blob: 9244b0f9cb6d3fa29dbafd00d1b17f76600eaa5a [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000017#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000018#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000019#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000022#include "llvm/IR/IRBuilder.h"
Adam Nemet04563272015-02-01 16:56:15 +000023#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000024#include "llvm/Support/raw_ostream.h"
David Blaikieb447ac62015-06-26 18:02:52 +000025#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000026using namespace llvm;
27
Adam Nemet339f42b2015-02-19 19:15:07 +000028#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000029
Adam Nemetf219c642015-02-19 19:14:52 +000030static cl::opt<unsigned, true>
31VectorizationFactor("force-vector-width", cl::Hidden,
32 cl::desc("Sets the SIMD width. Zero is autoselect."),
33 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000034unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000035
36static cl::opt<unsigned, true>
37VectorizationInterleave("force-vector-interleave", cl::Hidden,
38 cl::desc("Sets the vectorization interleave count. "
39 "Zero is autoselect."),
40 cl::location(
41 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000042unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000043
Adam Nemet1d862af2015-02-26 04:39:09 +000044static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45 "runtime-memory-check-threshold", cl::Hidden,
46 cl::desc("When performing memory disambiguation checks at runtime do not "
47 "generate more than this number of comparisons (default = 8)."),
48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000050
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000051/// \brief The maximum iterations used to merge memory checks
52static cl::opt<unsigned> MemoryCheckMergeThreshold(
53 "memory-check-merge-threshold", cl::Hidden,
54 cl::desc("Maximum number of comparisons done when trying to merge "
55 "runtime memory checks. (default = 100)"),
56 cl::init(100));
57
Adam Nemetf219c642015-02-19 19:14:52 +000058/// Maximum SIMD width.
59const unsigned VectorizerParams::MaxVectorWidth = 64;
60
Adam Nemeta2df7502015-11-03 21:39:52 +000061/// \brief We collect dependences up to this threshold.
62static cl::opt<unsigned>
63 MaxDependences("max-dependences", cl::Hidden,
64 cl::desc("Maximum number of dependences collected by "
65 "loop-access analysis (default = 100)"),
66 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +000067
Adam Nemetf219c642015-02-19 19:14:52 +000068bool VectorizerParams::isInterleaveForced() {
69 return ::VectorizationInterleave.getNumOccurrences() > 0;
70}
71
Adam Nemet2bd6e982015-02-19 19:15:15 +000072void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73 const Function *TheFunction,
74 const Loop *TheLoop,
75 const char *PassName) {
Adam Nemet04563272015-02-01 16:56:15 +000076 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet3e876342015-02-19 19:15:13 +000077 if (const Instruction *I = Message.getInstr())
Adam Nemet04563272015-02-01 16:56:15 +000078 DL = I->getDebugLoc();
Adam Nemet339f42b2015-02-19 19:15:07 +000079 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
Adam Nemet04563272015-02-01 16:56:15 +000080 *TheFunction, DL, Message.str());
81}
82
83Value *llvm::stripIntegerCast(Value *V) {
84 if (CastInst *CI = dyn_cast<CastInst>(V))
85 if (CI->getOperand(0)->getType()->isIntegerTy())
86 return CI->getOperand(0);
87 return V;
88}
89
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000090const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +000091 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +000092 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000093 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +000094
95 // If there is an entry in the map return the SCEV of the pointer with the
96 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +000097 ValueToValueMap::const_iterator SI =
98 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +000099 if (SI != PtrToStride.end()) {
100 Value *StrideVal = SI->second;
101
102 // Strip casts.
103 StrideVal = stripIntegerCast(StrideVal);
104
105 // Replace symbolic stride by one.
106 Value *One = ConstantInt::get(StrideVal->getType(), 1);
107 ValueToValueMap RewriteMap;
108 RewriteMap[StrideVal] = One;
109
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000110 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000111 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112 const auto *CT =
113 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000115 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
116 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000117
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000118 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000119 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000120 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000121 }
122
123 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000124 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000125}
126
Adam Nemet7cdebac2015-07-14 22:32:44 +0000127void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000129 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000130 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000131 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000132 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000133 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000134
Adam Nemet279784f2016-03-24 04:28:47 +0000135 const SCEV *ScStart;
136 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000137
Adam Nemet59a65502016-03-24 05:15:24 +0000138 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000139 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000140 else {
141 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
142 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000143 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000144
145 ScStart = AR->getStart();
146 ScEnd = AR->evaluateAtIteration(Ex, *SE);
147 const SCEV *Step = AR->getStepRecurrence(*SE);
148
149 // For expressions with negative step, the upper bound is ScStart and the
150 // lower bound is ScEnd.
151 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
152 if (CStep->getValue()->isNegative())
153 std::swap(ScStart, ScEnd);
154 } else {
155 // Fallback case: the step is not constant, but the we can still
156 // get the upper and lower bounds of the interval by using min/max
157 // expressions.
158 ScStart = SE->getUMinExpr(ScStart, ScEnd);
159 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
160 }
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000161 }
162
163 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000164}
165
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000166SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000167RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000168 SmallVector<PointerCheck, 4> Checks;
169
Adam Nemet7c52e052015-07-27 19:38:50 +0000170 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
171 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
172 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
173 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000174
Adam Nemet38530882015-08-09 20:06:06 +0000175 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000176 Checks.push_back(std::make_pair(&CGI, &CGJ));
177 }
178 }
179 return Checks;
180}
181
Adam Nemet15840392015-08-07 22:44:15 +0000182void RuntimePointerChecking::generateChecks(
183 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
184 assert(Checks.empty() && "Checks is not empty");
185 groupChecks(DepCands, UseDependencies);
186 Checks = generateChecks();
187}
188
Adam Nemet651a5a22015-08-09 20:06:08 +0000189bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
190 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000191 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
192 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000193 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000194 return true;
195 return false;
196}
197
198/// Compare \p I and \p J and return the minimum.
199/// Return nullptr in case we couldn't find an answer.
200static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
201 ScalarEvolution *SE) {
202 const SCEV *Diff = SE->getMinusSCEV(J, I);
203 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
204
205 if (!C)
206 return nullptr;
207 if (C->getValue()->isNegative())
208 return J;
209 return I;
210}
211
Adam Nemet7cdebac2015-07-14 22:32:44 +0000212bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000213 const SCEV *Start = RtCheck.Pointers[Index].Start;
214 const SCEV *End = RtCheck.Pointers[Index].End;
215
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000216 // Compare the starts and ends with the known minimum and maximum
217 // of this set. We need to know how we compare against the min/max
218 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000219 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000220 if (!Min0)
221 return false;
222
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000223 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000224 if (!Min1)
225 return false;
226
227 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000228 if (Min0 == Start)
229 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000230
231 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000232 if (Min1 != End)
233 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000234
235 Members.push_back(Index);
236 return true;
237}
238
Adam Nemet7cdebac2015-07-14 22:32:44 +0000239void RuntimePointerChecking::groupChecks(
240 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000241 // We build the groups from dependency candidates equivalence classes
242 // because:
243 // - We know that pointers in the same equivalence class share
244 // the same underlying object and therefore there is a chance
245 // that we can compare pointers
246 // - We wouldn't be able to merge two pointers for which we need
247 // to emit a memcheck. The classes in DepCands are already
248 // conveniently built such that no two pointers in the same
249 // class need checking against each other.
250
251 // We use the following (greedy) algorithm to construct the groups
252 // For every pointer in the equivalence class:
253 // For each existing group:
254 // - if the difference between this pointer and the min/max bounds
255 // of the group is a constant, then make the pointer part of the
256 // group and update the min/max bounds of that group as required.
257
258 CheckingGroups.clear();
259
Silviu Baranga48250602015-07-28 13:44:08 +0000260 // If we need to check two pointers to the same underlying object
261 // with a non-constant difference, we shouldn't perform any pointer
262 // grouping with those pointers. This is because we can easily get
263 // into cases where the resulting check would return false, even when
264 // the accesses are safe.
265 //
266 // The following example shows this:
267 // for (i = 0; i < 1000; ++i)
268 // a[5000 + i * m] = a[i] + a[i + 9000]
269 //
270 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
271 // (0, 10000) which is always false. However, if m is 1, there is no
272 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
273 // us to perform an accurate check in this case.
274 //
275 // The above case requires that we have an UnknownDependence between
276 // accesses to the same underlying object. This cannot happen unless
277 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
278 // is also false. In this case we will use the fallback path and create
279 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000280
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000281 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000282 // checking pointer group for each pointer. This is also required
283 // for correctness, because in this case we can have checking between
284 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000285 if (!UseDependencies) {
286 for (unsigned I = 0; I < Pointers.size(); ++I)
287 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
288 return;
289 }
290
291 unsigned TotalComparisons = 0;
292
293 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000294 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
295 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000296
Silviu Barangace3877f2015-07-09 15:18:25 +0000297 // We need to keep track of what pointers we've already seen so we
298 // don't process them twice.
299 SmallSet<unsigned, 2> Seen;
300
Sanjay Patele4b9f502015-12-07 19:21:39 +0000301 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000302 // and add them to the overall solution. We use the order in which accesses
303 // appear in 'Pointers' to enforce determinism.
304 for (unsigned I = 0; I < Pointers.size(); ++I) {
305 // We've seen this pointer before, and therefore already processed
306 // its equivalence class.
307 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000308 continue;
309
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000310 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
311 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000312
Silviu Barangace3877f2015-07-09 15:18:25 +0000313 SmallVector<CheckingPtrGroup, 2> Groups;
314 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
315
Silviu Barangaa647c302015-07-13 14:48:24 +0000316 // Because DepCands is constructed by visiting accesses in the order in
317 // which they appear in alias sets (which is deterministic) and the
318 // iteration order within an equivalence class member is only dependent on
319 // the order in which unions and insertions are performed on the
320 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000321 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000322 MI != ME; ++MI) {
323 unsigned Pointer = PositionMap[MI->getPointer()];
324 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000325 // Mark this pointer as seen.
326 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000327
328 // Go through all the existing sets and see if we can find one
329 // which can include this pointer.
330 for (CheckingPtrGroup &Group : Groups) {
331 // Don't perform more than a certain amount of comparisons.
332 // This should limit the cost of grouping the pointers to something
333 // reasonable. If we do end up hitting this threshold, the algorithm
334 // will create separate groups for all remaining pointers.
335 if (TotalComparisons > MemoryCheckMergeThreshold)
336 break;
337
338 TotalComparisons++;
339
340 if (Group.addPointer(Pointer)) {
341 Merged = true;
342 break;
343 }
344 }
345
346 if (!Merged)
347 // We couldn't add this pointer to any existing set or the threshold
348 // for the number of comparisons has been reached. Create a new group
349 // to hold the current pointer.
350 Groups.push_back(CheckingPtrGroup(Pointer, *this));
351 }
352
353 // We've computed the grouped checks for this partition.
354 // Save the results and continue with the next one.
355 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
356 }
Adam Nemet04563272015-02-01 16:56:15 +0000357}
358
Adam Nemet041e6de2015-07-16 02:48:05 +0000359bool RuntimePointerChecking::arePointersInSamePartition(
360 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
361 unsigned PtrIdx2) {
362 return (PtrToPartition[PtrIdx1] != -1 &&
363 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
364}
365
Adam Nemet651a5a22015-08-09 20:06:08 +0000366bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000367 const PointerInfo &PointerI = Pointers[I];
368 const PointerInfo &PointerJ = Pointers[J];
369
Adam Nemeta8945b72015-02-18 03:43:58 +0000370 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000371 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000372 return false;
373
374 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000375 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000376 return false;
377
378 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000379 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000380 return false;
381
382 return true;
383}
384
Adam Nemet54f0b832015-07-27 23:54:41 +0000385void RuntimePointerChecking::printChecks(
386 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
387 unsigned Depth) const {
388 unsigned N = 0;
389 for (const auto &Check : Checks) {
390 const auto &First = Check.first->Members, &Second = Check.second->Members;
391
392 OS.indent(Depth) << "Check " << N++ << ":\n";
393
394 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
395 for (unsigned K = 0; K < First.size(); ++K)
396 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
397
398 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
399 for (unsigned K = 0; K < Second.size(); ++K)
400 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
401 }
402}
403
Adam Nemet3a91e942015-08-07 19:44:48 +0000404void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000405
406 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000407 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000408
409 OS.indent(Depth) << "Grouped accesses:\n";
410 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000411 const auto &CG = CheckingGroups[I];
412
413 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
414 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
415 << ")\n";
416 for (unsigned J = 0; J < CG.Members.size(); ++J) {
417 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000418 << "\n";
419 }
420 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000421}
422
Adam Nemet04563272015-02-01 16:56:15 +0000423namespace {
424/// \brief Analyses memory accesses in a loop.
425///
426/// Checks whether run time pointer checks are needed and builds sets for data
427/// dependence checking.
428class AccessAnalysis {
429public:
430 /// \brief Read or write access location.
431 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
432 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
433
Adam Nemete2b885c2015-04-23 20:09:20 +0000434 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000435 MemoryDepChecker::DepCandidates &DA,
436 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000437 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000438 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000439
440 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000441 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000442 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000443 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000444 Accesses.insert(MemAccessInfo(Ptr, false));
445 if (IsReadOnly)
446 ReadOnlyPtr.insert(Ptr);
447 }
448
449 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000450 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000451 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000452 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000453 Accesses.insert(MemAccessInfo(Ptr, true));
454 }
455
456 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000457 /// non-intersection.
458 ///
459 /// Returns true if we need no check or if we do and we can generate them
460 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000461 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
462 Loop *TheLoop, const ValueToValueMap &Strides,
Adam Nemet04563272015-02-01 16:56:15 +0000463 bool ShouldCheckStride = false);
464
465 /// \brief Goes over all memory accesses, checks whether a RT check is needed
466 /// and builds sets of dependent accesses.
467 void buildDependenceSets() {
468 processMemAccesses();
469 }
470
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000471 /// \brief Initial processing of memory accesses determined that we need to
472 /// perform dependency checking.
473 ///
474 /// Note that this can later be cleared if we retry memcheck analysis without
475 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000476 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000477
478 /// We decided that no dependence analysis would be used. Reset the state.
479 void resetDepChecks(MemoryDepChecker &DepChecker) {
480 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000481 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000482 }
Adam Nemet04563272015-02-01 16:56:15 +0000483
484 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
485
486private:
487 typedef SetVector<MemAccessInfo> PtrAccessSet;
488
489 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000490 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000491 void processMemAccesses();
492
493 /// Set of all accesses.
494 PtrAccessSet Accesses;
495
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000496 const DataLayout &DL;
497
Adam Nemet04563272015-02-01 16:56:15 +0000498 /// Set of accesses that need a further dependence check.
499 MemAccessInfoSet CheckDeps;
500
501 /// Set of pointers that are read only.
502 SmallPtrSet<Value*, 16> ReadOnlyPtr;
503
Adam Nemet04563272015-02-01 16:56:15 +0000504 /// An alias set tracker to partition the access set by underlying object and
505 //intrinsic property (such as TBAA metadata).
506 AliasSetTracker AST;
507
Adam Nemete2b885c2015-04-23 20:09:20 +0000508 LoopInfo *LI;
509
Adam Nemet04563272015-02-01 16:56:15 +0000510 /// Sets of potentially dependent accesses - members of one set share an
511 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
512 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000513 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000514
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000515 /// \brief Initial processing of memory accesses determined that we may need
516 /// to add memchecks. Perform the analysis to determine the necessary checks.
517 ///
518 /// Note that, this is different from isDependencyCheckNeeded. When we retry
519 /// memcheck analysis without dependency checking
520 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
521 /// while this remains set if we have potentially dependent accesses.
522 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000523
524 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000525 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000526};
527
528} // end anonymous namespace
529
530/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000531static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000532 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000533 Loop *L) {
534 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000535
536 // The bounds for loop-invariant pointer is trivial.
537 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
538 return true;
539
Adam Nemet04563272015-02-01 16:56:15 +0000540 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
541 if (!AR)
542 return false;
543
544 return AR->isAffine();
545}
546
Adam Nemet7cdebac2015-07-14 22:32:44 +0000547bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
548 ScalarEvolution *SE, Loop *TheLoop,
549 const ValueToValueMap &StridesMap,
550 bool ShouldCheckStride) {
Adam Nemet04563272015-02-01 16:56:15 +0000551 // Find pointers with computable bounds. We are going to use this information
552 // to place a runtime bound check.
553 bool CanDoRT = true;
554
Adam Nemetee614742015-07-09 22:17:38 +0000555 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000556 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000557
Adam Nemet04563272015-02-01 16:56:15 +0000558 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000559
560 // We assign a consecutive id to access from different alias sets.
561 // Accesses between different groups doesn't need to be checked.
562 unsigned ASId = 1;
563 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000564 int NumReadPtrChecks = 0;
565 int NumWritePtrChecks = 0;
566
Adam Nemet04563272015-02-01 16:56:15 +0000567 // We assign consecutive id to access from different dependence sets.
568 // Accesses within the same set don't need a runtime check.
569 unsigned RunningDepId = 1;
570 DenseMap<Value *, unsigned> DepSetId;
571
572 for (auto A : AS) {
573 Value *Ptr = A.getValue();
574 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
575 MemAccessInfo Access(Ptr, IsWrite);
576
Adam Nemet424edc62015-07-08 22:58:48 +0000577 if (IsWrite)
578 ++NumWritePtrChecks;
579 else
580 ++NumReadPtrChecks;
581
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000582 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000583 // When we run after a failing dependency check we have to make sure
584 // we don't have wrapping pointers.
Adam Nemet04563272015-02-01 16:56:15 +0000585 (!ShouldCheckStride ||
Denis Zobnin15d1e642016-05-10 05:55:16 +0000586 getPtrStride(PSE, Ptr, TheLoop, StridesMap) == 1)) {
Adam Nemet04563272015-02-01 16:56:15 +0000587 // The id of the dependence set.
588 unsigned DepId;
589
590 if (IsDepCheckNeeded) {
591 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
592 unsigned &LeaderId = DepSetId[Leader];
593 if (!LeaderId)
594 LeaderId = RunningDepId++;
595 DepId = LeaderId;
596 } else
597 // Each access has its own dependence set.
598 DepId = RunningDepId++;
599
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000600 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000601
Adam Nemet339f42b2015-02-19 19:15:07 +0000602 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000603 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000604 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000605 CanDoRT = false;
606 }
607 }
608
Adam Nemet424edc62015-07-08 22:58:48 +0000609 // If we have at least two writes or one write and a read then we need to
610 // check them. But there is no need to checks if there is only one
611 // dependence set for this alias set.
612 //
613 // Note that this function computes CanDoRT and NeedRTCheck independently.
614 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
615 // for which we couldn't find the bounds but we don't actually need to emit
616 // any checks so it does not matter.
617 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
618 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
619 NumWritePtrChecks >= 1));
620
Adam Nemet04563272015-02-01 16:56:15 +0000621 ++ASId;
622 }
623
624 // If the pointers that we would use for the bounds comparison have different
625 // address spaces, assume the values aren't directly comparable, so we can't
626 // use them for the runtime check. We also have to assume they could
627 // overlap. In the future there should be metadata for whether address spaces
628 // are disjoint.
629 unsigned NumPointers = RtCheck.Pointers.size();
630 for (unsigned i = 0; i < NumPointers; ++i) {
631 for (unsigned j = i + 1; j < NumPointers; ++j) {
632 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000633 if (RtCheck.Pointers[i].DependencySetId ==
634 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000635 continue;
636 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000637 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000638 continue;
639
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000640 Value *PtrI = RtCheck.Pointers[i].PointerValue;
641 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000642
643 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
644 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
645 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000646 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000647 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000648 return false;
649 }
650 }
651 }
652
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000653 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000654 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000655
Adam Nemet155e8742015-08-07 22:44:21 +0000656 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000657 << " pointer comparisons.\n");
658
659 RtCheck.Need = NeedRTCheck;
660
661 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
662 if (!CanDoRTIfNeeded)
663 RtCheck.reset();
664 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000665}
666
667void AccessAnalysis::processMemAccesses() {
668 // We process the set twice: first we process read-write pointers, last we
669 // process read-only pointers. This allows us to skip dependence tests for
670 // read-only pointers.
671
Adam Nemet339f42b2015-02-19 19:15:07 +0000672 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000673 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000674 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000675 DEBUG({
676 for (auto A : Accesses)
677 dbgs() << "\t" << *A.getPointer() << " (" <<
678 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
679 "read-only" : "read")) << ")\n";
680 });
681
682 // The AliasSetTracker has nicely partitioned our pointers by metadata
683 // compatibility and potential for underlying-object overlap. As a result, we
684 // only need to check for potential pointer dependencies within each alias
685 // set.
686 for (auto &AS : AST) {
687 // Note that both the alias-set tracker and the alias sets themselves used
688 // linked lists internally and so the iteration order here is deterministic
689 // (matching the original instruction order within each set).
690
691 bool SetHasWrite = false;
692
693 // Map of pointers to last access encountered.
694 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
695 UnderlyingObjToAccessMap ObjToLastAccess;
696
697 // Set of access to check after all writes have been processed.
698 PtrAccessSet DeferredAccesses;
699
700 // Iterate over each alias set twice, once to process read/write pointers,
701 // and then to process read-only pointers.
702 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
703 bool UseDeferred = SetIteration > 0;
704 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
705
706 for (auto AV : AS) {
707 Value *Ptr = AV.getValue();
708
709 // For a single memory access in AliasSetTracker, Accesses may contain
710 // both read and write, and they both need to be handled for CheckDeps.
711 for (auto AC : S) {
712 if (AC.getPointer() != Ptr)
713 continue;
714
715 bool IsWrite = AC.getInt();
716
717 // If we're using the deferred access set, then it contains only
718 // reads.
719 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
720 if (UseDeferred && !IsReadOnlyPtr)
721 continue;
722 // Otherwise, the pointer must be in the PtrAccessSet, either as a
723 // read or a write.
724 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
725 S.count(MemAccessInfo(Ptr, false))) &&
726 "Alias-set pointer not in the access set?");
727
728 MemAccessInfo Access(Ptr, IsWrite);
729 DepCands.insert(Access);
730
731 // Memorize read-only pointers for later processing and skip them in
732 // the first round (they need to be checked after we have seen all
733 // write pointers). Note: we also mark pointer that are not
734 // consecutive as "read-only" pointers (so that we check
735 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
736 if (!UseDeferred && IsReadOnlyPtr) {
737 DeferredAccesses.insert(Access);
738 continue;
739 }
740
741 // If this is a write - check other reads and writes for conflicts. If
742 // this is a read only check other writes for conflicts (but only if
743 // there is no other write to the ptr - this is an optimization to
744 // catch "a[i] = a[i] + " without having to do a dependence check).
745 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
746 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000747 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000748 }
749
750 if (IsWrite)
751 SetHasWrite = true;
752
753 // Create sets of pointers connected by a shared alias set and
754 // underlying object.
755 typedef SmallVector<Value *, 16> ValueVector;
756 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000757
758 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
759 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000760 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000761 // nullptr never alias, don't join sets for pointer that have "null"
762 // in their UnderlyingObjects list.
763 if (isa<ConstantPointerNull>(UnderlyingObj))
764 continue;
765
Adam Nemet04563272015-02-01 16:56:15 +0000766 UnderlyingObjToAccessMap::iterator Prev =
767 ObjToLastAccess.find(UnderlyingObj);
768 if (Prev != ObjToLastAccess.end())
769 DepCands.unionSets(Access, Prev->second);
770
771 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000772 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000773 }
774 }
775 }
776 }
777 }
778}
779
Adam Nemet04563272015-02-01 16:56:15 +0000780static bool isInBoundsGep(Value *Ptr) {
781 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
782 return GEP->isInBounds();
783 return false;
784}
785
Adam Nemetc4866d22015-06-26 17:25:43 +0000786/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
787/// i.e. monotonically increasing/decreasing.
788static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000789 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000790 // FIXME: This should probably only return true for NUW.
791 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
792 return true;
793
794 // Scalar evolution does not propagate the non-wrapping flags to values that
795 // are derived from a non-wrapping induction variable because non-wrapping
796 // could be flow-sensitive.
797 //
798 // Look through the potentially overflowing instruction to try to prove
799 // non-wrapping for the *specific* value of Ptr.
800
801 // The arithmetic implied by an inbounds GEP can't overflow.
802 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
803 if (!GEP || !GEP->isInBounds())
804 return false;
805
806 // Make sure there is only one non-const index and analyze that.
807 Value *NonConstIndex = nullptr;
808 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
809 if (!isa<ConstantInt>(*Index)) {
810 if (NonConstIndex)
811 return false;
812 NonConstIndex = *Index;
813 }
814 if (!NonConstIndex)
815 // The recurrence is on the pointer, ignore for now.
816 return false;
817
818 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
819 // AddRec using a NSW operation.
820 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
821 if (OBO->hasNoSignedWrap() &&
822 // Assume constant for other the operand so that the AddRec can be
823 // easily found.
824 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000825 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000826
827 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
828 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
829 }
830
831 return false;
832}
833
Adam Nemet04563272015-02-01 16:56:15 +0000834/// \brief Check whether the access through \p Ptr has a constant stride.
Denis Zobnin15d1e642016-05-10 05:55:16 +0000835int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000836 const Loop *Lp, const ValueToValueMap &StridesMap,
837 bool Assume) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000838 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000839 assert(Ty->isPointerTy() && "Unexpected non-ptr");
840
841 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000842 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000843 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000844 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
845 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000846 return 0;
847 }
848
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000849 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000850
851 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000852 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000853 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000854
Adam Nemet04563272015-02-01 16:56:15 +0000855 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000856 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
857 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000858 return 0;
859 }
860
861 // The accesss function must stride over the innermost loop.
862 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000863 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000864 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000865 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000866 }
867
868 // The address calculation must not wrap. Otherwise, a dependence could be
869 // inverted.
870 // An inbounds getelementptr that is a AddRec with a unit stride
871 // cannot wrap per definition. The unit stride requirement is checked later.
872 // An getelementptr without an inbounds attribute and unit stride would have
873 // to access the pointer value "0" which is undefined behavior in address
874 // space 0, therefore we can also vectorize this case.
875 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000876 bool IsNoWrapAddRec =
877 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
878 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000879 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
880 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000881 if (Assume) {
882 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
883 IsNoWrapAddRec = true;
884 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
885 << "LAA: Pointer: " << *Ptr << "\n"
886 << "LAA: SCEV: " << *AR << "\n"
887 << "LAA: Added an overflow assumption\n");
888 } else {
889 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
890 << *Ptr << " SCEV: " << *AR << "\n");
891 return 0;
892 }
Adam Nemet04563272015-02-01 16:56:15 +0000893 }
894
895 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000896 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000897
Adam Nemet943befe2015-07-09 00:03:22 +0000898 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000899 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
900 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000901 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000902 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000903 return 0;
904 }
905
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000906 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
907 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000908 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +0000909
910 // Huge step value - give up.
911 if (APStepVal.getBitWidth() > 64)
912 return 0;
913
914 int64_t StepVal = APStepVal.getSExtValue();
915
916 // Strided access.
917 int64_t Stride = StepVal / Size;
918 int64_t Rem = StepVal % Size;
919 if (Rem)
920 return 0;
921
922 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
923 // know we can't "wrap around the address space". In case of address space
924 // zero we know that this won't happen without triggering undefined behavior.
925 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000926 Stride != 1 && Stride != -1) {
927 if (Assume) {
928 // We can avoid this case by adding a run-time check.
929 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
930 << "inbouds or in address space 0 may wrap:\n"
931 << "LAA: Pointer: " << *Ptr << "\n"
932 << "LAA: SCEV: " << *AR << "\n"
933 << "LAA: Added an overflow assumption\n");
934 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
935 } else
936 return 0;
937 }
Adam Nemet04563272015-02-01 16:56:15 +0000938
939 return Stride;
940}
941
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000942/// Take the pointer operand from the Load/Store instruction.
943/// Returns NULL if this is not a valid Load/Store instruction.
944static Value *getPointerOperand(Value *I) {
945 if (LoadInst *LI = dyn_cast<LoadInst>(I))
946 return LI->getPointerOperand();
947 if (StoreInst *SI = dyn_cast<StoreInst>(I))
948 return SI->getPointerOperand();
949 return nullptr;
950}
951
952/// Take the address space operand from the Load/Store instruction.
953/// Returns -1 if this is not a valid Load/Store instruction.
954static unsigned getAddressSpaceOperand(Value *I) {
955 if (LoadInst *L = dyn_cast<LoadInst>(I))
956 return L->getPointerAddressSpace();
957 if (StoreInst *S = dyn_cast<StoreInst>(I))
958 return S->getPointerAddressSpace();
959 return -1;
960}
961
962/// Returns true if the memory operations \p A and \p B are consecutive.
963bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
964 ScalarEvolution &SE, bool CheckType) {
965 Value *PtrA = getPointerOperand(A);
966 Value *PtrB = getPointerOperand(B);
967 unsigned ASA = getAddressSpaceOperand(A);
968 unsigned ASB = getAddressSpaceOperand(B);
969
970 // Check that the address spaces match and that the pointers are valid.
971 if (!PtrA || !PtrB || (ASA != ASB))
972 return false;
973
974 // Make sure that A and B are different pointers.
975 if (PtrA == PtrB)
976 return false;
977
978 // Make sure that A and B have the same type if required.
979 if(CheckType && PtrA->getType() != PtrB->getType())
980 return false;
981
982 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
983 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
984 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
985
986 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
987 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
988 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
989
990 // OffsetDelta = OffsetB - OffsetA;
991 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
992 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
993 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
994 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
995 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
996 // Check if they are based on the same pointer. That makes the offsets
997 // sufficient.
998 if (PtrA == PtrB)
999 return OffsetDelta == Size;
1000
1001 // Compute the necessary base pointer delta to have the necessary final delta
1002 // equal to the size.
1003 // BaseDelta = Size - OffsetDelta;
1004 const SCEV *SizeSCEV = SE.getConstant(Size);
1005 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1006
1007 // Otherwise compute the distance with SCEV between the base pointers.
1008 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1009 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1010 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1011 return X == PtrSCEVB;
1012}
1013
Adam Nemet9c926572015-03-10 17:40:37 +00001014bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1015 switch (Type) {
1016 case NoDep:
1017 case Forward:
1018 case BackwardVectorizable:
1019 return true;
1020
1021 case Unknown:
1022 case ForwardButPreventsForwarding:
1023 case Backward:
1024 case BackwardVectorizableButPreventsForwarding:
1025 return false;
1026 }
David Majnemerd388e932015-03-10 20:23:29 +00001027 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001028}
1029
Adam Nemet397f5822015-11-03 23:50:03 +00001030bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001031 switch (Type) {
1032 case NoDep:
1033 case Forward:
1034 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001035 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001036 return false;
1037
Adam Nemet9c926572015-03-10 17:40:37 +00001038 case BackwardVectorizable:
1039 case Backward:
1040 case BackwardVectorizableButPreventsForwarding:
1041 return true;
1042 }
David Majnemerd388e932015-03-10 20:23:29 +00001043 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001044}
1045
Adam Nemet397f5822015-11-03 23:50:03 +00001046bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1047 return isBackward() || Type == Unknown;
1048}
1049
1050bool MemoryDepChecker::Dependence::isForward() const {
1051 switch (Type) {
1052 case Forward:
1053 case ForwardButPreventsForwarding:
1054 return true;
1055
1056 case NoDep:
1057 case Unknown:
1058 case BackwardVectorizable:
1059 case Backward:
1060 case BackwardVectorizableButPreventsForwarding:
1061 return false;
1062 }
1063 llvm_unreachable("unexpected DepType!");
1064}
1065
Adam Nemet04563272015-02-01 16:56:15 +00001066bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1067 unsigned TypeByteSize) {
1068 // If loads occur at a distance that is not a multiple of a feasible vector
1069 // factor store-load forwarding does not take place.
1070 // Positive dependences might cause troubles because vectorizing them might
1071 // prevent store-load forwarding making vectorized code run a lot slower.
1072 // a[i] = a[i-3] ^ a[i-8];
1073 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1074 // hence on your typical architecture store-load forwarding does not take
1075 // place. Vectorizing in such cases does not make sense.
1076 // Store-load forwarding distance.
1077 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
1078 // Maximum vector factor.
Adam Nemet2c34ab52016-05-12 21:41:53 +00001079 unsigned MaxVFWithoutSLForwardIssues = std::min(
1080 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001081
1082 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
1083 vf *= 2) {
1084 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
1085 MaxVFWithoutSLForwardIssues = (vf >>=1);
1086 break;
1087 }
1088 }
1089
Adam Nemet04d41632015-02-19 19:14:34 +00001090 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001091 DEBUG(dbgs() << "LAA: Distance " << Distance <<
Adam Nemet04d41632015-02-19 19:14:34 +00001092 " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001093 return true;
1094 }
1095
1096 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001097 MaxVFWithoutSLForwardIssues !=
1098 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001099 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1100 return false;
1101}
1102
Hao Liu751004a2015-06-08 04:48:37 +00001103/// \brief Check the dependence for two accesses with the same stride \p Stride.
1104/// \p Distance is the positive distance and \p TypeByteSize is type size in
1105/// bytes.
1106///
1107/// \returns true if they are independent.
1108static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1109 unsigned TypeByteSize) {
1110 assert(Stride > 1 && "The stride must be greater than 1");
1111 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1112 assert(Distance > 0 && "The distance must be non-zero");
1113
1114 // Skip if the distance is not multiple of type byte size.
1115 if (Distance % TypeByteSize)
1116 return false;
1117
1118 unsigned ScaledDist = Distance / TypeByteSize;
1119
1120 // No dependence if the scaled distance is not multiple of the stride.
1121 // E.g.
1122 // for (i = 0; i < 1024 ; i += 4)
1123 // A[i+2] = A[i] + 1;
1124 //
1125 // Two accesses in memory (scaled distance is 2, stride is 4):
1126 // | A[0] | | | | A[4] | | | |
1127 // | | | A[2] | | | | A[6] | |
1128 //
1129 // E.g.
1130 // for (i = 0; i < 1024 ; i += 3)
1131 // A[i+4] = A[i] + 1;
1132 //
1133 // Two accesses in memory (scaled distance is 4, stride is 3):
1134 // | A[0] | | | A[3] | | | A[6] | | |
1135 // | | | | | A[4] | | | A[7] | |
1136 return ScaledDist % Stride;
1137}
1138
Adam Nemet9c926572015-03-10 17:40:37 +00001139MemoryDepChecker::Dependence::DepType
1140MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1141 const MemAccessInfo &B, unsigned BIdx,
1142 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001143 assert (AIdx < BIdx && "Must pass arguments in program order");
1144
1145 Value *APtr = A.getPointer();
1146 Value *BPtr = B.getPointer();
1147 bool AIsWrite = A.getInt();
1148 bool BIsWrite = B.getInt();
1149
1150 // Two reads are independent.
1151 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001152 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001153
1154 // We cannot check pointers in different address spaces.
1155 if (APtr->getType()->getPointerAddressSpace() !=
1156 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001157 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001158
Denis Zobnin15d1e642016-05-10 05:55:16 +00001159 int StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1160 int StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001161
Silviu Barangaadf4b732016-05-10 12:28:49 +00001162 const SCEV *Src = PSE.getSCEV(APtr);
1163 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001164
1165 // If the induction step is negative we have to invert source and sink of the
1166 // dependence.
1167 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001168 std::swap(APtr, BPtr);
1169 std::swap(Src, Sink);
1170 std::swap(AIsWrite, BIsWrite);
1171 std::swap(AIdx, BIdx);
1172 std::swap(StrideAPtr, StrideBPtr);
1173 }
1174
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001175 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001176
Adam Nemet339f42b2015-02-19 19:15:07 +00001177 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001178 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001179 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001180 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001181
Adam Nemet943befe2015-07-09 00:03:22 +00001182 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001183 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1184 // the address space.
1185 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001186 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001187 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001188 }
1189
1190 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1191 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001192 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001193 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001194 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001195 }
1196
1197 Type *ATy = APtr->getType()->getPointerElementType();
1198 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001199 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1200 unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001201
1202 // Negative distances are not plausible dependencies.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001203 const APInt &Val = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +00001204 if (Val.isNegative()) {
1205 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1206 if (IsTrueDataDependence &&
1207 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001208 ATy != BTy)) {
1209 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001210 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001211 }
Adam Nemet04563272015-02-01 16:56:15 +00001212
Adam Nemet724ab222016-05-05 23:41:28 +00001213 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001214 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001215 }
1216
1217 // Write to the same location with the same size.
1218 // Could be improved to assert type sizes are the same (i32 == float, etc).
1219 if (Val == 0) {
1220 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001221 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001222 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001223 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001224 }
1225
1226 assert(Val.isStrictlyPositive() && "Expect a positive value");
1227
Adam Nemet04563272015-02-01 16:56:15 +00001228 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001229 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001230 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001231 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001232 }
1233
1234 unsigned Distance = (unsigned) Val.getZExtValue();
1235
Hao Liu751004a2015-06-08 04:48:37 +00001236 unsigned Stride = std::abs(StrideAPtr);
1237 if (Stride > 1 &&
Adam Nemet0131a562015-07-08 18:47:38 +00001238 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1239 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
Hao Liu751004a2015-06-08 04:48:37 +00001240 return Dependence::NoDep;
Adam Nemet0131a562015-07-08 18:47:38 +00001241 }
Hao Liu751004a2015-06-08 04:48:37 +00001242
Adam Nemet04563272015-02-01 16:56:15 +00001243 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001244 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1245 VectorizerParams::VectorizationFactor : 1);
1246 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1247 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001248 // The minimum number of iterations for a vectorized/unrolled version.
1249 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001250
Hao Liu751004a2015-06-08 04:48:37 +00001251 // It's not vectorizable if the distance is smaller than the minimum distance
1252 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1253 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1254 // TypeByteSize (No need to plus the last gap distance).
1255 //
1256 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1257 // foo(int *A) {
1258 // int *B = (int *)((char *)A + 14);
1259 // for (i = 0 ; i < 1024 ; i += 2)
1260 // B[i] = A[i] + 1;
1261 // }
1262 //
1263 // Two accesses in memory (stride is 2):
1264 // | A[0] | | A[2] | | A[4] | | A[6] | |
1265 // | B[0] | | B[2] | | B[4] |
1266 //
1267 // Distance needs for vectorizing iterations except the last iteration:
1268 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1269 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1270 //
1271 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1272 // 12, which is less than distance.
1273 //
1274 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1275 // the minimum distance needed is 28, which is greater than distance. It is
1276 // not safe to do vectorization.
1277 unsigned MinDistanceNeeded =
1278 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1279 if (MinDistanceNeeded > Distance) {
1280 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1281 << '\n');
1282 return Dependence::Backward;
1283 }
1284
1285 // Unsafe if the minimum distance needed is greater than max safe distance.
1286 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1287 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1288 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001289 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001290 }
1291
Adam Nemet9cc0c392015-02-26 17:58:48 +00001292 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001293 // FIXME: Should use max factor instead of max distance in bytes, which could
1294 // not handle different types.
1295 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1296 // void foo (int *A, char *B) {
1297 // for (unsigned i = 0; i < 1024; i++) {
1298 // A[i+2] = A[i] + 1;
1299 // B[i+2] = B[i] + 1;
1300 // }
1301 // }
1302 //
1303 // This case is currently unsafe according to the max safe distance. If we
1304 // analyze the two accesses on array B, the max safe dependence distance
1305 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1306 // is 8, which is less than 2 and forbidden vectorization, But actually
1307 // both A and B could be vectorized by 2 iterations.
1308 MaxSafeDepDistBytes =
1309 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
Adam Nemet04563272015-02-01 16:56:15 +00001310
1311 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1312 if (IsTrueDataDependence &&
1313 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001314 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001315
Hao Liu751004a2015-06-08 04:48:37 +00001316 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1317 << " with max VF = "
1318 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001319
Adam Nemet9c926572015-03-10 17:40:37 +00001320 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001321}
1322
Adam Nemetdee666b2015-03-10 17:40:34 +00001323bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001324 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001325 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001326
1327 MaxSafeDepDistBytes = -1U;
1328 while (!CheckDeps.empty()) {
1329 MemAccessInfo CurAccess = *CheckDeps.begin();
1330
1331 // Get the relevant memory access set.
1332 EquivalenceClasses<MemAccessInfo>::iterator I =
1333 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1334
1335 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001336 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1337 AccessSets.member_begin(I);
1338 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1339 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001340
1341 // Check every access pair.
1342 while (AI != AE) {
1343 CheckDeps.erase(*AI);
1344 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1345 while (OI != AE) {
1346 // Check every accessing instruction pair in program order.
1347 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1348 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1349 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1350 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001351 auto A = std::make_pair(&*AI, *I1);
1352 auto B = std::make_pair(&*OI, *I2);
1353
1354 assert(*I1 != *I2);
1355 if (*I1 > *I2)
1356 std::swap(A, B);
1357
1358 Dependence::DepType Type =
1359 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1360 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1361
Adam Nemeta2df7502015-11-03 21:39:52 +00001362 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001363 // dependences. In that case return as soon as we find the first
1364 // unsafe dependence. This puts a limit on this quadratic
1365 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001366 if (RecordDependences) {
1367 if (Type != Dependence::NoDep)
1368 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001369
Adam Nemeta2df7502015-11-03 21:39:52 +00001370 if (Dependences.size() >= MaxDependences) {
1371 RecordDependences = false;
1372 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001373 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1374 }
1375 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001376 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001377 return false;
1378 }
1379 ++OI;
1380 }
1381 AI++;
1382 }
1383 }
Adam Nemet9c926572015-03-10 17:40:37 +00001384
Adam Nemeta2df7502015-11-03 21:39:52 +00001385 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001386 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001387}
1388
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001389SmallVector<Instruction *, 4>
1390MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1391 MemAccessInfo Access(Ptr, isWrite);
1392 auto &IndexVector = Accesses.find(Access)->second;
1393
1394 SmallVector<Instruction *, 4> Insts;
1395 std::transform(IndexVector.begin(), IndexVector.end(),
1396 std::back_inserter(Insts),
1397 [&](unsigned Idx) { return this->InstMap[Idx]; });
1398 return Insts;
1399}
1400
Adam Nemet58913d62015-03-10 17:40:43 +00001401const char *MemoryDepChecker::Dependence::DepName[] = {
1402 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1403 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1404
1405void MemoryDepChecker::Dependence::print(
1406 raw_ostream &OS, unsigned Depth,
1407 const SmallVectorImpl<Instruction *> &Instrs) const {
1408 OS.indent(Depth) << DepName[Type] << ":\n";
1409 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1410 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1411}
1412
Adam Nemet929c38e2015-02-19 19:15:10 +00001413bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001414 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001415 DEBUG(dbgs() << "LAA: Found a loop in "
1416 << TheLoop->getHeader()->getParent()->getName() << ": "
1417 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001418
Adam Nemetd8968f02016-01-18 21:16:33 +00001419 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001420 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001421 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001422 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001423 return false;
1424 }
1425
1426 // We must have a single backedge.
1427 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001428 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001429 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001430 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001431 "loop control flow is not understood by analyzer");
1432 return false;
1433 }
1434
1435 // We must have a single exiting block.
1436 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001437 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001438 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001439 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001440 "loop control flow is not understood by analyzer");
1441 return false;
1442 }
1443
1444 // We only handle bottom-tested loops, i.e. loop in which the condition is
1445 // checked at the end of each iteration. With that we can assume that all
1446 // instructions in the loop are executed the same number of times.
1447 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001448 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001449 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001450 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001451 "loop control flow is not understood by analyzer");
1452 return false;
1453 }
1454
Adam Nemet929c38e2015-02-19 19:15:10 +00001455 // ScalarEvolution needs to be able to find the exit count.
Silviu Baranga6f444df2016-04-08 14:29:09 +00001456 const SCEV *ExitCount = PSE.getBackedgeTakenCount();
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001457 if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1458 emitAnalysis(LoopAccessReport()
1459 << "could not determine number of loop iterations");
Adam Nemet929c38e2015-02-19 19:15:10 +00001460 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1461 return false;
1462 }
1463
1464 return true;
1465}
1466
Adam Nemet8bc61df2015-02-24 00:41:59 +00001467void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001468
1469 typedef SmallVector<Value*, 16> ValueVector;
1470 typedef SmallPtrSet<Value*, 16> ValueSet;
1471
1472 // Holds the Load and Store *instructions*.
1473 ValueVector Loads;
1474 ValueVector Stores;
1475
1476 // Holds all the different accesses in the loop.
1477 unsigned NumReads = 0;
1478 unsigned NumReadWrites = 0;
1479
Adam Nemet7cdebac2015-07-14 22:32:44 +00001480 PtrRtChecking.Pointers.clear();
1481 PtrRtChecking.Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001482
1483 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001484
1485 // For each block.
1486 for (Loop::block_iterator bb = TheLoop->block_begin(),
1487 be = TheLoop->block_end(); bb != be; ++bb) {
1488
1489 // Scan the BB and collect legal loads and stores.
1490 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1491 ++it) {
1492
1493 // If this is a load, save it. If this instruction can read from memory
1494 // but is not a load, then we quit. Notice that we don't handle function
1495 // calls that read or write.
1496 if (it->mayReadFromMemory()) {
1497 // Many math library functions read the rounding mode. We will only
1498 // vectorize a loop if it contains known function calls that don't set
1499 // the flag. Therefore, it is safe to ignore this read from memory.
1500 CallInst *Call = dyn_cast<CallInst>(it);
David Majnemerb4b27232016-04-19 19:10:21 +00001501 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001502 continue;
1503
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001504 // If the function has an explicit vectorized counterpart, we can safely
1505 // assume that it can be vectorized.
1506 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1507 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1508 continue;
1509
Adam Nemet04563272015-02-01 16:56:15 +00001510 LoadInst *Ld = dyn_cast<LoadInst>(it);
1511 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001512 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001513 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001514 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001515 CanVecMem = false;
1516 return;
Adam Nemet04563272015-02-01 16:56:15 +00001517 }
1518 NumLoads++;
1519 Loads.push_back(Ld);
1520 DepChecker.addAccess(Ld);
1521 continue;
1522 }
1523
1524 // Save 'store' instructions. Abort if other instructions write to memory.
1525 if (it->mayWriteToMemory()) {
1526 StoreInst *St = dyn_cast<StoreInst>(it);
1527 if (!St) {
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00001528 emitAnalysis(LoopAccessReport(&*it) <<
Adam Nemet04d41632015-02-19 19:14:34 +00001529 "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001530 CanVecMem = false;
1531 return;
Adam Nemet04563272015-02-01 16:56:15 +00001532 }
1533 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001534 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001535 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001536 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001537 CanVecMem = false;
1538 return;
Adam Nemet04563272015-02-01 16:56:15 +00001539 }
1540 NumStores++;
1541 Stores.push_back(St);
1542 DepChecker.addAccess(St);
1543 }
1544 } // Next instr.
1545 } // Next block.
1546
1547 // Now we have two lists that hold the loads and the stores.
1548 // Next, we find the pointers that they use.
1549
1550 // Check if we see any stores. If there are no stores, then we don't
1551 // care if the pointers are *restrict*.
1552 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001553 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001554 CanVecMem = true;
1555 return;
Adam Nemet04563272015-02-01 16:56:15 +00001556 }
1557
Adam Nemetdee666b2015-03-10 17:40:34 +00001558 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001559 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001560 AA, LI, DependentAccesses, PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001561
1562 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1563 // multiple times on the same object. If the ptr is accessed twice, once
1564 // for read and once for write, it will only appear once (on the write
1565 // list). This is okay, since we are going to check for conflicts between
1566 // writes and between reads and writes, but not between reads and reads.
1567 ValueSet Seen;
1568
1569 ValueVector::iterator I, IE;
1570 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1571 StoreInst *ST = cast<StoreInst>(*I);
1572 Value* Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001573 // Check for store to loop invariant address.
1574 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001575 // If we did *not* see this pointer before, insert it to the read-write
1576 // list. At this phase it is only a 'write' list.
1577 if (Seen.insert(Ptr).second) {
1578 ++NumReadWrites;
1579
Chandler Carruthac80dc72015-06-17 07:18:54 +00001580 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001581 // The TBAA metadata could have a control dependency on the predication
1582 // condition, so we cannot rely on it when determining whether or not we
1583 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001584 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001585 Loc.AATags.TBAA = nullptr;
1586
1587 Accesses.addStore(Loc);
1588 }
1589 }
1590
1591 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001592 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001593 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001594 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001595 CanVecMem = true;
1596 return;
Adam Nemet04563272015-02-01 16:56:15 +00001597 }
1598
1599 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1600 LoadInst *LD = cast<LoadInst>(*I);
1601 Value* Ptr = LD->getPointerOperand();
1602 // If we did *not* see this pointer before, insert it to the
1603 // read list. If we *did* see it before, then it is already in
1604 // the read-write list. This allows us to vectorize expressions
1605 // such as A[i] += x; Because the address of A[i] is a read-write
1606 // pointer. This only works if the index of A[i] is consecutive.
1607 // If the address of i is unknown (for example A[B[i]]) then we may
1608 // read a few words, modify, and write a few words, and some of the
1609 // words may be written to the same address.
1610 bool IsReadOnlyPtr = false;
Denis Zobnin15d1e642016-05-10 05:55:16 +00001611 if (Seen.insert(Ptr).second || !getPtrStride(PSE, Ptr, TheLoop, Strides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001612 ++NumReads;
1613 IsReadOnlyPtr = true;
1614 }
1615
Chandler Carruthac80dc72015-06-17 07:18:54 +00001616 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001617 // The TBAA metadata could have a control dependency on the predication
1618 // condition, so we cannot rely on it when determining whether or not we
1619 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001620 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001621 Loc.AATags.TBAA = nullptr;
1622
1623 Accesses.addLoad(Loc, IsReadOnlyPtr);
1624 }
1625
1626 // If we write (or read-write) to a single destination and there are no
1627 // other reads in this loop then is it safe to vectorize.
1628 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001629 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001630 CanVecMem = true;
1631 return;
Adam Nemet04563272015-02-01 16:56:15 +00001632 }
1633
1634 // Build dependence sets and check whether we need a runtime pointer bounds
1635 // check.
1636 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001637
1638 // Find pointers with computable bounds. We are going to use this information
1639 // to place a runtime bound check.
Adam Nemetee614742015-07-09 22:17:38 +00001640 bool CanDoRTIfNeeded =
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001641 Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
Adam Nemetee614742015-07-09 22:17:38 +00001642 if (!CanDoRTIfNeeded) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001643 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemetee614742015-07-09 22:17:38 +00001644 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1645 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001646 CanVecMem = false;
1647 return;
Adam Nemet04563272015-02-01 16:56:15 +00001648 }
1649
Adam Nemetee614742015-07-09 22:17:38 +00001650 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001651
Adam Nemet436018c2015-02-19 19:15:00 +00001652 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001653 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001654 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Adam Nemet04563272015-02-01 16:56:15 +00001655 CanVecMem = DepChecker.areDepsSafe(
1656 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1657 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1658
1659 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001660 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001661
1662 // Clear the dependency checks. We assume they are not needed.
Adam Nemetdf3dc5b2015-05-18 15:37:03 +00001663 Accesses.resetDepChecks(DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001664
Adam Nemet7cdebac2015-07-14 22:32:44 +00001665 PtrRtChecking.reset();
1666 PtrRtChecking.Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001667
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001668 auto *SE = PSE.getSE();
Adam Nemetee614742015-07-09 22:17:38 +00001669 CanDoRTIfNeeded =
Adam Nemet7cdebac2015-07-14 22:32:44 +00001670 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001671
Adam Nemet949e91a2015-03-10 19:12:41 +00001672 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001673 if (!CanDoRTIfNeeded) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001674 emitAnalysis(LoopAccessReport()
1675 << "cannot check memory dependencies at runtime");
1676 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001677 CanVecMem = false;
1678 return;
1679 }
1680
Adam Nemet04563272015-02-01 16:56:15 +00001681 CanVecMem = true;
1682 }
1683 }
1684
Adam Nemet4bb90a72015-03-10 21:47:39 +00001685 if (CanVecMem)
1686 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Adam Nemet7cdebac2015-07-14 22:32:44 +00001687 << (PtrRtChecking.Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001688 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001689 else {
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001690 emitAnalysis(
1691 LoopAccessReport()
1692 << "unsafe dependent memory operations in loop. Use "
1693 "#pragma loop distribute(enable) to allow loop distribution "
1694 "to attempt to isolate the offending operations into a separate "
1695 "loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001696 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1697 }
Adam Nemet04563272015-02-01 16:56:15 +00001698}
1699
Adam Nemet01abb2c2015-02-18 03:43:19 +00001700bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1701 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001702 assert(TheLoop->contains(BB) && "Unknown block used");
1703
1704 // Blocks that do not dominate the latch need predication.
1705 BasicBlock* Latch = TheLoop->getLoopLatch();
1706 return !DT->dominates(BB, Latch);
1707}
1708
Adam Nemet2bd6e982015-02-19 19:15:15 +00001709void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001710 assert(!Report && "Multiple reports generated");
1711 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001712}
1713
Adam Nemet57ac7662015-02-19 19:15:21 +00001714bool LoopAccessInfo::isUniform(Value *V) const {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001715 return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001716}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001717
1718// FIXME: this function is currently a duplicate of the one in
1719// LoopVectorize.cpp.
1720static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1721 Instruction *Loc) {
1722 if (FirstInst)
1723 return FirstInst;
1724 if (Instruction *I = dyn_cast<Instruction>(V))
1725 return I->getParent() == Loc->getParent() ? I : nullptr;
1726 return nullptr;
1727}
1728
Benjamin Kramer039b1042015-10-28 13:54:36 +00001729namespace {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001730/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1731/// need to use value-handles because SCEV expansion can invalidate previously
1732/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1733/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001734struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001735 TrackingVH<Value> Start;
1736 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001737};
Benjamin Kramer039b1042015-10-28 13:54:36 +00001738} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001739
Adam Nemet1da7df32015-07-26 05:32:14 +00001740/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1741/// in \p TheLoop. \return the values for the bounds.
1742static PointerBounds
1743expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1744 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1745 const RuntimePointerChecking &PtrRtChecking) {
1746 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1747 const SCEV *Sc = SE->getSCEV(Ptr);
1748
1749 if (SE->isLoopInvariant(Sc, TheLoop)) {
1750 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1751 << "\n");
1752 return {Ptr, Ptr};
1753 } else {
1754 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1755 LLVMContext &Ctx = Loc->getContext();
1756
1757 // Use this type for pointer arithmetic.
1758 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1759 Value *Start = nullptr, *End = nullptr;
1760
1761 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1762 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1763 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1764 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1765 return {Start, End};
1766 }
1767}
1768
1769/// \brief Turns a collection of checks into a collection of expanded upper and
1770/// lower bounds for both pointers in the check.
1771static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1772 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1773 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1774 const RuntimePointerChecking &PtrRtChecking) {
1775 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1776
1777 // Here we're relying on the SCEV Expander's cache to only emit code for the
1778 // same bounds once.
1779 std::transform(
1780 PointerChecks.begin(), PointerChecks.end(),
1781 std::back_inserter(ChecksWithBounds),
1782 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001783 PointerBounds
1784 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1785 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1786 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001787 });
1788
1789 return ChecksWithBounds;
1790}
1791
Adam Nemet5b0a4792015-08-11 00:09:37 +00001792std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001793 Instruction *Loc,
1794 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1795 const {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001796 auto *SE = PSE.getSE();
Adam Nemet1da7df32015-07-26 05:32:14 +00001797 SCEVExpander Exp(*SE, DL, "induction");
1798 auto ExpandedChecks =
1799 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001800
1801 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001802 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001803 IRBuilder<> ChkBuilder(Loc);
1804 // Our instructions might fold to a constant.
1805 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001806
Adam Nemet1da7df32015-07-26 05:32:14 +00001807 for (const auto &Check : ExpandedChecks) {
1808 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001809 // Check if two pointers (A and B) conflict where conflict is computed as:
1810 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001811 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1812 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001813
Adam Nemet1da7df32015-07-26 05:32:14 +00001814 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1815 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1816 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001817
Adam Nemet1da7df32015-07-26 05:32:14 +00001818 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1819 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001820
Adam Nemet1da7df32015-07-26 05:32:14 +00001821 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1822 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1823 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1824 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001825
Adam Nemet1da7df32015-07-26 05:32:14 +00001826 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1827 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1828 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1829 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1830 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1831 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1832 if (MemoryRuntimeCheck) {
1833 IsConflict =
1834 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001835 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001836 }
Adam Nemet1da7df32015-07-26 05:32:14 +00001837 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001838 }
1839
Adam Nemet90fec842015-04-02 17:51:57 +00001840 if (!MemoryRuntimeCheck)
1841 return std::make_pair(nullptr, nullptr);
1842
Adam Nemet7206d7a2015-02-06 18:31:04 +00001843 // We have to do this trickery because the IRBuilder might fold the check to a
1844 // constant expression in which case there is no Instruction anchored in a
1845 // the block.
1846 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1847 ConstantInt::getTrue(Ctx));
1848 ChkBuilder.Insert(Check, "memcheck.conflict");
1849 FirstInst = getFirstInst(FirstInst, Check, Loc);
1850 return std::make_pair(FirstInst, Check);
1851}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001852
Adam Nemet5b0a4792015-08-11 00:09:37 +00001853std::pair<Instruction *, Instruction *>
1854LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Adam Nemet1da7df32015-07-26 05:32:14 +00001855 if (!PtrRtChecking.Need)
1856 return std::make_pair(nullptr, nullptr);
1857
Adam Nemet5b0a4792015-08-11 00:09:37 +00001858 return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00001859}
1860
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001861LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001862 const DataLayout &DL,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001863 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemete2b885c2015-04-23 20:09:20 +00001864 DominatorTree *DT, LoopInfo *LI,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001865 const ValueToValueMap &Strides)
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001866 : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
Adam Nemet7cdebac2015-07-14 22:32:44 +00001867 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
Adam Nemetce482502015-04-08 17:48:40 +00001868 MaxSafeDepDistBytes(-1U), CanVecMem(false),
1869 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001870 if (canAnalyzeLoop())
1871 analyzeLoop(Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001872}
1873
Adam Nemete91cc6e2015-02-19 19:15:19 +00001874void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1875 if (CanVecMem) {
Adam Nemet7cdebac2015-07-14 22:32:44 +00001876 if (PtrRtChecking.Need)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001877 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
Adam Nemet26da8e92015-04-14 01:12:55 +00001878 else
1879 OS.indent(Depth) << "Memory dependences are safe\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001880 }
1881
1882 if (Report)
1883 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1884
Adam Nemeta2df7502015-11-03 21:39:52 +00001885 if (auto *Dependences = DepChecker.getDependences()) {
1886 OS.indent(Depth) << "Dependences:\n";
1887 for (auto &Dep : *Dependences) {
Adam Nemet58913d62015-03-10 17:40:43 +00001888 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1889 OS << "\n";
1890 }
1891 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00001892 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001893
1894 // List the pair of accesses need run-time checks to prove independence.
Adam Nemet7cdebac2015-07-14 22:32:44 +00001895 PtrRtChecking.print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001896 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001897
1898 OS.indent(Depth) << "Store to invariant address was "
1899 << (StoreToLoopInvariantAddress ? "" : "not ")
1900 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00001901
1902 OS.indent(Depth) << "SCEV assumptions:\n";
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001903 PSE.getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00001904
1905 OS << "\n";
1906
1907 OS.indent(Depth) << "Expressions re-written:\n";
1908 PSE.print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001909}
1910
Adam Nemet8bc61df2015-02-24 00:41:59 +00001911const LoopAccessInfo &
1912LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001913 auto &LAI = LoopAccessInfoMap[L];
1914
1915#ifndef NDEBUG
1916 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1917 "Symbolic strides changed for loop");
1918#endif
1919
1920 if (!LAI) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001921 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
Silviu Barangae3c05342015-11-02 14:41:02 +00001922 LAI =
1923 llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001924#ifndef NDEBUG
1925 LAI->NumSymbolicStrides = Strides.size();
1926#endif
1927 }
1928 return *LAI.get();
1929}
1930
Adam Nemete91cc6e2015-02-19 19:15:19 +00001931void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1932 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1933
Adam Nemete91cc6e2015-02-19 19:15:19 +00001934 ValueToValueMap NoSymbolicStrides;
1935
1936 for (Loop *TopLevelLoop : *LI)
1937 for (Loop *L : depth_first(TopLevelLoop)) {
1938 OS.indent(2) << L->getHeader()->getName() << ":\n";
1939 auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1940 LAI.print(OS, 4);
1941 }
1942}
1943
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001944bool LoopAccessAnalysis::runOnFunction(Function &F) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001945 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001946 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1947 TLI = TLIP ? &TLIP->getTLI() : nullptr;
Chandler Carruth7b560d42015-09-09 17:55:00 +00001948 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001949 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Adam Nemete2b885c2015-04-23 20:09:20 +00001950 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001951
1952 return false;
1953}
1954
1955void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001956 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00001957 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001958 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00001959 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001960
1961 AU.setPreservesAll();
1962}
1963
1964char LoopAccessAnalysis::ID = 0;
1965static const char laa_name[] = "Loop Access Analysis";
1966#define LAA_NAME "loop-accesses"
1967
1968INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00001969INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001970INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001971INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001972INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001973INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1974
1975namespace llvm {
1976 Pass *createLAAPass() {
1977 return new LoopAccessAnalysis();
1978 }
1979}