD->getBasePtr().getNode();
784 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
785 return false;
786 if (AVR::isProgramMemoryAccess(LD)) {
787 return false;
788 }
789 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
790 VT = ST->getMemoryVT();
791 Op = ST->getBasePtr().getNode();
792 if (AVR::isProgramMemoryAccess(ST)) {
793 return false;
794 }
795 } else {
796 return false;
797 }
798
799 if (VT != MVT::i8 && VT != MVT::i16) {
800 return false;
801 }
802
803 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
804 return false;
805 }
806
807 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
808 int RHSC = RHS->getSExtValue();
809 if (Op->getOpcode() == ISD::SUB)
810 RHSC = -RHSC;
811
812 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
813 return false;
814 }
815
816 Base = Op->getOperand(0);
817 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
818 AM = ISD::PRE_DEC;
819
820 return true;
821 }
822
823 return false;
824}
825
826/// Returns true by value, base pointer and
827/// offset pointer and addressing mode by reference if this node can be
828/// combined with a load / store to form a post-indexed load / store.
829bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
830 SDValue &Base,
831 SDValue &Offset,
832 ISD::MemIndexedMode &AM,
833 SelectionDAG &DAG) const {
834 EVT VT;
835 SDLoc DL(N);
836
837 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
838 VT = LD->getMemoryVT();
839 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
840 return false;
841 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
842 VT = ST->getMemoryVT();
843 if (AVR::isProgramMemoryAccess(ST)) {
844 return false;
845 }
846 } else {
847 return false;
848 }
849
850 if (VT != MVT::i8 && VT != MVT::i16) {
851 return false;
852 }
853
854 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
855 return false;
856 }
857
858 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
859 int RHSC = RHS->getSExtValue();
860 if (Op->getOpcode() == ISD::SUB)
861 RHSC = -RHSC;
862 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
863 return false;
864 }
865
866 Base = Op->getOperand(0);
867 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
868 AM = ISD::POST_INC;
869
870 return true;
871 }
872
873 return false;
874}
875
876bool AVRTargetLowering::isOffsetFoldingLegal(
877 const GlobalAddressSDNode *GA) const {
878 return true;
879}
880
881//===----------------------------------------------------------------------===//
882// Formal Arguments Calling Convention Implementation
883//===----------------------------------------------------------------------===//
884
885#include "AVRGenCallingConv.inc"
886
887/// For each argument in a function store the number of pieces it is composed
888/// of.
Dylan McKay05d3e412018-02-19 08:28:38 +0000889static void parseFunctionArgs(const SmallVectorImpl<ISD::InputArg> &Ins,
Dylan McKay7549b0a2016-11-02 06:47:40 +0000890 SmallVectorImpl<unsigned> &Out) {
Dylan McKay05d3e412018-02-19 08:28:38 +0000891 for (const ISD::InputArg &Arg : Ins) {
892 if(Arg.PartOffset > 0) continue;
893 unsigned Bytes = ((Arg.ArgVT.getSizeInBits()) + 7) / 8;
894
Dylan McKay7549b0a2016-11-02 06:47:40 +0000895 Out.push_back((Bytes + 1) / 2);
896 }
897}
898
899/// For external symbols there is no function prototype information so we
900/// have to rely directly on argument sizes.
901static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
902 SmallVectorImpl<unsigned> &Out) {
903 for (unsigned i = 0, e = In.size(); i != e;) {
904 unsigned Size = 0;
905 unsigned Offset = 0;
906 while ((i != e) && (In[i].PartOffset == Offset)) {
907 Offset += In[i].VT.getStoreSize();
908 ++i;
909 ++Size;
910 }
911 Out.push_back(Size);
912 }
913}
914
915static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
916 SDValue Callee = CLI.Callee;
917
918 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
919 return G->getSymbol();
920 }
921
922 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
923 return G->getGlobal()->getName();
924 }
925
926 llvm_unreachable("don't know how to get the name for this callee");
927}
928
929/// Analyze incoming and outgoing function arguments. We need custom C++ code
930/// to handle special constraints in the ABI like reversing the order of the
931/// pieces of splitted arguments. In addition, all pieces of a certain argument
932/// have to be passed either using registers or the stack but never mixing both.
933static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
934 const Function *F, const DataLayout *TD,
935 const SmallVectorImpl<ISD::OutputArg> *Outs,
936 const SmallVectorImpl<ISD::InputArg> *Ins,
937 CallingConv::ID CallConv,
938 SmallVectorImpl<CCValAssign> &ArgLocs,
939 CCState &CCInfo, bool IsCall, bool IsVarArg) {
940 static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
941 AVR::R18, AVR::R16, AVR::R14,
942 AVR::R12, AVR::R10, AVR::R8};
943 static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
944 AVR::R19R18, AVR::R17R16, AVR::R15R14,
945 AVR::R13R12, AVR::R11R10, AVR::R9R8};
946 if (IsVarArg) {
947 // Variadic functions do not need all the analisys below.
948 if (IsCall) {
949 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
950 } else {
951 CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
952 }
953 return;
954 }
955
956 // Fill in the Args array which will contain original argument sizes.
957 SmallVector<unsigned, 8> Args;
958 if (IsCall) {
959 parseExternFuncCallArgs(*Outs, Args);
960 } else {
961 assert(F != nullptr && "function should not be null");
Dylan McKay05d3e412018-02-19 08:28:38 +0000962 parseFunctionArgs(*Ins, Args);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000963 }
964
965 unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
966 // Variadic functions always use the stack.
967 bool UsesStack = false;
968 for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
969 unsigned Size = Args[i];
Dylan McKay7a3eb292017-02-05 09:53:45 +0000970
971 // If we have a zero-sized argument, don't attempt to lower it.
972 // AVR-GCC does not support zero-sized arguments and so we need not
973 // worry about ABI compatibility.
974 if (Size == 0) continue;
975
Dylan McKay7549b0a2016-11-02 06:47:40 +0000976 MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
977
978 // If we have plenty of regs to pass the whole argument do it.
979 if (!UsesStack && (Size <= RegsLeft)) {
980 const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
981
982 for (unsigned j = 0; j != Size; ++j) {
983 unsigned Reg = CCInfo.AllocateReg(
984 ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
985 CCInfo.addLoc(
986 CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
987 --RegsLeft;
988 }
989
990 // Reverse the order of the pieces to agree with the "big endian" format
991 // required in the calling convention ABI.
992 std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
993 } else {
994 // Pass the rest of arguments using the stack.
995 UsesStack = true;
996 for (unsigned j = 0; j != Size; ++j) {
997 unsigned Offset = CCInfo.AllocateStack(
998 TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
999 TD->getABITypeAlignment(
1000 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
1001 CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
1002 CCValAssign::Full));
1003 }
1004 }
1005 pos += Size;
1006 }
1007}
1008
1009static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
1010 const Function *F, const DataLayout *TD,
1011 const SmallVectorImpl<ISD::OutputArg> *Outs,
1012 const SmallVectorImpl<ISD::InputArg> *Ins,
1013 CallingConv::ID CallConv,
1014 SmallVectorImpl<CCValAssign> &ArgLocs,
1015 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1016 StringRef FuncName = getFunctionName(CLI);
1017
1018 if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
1019 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
1020 } else {
1021 analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1022 CallConv, ArgLocs, CCInfo,
1023 IsCall, IsVarArg);
1024 }
1025}
1026
1027static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1028 const Function *F, const DataLayout *TD,
1029 const SmallVectorImpl<ISD::OutputArg> *Outs,
1030 const SmallVectorImpl<ISD::InputArg> *Ins,
1031 CallingConv::ID CallConv,
1032 SmallVectorImpl<CCValAssign> &ArgLocs,
1033 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1034 switch (CallConv) {
1035 case CallingConv::AVR_BUILTIN: {
1036 analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
1037 CallConv, ArgLocs, CCInfo,
1038 IsCall, IsVarArg);
1039 return;
1040 }
1041 default: {
1042 analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1043 CallConv, ArgLocs, CCInfo,
1044 IsCall, IsVarArg);
1045 return;
1046 }
1047 }
1048}
1049
1050SDValue AVRTargetLowering::LowerFormalArguments(
1051 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1052 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1053 SmallVectorImpl<SDValue> &InVals) const {
1054 MachineFunction &MF = DAG.getMachineFunction();
1055 MachineFrameInfo &MFI = MF.getFrameInfo();
1056 auto DL = DAG.getDataLayout();
1057
1058 // Assign locations to all of the incoming arguments.
1059 SmallVector<CCValAssign, 16> ArgLocs;
1060 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1061 *DAG.getContext());
1062
Matthias Braunf1caa282017-12-15 22:22:58 +00001063 analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
Dylan McKay7549b0a2016-11-02 06:47:40 +00001064 false, isVarArg);
1065
1066 SDValue ArgValue;
1067 for (CCValAssign &VA : ArgLocs) {
1068
1069 // Arguments stored on registers.
1070 if (VA.isRegLoc()) {
1071 EVT RegVT = VA.getLocVT();
1072 const TargetRegisterClass *RC;
1073 if (RegVT == MVT::i8) {
1074 RC = &AVR::GPR8RegClass;
1075 } else if (RegVT == MVT::i16) {
1076 RC = &AVR::DREGSRegClass;
1077 } else {
1078 llvm_unreachable("Unknown argument type!");
1079 }
1080
1081 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1082 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1083
1084 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1085 // following code will handle zexts or sexts generated by other
1086 // front ends. Otherwise:
1087 // If this is an 8 bit value, it is really passed promoted
1088 // to 16 bits. Insert an assert[sz]ext to capture this, then
1089 // truncate to the right size.
1090 switch (VA.getLocInfo()) {
1091 default:
1092 llvm_unreachable("Unknown loc info!");
1093 case CCValAssign::Full:
1094 break;
1095 case CCValAssign::BCvt:
1096 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1097 break;
1098 case CCValAssign::SExt:
1099 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1100 DAG.getValueType(VA.getValVT()));
1101 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1102 break;
1103 case CCValAssign::ZExt:
1104 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1105 DAG.getValueType(VA.getValVT()));
1106 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1107 break;
1108 }
1109
1110 InVals.push_back(ArgValue);
1111 } else {
1112 // Sanity check.
1113 assert(VA.isMemLoc());
1114
1115 EVT LocVT = VA.getLocVT();
1116
1117 // Create the frame index object for this incoming parameter.
1118 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1119 VA.getLocMemOffset(), true);
1120
1121 // Create the SelectionDAG nodes corresponding to a load
1122 // from this parameter.
1123 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1124 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1125 MachinePointerInfo::getFixedStack(MF, FI),
1126 0));
1127 }
1128 }
1129
1130 // If the function takes variable number of arguments, make a frame index for
1131 // the start of the first vararg value... for expansion of llvm.va_start.
1132 if (isVarArg) {
1133 unsigned StackSize = CCInfo.getNextStackOffset();
1134 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1135
1136 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1137 }
1138
1139 return Chain;
1140}
1141
1142//===----------------------------------------------------------------------===//
1143// Call Calling Convention Implementation
1144//===----------------------------------------------------------------------===//
1145
1146SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1147 SmallVectorImpl<SDValue> &InVals) const {
1148 SelectionDAG &DAG = CLI.DAG;
1149 SDLoc &DL = CLI.DL;
1150 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1151 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1152 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1153 SDValue Chain = CLI.Chain;
1154 SDValue Callee = CLI.Callee;
1155 bool &isTailCall = CLI.IsTailCall;
1156 CallingConv::ID CallConv = CLI.CallConv;
1157 bool isVarArg = CLI.IsVarArg;
1158
1159 MachineFunction &MF = DAG.getMachineFunction();
1160
1161 // AVR does not yet support tail call optimization.
1162 isTailCall = false;
1163
1164 // Analyze operands of the call, assigning locations to each operand.
1165 SmallVector<CCValAssign, 16> ArgLocs;
1166 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1167 *DAG.getContext());
1168
1169 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1170 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1171 // node so that legalize doesn't hack it.
1172 const Function *F = nullptr;
1173 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1174 const GlobalValue *GV = G->getGlobal();
1175
1176 F = cast<Function>(GV);
1177 Callee =
1178 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1179 } else if (const ExternalSymbolSDNode *ES =
1180 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1181 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1182 getPointerTy(DAG.getDataLayout()));
1183 }
1184
1185 analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1186 true, isVarArg);
1187
1188 // Get a count of how many bytes are to be pushed on the stack.
1189 unsigned NumBytes = CCInfo.getNextStackOffset();
1190
Serge Pavlovd526b132017-05-09 13:35:13 +00001191 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001192
1193 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1194
1195 // First, walk the register assignments, inserting copies.
1196 unsigned AI, AE;
1197 bool HasStackArgs = false;
1198 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1199 CCValAssign &VA = ArgLocs[AI];
1200 EVT RegVT = VA.getLocVT();
1201 SDValue Arg = OutVals[AI];
1202
1203 // Promote the value if needed. With Clang this should not happen.
1204 switch (VA.getLocInfo()) {
1205 default:
1206 llvm_unreachable("Unknown loc info!");
1207 case CCValAssign::Full:
1208 break;
1209 case CCValAssign::SExt:
1210 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1211 break;
1212 case CCValAssign::ZExt:
1213 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1214 break;
1215 case CCValAssign::AExt:
1216 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1217 break;
1218 case CCValAssign::BCvt:
1219 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1220 break;
1221 }
1222
1223 // Stop when we encounter a stack argument, we need to process them
1224 // in reverse order in the loop below.
1225 if (VA.isMemLoc()) {
1226 HasStackArgs = true;
1227 break;
1228 }
1229
1230 // Arguments that can be passed on registers must be kept in the RegsToPass
1231 // vector.
1232 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1233 }
1234
1235 // Second, stack arguments have to walked in reverse order by inserting
1236 // chained stores, this ensures their order is not changed by the scheduler
1237 // and that the push instruction sequence generated is correct, otherwise they
1238 // can be freely intermixed.
1239 if (HasStackArgs) {
1240 for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1241 unsigned Loc = AI - 1;
1242 CCValAssign &VA = ArgLocs[Loc];
1243 SDValue Arg = OutVals[Loc];
1244
1245 assert(VA.isMemLoc());
1246
1247 // SP points to one stack slot further so add one to adjust it.
1248 SDValue PtrOff = DAG.getNode(
1249 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1250 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1251 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1252
1253 Chain =
1254 DAG.getStore(Chain, DL, Arg, PtrOff,
1255 MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1256 0);
1257 }
1258 }
1259
1260 // Build a sequence of copy-to-reg nodes chained together with token chain and
1261 // flag operands which copy the outgoing args into registers. The InFlag in
1262 // necessary since all emited instructions must be stuck together.
1263 SDValue InFlag;
1264 for (auto Reg : RegsToPass) {
1265 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1266 InFlag = Chain.getValue(1);
1267 }
1268
1269 // Returns a chain & a flag for retval copy to use.
1270 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1271 SmallVector<SDValue, 8> Ops;
1272 Ops.push_back(Chain);
1273 Ops.push_back(Callee);
1274
1275 // Add argument registers to the end of the list so that they are known live
1276 // into the call.
1277 for (auto Reg : RegsToPass) {
1278 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1279 }
1280
1281 // Add a register mask operand representing the call-preserved registers.
1282 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
Dylan McKay7203e002019-01-18 06:10:41 +00001283 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
Dylan McKay7549b0a2016-11-02 06:47:40 +00001284 const uint32_t *Mask =
1285 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1286 assert(Mask && "Missing call preserved mask for calling convention");
1287 Ops.push_back(DAG.getRegisterMask(Mask));
1288
1289 if (InFlag.getNode()) {
1290 Ops.push_back(InFlag);
1291 }
1292
1293 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1294 InFlag = Chain.getValue(1);
1295
1296 // Create the CALLSEQ_END node.
1297 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1298 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1299
1300 if (!Ins.empty()) {
1301 InFlag = Chain.getValue(1);
1302 }
1303
1304 // Handle result values, copying them out of physregs into vregs that we
1305 // return.
1306 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1307 InVals);
1308}
1309
1310/// Lower the result values of a call into the
1311/// appropriate copies out of appropriate physical registers.
1312///
1313SDValue AVRTargetLowering::LowerCallResult(
1314 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1315 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1316 SmallVectorImpl<SDValue> &InVals) const {
1317
1318 // Assign locations to each value returned by this call.
1319 SmallVector<CCValAssign, 16> RVLocs;
1320 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1321 *DAG.getContext());
1322
1323 // Handle runtime calling convs.
1324 auto CCFunction = CCAssignFnForReturn(CallConv);
1325 CCInfo.AnalyzeCallResult(Ins, CCFunction);
1326
1327 if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1328 // Reverse splitted return values to get the "big endian" format required
1329 // to agree with the calling convention ABI.
1330 std::reverse(RVLocs.begin(), RVLocs.end());
1331 }
1332
1333 // Copy all of the result registers out of their specified physreg.
1334 for (CCValAssign const &RVLoc : RVLocs) {
1335 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1336 InFlag)
1337 .getValue(1);
1338 InFlag = Chain.getValue(2);
1339 InVals.push_back(Chain.getValue(0));
1340 }
1341
1342 return Chain;
1343}
1344
1345//===----------------------------------------------------------------------===//
1346// Return Value Calling Convention Implementation
1347//===----------------------------------------------------------------------===//
1348
1349CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1350 switch (CC) {
1351 case CallingConv::AVR_BUILTIN:
1352 return RetCC_AVR_BUILTIN;
1353 default:
1354 return RetCC_AVR;
1355 }
1356}
1357
1358bool
1359AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1360 MachineFunction &MF, bool isVarArg,
1361 const SmallVectorImpl<ISD::OutputArg> &Outs,
1362 LLVMContext &Context) const
1363{
1364 SmallVector<CCValAssign, 16> RVLocs;
1365 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1366
1367 auto CCFunction = CCAssignFnForReturn(CallConv);
1368 return CCInfo.CheckReturn(Outs, CCFunction);
1369}
1370
1371SDValue
1372AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1373 bool isVarArg,
1374 const SmallVectorImpl<ISD::OutputArg> &Outs,
1375 const SmallVectorImpl<SDValue> &OutVals,
1376 const SDLoc &dl, SelectionDAG &DAG) const {
1377 // CCValAssign - represent the assignment of the return value to locations.
1378 SmallVector<CCValAssign, 16> RVLocs;
1379
1380 // CCState - Info about the registers and stack slot.
1381 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1382 *DAG.getContext());
1383
1384 // Analyze return values.
1385 auto CCFunction = CCAssignFnForReturn(CallConv);
1386 CCInfo.AnalyzeReturn(Outs, CCFunction);
1387
1388 // If this is the first return lowered for this function, add the regs to
1389 // the liveout set for the function.
1390 MachineFunction &MF = DAG.getMachineFunction();
1391 unsigned e = RVLocs.size();
1392
1393 // Reverse splitted return values to get the "big endian" format required
1394 // to agree with the calling convention ABI.
1395 if (e > 1) {
1396 std::reverse(RVLocs.begin(), RVLocs.end());
1397 }
1398
1399 SDValue Flag;
1400 SmallVector<SDValue, 4> RetOps(1, Chain);
1401 // Copy the result values into the output registers.
1402 for (unsigned i = 0; i != e; ++i) {
1403 CCValAssign &VA = RVLocs[i];
1404 assert(VA.isRegLoc() && "Can only return in registers!");
1405
1406 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1407
1408 // Guarantee that all emitted copies are stuck together with flags.
1409 Flag = Chain.getValue(1);
1410 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1411 }
1412
1413 // Don't emit the ret/reti instruction when the naked attribute is present in
1414 // the function being compiled.
Matthias Braunf1caa282017-12-15 22:22:58 +00001415 if (MF.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +00001416 AttributeList::FunctionIndex, Attribute::Naked)) {
Dylan McKay7549b0a2016-11-02 06:47:40 +00001417 return Chain;
1418 }
1419
1420 unsigned RetOpc =
1421 (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1422 ? AVRISD::RETI_FLAG
1423 : AVRISD::RET_FLAG;
1424
1425 RetOps[0] = Chain; // Update chain.
1426
1427 if (Flag.getNode()) {
1428 RetOps.push_back(Flag);
1429 }
1430
1431 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1432}
1433
1434//===----------------------------------------------------------------------===//
1435// Custom Inserters
1436//===----------------------------------------------------------------------===//
1437
1438MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1439 MachineBasicBlock *BB) const {
1440 unsigned Opc;
1441 const TargetRegisterClass *RC;
Dylan McKay8b0f9d22018-09-01 12:22:07 +00001442 bool HasRepeatedOperand = false;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001443 MachineFunction *F = BB->getParent();
1444 MachineRegisterInfo &RI = F->getRegInfo();
1445 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
Dylan McKay7203e002019-01-18 06:10:41 +00001446 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
Dylan McKay7549b0a2016-11-02 06:47:40 +00001447 DebugLoc dl = MI.getDebugLoc();
1448
1449 switch (MI.getOpcode()) {
1450 default:
1451 llvm_unreachable("Invalid shift opcode!");
1452 case AVR::Lsl8:
Dylan McKay45425862018-09-01 12:23:00 +00001453 Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
Dylan McKay7549b0a2016-11-02 06:47:40 +00001454 RC = &AVR::GPR8RegClass;
Dylan McKay45425862018-09-01 12:23:00 +00001455 HasRepeatedOperand = true;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001456 break;
1457 case AVR::Lsl16:
1458 Opc = AVR::LSLWRd;
1459 RC = &AVR::DREGSRegClass;
1460 break;
1461 case AVR::Asr8:
1462 Opc = AVR::ASRRd;
1463 RC = &AVR::GPR8RegClass;
1464 break;
1465 case AVR::Asr16:
1466 Opc = AVR::ASRWRd;
1467 RC = &AVR::DREGSRegClass;
1468 break;
1469 case AVR::Lsr8:
1470 Opc = AVR::LSRRd;
1471 RC = &AVR::GPR8RegClass;
1472 break;
1473 case AVR::Lsr16:
1474 Opc = AVR::LSRWRd;
1475 RC = &AVR::DREGSRegClass;
1476 break;
Dylan McKay59e7fe32017-05-01 09:48:55 +00001477 case AVR::Rol8:
Dylan McKay8b0f9d22018-09-01 12:22:07 +00001478 Opc = AVR::ADCRdRr; // ROL is an alias of ADC Rd, Rd
Dylan McKay59e7fe32017-05-01 09:48:55 +00001479 RC = &AVR::GPR8RegClass;
Dylan McKay8b0f9d22018-09-01 12:22:07 +00001480 HasRepeatedOperand = true;
Dylan McKay59e7fe32017-05-01 09:48:55 +00001481 break;
1482 case AVR::Rol16:
1483 Opc = AVR::ROLWRd;
1484 RC = &AVR::DREGSRegClass;
1485 break;
1486 case AVR::Ror8:
1487 Opc = AVR::RORRd;
1488 RC = &AVR::GPR8RegClass;
1489 break;
1490 case AVR::Ror16:
1491 Opc = AVR::RORWRd;
1492 RC = &AVR::DREGSRegClass;
1493 break;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001494 }
1495
1496 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Dylan McKaydada0142017-09-26 00:51:03 +00001497
1498 MachineFunction::iterator I;
Dylan McKay1446eed2017-09-26 01:37:53 +00001499 for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
Dylan McKaydada0142017-09-26 00:51:03 +00001500 if (I != F->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001501
1502 // Create loop block.
1503 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1504 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1505
1506 F->insert(I, LoopBB);
1507 F->insert(I, RemBB);
1508
1509 // Update machine-CFG edges by transferring all successors of the current
1510 // block to the block containing instructions after shift.
1511 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1512 BB->end());
1513 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1514
1515 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1516 BB->addSuccessor(LoopBB);
1517 BB->addSuccessor(RemBB);
1518 LoopBB->addSuccessor(RemBB);
1519 LoopBB->addSuccessor(LoopBB);
1520
1521 unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1522 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1523 unsigned ShiftReg = RI.createVirtualRegister(RC);
1524 unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1525 unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
1526 unsigned SrcReg = MI.getOperand(1).getReg();
1527 unsigned DstReg = MI.getOperand(0).getReg();
1528
1529 // BB:
Dylan McKay043fa4b2017-05-31 06:27:46 +00001530 // cpi N, 0
Dylan McKay7549b0a2016-11-02 06:47:40 +00001531 // breq RemBB
Dylan McKay043fa4b2017-05-31 06:27:46 +00001532 BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001533 BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1534
1535 // LoopBB:
1536 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1537 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1538 // ShiftReg2 = shift ShiftReg
1539 // ShiftAmt2 = ShiftAmt - 1;
1540 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1541 .addReg(SrcReg)
1542 .addMBB(BB)
1543 .addReg(ShiftReg2)
1544 .addMBB(LoopBB);
1545 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1546 .addReg(ShiftAmtSrcReg)
1547 .addMBB(BB)
1548 .addReg(ShiftAmtReg2)
1549 .addMBB(LoopBB);
Dylan McKay8b0f9d22018-09-01 12:22:07 +00001550
1551 auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1552 if (HasRepeatedOperand)
1553 ShiftMI.addReg(ShiftReg);
1554
Dylan McKay7549b0a2016-11-02 06:47:40 +00001555 BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1556 .addReg(ShiftAmtReg)
1557 .addImm(1);
1558 BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1559
1560 // RemBB:
1561 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1562 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1563 .addReg(SrcReg)
1564 .addMBB(BB)
1565 .addReg(ShiftReg2)
1566 .addMBB(LoopBB);
1567
1568 MI.eraseFromParent(); // The pseudo instruction is gone now.
1569 return RemBB;
1570}
1571
1572static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1573 if (I->getOpcode() == AVR::COPY) {
1574 unsigned SrcReg = I->getOperand(1).getReg();
1575 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1576 }
1577
1578 return false;
1579}
1580
1581// The mul instructions wreak havock on our zero_reg R1. We need to clear it
1582// after the result has been evacuated. This is probably not the best way to do
1583// it, but it works for now.
1584MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1585 MachineBasicBlock *BB) const {
1586 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
Dylan McKay7203e002019-01-18 06:10:41 +00001587 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
Dylan McKay7549b0a2016-11-02 06:47:40 +00001588 MachineBasicBlock::iterator I(MI);
1589 ++I; // in any case insert *after* the mul instruction
1590 if (isCopyMulResult(I))
1591 ++I;
1592 if (isCopyMulResult(I))
1593 ++I;
1594 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1595 .addReg(AVR::R1)
1596 .addReg(AVR::R1);
1597 return BB;
1598}
1599
1600MachineBasicBlock *
1601AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1602 MachineBasicBlock *MBB) const {
1603 int Opc = MI.getOpcode();
1604
1605 // Pseudo shift instructions with a non constant shift amount are expanded
1606 // into a loop.
1607 switch (Opc) {
1608 case AVR::Lsl8:
1609 case AVR::Lsl16:
1610 case AVR::Lsr8:
1611 case AVR::Lsr16:
Dylan McKay59e7fe32017-05-01 09:48:55 +00001612 case AVR::Rol8:
1613 case AVR::Rol16:
1614 case AVR::Ror8:
1615 case AVR::Ror16:
Dylan McKay7549b0a2016-11-02 06:47:40 +00001616 case AVR::Asr8:
1617 case AVR::Asr16:
1618 return insertShift(MI, MBB);
1619 case AVR::MULRdRr:
1620 case AVR::MULSRdRr:
1621 return insertMul(MI, MBB);
1622 }
1623
1624 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1625 "Unexpected instr type to insert");
1626
1627 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1628 ->getParent()
1629 ->getSubtarget()
1630 .getInstrInfo();
1631 DebugLoc dl = MI.getDebugLoc();
1632
1633 // To "insert" a SELECT instruction, we insert the diamond
1634 // control-flow pattern. The incoming instruction knows the
1635 // destination vreg to set, the condition code register to branch
1636 // on, the true/false values to select between, and a branch opcode
1637 // to use.
1638
1639 MachineFunction *MF = MBB->getParent();
1640 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1641 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1642 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1643
Dylan McKay0c4debc2017-05-13 00:22:34 +00001644 MachineFunction::iterator I;
1645 for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1646 if (I != MF->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001647 MF->insert(I, trueMBB);
1648 MF->insert(I, falseMBB);
1649
1650 // Transfer remaining instructions and all successors of the current
1651 // block to the block which will contain the Phi node for the
1652 // select.
1653 trueMBB->splice(trueMBB->begin(), MBB,
1654 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1655 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1656
1657 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1658 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1659 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1660 MBB->addSuccessor(falseMBB);
1661 MBB->addSuccessor(trueMBB);
1662
1663 // Unconditionally flow back to the true block
1664 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1665 falseMBB->addSuccessor(trueMBB);
1666
1667 // Set up the Phi node to determine where we came from
1668 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1669 .addReg(MI.getOperand(1).getReg())
1670 .addMBB(MBB)
1671 .addReg(MI.getOperand(2).getReg())
1672 .addMBB(falseMBB) ;
1673
1674 MI.eraseFromParent(); // The pseudo instruction is gone now.
1675 return trueMBB;
1676}
1677
1678//===----------------------------------------------------------------------===//
1679// Inline Asm Support
1680//===----------------------------------------------------------------------===//
1681
1682AVRTargetLowering::ConstraintType
1683AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1684 if (Constraint.size() == 1) {
1685 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1686 switch (Constraint[0]) {
1687 case 'a': // Simple upper registers
1688 case 'b': // Base pointer registers pairs
1689 case 'd': // Upper register
1690 case 'l': // Lower registers
1691 case 'e': // Pointer register pairs
1692 case 'q': // Stack pointer register
1693 case 'r': // Any register
1694 case 'w': // Special upper register pairs
1695 return C_RegisterClass;
1696 case 't': // Temporary register
1697 case 'x': case 'X': // Pointer register pair X
1698 case 'y': case 'Y': // Pointer register pair Y
1699 case 'z': case 'Z': // Pointer register pair Z
1700 return C_Register;
1701 case 'Q': // A memory address based on Y or Z pointer with displacement.
1702 return C_Memory;
1703 case 'G': // Floating point constant
1704 case 'I': // 6-bit positive integer constant
1705 case 'J': // 6-bit negative integer constant
1706 case 'K': // Integer constant (Range: 2)
1707 case 'L': // Integer constant (Range: 0)
1708 case 'M': // 8-bit integer constant
1709 case 'N': // Integer constant (Range: -1)
1710 case 'O': // Integer constant (Range: 8, 16, 24)
1711 case 'P': // Integer constant (Range: 1)
1712 case 'R': // Integer constant (Range: -6 to 5)x
1713 return C_Other;
1714 default:
1715 break;
1716 }
1717 }
1718
1719 return TargetLowering::getConstraintType(Constraint);
1720}
1721
1722unsigned
1723AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1724 // Not sure if this is actually the right thing to do, but we got to do
1725 // *something* [agnat]
1726 switch (ConstraintCode[0]) {
1727 case 'Q':
1728 return InlineAsm::Constraint_Q;
1729 }
1730 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1731}
1732
1733AVRTargetLowering::ConstraintWeight
1734AVRTargetLowering::getSingleConstraintMatchWeight(
1735 AsmOperandInfo &info, const char *constraint) const {
1736 ConstraintWeight weight = CW_Invalid;
1737 Value *CallOperandVal = info.CallOperandVal;
1738
1739 // If we don't have a value, we can't do a match,
1740 // but allow it at the lowest weight.
1741 // (this behaviour has been copied from the ARM backend)
1742 if (!CallOperandVal) {
1743 return CW_Default;
1744 }
1745
1746 // Look at the constraint type.
1747 switch (*constraint) {
1748 default:
1749 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1750 break;
1751 case 'd':
1752 case 'r':
1753 case 'l':
1754 weight = CW_Register;
1755 break;
1756 case 'a':
1757 case 'b':
1758 case 'e':
1759 case 'q':
1760 case 't':
1761 case 'w':
1762 case 'x': case 'X':
1763 case 'y': case 'Y':
1764 case 'z': case 'Z':
1765 weight = CW_SpecificReg;
1766 break;
1767 case 'G':
1768 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1769 if (C->isZero()) {
1770 weight = CW_Constant;
1771 }
1772 }
1773 break;
1774 case 'I':
1775 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1776 if (isUInt<6>(C->getZExtValue())) {
1777 weight = CW_Constant;
1778 }
1779 }
1780 break;
1781 case 'J':
1782 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1783 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1784 weight = CW_Constant;
1785 }
1786 }
1787 break;
1788 case 'K':
1789 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1790 if (C->getZExtValue() == 2) {
1791 weight = CW_Constant;
1792 }
1793 }
1794 break;
1795 case 'L':
1796 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1797 if (C->getZExtValue() == 0) {
1798 weight = CW_Constant;
1799 }
1800 }
1801 break;
1802 case 'M':
1803 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1804 if (isUInt<8>(C->getZExtValue())) {
1805 weight = CW_Constant;
1806 }
1807 }
1808 break;
1809 case 'N':
1810 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1811 if (C->getSExtValue() == -1) {
1812 weight = CW_Constant;
1813 }
1814 }
1815 break;
1816 case 'O':
1817 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1818 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1819 (C->getZExtValue() == 24)) {
1820 weight = CW_Constant;
1821 }
1822 }
1823 break;
1824 case 'P':
1825 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1826 if (C->getZExtValue() == 1) {
1827 weight = CW_Constant;
1828 }
1829 }
1830 break;
1831 case 'R':
1832 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1833 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1834 weight = CW_Constant;
1835 }
1836 }
1837 break;
1838 case 'Q':
1839 weight = CW_Memory;
1840 break;
1841 }
1842
1843 return weight;
1844}
1845
1846std::pair<unsigned, const TargetRegisterClass *>
1847AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1848 StringRef Constraint,
1849 MVT VT) const {
Dylan McKay7549b0a2016-11-02 06:47:40 +00001850 // We only support i8 and i16.
1851 //
1852 //:FIXME: remove this assert for now since it gets sometimes executed
1853 // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1854
1855 if (Constraint.size() == 1) {
1856 switch (Constraint[0]) {
1857 case 'a': // Simple upper registers r16..r23.
1858 return std::make_pair(0U, &AVR::LD8loRegClass);
1859 case 'b': // Base pointer registers: y, z.
1860 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1861 case 'd': // Upper registers r16..r31.
1862 return std::make_pair(0U, &AVR::LD8RegClass);
1863 case 'l': // Lower registers r0..r15.
1864 return std::make_pair(0U, &AVR::GPR8loRegClass);
1865 case 'e': // Pointer register pairs: x, y, z.
1866 return std::make_pair(0U, &AVR::PTRREGSRegClass);
1867 case 'q': // Stack pointer register: SPH:SPL.
1868 return std::make_pair(0U, &AVR::GPRSPRegClass);
1869 case 'r': // Any register: r0..r31.
1870 if (VT == MVT::i8)
1871 return std::make_pair(0U, &AVR::GPR8RegClass);
1872
1873 assert(VT == MVT::i16 && "inline asm constraint too large");
1874 return std::make_pair(0U, &AVR::DREGSRegClass);
1875 case 't': // Temporary register: r0.
1876 return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1877 case 'w': // Special upper register pairs: r24, r26, r28, r30.
1878 return std::make_pair(0U, &AVR::IWREGSRegClass);
1879 case 'x': // Pointer register pair X: r27:r26.
1880 case 'X':
1881 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1882 case 'y': // Pointer register pair Y: r29:r28.
1883 case 'Y':
1884 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1885 case 'z': // Pointer register pair Z: r31:r30.
1886 case 'Z':
1887 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1888 default:
1889 break;
1890 }
1891 }
1892
Dylan McKay7203e002019-01-18 06:10:41 +00001893 return TargetLowering::getRegForInlineAsmConstraint(
1894 Subtarget.getRegisterInfo(), Constraint, VT);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001895}
1896
1897void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1898 std::string &Constraint,
1899 std::vector<SDValue> &Ops,
1900 SelectionDAG &DAG) const {
1901 SDValue Result(0, 0);
1902 SDLoc DL(Op);
1903 EVT Ty = Op.getValueType();
1904
1905 // Currently only support length 1 constraints.
1906 if (Constraint.length() != 1) {
1907 return;
1908 }
1909
1910 char ConstraintLetter = Constraint[0];
1911 switch (ConstraintLetter) {
1912 default:
1913 break;
1914 // Deal with integers first:
1915 case 'I':
1916 case 'J':
1917 case 'K':
1918 case 'L':
1919 case 'M':
1920 case 'N':
1921 case 'O':
1922 case 'P':
1923 case 'R': {
1924 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1925 if (!C) {
1926 return;
1927 }
1928
1929 int64_t CVal64 = C->getSExtValue();
1930 uint64_t CUVal64 = C->getZExtValue();
1931 switch (ConstraintLetter) {
1932 case 'I': // 0..63
1933 if (!isUInt<6>(CUVal64))
1934 return;
1935 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1936 break;
1937 case 'J': // -63..0
1938 if (CVal64 < -63 || CVal64 > 0)
1939 return;
1940 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1941 break;
1942 case 'K': // 2
1943 if (CUVal64 != 2)
1944 return;
1945 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1946 break;
1947 case 'L': // 0
1948 if (CUVal64 != 0)
1949 return;
1950 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1951 break;
1952 case 'M': // 0..255
1953 if (!isUInt<8>(CUVal64))
1954 return;
1955 // i8 type may be printed as a negative number,
1956 // e.g. 254 would be printed as -2,
1957 // so we force it to i16 at least.
1958 if (Ty.getSimpleVT() == MVT::i8) {
1959 Ty = MVT::i16;
1960 }
1961 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1962 break;
1963 case 'N': // -1
1964 if (CVal64 != -1)
1965 return;
1966 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1967 break;
1968 case 'O': // 8, 16, 24
1969 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1970 return;
1971 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1972 break;
1973 case 'P': // 1
1974 if (CUVal64 != 1)
1975 return;
1976 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1977 break;
1978 case 'R': // -6..5
1979 if (CVal64 < -6 || CVal64 > 5)
1980 return;
1981 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1982 break;
1983 }
1984
1985 break;
1986 }
1987 case 'G':
1988 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1989 if (!FC || !FC->isZero())
1990 return;
1991 // Soften float to i8 0
1992 Result = DAG.getTargetConstant(0, DL, MVT::i8);
1993 break;
1994 }
1995
1996 if (Result.getNode()) {
1997 Ops.push_back(Result);
1998 return;
1999 }
2000
2001 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2002}
2003
Dylan McKay8fa6d8d2017-01-07 23:39:47 +00002004unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
2005 EVT VT,
2006 SelectionDAG &DAG) const {
2007 unsigned Reg;
2008
2009 if (VT == MVT::i8) {
2010 Reg = StringSwitch<unsigned>(RegName)
2011 .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
2012 .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
2013 .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
2014 .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
2015 .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
2016 .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
2017 .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
2018 .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
2019 .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
2020 .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
2021 .Case("r30", AVR::R30).Case("r31", AVR::R31)
2022 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2023 .Default(0);
2024 } else {
2025 Reg = StringSwitch<unsigned>(RegName)
2026 .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
2027 .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2028 .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2029 .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2030 .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2031 .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2032 .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2033 .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2034 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2035 .Default(0);
2036 }
2037
2038 if (Reg)
2039 return Reg;
2040
2041 report_fatal_error("Invalid register name global variable");
2042}
2043
Dylan McKay7549b0a2016-11-02 06:47:40 +00002044} // end of namespace llvm