blob: d9e27e91405c5d6c309737d8d6aa5e7aff09066e [file] [log] [blame]
Dylan McKay7549b0a2016-11-02 06:47:40 +00001//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AVR uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AVRISelLowering.h"
16
Dylan McKay8fa6d8d2017-01-07 23:39:47 +000017#include "llvm/ADT/StringSwitch.h"
Dylan McKay7549b0a2016-11-02 06:47:40 +000018#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24#include "llvm/IR/Function.h"
25#include "llvm/Support/ErrorHandling.h"
26
27#include "AVR.h"
28#include "AVRMachineFunctionInfo.h"
29#include "AVRTargetMachine.h"
30#include "MCTargetDesc/AVRMCTargetDesc.h"
31
32namespace llvm {
33
34AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm)
35 : TargetLowering(tm) {
36 // Set up the register classes.
37 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
38 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
39
40 // Compute derived properties from the register classes.
41 computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo());
42
43 setBooleanContents(ZeroOrOneBooleanContent);
44 setBooleanVectorContents(ZeroOrOneBooleanContent);
45 setSchedulingPreference(Sched::RegPressure);
46 setStackPointerRegisterToSaveRestore(AVR::SP);
Dylan McKay80463fe2017-12-09 06:45:36 +000047 setSupportsUnalignedAtomics(true);
Dylan McKay7549b0a2016-11-02 06:47:40 +000048
49 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
50 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
51
Dylan McKayccd819a2017-02-05 21:35:45 +000052 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
53 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000054 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
55 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
56
57 for (MVT VT : MVT::integer_valuetypes()) {
58 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
59 setLoadExtAction(N, VT, MVT::i1, Promote);
60 setLoadExtAction(N, VT, MVT::i8, Expand);
61 }
62 }
63
64 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
65
66 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
67 // revert into a sub since we don't have an add with immediate instruction.
68 setOperationAction(ISD::ADD, MVT::i32, Custom);
69 setOperationAction(ISD::ADD, MVT::i64, Custom);
70
71 // our shift instructions are only able to shift 1 bit at a time, so handle
72 // this in a custom way.
73 setOperationAction(ISD::SRA, MVT::i8, Custom);
74 setOperationAction(ISD::SHL, MVT::i8, Custom);
75 setOperationAction(ISD::SRL, MVT::i8, Custom);
76 setOperationAction(ISD::SRA, MVT::i16, Custom);
77 setOperationAction(ISD::SHL, MVT::i16, Custom);
78 setOperationAction(ISD::SRL, MVT::i16, Custom);
79 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
80 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
81 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
82
Dylan McKay59e7fe32017-05-01 09:48:55 +000083 setOperationAction(ISD::ROTL, MVT::i8, Custom);
84 setOperationAction(ISD::ROTL, MVT::i16, Custom);
85 setOperationAction(ISD::ROTR, MVT::i8, Custom);
86 setOperationAction(ISD::ROTR, MVT::i16, Custom);
87
Dylan McKay7549b0a2016-11-02 06:47:40 +000088 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
89 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
90 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
91 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
92 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
93
94 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
95 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
Dylan McKay99b756e2016-12-07 12:34:47 +000096 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
97 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000098 setOperationAction(ISD::SETCC, MVT::i8, Custom);
99 setOperationAction(ISD::SETCC, MVT::i16, Custom);
100 setOperationAction(ISD::SETCC, MVT::i32, Custom);
101 setOperationAction(ISD::SETCC, MVT::i64, Custom);
102 setOperationAction(ISD::SELECT, MVT::i8, Expand);
103 setOperationAction(ISD::SELECT, MVT::i16, Expand);
104
105 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
106
107 // Add support for postincrement and predecrement load/stores.
108 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
109 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
110 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
111 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
112 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
113 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
114 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
115 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
116
117 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
118
119 setOperationAction(ISD::VASTART, MVT::Other, Custom);
120 setOperationAction(ISD::VAEND, MVT::Other, Expand);
121 setOperationAction(ISD::VAARG, MVT::Other, Expand);
122 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
123
124 // Atomic operations which must be lowered to rtlib calls
125 for (MVT VT : MVT::integer_valuetypes()) {
126 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
127 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
128 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
129 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
130 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
131 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
132 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
133 }
134
135 // Division/remainder
136 setOperationAction(ISD::UDIV, MVT::i8, Expand);
137 setOperationAction(ISD::UDIV, MVT::i16, Expand);
138 setOperationAction(ISD::UREM, MVT::i8, Expand);
139 setOperationAction(ISD::UREM, MVT::i16, Expand);
140 setOperationAction(ISD::SDIV, MVT::i8, Expand);
141 setOperationAction(ISD::SDIV, MVT::i16, Expand);
142 setOperationAction(ISD::SREM, MVT::i8, Expand);
143 setOperationAction(ISD::SREM, MVT::i16, Expand);
144
145 // Make division and modulus custom
146 for (MVT VT : MVT::integer_valuetypes()) {
147 setOperationAction(ISD::UDIVREM, VT, Custom);
148 setOperationAction(ISD::SDIVREM, VT, Custom);
149 }
150
151 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
152 setOperationAction(ISD::MUL, MVT::i8, Expand);
153 setOperationAction(ISD::MUL, MVT::i16, Expand);
154
155 // Expand 16 bit multiplications.
156 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
157 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
158
159 for (MVT VT : MVT::integer_valuetypes()) {
160 setOperationAction(ISD::MULHS, VT, Expand);
161 setOperationAction(ISD::MULHU, VT, Expand);
162 }
163
164 for (MVT VT : MVT::integer_valuetypes()) {
165 setOperationAction(ISD::CTPOP, VT, Expand);
166 setOperationAction(ISD::CTLZ, VT, Expand);
167 setOperationAction(ISD::CTTZ, VT, Expand);
168 }
169
170 for (MVT VT : MVT::integer_valuetypes()) {
171 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
172 // TODO: The generated code is pretty poor. Investigate using the
173 // same "shift and subtract with carry" trick that we do for
174 // extending 8-bit to 16-bit. This may require infrastructure
175 // improvements in how we treat 16-bit "registers" to be feasible.
176 }
177
178 // Division rtlib functions (not supported)
179 setLibcallName(RTLIB::SDIV_I8, nullptr);
180 setLibcallName(RTLIB::SDIV_I16, nullptr);
181 setLibcallName(RTLIB::SDIV_I32, nullptr);
182 setLibcallName(RTLIB::SDIV_I64, nullptr);
183 setLibcallName(RTLIB::SDIV_I128, nullptr);
184 setLibcallName(RTLIB::UDIV_I8, nullptr);
185 setLibcallName(RTLIB::UDIV_I16, nullptr);
186 setLibcallName(RTLIB::UDIV_I32, nullptr);
187 setLibcallName(RTLIB::UDIV_I64, nullptr);
188 setLibcallName(RTLIB::UDIV_I128, nullptr);
189
190 // Modulus rtlib functions (not supported)
191 setLibcallName(RTLIB::SREM_I8, nullptr);
192 setLibcallName(RTLIB::SREM_I16, nullptr);
193 setLibcallName(RTLIB::SREM_I32, nullptr);
194 setLibcallName(RTLIB::SREM_I64, nullptr);
195 setLibcallName(RTLIB::SREM_I128, nullptr);
196 setLibcallName(RTLIB::UREM_I8, nullptr);
197 setLibcallName(RTLIB::UREM_I16, nullptr);
198 setLibcallName(RTLIB::UREM_I32, nullptr);
199 setLibcallName(RTLIB::UREM_I64, nullptr);
200 setLibcallName(RTLIB::UREM_I128, nullptr);
201
202 // Division and modulus rtlib functions
203 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
204 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
205 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
206 setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
207 setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
208 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
209 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
210 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
211 setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
212 setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
213
214 // Several of the runtime library functions use a special calling conv
215 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
216 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
217 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
218 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
219
220 // Trigonometric rtlib functions
221 setLibcallName(RTLIB::SIN_F32, "sin");
222 setLibcallName(RTLIB::COS_F32, "cos");
223
224 setMinFunctionAlignment(1);
225 setMinimumJumpTableEntries(INT_MAX);
226}
227
228const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
229#define NODE(name) \
230 case AVRISD::name: \
231 return #name
232
233 switch (Opcode) {
234 default:
235 return nullptr;
236 NODE(RET_FLAG);
237 NODE(RETI_FLAG);
238 NODE(CALL);
239 NODE(WRAPPER);
240 NODE(LSL);
241 NODE(LSR);
242 NODE(ROL);
243 NODE(ROR);
244 NODE(ASR);
245 NODE(LSLLOOP);
246 NODE(LSRLOOP);
247 NODE(ASRLOOP);
248 NODE(BRCOND);
249 NODE(CMP);
250 NODE(CMPC);
251 NODE(TST);
252 NODE(SELECT_CC);
253#undef NODE
254 }
255}
256
257EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
258 EVT VT) const {
259 assert(!VT.isVector() && "No AVR SetCC type for vectors!");
260 return MVT::i8;
261}
262
263SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
264 //:TODO: this function has to be completely rewritten to produce optimal
265 // code, for now it's producing very long but correct code.
266 unsigned Opc8;
267 const SDNode *N = Op.getNode();
268 EVT VT = Op.getValueType();
269 SDLoc dl(N);
270
271 // Expand non-constant shifts to loops.
272 if (!isa<ConstantSDNode>(N->getOperand(1))) {
273 switch (Op.getOpcode()) {
274 default:
275 llvm_unreachable("Invalid shift opcode!");
276 case ISD::SHL:
277 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
278 N->getOperand(1));
279 case ISD::SRL:
280 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
281 N->getOperand(1));
Dylan McKay59e7fe32017-05-01 09:48:55 +0000282 case ISD::ROTL:
283 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
284 N->getOperand(1));
285 case ISD::ROTR:
286 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
287 N->getOperand(1));
Dylan McKay7549b0a2016-11-02 06:47:40 +0000288 case ISD::SRA:
289 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
290 N->getOperand(1));
291 }
292 }
293
294 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
295 SDValue Victim = N->getOperand(0);
296
297 switch (Op.getOpcode()) {
298 case ISD::SRA:
299 Opc8 = AVRISD::ASR;
300 break;
301 case ISD::ROTL:
302 Opc8 = AVRISD::ROL;
303 break;
304 case ISD::ROTR:
305 Opc8 = AVRISD::ROR;
306 break;
307 case ISD::SRL:
308 Opc8 = AVRISD::LSR;
309 break;
310 case ISD::SHL:
311 Opc8 = AVRISD::LSL;
312 break;
313 default:
314 llvm_unreachable("Invalid shift opcode");
315 }
316
317 while (ShiftAmount--) {
318 Victim = DAG.getNode(Opc8, dl, VT, Victim);
319 }
320
321 return Victim;
322}
323
324SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
325 unsigned Opcode = Op->getOpcode();
326 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
327 "Invalid opcode for Div/Rem lowering");
Meador Inge5d3c5992017-03-24 01:57:29 +0000328 bool IsSigned = (Opcode == ISD::SDIVREM);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000329 EVT VT = Op->getValueType(0);
330 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
331
332 RTLIB::Libcall LC;
333 switch (VT.getSimpleVT().SimpleTy) {
334 default:
335 llvm_unreachable("Unexpected request for libcall!");
336 case MVT::i8:
Meador Inge5d3c5992017-03-24 01:57:29 +0000337 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000338 break;
339 case MVT::i16:
Meador Inge5d3c5992017-03-24 01:57:29 +0000340 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000341 break;
342 case MVT::i32:
Meador Inge5d3c5992017-03-24 01:57:29 +0000343 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000344 break;
345 case MVT::i64:
Meador Inge5d3c5992017-03-24 01:57:29 +0000346 LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000347 break;
348 }
349
350 SDValue InChain = DAG.getEntryNode();
351
352 TargetLowering::ArgListTy Args;
353 TargetLowering::ArgListEntry Entry;
354 for (SDValue const &Value : Op->op_values()) {
355 Entry.Node = Value;
356 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
Meador Inge5d3c5992017-03-24 01:57:29 +0000357 Entry.IsSExt = IsSigned;
358 Entry.IsZExt = !IsSigned;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000359 Args.push_back(Entry);
360 }
361
362 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
363 getPointerTy(DAG.getDataLayout()));
364
Leslie Zhaia1149e02017-05-12 09:08:03 +0000365 Type *RetTy = (Type *)StructType::get(Ty, Ty);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000366
367 SDLoc dl(Op);
368 TargetLowering::CallLoweringInfo CLI(DAG);
369 CLI.setDebugLoc(dl)
370 .setChain(InChain)
Nirav Daveac6081c2017-03-18 00:44:07 +0000371 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
Dylan McKay7549b0a2016-11-02 06:47:40 +0000372 .setInRegister()
Meador Inge5d3c5992017-03-24 01:57:29 +0000373 .setSExtResult(IsSigned)
374 .setZExtResult(!IsSigned);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000375
376 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
377 return CallInfo.first;
378}
379
380SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
381 SelectionDAG &DAG) const {
382 auto DL = DAG.getDataLayout();
383
384 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
385 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
386
387 // Create the TargetGlobalAddress node, folding in the constant offset.
388 SDValue Result =
389 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
390 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
391}
392
393SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
394 SelectionDAG &DAG) const {
395 auto DL = DAG.getDataLayout();
396 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
397
398 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
399
400 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
401}
402
403/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
404static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
405 switch (CC) {
406 default:
407 llvm_unreachable("Unknown condition code!");
408 case ISD::SETEQ:
409 return AVRCC::COND_EQ;
410 case ISD::SETNE:
411 return AVRCC::COND_NE;
412 case ISD::SETGE:
413 return AVRCC::COND_GE;
414 case ISD::SETLT:
415 return AVRCC::COND_LT;
416 case ISD::SETUGE:
417 return AVRCC::COND_SH;
418 case ISD::SETULT:
419 return AVRCC::COND_LO;
420 }
421}
422
423/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
424/// the given operands.
425SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
426 SDValue &AVRcc, SelectionDAG &DAG,
427 SDLoc DL) const {
428 SDValue Cmp;
429 EVT VT = LHS.getValueType();
430 bool UseTest = false;
431
432 switch (CC) {
433 default:
434 break;
435 case ISD::SETLE: {
436 // Swap operands and reverse the branching condition.
437 std::swap(LHS, RHS);
438 CC = ISD::SETGE;
439 break;
440 }
441 case ISD::SETGT: {
442 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
443 switch (C->getSExtValue()) {
444 case -1: {
445 // When doing lhs > -1 use a tst instruction on the top part of lhs
446 // and use brpl instead of using a chain of cp/cpc.
447 UseTest = true;
448 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
449 break;
450 }
451 case 0: {
452 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
453 // __zero_reg__ in lhs.
454 RHS = LHS;
455 LHS = DAG.getConstant(0, DL, VT);
456 CC = ISD::SETLT;
457 break;
458 }
459 default: {
460 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
461 // us to fold the constant into the cmp instruction.
462 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
463 CC = ISD::SETGE;
464 break;
465 }
466 }
467 break;
468 }
469 // Swap operands and reverse the branching condition.
470 std::swap(LHS, RHS);
471 CC = ISD::SETLT;
472 break;
473 }
474 case ISD::SETLT: {
475 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
476 switch (C->getSExtValue()) {
477 case 1: {
478 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
479 // __zero_reg__ in lhs.
480 RHS = LHS;
481 LHS = DAG.getConstant(0, DL, VT);
482 CC = ISD::SETGE;
483 break;
484 }
485 case 0: {
486 // When doing lhs < 0 use a tst instruction on the top part of lhs
487 // and use brmi instead of using a chain of cp/cpc.
488 UseTest = true;
489 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
490 break;
491 }
492 }
493 }
494 break;
495 }
496 case ISD::SETULE: {
497 // Swap operands and reverse the branching condition.
498 std::swap(LHS, RHS);
499 CC = ISD::SETUGE;
500 break;
501 }
502 case ISD::SETUGT: {
503 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
504 // fold the constant into the cmp instruction.
505 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
506 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
507 CC = ISD::SETUGE;
508 break;
509 }
510 // Swap operands and reverse the branching condition.
511 std::swap(LHS, RHS);
512 CC = ISD::SETULT;
513 break;
514 }
515 }
516
517 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
518 // using the default and/or/xor expansion code which is much longer.
519 if (VT == MVT::i32) {
520 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
521 DAG.getIntPtrConstant(0, DL));
522 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
523 DAG.getIntPtrConstant(1, DL));
524 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
525 DAG.getIntPtrConstant(0, DL));
526 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
527 DAG.getIntPtrConstant(1, DL));
528
529 if (UseTest) {
530 // When using tst we only care about the highest part.
531 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
532 DAG.getIntPtrConstant(1, DL));
533 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
534 } else {
535 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
536 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
537 }
538 } else if (VT == MVT::i64) {
539 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
540 DAG.getIntPtrConstant(0, DL));
541 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
542 DAG.getIntPtrConstant(1, DL));
543
544 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
545 DAG.getIntPtrConstant(0, DL));
546 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
547 DAG.getIntPtrConstant(1, DL));
548 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
549 DAG.getIntPtrConstant(0, DL));
550 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
551 DAG.getIntPtrConstant(1, DL));
552
553 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
554 DAG.getIntPtrConstant(0, DL));
555 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
556 DAG.getIntPtrConstant(1, DL));
557
558 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
559 DAG.getIntPtrConstant(0, DL));
560 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
561 DAG.getIntPtrConstant(1, DL));
562 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
563 DAG.getIntPtrConstant(0, DL));
564 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
565 DAG.getIntPtrConstant(1, DL));
566
567 if (UseTest) {
568 // When using tst we only care about the highest part.
569 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
570 DAG.getIntPtrConstant(1, DL));
571 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
572 } else {
573 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
574 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
575 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
576 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
577 }
578 } else if (VT == MVT::i8 || VT == MVT::i16) {
579 if (UseTest) {
580 // When using tst we only care about the highest part.
581 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
582 (VT == MVT::i8)
583 ? LHS
584 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
585 LHS, DAG.getIntPtrConstant(1, DL)));
586 } else {
587 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
588 }
589 } else {
590 llvm_unreachable("Invalid comparison size");
591 }
592
593 // When using a test instruction AVRcc is already set.
594 if (!UseTest) {
595 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
596 }
597
598 return Cmp;
599}
600
601SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
602 SDValue Chain = Op.getOperand(0);
603 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
604 SDValue LHS = Op.getOperand(2);
605 SDValue RHS = Op.getOperand(3);
606 SDValue Dest = Op.getOperand(4);
607 SDLoc dl(Op);
608
609 SDValue TargetCC;
610 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
611
612 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
613 Cmp);
614}
615
616SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
617 SDValue LHS = Op.getOperand(0);
618 SDValue RHS = Op.getOperand(1);
619 SDValue TrueV = Op.getOperand(2);
620 SDValue FalseV = Op.getOperand(3);
621 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
622 SDLoc dl(Op);
623
624 SDValue TargetCC;
625 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
626
627 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
628 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
629
630 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
631}
632
633SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
634 SDValue LHS = Op.getOperand(0);
635 SDValue RHS = Op.getOperand(1);
636 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
637 SDLoc DL(Op);
638
639 SDValue TargetCC;
640 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
641
642 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
643 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
644 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
645 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
646
647 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
648}
649
650SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
651 const MachineFunction &MF = DAG.getMachineFunction();
652 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
653 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
654 auto DL = DAG.getDataLayout();
655 SDLoc dl(Op);
656
657 // Vastart just stores the address of the VarArgsFrameIndex slot into the
658 // memory location argument.
659 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
660
661 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
662 MachinePointerInfo(SV), 0);
663}
664
665SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
666 switch (Op.getOpcode()) {
667 default:
668 llvm_unreachable("Don't know how to custom lower this!");
669 case ISD::SHL:
670 case ISD::SRA:
671 case ISD::SRL:
672 case ISD::ROTL:
673 case ISD::ROTR:
674 return LowerShifts(Op, DAG);
675 case ISD::GlobalAddress:
676 return LowerGlobalAddress(Op, DAG);
677 case ISD::BlockAddress:
678 return LowerBlockAddress(Op, DAG);
679 case ISD::BR_CC:
680 return LowerBR_CC(Op, DAG);
681 case ISD::SELECT_CC:
682 return LowerSELECT_CC(Op, DAG);
683 case ISD::SETCC:
684 return LowerSETCC(Op, DAG);
685 case ISD::VASTART:
686 return LowerVASTART(Op, DAG);
687 case ISD::SDIVREM:
688 case ISD::UDIVREM:
689 return LowerDivRem(Op, DAG);
690 }
691
692 return SDValue();
693}
694
695/// Replace a node with an illegal result type
696/// with a new node built out of custom code.
697void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
698 SmallVectorImpl<SDValue> &Results,
699 SelectionDAG &DAG) const {
700 SDLoc DL(N);
701
702 switch (N->getOpcode()) {
703 case ISD::ADD: {
704 // Convert add (x, imm) into sub (x, -imm).
705 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
706 SDValue Sub = DAG.getNode(
707 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
708 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
709 Results.push_back(Sub);
710 }
711 break;
712 }
713 default: {
714 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
715
716 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
717 Results.push_back(Res.getValue(I));
718
719 break;
720 }
721 }
722}
723
724/// Return true if the addressing mode represented
725/// by AM is legal for this target, for a load/store of the specified type.
726bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
727 const AddrMode &AM, Type *Ty,
Jonas Paulsson024e3192017-07-21 11:59:37 +0000728 unsigned AS, Instruction *I) const {
Dylan McKay7549b0a2016-11-02 06:47:40 +0000729 int64_t Offs = AM.BaseOffs;
730
731 // Allow absolute addresses.
732 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
733 return true;
734 }
735
736 // Flash memory instructions only allow zero offsets.
737 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
738 return false;
739 }
740
741 // Allow reg+<6bit> offset.
742 if (Offs < 0)
743 Offs = -Offs;
744 if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
745 return true;
746 }
747
748 return false;
749}
750
751/// Returns true by value, base pointer and
752/// offset pointer and addressing mode by reference if the node's address
753/// can be legally represented as pre-indexed load / store address.
754bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
755 SDValue &Offset,
756 ISD::MemIndexedMode &AM,
757 SelectionDAG &DAG) const {
758 EVT VT;
759 const SDNode *Op;
760 SDLoc DL(N);
761
762 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
763 VT = LD->getMemoryVT();
764 Op = LD->getBasePtr().getNode();
765 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
766 return false;
767 if (AVR::isProgramMemoryAccess(LD)) {
768 return false;
769 }
770 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
771 VT = ST->getMemoryVT();
772 Op = ST->getBasePtr().getNode();
773 if (AVR::isProgramMemoryAccess(ST)) {
774 return false;
775 }
776 } else {
777 return false;
778 }
779
780 if (VT != MVT::i8 && VT != MVT::i16) {
781 return false;
782 }
783
784 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
785 return false;
786 }
787
788 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
789 int RHSC = RHS->getSExtValue();
790 if (Op->getOpcode() == ISD::SUB)
791 RHSC = -RHSC;
792
793 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
794 return false;
795 }
796
797 Base = Op->getOperand(0);
798 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
799 AM = ISD::PRE_DEC;
800
801 return true;
802 }
803
804 return false;
805}
806
807/// Returns true by value, base pointer and
808/// offset pointer and addressing mode by reference if this node can be
809/// combined with a load / store to form a post-indexed load / store.
810bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
811 SDValue &Base,
812 SDValue &Offset,
813 ISD::MemIndexedMode &AM,
814 SelectionDAG &DAG) const {
815 EVT VT;
816 SDLoc DL(N);
817
818 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
819 VT = LD->getMemoryVT();
820 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
821 return false;
822 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
823 VT = ST->getMemoryVT();
824 if (AVR::isProgramMemoryAccess(ST)) {
825 return false;
826 }
827 } else {
828 return false;
829 }
830
831 if (VT != MVT::i8 && VT != MVT::i16) {
832 return false;
833 }
834
835 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
836 return false;
837 }
838
839 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
840 int RHSC = RHS->getSExtValue();
841 if (Op->getOpcode() == ISD::SUB)
842 RHSC = -RHSC;
843 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
844 return false;
845 }
846
847 Base = Op->getOperand(0);
848 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
849 AM = ISD::POST_INC;
850
851 return true;
852 }
853
854 return false;
855}
856
857bool AVRTargetLowering::isOffsetFoldingLegal(
858 const GlobalAddressSDNode *GA) const {
859 return true;
860}
861
862//===----------------------------------------------------------------------===//
863// Formal Arguments Calling Convention Implementation
864//===----------------------------------------------------------------------===//
865
866#include "AVRGenCallingConv.inc"
867
868/// For each argument in a function store the number of pieces it is composed
869/// of.
870static void parseFunctionArgs(const Function *F, const DataLayout *TD,
871 SmallVectorImpl<unsigned> &Out) {
872 for (Argument const &Arg : F->args()) {
873 unsigned Bytes = (TD->getTypeSizeInBits(Arg.getType()) + 7) / 8;
874 Out.push_back((Bytes + 1) / 2);
875 }
876}
877
878/// For external symbols there is no function prototype information so we
879/// have to rely directly on argument sizes.
880static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
881 SmallVectorImpl<unsigned> &Out) {
882 for (unsigned i = 0, e = In.size(); i != e;) {
883 unsigned Size = 0;
884 unsigned Offset = 0;
885 while ((i != e) && (In[i].PartOffset == Offset)) {
886 Offset += In[i].VT.getStoreSize();
887 ++i;
888 ++Size;
889 }
890 Out.push_back(Size);
891 }
892}
893
894static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
895 SDValue Callee = CLI.Callee;
896
897 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
898 return G->getSymbol();
899 }
900
901 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
902 return G->getGlobal()->getName();
903 }
904
905 llvm_unreachable("don't know how to get the name for this callee");
906}
907
908/// Analyze incoming and outgoing function arguments. We need custom C++ code
909/// to handle special constraints in the ABI like reversing the order of the
910/// pieces of splitted arguments. In addition, all pieces of a certain argument
911/// have to be passed either using registers or the stack but never mixing both.
912static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
913 const Function *F, const DataLayout *TD,
914 const SmallVectorImpl<ISD::OutputArg> *Outs,
915 const SmallVectorImpl<ISD::InputArg> *Ins,
916 CallingConv::ID CallConv,
917 SmallVectorImpl<CCValAssign> &ArgLocs,
918 CCState &CCInfo, bool IsCall, bool IsVarArg) {
919 static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
920 AVR::R18, AVR::R16, AVR::R14,
921 AVR::R12, AVR::R10, AVR::R8};
922 static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
923 AVR::R19R18, AVR::R17R16, AVR::R15R14,
924 AVR::R13R12, AVR::R11R10, AVR::R9R8};
925 if (IsVarArg) {
926 // Variadic functions do not need all the analisys below.
927 if (IsCall) {
928 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
929 } else {
930 CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
931 }
932 return;
933 }
934
935 // Fill in the Args array which will contain original argument sizes.
936 SmallVector<unsigned, 8> Args;
937 if (IsCall) {
938 parseExternFuncCallArgs(*Outs, Args);
939 } else {
940 assert(F != nullptr && "function should not be null");
941 parseFunctionArgs(F, TD, Args);
942 }
943
944 unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
945 // Variadic functions always use the stack.
946 bool UsesStack = false;
947 for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
948 unsigned Size = Args[i];
Dylan McKay7a3eb292017-02-05 09:53:45 +0000949
950 // If we have a zero-sized argument, don't attempt to lower it.
951 // AVR-GCC does not support zero-sized arguments and so we need not
952 // worry about ABI compatibility.
953 if (Size == 0) continue;
954
Dylan McKay7549b0a2016-11-02 06:47:40 +0000955 MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
956
957 // If we have plenty of regs to pass the whole argument do it.
958 if (!UsesStack && (Size <= RegsLeft)) {
959 const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
960
961 for (unsigned j = 0; j != Size; ++j) {
962 unsigned Reg = CCInfo.AllocateReg(
963 ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
964 CCInfo.addLoc(
965 CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
966 --RegsLeft;
967 }
968
969 // Reverse the order of the pieces to agree with the "big endian" format
970 // required in the calling convention ABI.
971 std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
972 } else {
973 // Pass the rest of arguments using the stack.
974 UsesStack = true;
975 for (unsigned j = 0; j != Size; ++j) {
976 unsigned Offset = CCInfo.AllocateStack(
977 TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
978 TD->getABITypeAlignment(
979 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
980 CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
981 CCValAssign::Full));
982 }
983 }
984 pos += Size;
985 }
986}
987
988static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
989 const Function *F, const DataLayout *TD,
990 const SmallVectorImpl<ISD::OutputArg> *Outs,
991 const SmallVectorImpl<ISD::InputArg> *Ins,
992 CallingConv::ID CallConv,
993 SmallVectorImpl<CCValAssign> &ArgLocs,
994 CCState &CCInfo, bool IsCall, bool IsVarArg) {
995 StringRef FuncName = getFunctionName(CLI);
996
997 if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
998 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
999 } else {
1000 analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1001 CallConv, ArgLocs, CCInfo,
1002 IsCall, IsVarArg);
1003 }
1004}
1005
1006static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1007 const Function *F, const DataLayout *TD,
1008 const SmallVectorImpl<ISD::OutputArg> *Outs,
1009 const SmallVectorImpl<ISD::InputArg> *Ins,
1010 CallingConv::ID CallConv,
1011 SmallVectorImpl<CCValAssign> &ArgLocs,
1012 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1013 switch (CallConv) {
1014 case CallingConv::AVR_BUILTIN: {
1015 analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
1016 CallConv, ArgLocs, CCInfo,
1017 IsCall, IsVarArg);
1018 return;
1019 }
1020 default: {
1021 analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1022 CallConv, ArgLocs, CCInfo,
1023 IsCall, IsVarArg);
1024 return;
1025 }
1026 }
1027}
1028
1029SDValue AVRTargetLowering::LowerFormalArguments(
1030 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1031 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1032 SmallVectorImpl<SDValue> &InVals) const {
1033 MachineFunction &MF = DAG.getMachineFunction();
1034 MachineFrameInfo &MFI = MF.getFrameInfo();
1035 auto DL = DAG.getDataLayout();
1036
1037 // Assign locations to all of the incoming arguments.
1038 SmallVector<CCValAssign, 16> ArgLocs;
1039 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1040 *DAG.getContext());
1041
Matthias Braunf1caa282017-12-15 22:22:58 +00001042 analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
Dylan McKay7549b0a2016-11-02 06:47:40 +00001043 false, isVarArg);
1044
1045 SDValue ArgValue;
1046 for (CCValAssign &VA : ArgLocs) {
1047
1048 // Arguments stored on registers.
1049 if (VA.isRegLoc()) {
1050 EVT RegVT = VA.getLocVT();
1051 const TargetRegisterClass *RC;
1052 if (RegVT == MVT::i8) {
1053 RC = &AVR::GPR8RegClass;
1054 } else if (RegVT == MVT::i16) {
1055 RC = &AVR::DREGSRegClass;
1056 } else {
1057 llvm_unreachable("Unknown argument type!");
1058 }
1059
1060 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1061 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1062
1063 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1064 // following code will handle zexts or sexts generated by other
1065 // front ends. Otherwise:
1066 // If this is an 8 bit value, it is really passed promoted
1067 // to 16 bits. Insert an assert[sz]ext to capture this, then
1068 // truncate to the right size.
1069 switch (VA.getLocInfo()) {
1070 default:
1071 llvm_unreachable("Unknown loc info!");
1072 case CCValAssign::Full:
1073 break;
1074 case CCValAssign::BCvt:
1075 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1076 break;
1077 case CCValAssign::SExt:
1078 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1079 DAG.getValueType(VA.getValVT()));
1080 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1081 break;
1082 case CCValAssign::ZExt:
1083 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1084 DAG.getValueType(VA.getValVT()));
1085 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1086 break;
1087 }
1088
1089 InVals.push_back(ArgValue);
1090 } else {
1091 // Sanity check.
1092 assert(VA.isMemLoc());
1093
1094 EVT LocVT = VA.getLocVT();
1095
1096 // Create the frame index object for this incoming parameter.
1097 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1098 VA.getLocMemOffset(), true);
1099
1100 // Create the SelectionDAG nodes corresponding to a load
1101 // from this parameter.
1102 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1103 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1104 MachinePointerInfo::getFixedStack(MF, FI),
1105 0));
1106 }
1107 }
1108
1109 // If the function takes variable number of arguments, make a frame index for
1110 // the start of the first vararg value... for expansion of llvm.va_start.
1111 if (isVarArg) {
1112 unsigned StackSize = CCInfo.getNextStackOffset();
1113 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1114
1115 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1116 }
1117
1118 return Chain;
1119}
1120
1121//===----------------------------------------------------------------------===//
1122// Call Calling Convention Implementation
1123//===----------------------------------------------------------------------===//
1124
1125SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1126 SmallVectorImpl<SDValue> &InVals) const {
1127 SelectionDAG &DAG = CLI.DAG;
1128 SDLoc &DL = CLI.DL;
1129 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1130 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1131 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1132 SDValue Chain = CLI.Chain;
1133 SDValue Callee = CLI.Callee;
1134 bool &isTailCall = CLI.IsTailCall;
1135 CallingConv::ID CallConv = CLI.CallConv;
1136 bool isVarArg = CLI.IsVarArg;
1137
1138 MachineFunction &MF = DAG.getMachineFunction();
1139
1140 // AVR does not yet support tail call optimization.
1141 isTailCall = false;
1142
1143 // Analyze operands of the call, assigning locations to each operand.
1144 SmallVector<CCValAssign, 16> ArgLocs;
1145 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1146 *DAG.getContext());
1147
1148 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1149 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1150 // node so that legalize doesn't hack it.
1151 const Function *F = nullptr;
1152 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1153 const GlobalValue *GV = G->getGlobal();
1154
1155 F = cast<Function>(GV);
1156 Callee =
1157 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1158 } else if (const ExternalSymbolSDNode *ES =
1159 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1160 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1161 getPointerTy(DAG.getDataLayout()));
1162 }
1163
1164 analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1165 true, isVarArg);
1166
1167 // Get a count of how many bytes are to be pushed on the stack.
1168 unsigned NumBytes = CCInfo.getNextStackOffset();
1169
Serge Pavlovd526b132017-05-09 13:35:13 +00001170 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001171
1172 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1173
1174 // First, walk the register assignments, inserting copies.
1175 unsigned AI, AE;
1176 bool HasStackArgs = false;
1177 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1178 CCValAssign &VA = ArgLocs[AI];
1179 EVT RegVT = VA.getLocVT();
1180 SDValue Arg = OutVals[AI];
1181
1182 // Promote the value if needed. With Clang this should not happen.
1183 switch (VA.getLocInfo()) {
1184 default:
1185 llvm_unreachable("Unknown loc info!");
1186 case CCValAssign::Full:
1187 break;
1188 case CCValAssign::SExt:
1189 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1190 break;
1191 case CCValAssign::ZExt:
1192 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1193 break;
1194 case CCValAssign::AExt:
1195 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1196 break;
1197 case CCValAssign::BCvt:
1198 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1199 break;
1200 }
1201
1202 // Stop when we encounter a stack argument, we need to process them
1203 // in reverse order in the loop below.
1204 if (VA.isMemLoc()) {
1205 HasStackArgs = true;
1206 break;
1207 }
1208
1209 // Arguments that can be passed on registers must be kept in the RegsToPass
1210 // vector.
1211 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1212 }
1213
1214 // Second, stack arguments have to walked in reverse order by inserting
1215 // chained stores, this ensures their order is not changed by the scheduler
1216 // and that the push instruction sequence generated is correct, otherwise they
1217 // can be freely intermixed.
1218 if (HasStackArgs) {
1219 for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1220 unsigned Loc = AI - 1;
1221 CCValAssign &VA = ArgLocs[Loc];
1222 SDValue Arg = OutVals[Loc];
1223
1224 assert(VA.isMemLoc());
1225
1226 // SP points to one stack slot further so add one to adjust it.
1227 SDValue PtrOff = DAG.getNode(
1228 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1229 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1230 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1231
1232 Chain =
1233 DAG.getStore(Chain, DL, Arg, PtrOff,
1234 MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1235 0);
1236 }
1237 }
1238
1239 // Build a sequence of copy-to-reg nodes chained together with token chain and
1240 // flag operands which copy the outgoing args into registers. The InFlag in
1241 // necessary since all emited instructions must be stuck together.
1242 SDValue InFlag;
1243 for (auto Reg : RegsToPass) {
1244 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1245 InFlag = Chain.getValue(1);
1246 }
1247
1248 // Returns a chain & a flag for retval copy to use.
1249 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1250 SmallVector<SDValue, 8> Ops;
1251 Ops.push_back(Chain);
1252 Ops.push_back(Callee);
1253
1254 // Add argument registers to the end of the list so that they are known live
1255 // into the call.
1256 for (auto Reg : RegsToPass) {
1257 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1258 }
1259
1260 // Add a register mask operand representing the call-preserved registers.
1261 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1262 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
1263 const uint32_t *Mask =
1264 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1265 assert(Mask && "Missing call preserved mask for calling convention");
1266 Ops.push_back(DAG.getRegisterMask(Mask));
1267
1268 if (InFlag.getNode()) {
1269 Ops.push_back(InFlag);
1270 }
1271
1272 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1273 InFlag = Chain.getValue(1);
1274
1275 // Create the CALLSEQ_END node.
1276 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1277 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1278
1279 if (!Ins.empty()) {
1280 InFlag = Chain.getValue(1);
1281 }
1282
1283 // Handle result values, copying them out of physregs into vregs that we
1284 // return.
1285 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1286 InVals);
1287}
1288
1289/// Lower the result values of a call into the
1290/// appropriate copies out of appropriate physical registers.
1291///
1292SDValue AVRTargetLowering::LowerCallResult(
1293 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1294 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1295 SmallVectorImpl<SDValue> &InVals) const {
1296
1297 // Assign locations to each value returned by this call.
1298 SmallVector<CCValAssign, 16> RVLocs;
1299 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1300 *DAG.getContext());
1301
1302 // Handle runtime calling convs.
1303 auto CCFunction = CCAssignFnForReturn(CallConv);
1304 CCInfo.AnalyzeCallResult(Ins, CCFunction);
1305
1306 if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1307 // Reverse splitted return values to get the "big endian" format required
1308 // to agree with the calling convention ABI.
1309 std::reverse(RVLocs.begin(), RVLocs.end());
1310 }
1311
1312 // Copy all of the result registers out of their specified physreg.
1313 for (CCValAssign const &RVLoc : RVLocs) {
1314 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1315 InFlag)
1316 .getValue(1);
1317 InFlag = Chain.getValue(2);
1318 InVals.push_back(Chain.getValue(0));
1319 }
1320
1321 return Chain;
1322}
1323
1324//===----------------------------------------------------------------------===//
1325// Return Value Calling Convention Implementation
1326//===----------------------------------------------------------------------===//
1327
1328CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1329 switch (CC) {
1330 case CallingConv::AVR_BUILTIN:
1331 return RetCC_AVR_BUILTIN;
1332 default:
1333 return RetCC_AVR;
1334 }
1335}
1336
1337bool
1338AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1339 MachineFunction &MF, bool isVarArg,
1340 const SmallVectorImpl<ISD::OutputArg> &Outs,
1341 LLVMContext &Context) const
1342{
1343 SmallVector<CCValAssign, 16> RVLocs;
1344 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1345
1346 auto CCFunction = CCAssignFnForReturn(CallConv);
1347 return CCInfo.CheckReturn(Outs, CCFunction);
1348}
1349
1350SDValue
1351AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1352 bool isVarArg,
1353 const SmallVectorImpl<ISD::OutputArg> &Outs,
1354 const SmallVectorImpl<SDValue> &OutVals,
1355 const SDLoc &dl, SelectionDAG &DAG) const {
1356 // CCValAssign - represent the assignment of the return value to locations.
1357 SmallVector<CCValAssign, 16> RVLocs;
1358
1359 // CCState - Info about the registers and stack slot.
1360 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1361 *DAG.getContext());
1362
1363 // Analyze return values.
1364 auto CCFunction = CCAssignFnForReturn(CallConv);
1365 CCInfo.AnalyzeReturn(Outs, CCFunction);
1366
1367 // If this is the first return lowered for this function, add the regs to
1368 // the liveout set for the function.
1369 MachineFunction &MF = DAG.getMachineFunction();
1370 unsigned e = RVLocs.size();
1371
1372 // Reverse splitted return values to get the "big endian" format required
1373 // to agree with the calling convention ABI.
1374 if (e > 1) {
1375 std::reverse(RVLocs.begin(), RVLocs.end());
1376 }
1377
1378 SDValue Flag;
1379 SmallVector<SDValue, 4> RetOps(1, Chain);
1380 // Copy the result values into the output registers.
1381 for (unsigned i = 0; i != e; ++i) {
1382 CCValAssign &VA = RVLocs[i];
1383 assert(VA.isRegLoc() && "Can only return in registers!");
1384
1385 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1386
1387 // Guarantee that all emitted copies are stuck together with flags.
1388 Flag = Chain.getValue(1);
1389 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1390 }
1391
1392 // Don't emit the ret/reti instruction when the naked attribute is present in
1393 // the function being compiled.
Matthias Braunf1caa282017-12-15 22:22:58 +00001394 if (MF.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +00001395 AttributeList::FunctionIndex, Attribute::Naked)) {
Dylan McKay7549b0a2016-11-02 06:47:40 +00001396 return Chain;
1397 }
1398
1399 unsigned RetOpc =
1400 (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1401 ? AVRISD::RETI_FLAG
1402 : AVRISD::RET_FLAG;
1403
1404 RetOps[0] = Chain; // Update chain.
1405
1406 if (Flag.getNode()) {
1407 RetOps.push_back(Flag);
1408 }
1409
1410 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1411}
1412
1413//===----------------------------------------------------------------------===//
1414// Custom Inserters
1415//===----------------------------------------------------------------------===//
1416
1417MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1418 MachineBasicBlock *BB) const {
1419 unsigned Opc;
1420 const TargetRegisterClass *RC;
1421 MachineFunction *F = BB->getParent();
1422 MachineRegisterInfo &RI = F->getRegInfo();
1423 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1424 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1425 DebugLoc dl = MI.getDebugLoc();
1426
1427 switch (MI.getOpcode()) {
1428 default:
1429 llvm_unreachable("Invalid shift opcode!");
1430 case AVR::Lsl8:
1431 Opc = AVR::LSLRd;
1432 RC = &AVR::GPR8RegClass;
1433 break;
1434 case AVR::Lsl16:
1435 Opc = AVR::LSLWRd;
1436 RC = &AVR::DREGSRegClass;
1437 break;
1438 case AVR::Asr8:
1439 Opc = AVR::ASRRd;
1440 RC = &AVR::GPR8RegClass;
1441 break;
1442 case AVR::Asr16:
1443 Opc = AVR::ASRWRd;
1444 RC = &AVR::DREGSRegClass;
1445 break;
1446 case AVR::Lsr8:
1447 Opc = AVR::LSRRd;
1448 RC = &AVR::GPR8RegClass;
1449 break;
1450 case AVR::Lsr16:
1451 Opc = AVR::LSRWRd;
1452 RC = &AVR::DREGSRegClass;
1453 break;
Dylan McKay59e7fe32017-05-01 09:48:55 +00001454 case AVR::Rol8:
1455 Opc = AVR::ROLRd;
1456 RC = &AVR::GPR8RegClass;
1457 break;
1458 case AVR::Rol16:
1459 Opc = AVR::ROLWRd;
1460 RC = &AVR::DREGSRegClass;
1461 break;
1462 case AVR::Ror8:
1463 Opc = AVR::RORRd;
1464 RC = &AVR::GPR8RegClass;
1465 break;
1466 case AVR::Ror16:
1467 Opc = AVR::RORWRd;
1468 RC = &AVR::DREGSRegClass;
1469 break;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001470 }
1471
1472 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Dylan McKaydada0142017-09-26 00:51:03 +00001473
1474 MachineFunction::iterator I;
Dylan McKay1446eed2017-09-26 01:37:53 +00001475 for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
Dylan McKaydada0142017-09-26 00:51:03 +00001476 if (I != F->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001477
1478 // Create loop block.
1479 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1480 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1481
1482 F->insert(I, LoopBB);
1483 F->insert(I, RemBB);
1484
1485 // Update machine-CFG edges by transferring all successors of the current
1486 // block to the block containing instructions after shift.
1487 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1488 BB->end());
1489 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1490
1491 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1492 BB->addSuccessor(LoopBB);
1493 BB->addSuccessor(RemBB);
1494 LoopBB->addSuccessor(RemBB);
1495 LoopBB->addSuccessor(LoopBB);
1496
1497 unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1498 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1499 unsigned ShiftReg = RI.createVirtualRegister(RC);
1500 unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1501 unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
1502 unsigned SrcReg = MI.getOperand(1).getReg();
1503 unsigned DstReg = MI.getOperand(0).getReg();
1504
1505 // BB:
Dylan McKay043fa4b2017-05-31 06:27:46 +00001506 // cpi N, 0
Dylan McKay7549b0a2016-11-02 06:47:40 +00001507 // breq RemBB
Dylan McKay043fa4b2017-05-31 06:27:46 +00001508 BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001509 BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1510
1511 // LoopBB:
1512 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1513 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1514 // ShiftReg2 = shift ShiftReg
1515 // ShiftAmt2 = ShiftAmt - 1;
1516 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1517 .addReg(SrcReg)
1518 .addMBB(BB)
1519 .addReg(ShiftReg2)
1520 .addMBB(LoopBB);
1521 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1522 .addReg(ShiftAmtSrcReg)
1523 .addMBB(BB)
1524 .addReg(ShiftAmtReg2)
1525 .addMBB(LoopBB);
1526 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1527 BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1528 .addReg(ShiftAmtReg)
1529 .addImm(1);
1530 BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1531
1532 // RemBB:
1533 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1534 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1535 .addReg(SrcReg)
1536 .addMBB(BB)
1537 .addReg(ShiftReg2)
1538 .addMBB(LoopBB);
1539
1540 MI.eraseFromParent(); // The pseudo instruction is gone now.
1541 return RemBB;
1542}
1543
1544static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1545 if (I->getOpcode() == AVR::COPY) {
1546 unsigned SrcReg = I->getOperand(1).getReg();
1547 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1548 }
1549
1550 return false;
1551}
1552
1553// The mul instructions wreak havock on our zero_reg R1. We need to clear it
1554// after the result has been evacuated. This is probably not the best way to do
1555// it, but it works for now.
1556MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1557 MachineBasicBlock *BB) const {
1558 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1559 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1560 MachineBasicBlock::iterator I(MI);
1561 ++I; // in any case insert *after* the mul instruction
1562 if (isCopyMulResult(I))
1563 ++I;
1564 if (isCopyMulResult(I))
1565 ++I;
1566 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1567 .addReg(AVR::R1)
1568 .addReg(AVR::R1);
1569 return BB;
1570}
1571
1572MachineBasicBlock *
1573AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1574 MachineBasicBlock *MBB) const {
1575 int Opc = MI.getOpcode();
1576
1577 // Pseudo shift instructions with a non constant shift amount are expanded
1578 // into a loop.
1579 switch (Opc) {
1580 case AVR::Lsl8:
1581 case AVR::Lsl16:
1582 case AVR::Lsr8:
1583 case AVR::Lsr16:
Dylan McKay59e7fe32017-05-01 09:48:55 +00001584 case AVR::Rol8:
1585 case AVR::Rol16:
1586 case AVR::Ror8:
1587 case AVR::Ror16:
Dylan McKay7549b0a2016-11-02 06:47:40 +00001588 case AVR::Asr8:
1589 case AVR::Asr16:
1590 return insertShift(MI, MBB);
1591 case AVR::MULRdRr:
1592 case AVR::MULSRdRr:
1593 return insertMul(MI, MBB);
1594 }
1595
1596 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1597 "Unexpected instr type to insert");
1598
1599 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1600 ->getParent()
1601 ->getSubtarget()
1602 .getInstrInfo();
1603 DebugLoc dl = MI.getDebugLoc();
1604
1605 // To "insert" a SELECT instruction, we insert the diamond
1606 // control-flow pattern. The incoming instruction knows the
1607 // destination vreg to set, the condition code register to branch
1608 // on, the true/false values to select between, and a branch opcode
1609 // to use.
1610
1611 MachineFunction *MF = MBB->getParent();
1612 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1613 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1614 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1615
Dylan McKay0c4debc2017-05-13 00:22:34 +00001616 MachineFunction::iterator I;
1617 for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1618 if (I != MF->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001619 MF->insert(I, trueMBB);
1620 MF->insert(I, falseMBB);
1621
1622 // Transfer remaining instructions and all successors of the current
1623 // block to the block which will contain the Phi node for the
1624 // select.
1625 trueMBB->splice(trueMBB->begin(), MBB,
1626 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1627 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1628
1629 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1630 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1631 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1632 MBB->addSuccessor(falseMBB);
1633 MBB->addSuccessor(trueMBB);
1634
1635 // Unconditionally flow back to the true block
1636 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1637 falseMBB->addSuccessor(trueMBB);
1638
1639 // Set up the Phi node to determine where we came from
1640 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1641 .addReg(MI.getOperand(1).getReg())
1642 .addMBB(MBB)
1643 .addReg(MI.getOperand(2).getReg())
1644 .addMBB(falseMBB) ;
1645
1646 MI.eraseFromParent(); // The pseudo instruction is gone now.
1647 return trueMBB;
1648}
1649
1650//===----------------------------------------------------------------------===//
1651// Inline Asm Support
1652//===----------------------------------------------------------------------===//
1653
1654AVRTargetLowering::ConstraintType
1655AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1656 if (Constraint.size() == 1) {
1657 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1658 switch (Constraint[0]) {
1659 case 'a': // Simple upper registers
1660 case 'b': // Base pointer registers pairs
1661 case 'd': // Upper register
1662 case 'l': // Lower registers
1663 case 'e': // Pointer register pairs
1664 case 'q': // Stack pointer register
1665 case 'r': // Any register
1666 case 'w': // Special upper register pairs
1667 return C_RegisterClass;
1668 case 't': // Temporary register
1669 case 'x': case 'X': // Pointer register pair X
1670 case 'y': case 'Y': // Pointer register pair Y
1671 case 'z': case 'Z': // Pointer register pair Z
1672 return C_Register;
1673 case 'Q': // A memory address based on Y or Z pointer with displacement.
1674 return C_Memory;
1675 case 'G': // Floating point constant
1676 case 'I': // 6-bit positive integer constant
1677 case 'J': // 6-bit negative integer constant
1678 case 'K': // Integer constant (Range: 2)
1679 case 'L': // Integer constant (Range: 0)
1680 case 'M': // 8-bit integer constant
1681 case 'N': // Integer constant (Range: -1)
1682 case 'O': // Integer constant (Range: 8, 16, 24)
1683 case 'P': // Integer constant (Range: 1)
1684 case 'R': // Integer constant (Range: -6 to 5)x
1685 return C_Other;
1686 default:
1687 break;
1688 }
1689 }
1690
1691 return TargetLowering::getConstraintType(Constraint);
1692}
1693
1694unsigned
1695AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1696 // Not sure if this is actually the right thing to do, but we got to do
1697 // *something* [agnat]
1698 switch (ConstraintCode[0]) {
1699 case 'Q':
1700 return InlineAsm::Constraint_Q;
1701 }
1702 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1703}
1704
1705AVRTargetLowering::ConstraintWeight
1706AVRTargetLowering::getSingleConstraintMatchWeight(
1707 AsmOperandInfo &info, const char *constraint) const {
1708 ConstraintWeight weight = CW_Invalid;
1709 Value *CallOperandVal = info.CallOperandVal;
1710
1711 // If we don't have a value, we can't do a match,
1712 // but allow it at the lowest weight.
1713 // (this behaviour has been copied from the ARM backend)
1714 if (!CallOperandVal) {
1715 return CW_Default;
1716 }
1717
1718 // Look at the constraint type.
1719 switch (*constraint) {
1720 default:
1721 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1722 break;
1723 case 'd':
1724 case 'r':
1725 case 'l':
1726 weight = CW_Register;
1727 break;
1728 case 'a':
1729 case 'b':
1730 case 'e':
1731 case 'q':
1732 case 't':
1733 case 'w':
1734 case 'x': case 'X':
1735 case 'y': case 'Y':
1736 case 'z': case 'Z':
1737 weight = CW_SpecificReg;
1738 break;
1739 case 'G':
1740 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1741 if (C->isZero()) {
1742 weight = CW_Constant;
1743 }
1744 }
1745 break;
1746 case 'I':
1747 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1748 if (isUInt<6>(C->getZExtValue())) {
1749 weight = CW_Constant;
1750 }
1751 }
1752 break;
1753 case 'J':
1754 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1755 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1756 weight = CW_Constant;
1757 }
1758 }
1759 break;
1760 case 'K':
1761 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1762 if (C->getZExtValue() == 2) {
1763 weight = CW_Constant;
1764 }
1765 }
1766 break;
1767 case 'L':
1768 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1769 if (C->getZExtValue() == 0) {
1770 weight = CW_Constant;
1771 }
1772 }
1773 break;
1774 case 'M':
1775 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1776 if (isUInt<8>(C->getZExtValue())) {
1777 weight = CW_Constant;
1778 }
1779 }
1780 break;
1781 case 'N':
1782 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1783 if (C->getSExtValue() == -1) {
1784 weight = CW_Constant;
1785 }
1786 }
1787 break;
1788 case 'O':
1789 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1790 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1791 (C->getZExtValue() == 24)) {
1792 weight = CW_Constant;
1793 }
1794 }
1795 break;
1796 case 'P':
1797 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1798 if (C->getZExtValue() == 1) {
1799 weight = CW_Constant;
1800 }
1801 }
1802 break;
1803 case 'R':
1804 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1805 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1806 weight = CW_Constant;
1807 }
1808 }
1809 break;
1810 case 'Q':
1811 weight = CW_Memory;
1812 break;
1813 }
1814
1815 return weight;
1816}
1817
1818std::pair<unsigned, const TargetRegisterClass *>
1819AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1820 StringRef Constraint,
1821 MVT VT) const {
1822 auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine())
1823 .getSubtargetImpl();
1824
1825 // We only support i8 and i16.
1826 //
1827 //:FIXME: remove this assert for now since it gets sometimes executed
1828 // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1829
1830 if (Constraint.size() == 1) {
1831 switch (Constraint[0]) {
1832 case 'a': // Simple upper registers r16..r23.
1833 return std::make_pair(0U, &AVR::LD8loRegClass);
1834 case 'b': // Base pointer registers: y, z.
1835 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1836 case 'd': // Upper registers r16..r31.
1837 return std::make_pair(0U, &AVR::LD8RegClass);
1838 case 'l': // Lower registers r0..r15.
1839 return std::make_pair(0U, &AVR::GPR8loRegClass);
1840 case 'e': // Pointer register pairs: x, y, z.
1841 return std::make_pair(0U, &AVR::PTRREGSRegClass);
1842 case 'q': // Stack pointer register: SPH:SPL.
1843 return std::make_pair(0U, &AVR::GPRSPRegClass);
1844 case 'r': // Any register: r0..r31.
1845 if (VT == MVT::i8)
1846 return std::make_pair(0U, &AVR::GPR8RegClass);
1847
1848 assert(VT == MVT::i16 && "inline asm constraint too large");
1849 return std::make_pair(0U, &AVR::DREGSRegClass);
1850 case 't': // Temporary register: r0.
1851 return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1852 case 'w': // Special upper register pairs: r24, r26, r28, r30.
1853 return std::make_pair(0U, &AVR::IWREGSRegClass);
1854 case 'x': // Pointer register pair X: r27:r26.
1855 case 'X':
1856 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1857 case 'y': // Pointer register pair Y: r29:r28.
1858 case 'Y':
1859 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1860 case 'z': // Pointer register pair Z: r31:r30.
1861 case 'Z':
1862 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1863 default:
1864 break;
1865 }
1866 }
1867
1868 return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(),
1869 Constraint, VT);
1870}
1871
1872void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1873 std::string &Constraint,
1874 std::vector<SDValue> &Ops,
1875 SelectionDAG &DAG) const {
1876 SDValue Result(0, 0);
1877 SDLoc DL(Op);
1878 EVT Ty = Op.getValueType();
1879
1880 // Currently only support length 1 constraints.
1881 if (Constraint.length() != 1) {
1882 return;
1883 }
1884
1885 char ConstraintLetter = Constraint[0];
1886 switch (ConstraintLetter) {
1887 default:
1888 break;
1889 // Deal with integers first:
1890 case 'I':
1891 case 'J':
1892 case 'K':
1893 case 'L':
1894 case 'M':
1895 case 'N':
1896 case 'O':
1897 case 'P':
1898 case 'R': {
1899 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1900 if (!C) {
1901 return;
1902 }
1903
1904 int64_t CVal64 = C->getSExtValue();
1905 uint64_t CUVal64 = C->getZExtValue();
1906 switch (ConstraintLetter) {
1907 case 'I': // 0..63
1908 if (!isUInt<6>(CUVal64))
1909 return;
1910 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1911 break;
1912 case 'J': // -63..0
1913 if (CVal64 < -63 || CVal64 > 0)
1914 return;
1915 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1916 break;
1917 case 'K': // 2
1918 if (CUVal64 != 2)
1919 return;
1920 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1921 break;
1922 case 'L': // 0
1923 if (CUVal64 != 0)
1924 return;
1925 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1926 break;
1927 case 'M': // 0..255
1928 if (!isUInt<8>(CUVal64))
1929 return;
1930 // i8 type may be printed as a negative number,
1931 // e.g. 254 would be printed as -2,
1932 // so we force it to i16 at least.
1933 if (Ty.getSimpleVT() == MVT::i8) {
1934 Ty = MVT::i16;
1935 }
1936 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1937 break;
1938 case 'N': // -1
1939 if (CVal64 != -1)
1940 return;
1941 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1942 break;
1943 case 'O': // 8, 16, 24
1944 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1945 return;
1946 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1947 break;
1948 case 'P': // 1
1949 if (CUVal64 != 1)
1950 return;
1951 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1952 break;
1953 case 'R': // -6..5
1954 if (CVal64 < -6 || CVal64 > 5)
1955 return;
1956 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1957 break;
1958 }
1959
1960 break;
1961 }
1962 case 'G':
1963 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1964 if (!FC || !FC->isZero())
1965 return;
1966 // Soften float to i8 0
1967 Result = DAG.getTargetConstant(0, DL, MVT::i8);
1968 break;
1969 }
1970
1971 if (Result.getNode()) {
1972 Ops.push_back(Result);
1973 return;
1974 }
1975
1976 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1977}
1978
Dylan McKay8fa6d8d2017-01-07 23:39:47 +00001979unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
1980 EVT VT,
1981 SelectionDAG &DAG) const {
1982 unsigned Reg;
1983
1984 if (VT == MVT::i8) {
1985 Reg = StringSwitch<unsigned>(RegName)
1986 .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
1987 .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
1988 .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
1989 .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
1990 .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
1991 .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
1992 .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
1993 .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
1994 .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
1995 .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
1996 .Case("r30", AVR::R30).Case("r31", AVR::R31)
1997 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
1998 .Default(0);
1999 } else {
2000 Reg = StringSwitch<unsigned>(RegName)
2001 .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
2002 .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2003 .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2004 .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2005 .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2006 .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2007 .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2008 .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2009 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2010 .Default(0);
2011 }
2012
2013 if (Reg)
2014 return Reg;
2015
2016 report_fatal_error("Invalid register name global variable");
2017}
2018
Dylan McKay7549b0a2016-11-02 06:47:40 +00002019} // end of namespace llvm