blob: 38dca50e82a523b9b503337690e3161c9e234810 [file] [log] [blame]
David Blaikie1213dbf2015-06-26 16:57:30 +00001//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines vectorizer utilities.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carruth6bda14b2017-06-06 11:49:48 +000014#include "llvm/Analysis/VectorUtils.h"
James Molloy55d633b2015-10-12 12:34:45 +000015#include "llvm/ADT/EquivalenceClasses.h"
16#include "llvm/Analysis/DemandedBits.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000017#include "llvm/Analysis/LoopInfo.h"
Florian Hahn1086ce22018-09-12 08:01:57 +000018#include "llvm/Analysis/LoopIterator.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000019#include "llvm/Analysis/ScalarEvolution.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000020#include "llvm/Analysis/ScalarEvolutionExpressions.h"
James Molloy55d633b2015-10-12 12:34:45 +000021#include "llvm/Analysis/TargetTransformInfo.h"
David Majnemerb4b27232016-04-19 19:10:21 +000022#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000023#include "llvm/IR/Constants.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000024#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000025#include "llvm/IR/IRBuilder.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000026#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Value.h"
Renato Golin3b1d3b02015-08-30 10:49:04 +000028
Florian Hahn1086ce22018-09-12 08:01:57 +000029#define DEBUG_TYPE "vectorutils"
30
David Majnemer5eaf08f2015-08-18 22:07:20 +000031using namespace llvm;
32using namespace llvm::PatternMatch;
David Blaikie1213dbf2015-06-26 16:57:30 +000033
Florian Hahn1086ce22018-09-12 08:01:57 +000034/// Maximum factor for an interleaved memory access.
35static cl::opt<unsigned> MaxInterleaveGroupFactor(
36 "max-interleave-group-factor", cl::Hidden,
37 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38 cl::init(8));
39
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000040/// Identify if the intrinsic is trivially vectorizable.
David Blaikie1213dbf2015-06-26 16:57:30 +000041/// This method returns true if the intrinsic's argument types are all
42/// scalars for the scalar form of the intrinsic and all vectors for
43/// the vector form of the intrinsic.
44bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45 switch (ID) {
46 case Intrinsic::sqrt:
47 case Intrinsic::sin:
48 case Intrinsic::cos:
49 case Intrinsic::exp:
50 case Intrinsic::exp2:
51 case Intrinsic::log:
52 case Intrinsic::log10:
53 case Intrinsic::log2:
54 case Intrinsic::fabs:
55 case Intrinsic::minnum:
56 case Intrinsic::maxnum:
Thomas Lively8a91cf12018-10-19 21:11:43 +000057 case Intrinsic::minimum:
58 case Intrinsic::maximum:
David Blaikie1213dbf2015-06-26 16:57:30 +000059 case Intrinsic::copysign:
60 case Intrinsic::floor:
61 case Intrinsic::ceil:
62 case Intrinsic::trunc:
63 case Intrinsic::rint:
64 case Intrinsic::nearbyint:
65 case Intrinsic::round:
66 case Intrinsic::bswap:
Simon Pilgrimba319de2016-06-04 20:21:07 +000067 case Intrinsic::bitreverse:
David Blaikie1213dbf2015-06-26 16:57:30 +000068 case Intrinsic::ctpop:
69 case Intrinsic::pow:
70 case Intrinsic::fma:
71 case Intrinsic::fmuladd:
72 case Intrinsic::ctlz:
73 case Intrinsic::cttz:
74 case Intrinsic::powi:
Matt Arsenault80ea6dd2018-09-17 13:24:30 +000075 case Intrinsic::canonicalize:
David Blaikie1213dbf2015-06-26 16:57:30 +000076 return true;
77 default:
78 return false;
79 }
80}
81
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000082/// Identifies if the intrinsic has a scalar operand. It check for
David Blaikie1213dbf2015-06-26 16:57:30 +000083/// ctlz,cttz and powi special intrinsics whose argument is scalar.
84bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
85 unsigned ScalarOpdIdx) {
86 switch (ID) {
87 case Intrinsic::ctlz:
88 case Intrinsic::cttz:
89 case Intrinsic::powi:
90 return (ScalarOpdIdx == 1);
91 default:
92 return false;
93 }
94}
95
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000096/// Returns intrinsic ID for call.
David Blaikie1213dbf2015-06-26 16:57:30 +000097/// For the input call instruction it finds mapping intrinsic and returns
98/// its ID, in case it does not found it return not_intrinsic.
David Majnemerb4b27232016-04-19 19:10:21 +000099Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
100 const TargetLibraryInfo *TLI) {
101 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
102 if (ID == Intrinsic::not_intrinsic)
David Blaikie1213dbf2015-06-26 16:57:30 +0000103 return Intrinsic::not_intrinsic;
104
David Majnemerb4b27232016-04-19 19:10:21 +0000105 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
Dan Gohman2c74fe92017-11-08 21:59:51 +0000106 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
107 ID == Intrinsic::sideeffect)
David Majnemerb4b27232016-04-19 19:10:21 +0000108 return ID;
David Blaikie1213dbf2015-06-26 16:57:30 +0000109 return Intrinsic::not_intrinsic;
110}
Hal Finkel9cf58c42015-07-11 10:52:42 +0000111
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000112/// Find the operand of the GEP that should be checked for consecutive
Hal Finkel9cf58c42015-07-11 10:52:42 +0000113/// stores. This ignores trailing indices that have no effect on the final
114/// pointer.
115unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
116 const DataLayout &DL = Gep->getModule()->getDataLayout();
117 unsigned LastOperand = Gep->getNumOperands() - 1;
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000118 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000119
120 // Walk backwards and try to peel off zeros.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000121 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000122 // Find the type we're currently indexing into.
123 gep_type_iterator GEPTI = gep_type_begin(Gep);
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000124 std::advance(GEPTI, LastOperand - 2);
Hal Finkel9cf58c42015-07-11 10:52:42 +0000125
126 // If it's a type with the same allocation size as the result of the GEP we
127 // can peel off the zero index.
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000128 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
Hal Finkel9cf58c42015-07-11 10:52:42 +0000129 break;
130 --LastOperand;
131 }
132
133 return LastOperand;
134}
135
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000136/// If the argument is a GEP, then returns the operand identified by
Hal Finkel9cf58c42015-07-11 10:52:42 +0000137/// getGEPInductionOperand. However, if there is some other non-loop-invariant
138/// operand, it returns that instead.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000139Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000140 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
141 if (!GEP)
142 return Ptr;
143
144 unsigned InductionOperand = getGEPInductionOperand(GEP);
145
146 // Check that all of the gep indices are uniform except for our induction
147 // operand.
148 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
149 if (i != InductionOperand &&
150 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
151 return Ptr;
152 return GEP->getOperand(InductionOperand);
153}
154
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000155/// If a value has only one user that is a CastInst, return it.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000156Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
157 Value *UniqueCast = nullptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000158 for (User *U : Ptr->users()) {
159 CastInst *CI = dyn_cast<CastInst>(U);
160 if (CI && CI->getType() == Ty) {
161 if (!UniqueCast)
162 UniqueCast = CI;
163 else
164 return nullptr;
165 }
166 }
167 return UniqueCast;
168}
169
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000170/// Get the stride of a pointer access in a loop. Looks for symbolic
Hal Finkel9cf58c42015-07-11 10:52:42 +0000171/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000172Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000173 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000174 if (!PtrTy || PtrTy->isAggregateType())
175 return nullptr;
176
177 // Try to remove a gep instruction to make the pointer (actually index at this
Vedant Kumard3196742018-02-28 19:08:52 +0000178 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
Hal Finkel9cf58c42015-07-11 10:52:42 +0000179 // pointer, otherwise, we are analyzing the index.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000180 Value *OrigPtr = Ptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000181
182 // The size of the pointer access.
183 int64_t PtrAccessSize = 1;
184
185 Ptr = stripGetElementPtr(Ptr, SE, Lp);
186 const SCEV *V = SE->getSCEV(Ptr);
187
188 if (Ptr != OrigPtr)
189 // Strip off casts.
190 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
191 V = C->getOperand();
192
193 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
194 if (!S)
195 return nullptr;
196
197 V = S->getStepRecurrence(*SE);
198 if (!V)
199 return nullptr;
200
201 // Strip off the size of access multiplication if we are still analyzing the
202 // pointer.
203 if (OrigPtr == Ptr) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000204 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
205 if (M->getOperand(0)->getSCEVType() != scConstant)
206 return nullptr;
207
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000208 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000209
210 // Huge step value - give up.
211 if (APStepVal.getBitWidth() > 64)
212 return nullptr;
213
214 int64_t StepVal = APStepVal.getSExtValue();
215 if (PtrAccessSize != StepVal)
216 return nullptr;
217 V = M->getOperand(1);
218 }
219 }
220
221 // Strip off casts.
222 Type *StripedOffRecurrenceCast = nullptr;
223 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
224 StripedOffRecurrenceCast = C->getType();
225 V = C->getOperand();
226 }
227
228 // Look for the loop invariant symbolic value.
229 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
230 if (!U)
231 return nullptr;
232
David Majnemer5eaf08f2015-08-18 22:07:20 +0000233 Value *Stride = U->getValue();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000234 if (!Lp->isLoopInvariant(Stride))
235 return nullptr;
236
237 // If we have stripped off the recurrence cast we have to make sure that we
238 // return the value that is used in this loop so that we can replace it later.
239 if (StripedOffRecurrenceCast)
240 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
241
242 return Stride;
243}
David Majnemer599ca442015-07-13 01:15:53 +0000244
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000245/// Given a vector and an element number, see if the scalar value is
David Majnemer599ca442015-07-13 01:15:53 +0000246/// already around as a register, for example if it were inserted then extracted
247/// from the vector.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000248Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
David Majnemer599ca442015-07-13 01:15:53 +0000249 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
250 VectorType *VTy = cast<VectorType>(V->getType());
251 unsigned Width = VTy->getNumElements();
252 if (EltNo >= Width) // Out of range access.
253 return UndefValue::get(VTy->getElementType());
254
255 if (Constant *C = dyn_cast<Constant>(V))
256 return C->getAggregateElement(EltNo);
257
258 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
259 // If this is an insert to a variable element, we don't know what it is.
260 if (!isa<ConstantInt>(III->getOperand(2)))
261 return nullptr;
262 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
263
264 // If this is an insert to the element we are looking for, return the
265 // inserted value.
266 if (EltNo == IIElt)
267 return III->getOperand(1);
268
269 // Otherwise, the insertelement doesn't modify the value, recurse on its
270 // vector input.
271 return findScalarElement(III->getOperand(0), EltNo);
272 }
273
274 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
275 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
276 int InEl = SVI->getMaskValue(EltNo);
277 if (InEl < 0)
278 return UndefValue::get(VTy->getElementType());
279 if (InEl < (int)LHSWidth)
280 return findScalarElement(SVI->getOperand(0), InEl);
281 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
282 }
283
284 // Extract a value from a vector add operation with a constant zero.
Sanjay Patel3413a662018-09-24 17:18:32 +0000285 // TODO: Use getBinOpIdentity() to generalize this.
286 Value *Val; Constant *C;
287 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
288 if (Constant *Elt = C->getAggregateElement(EltNo))
David Majnemerc6bb0e22015-08-18 22:07:25 +0000289 if (Elt->isNullValue())
290 return findScalarElement(Val, EltNo);
David Majnemer599ca442015-07-13 01:15:53 +0000291
292 // Otherwise, we don't know.
293 return nullptr;
294}
Renato Golin3b1d3b02015-08-30 10:49:04 +0000295
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000296/// Get splat value if the input is a splat vector or return nullptr.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000297/// This function is not fully general. It checks only 2 cases:
298/// the input value is (1) a splat constants vector or (2) a sequence
299/// of instructions that broadcast a single value into a vector.
300///
Elena Demikhovsky0781d7b2015-12-01 12:08:36 +0000301const llvm::Value *llvm::getSplatValue(const Value *V) {
302
303 if (auto *C = dyn_cast<Constant>(V))
Elena Demikhovsky47fa2712015-12-01 12:30:40 +0000304 if (isa<VectorType>(V->getType()))
305 return C->getSplatValue();
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000306
307 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
Renato Golin3b1d3b02015-08-30 10:49:04 +0000308 if (!ShuffleInst)
309 return nullptr;
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000310 // All-zero (or undef) shuffle mask elements.
311 for (int MaskElt : ShuffleInst->getShuffleMask())
312 if (MaskElt != 0 && MaskElt != -1)
Renato Golin3b1d3b02015-08-30 10:49:04 +0000313 return nullptr;
314 // The first shuffle source is 'insertelement' with index 0.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000315 auto *InsertEltInst =
316 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
Renato Golin3b1d3b02015-08-30 10:49:04 +0000317 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
Craig Topper79ab6432017-07-06 18:39:47 +0000318 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
Renato Golin3b1d3b02015-08-30 10:49:04 +0000319 return nullptr;
320
321 return InsertEltInst->getOperand(1);
322}
James Molloy55d633b2015-10-12 12:34:45 +0000323
Charlie Turner54336a52015-11-26 20:39:51 +0000324MapVector<Instruction *, uint64_t>
James Molloy45f67d52015-11-09 14:32:05 +0000325llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
326 const TargetTransformInfo *TTI) {
James Molloy55d633b2015-10-12 12:34:45 +0000327
328 // DemandedBits will give us every value's live-out bits. But we want
329 // to ensure no extra casts would need to be inserted, so every DAG
330 // of connected values must have the same minimum bitwidth.
James Molloy45f67d52015-11-09 14:32:05 +0000331 EquivalenceClasses<Value *> ECs;
332 SmallVector<Value *, 16> Worklist;
333 SmallPtrSet<Value *, 4> Roots;
334 SmallPtrSet<Value *, 16> Visited;
335 DenseMap<Value *, uint64_t> DBits;
336 SmallPtrSet<Instruction *, 4> InstructionSet;
Charlie Turner54336a52015-11-26 20:39:51 +0000337 MapVector<Instruction *, uint64_t> MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000338
James Molloy55d633b2015-10-12 12:34:45 +0000339 // Determine the roots. We work bottom-up, from truncs or icmps.
340 bool SeenExtFromIllegalType = false;
341 for (auto *BB : Blocks)
342 for (auto &I : *BB) {
343 InstructionSet.insert(&I);
344
345 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
346 !TTI->isTypeLegal(I.getOperand(0)->getType()))
347 SeenExtFromIllegalType = true;
James Molloy45f67d52015-11-09 14:32:05 +0000348
James Molloy55d633b2015-10-12 12:34:45 +0000349 // Only deal with non-vector integers up to 64-bits wide.
350 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
351 !I.getType()->isVectorTy() &&
352 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
353 // Don't make work for ourselves. If we know the loaded type is legal,
354 // don't add it to the worklist.
355 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
356 continue;
James Molloy45f67d52015-11-09 14:32:05 +0000357
James Molloy55d633b2015-10-12 12:34:45 +0000358 Worklist.push_back(&I);
359 Roots.insert(&I);
360 }
361 }
362 // Early exit.
363 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
364 return MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000365
James Molloy55d633b2015-10-12 12:34:45 +0000366 // Now proceed breadth-first, unioning values together.
367 while (!Worklist.empty()) {
368 Value *Val = Worklist.pop_back_val();
369 Value *Leader = ECs.getOrInsertLeaderValue(Val);
James Molloy45f67d52015-11-09 14:32:05 +0000370
James Molloy55d633b2015-10-12 12:34:45 +0000371 if (Visited.count(Val))
372 continue;
373 Visited.insert(Val);
374
375 // Non-instructions terminate a chain successfully.
376 if (!isa<Instruction>(Val))
377 continue;
378 Instruction *I = cast<Instruction>(Val);
379
380 // If we encounter a type that is larger than 64 bits, we can't represent
381 // it so bail out.
James Molloyaa1d6382016-05-10 12:27:23 +0000382 if (DB.getDemandedBits(I).getBitWidth() > 64)
Charlie Turner54336a52015-11-26 20:39:51 +0000383 return MapVector<Instruction *, uint64_t>();
James Molloy45f67d52015-11-09 14:32:05 +0000384
James Molloyaa1d6382016-05-10 12:27:23 +0000385 uint64_t V = DB.getDemandedBits(I).getZExtValue();
386 DBits[Leader] |= V;
387 DBits[I] = V;
James Molloy45f67d52015-11-09 14:32:05 +0000388
James Molloy55d633b2015-10-12 12:34:45 +0000389 // Casts, loads and instructions outside of our range terminate a chain
390 // successfully.
391 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
392 !InstructionSet.count(I))
393 continue;
394
395 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
396 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
397 // transform anything that relies on them.
398 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
399 !I->getType()->isIntegerTy()) {
400 DBits[Leader] |= ~0ULL;
401 continue;
402 }
403
404 // We don't modify the types of PHIs. Reductions will already have been
405 // truncated if possible, and inductions' sizes will have been chosen by
406 // indvars.
407 if (isa<PHINode>(I))
408 continue;
409
410 if (DBits[Leader] == ~0ULL)
411 // All bits demanded, no point continuing.
412 continue;
413
414 for (Value *O : cast<User>(I)->operands()) {
415 ECs.unionSets(Leader, O);
416 Worklist.push_back(O);
417 }
418 }
419
420 // Now we've discovered all values, walk them to see if there are
421 // any users we didn't see. If there are, we can't optimize that
422 // chain.
423 for (auto &I : DBits)
424 for (auto *U : I.first->users())
425 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
426 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
James Molloy45f67d52015-11-09 14:32:05 +0000427
James Molloy55d633b2015-10-12 12:34:45 +0000428 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
429 uint64_t LeaderDemandedBits = 0;
430 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
431 LeaderDemandedBits |= DBits[*MI];
432
433 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
434 llvm::countLeadingZeros(LeaderDemandedBits);
435 // Round up to a power of 2
436 if (!isPowerOf2_64((uint64_t)MinBW))
437 MinBW = NextPowerOf2(MinBW);
James Molloy8e46cd02016-03-30 10:11:43 +0000438
439 // We don't modify the types of PHIs. Reductions will already have been
440 // truncated if possible, and inductions' sizes will have been chosen by
441 // indvars.
442 // If we are required to shrink a PHI, abandon this entire equivalence class.
443 bool Abort = false;
444 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
445 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
446 Abort = true;
447 break;
448 }
449 if (Abort)
450 continue;
451
James Molloy55d633b2015-10-12 12:34:45 +0000452 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
453 if (!isa<Instruction>(*MI))
454 continue;
455 Type *Ty = (*MI)->getType();
456 if (Roots.count(*MI))
457 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
458 if (MinBW < Ty->getScalarSizeInBits())
459 MinBWs[cast<Instruction>(*MI)] = MinBW;
460 }
461 }
462
463 return MinBWs;
464}
Matt Arsenault727e2792016-06-30 21:17:59 +0000465
466/// \returns \p I after propagating metadata from \p VL.
467Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
468 Instruction *I0 = cast<Instruction>(VL[0]);
469 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
470 I0->getAllMetadataOtherThanDebugLoc(Metadata);
471
Justin Lebar11a32042016-09-11 01:39:08 +0000472 for (auto Kind :
473 {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
474 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
475 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
Matt Arsenault727e2792016-06-30 21:17:59 +0000476 MDNode *MD = I0->getMetadata(Kind);
477
478 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
479 const Instruction *IJ = cast<Instruction>(VL[J]);
480 MDNode *IMD = IJ->getMetadata(Kind);
481 switch (Kind) {
482 case LLVMContext::MD_tbaa:
483 MD = MDNode::getMostGenericTBAA(MD, IMD);
484 break;
485 case LLVMContext::MD_alias_scope:
486 MD = MDNode::getMostGenericAliasScope(MD, IMD);
487 break;
Matt Arsenault727e2792016-06-30 21:17:59 +0000488 case LLVMContext::MD_fpmath:
489 MD = MDNode::getMostGenericFPMath(MD, IMD);
490 break;
Justin Lebar11a32042016-09-11 01:39:08 +0000491 case LLVMContext::MD_noalias:
Matt Arsenault727e2792016-06-30 21:17:59 +0000492 case LLVMContext::MD_nontemporal:
Justin Lebar11a32042016-09-11 01:39:08 +0000493 case LLVMContext::MD_invariant_load:
Matt Arsenault727e2792016-06-30 21:17:59 +0000494 MD = MDNode::intersect(MD, IMD);
495 break;
496 default:
497 llvm_unreachable("unhandled metadata");
498 }
499 }
500
501 Inst->setMetadata(Kind, MD);
502 }
503
504 return Inst;
505}
Matthew Simpsonba5cf9d2017-02-01 17:45:46 +0000506
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000507Constant *llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
508 const InterleaveGroup &Group) {
509 // All 1's means mask is not needed.
510 if (Group.getNumMembers() == Group.getFactor())
511 return nullptr;
512
513 // TODO: support reversed access.
514 assert(!Group.isReverse() && "Reversed group not supported.");
515
516 SmallVector<Constant *, 16> Mask;
517 for (unsigned i = 0; i < VF; i++)
518 for (unsigned j = 0; j < Group.getFactor(); ++j) {
519 unsigned HasMember = Group.getMember(j) ? 1 : 0;
520 Mask.push_back(Builder.getInt1(HasMember));
521 }
522
523 return ConstantVector::get(Mask);
524}
525
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000526Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
527 unsigned ReplicationFactor, unsigned VF) {
528 SmallVector<Constant *, 16> MaskVec;
529 for (unsigned i = 0; i < VF; i++)
530 for (unsigned j = 0; j < ReplicationFactor; j++)
531 MaskVec.push_back(Builder.getInt32(i));
532
533 return ConstantVector::get(MaskVec);
534}
535
Matthew Simpsonba5cf9d2017-02-01 17:45:46 +0000536Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
537 unsigned NumVecs) {
538 SmallVector<Constant *, 16> Mask;
539 for (unsigned i = 0; i < VF; i++)
540 for (unsigned j = 0; j < NumVecs; j++)
541 Mask.push_back(Builder.getInt32(j * VF + i));
542
543 return ConstantVector::get(Mask);
544}
545
546Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
547 unsigned Stride, unsigned VF) {
548 SmallVector<Constant *, 16> Mask;
549 for (unsigned i = 0; i < VF; i++)
550 Mask.push_back(Builder.getInt32(Start + i * Stride));
551
552 return ConstantVector::get(Mask);
553}
554
555Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
556 unsigned NumInts, unsigned NumUndefs) {
557 SmallVector<Constant *, 16> Mask;
558 for (unsigned i = 0; i < NumInts; i++)
559 Mask.push_back(Builder.getInt32(Start + i));
560
561 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
562 for (unsigned i = 0; i < NumUndefs; i++)
563 Mask.push_back(Undef);
564
565 return ConstantVector::get(Mask);
566}
567
568/// A helper function for concatenating vectors. This function concatenates two
569/// vectors having the same element type. If the second vector has fewer
570/// elements than the first, it is padded with undefs.
571static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
572 Value *V2) {
573 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
574 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
575 assert(VecTy1 && VecTy2 &&
576 VecTy1->getScalarType() == VecTy2->getScalarType() &&
577 "Expect two vectors with the same element type");
578
579 unsigned NumElts1 = VecTy1->getNumElements();
580 unsigned NumElts2 = VecTy2->getNumElements();
581 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
582
583 if (NumElts1 > NumElts2) {
584 // Extend with UNDEFs.
585 Constant *ExtMask =
586 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
587 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
588 }
589
590 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
591 return Builder.CreateShuffleVector(V1, V2, Mask);
592}
593
594Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
595 unsigned NumVecs = Vecs.size();
596 assert(NumVecs > 1 && "Should be at least two vectors");
597
598 SmallVector<Value *, 8> ResList;
599 ResList.append(Vecs.begin(), Vecs.end());
600 do {
601 SmallVector<Value *, 8> TmpList;
602 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
603 Value *V0 = ResList[i], *V1 = ResList[i + 1];
604 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
605 "Only the last vector may have a different type");
606
607 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
608 }
609
610 // Push the last vector if the total number of vectors is odd.
611 if (NumVecs % 2 != 0)
612 TmpList.push_back(ResList[NumVecs - 1]);
613
614 ResList = TmpList;
615 NumVecs = ResList.size();
616 } while (NumVecs > 1);
617
618 return ResList[0];
619}
Florian Hahn1086ce22018-09-12 08:01:57 +0000620
621bool InterleavedAccessInfo::isStrided(int Stride) {
622 unsigned Factor = std::abs(Stride);
623 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
624}
625
626void InterleavedAccessInfo::collectConstStrideAccesses(
627 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
628 const ValueToValueMap &Strides) {
629 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
630
631 // Since it's desired that the load/store instructions be maintained in
632 // "program order" for the interleaved access analysis, we have to visit the
633 // blocks in the loop in reverse postorder (i.e., in a topological order).
634 // Such an ordering will ensure that any load/store that may be executed
635 // before a second load/store will precede the second load/store in
636 // AccessStrideInfo.
637 LoopBlocksDFS DFS(TheLoop);
638 DFS.perform(LI);
639 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
640 for (auto &I : *BB) {
641 auto *LI = dyn_cast<LoadInst>(&I);
642 auto *SI = dyn_cast<StoreInst>(&I);
643 if (!LI && !SI)
644 continue;
645
646 Value *Ptr = getLoadStorePointerOperand(&I);
647 // We don't check wrapping here because we don't know yet if Ptr will be
648 // part of a full group or a group with gaps. Checking wrapping for all
649 // pointers (even those that end up in groups with no gaps) will be overly
650 // conservative. For full groups, wrapping should be ok since if we would
651 // wrap around the address space we would do a memory access at nullptr
652 // even without the transformation. The wrapping checks are therefore
653 // deferred until after we've formed the interleaved groups.
654 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
655 /*Assume=*/true, /*ShouldCheckWrap=*/false);
656
657 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
658 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
659 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
660
661 // An alignment of 0 means target ABI alignment.
662 unsigned Align = getLoadStoreAlignment(&I);
663 if (!Align)
664 Align = DL.getABITypeAlignment(PtrTy->getElementType());
665
666 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
667 }
668}
669
670// Analyze interleaved accesses and collect them into interleaved load and
671// store groups.
672//
673// When generating code for an interleaved load group, we effectively hoist all
674// loads in the group to the location of the first load in program order. When
675// generating code for an interleaved store group, we sink all stores to the
676// location of the last store. This code motion can change the order of load
677// and store instructions and may break dependences.
678//
679// The code generation strategy mentioned above ensures that we won't violate
680// any write-after-read (WAR) dependences.
681//
682// E.g., for the WAR dependence: a = A[i]; // (1)
683// A[i] = b; // (2)
684//
685// The store group of (2) is always inserted at or below (2), and the load
686// group of (1) is always inserted at or above (1). Thus, the instructions will
687// never be reordered. All other dependences are checked to ensure the
688// correctness of the instruction reordering.
689//
690// The algorithm visits all memory accesses in the loop in bottom-up program
691// order. Program order is established by traversing the blocks in the loop in
692// reverse postorder when collecting the accesses.
693//
694// We visit the memory accesses in bottom-up order because it can simplify the
695// construction of store groups in the presence of write-after-write (WAW)
696// dependences.
697//
698// E.g., for the WAW dependence: A[i] = a; // (1)
699// A[i] = b; // (2)
700// A[i + 1] = c; // (3)
701//
702// We will first create a store group with (3) and (2). (1) can't be added to
703// this group because it and (2) are dependent. However, (1) can be grouped
704// with other accesses that may precede it in program order. Note that a
705// bottom-up order does not imply that WAW dependences should not be checked.
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000706void InterleavedAccessInfo::analyzeInterleaving(
707 bool EnablePredicatedInterleavedMemAccesses) {
Florian Hahn1086ce22018-09-12 08:01:57 +0000708 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
709 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
710
711 // Holds all accesses with a constant stride.
712 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
713 collectConstStrideAccesses(AccessStrideInfo, Strides);
714
715 if (AccessStrideInfo.empty())
716 return;
717
718 // Collect the dependences in the loop.
719 collectDependences();
720
721 // Holds all interleaved store groups temporarily.
722 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
723 // Holds all interleaved load groups temporarily.
724 SmallSetVector<InterleaveGroup *, 4> LoadGroups;
725
726 // Search in bottom-up program order for pairs of accesses (A and B) that can
727 // form interleaved load or store groups. In the algorithm below, access A
728 // precedes access B in program order. We initialize a group for B in the
729 // outer loop of the algorithm, and then in the inner loop, we attempt to
730 // insert each A into B's group if:
731 //
732 // 1. A and B have the same stride,
733 // 2. A and B have the same memory object size, and
734 // 3. A belongs in B's group according to its distance from B.
735 //
736 // Special care is taken to ensure group formation will not break any
737 // dependences.
738 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
739 BI != E; ++BI) {
740 Instruction *B = BI->first;
741 StrideDescriptor DesB = BI->second;
742
743 // Initialize a group for B if it has an allowable stride. Even if we don't
744 // create a group for B, we continue with the bottom-up algorithm to ensure
745 // we don't break any of B's dependences.
746 InterleaveGroup *Group = nullptr;
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000747 if (isStrided(DesB.Stride) &&
748 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
Florian Hahn1086ce22018-09-12 08:01:57 +0000749 Group = getInterleaveGroup(B);
750 if (!Group) {
751 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
752 << '\n');
753 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
754 }
755 if (B->mayWriteToMemory())
756 StoreGroups.insert(Group);
757 else
758 LoadGroups.insert(Group);
759 }
760
761 for (auto AI = std::next(BI); AI != E; ++AI) {
762 Instruction *A = AI->first;
763 StrideDescriptor DesA = AI->second;
764
765 // Our code motion strategy implies that we can't have dependences
766 // between accesses in an interleaved group and other accesses located
767 // between the first and last member of the group. Note that this also
768 // means that a group can't have more than one member at a given offset.
769 // The accesses in a group can have dependences with other accesses, but
770 // we must ensure we don't extend the boundaries of the group such that
771 // we encompass those dependent accesses.
772 //
773 // For example, assume we have the sequence of accesses shown below in a
774 // stride-2 loop:
775 //
776 // (1, 2) is a group | A[i] = a; // (1)
777 // | A[i-1] = b; // (2) |
778 // A[i-3] = c; // (3)
779 // A[i] = d; // (4) | (2, 4) is not a group
780 //
781 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
782 // but not with (4). If we did, the dependent access (3) would be within
783 // the boundaries of the (2, 4) group.
784 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
785 // If a dependence exists and A is already in a group, we know that A
786 // must be a store since A precedes B and WAR dependences are allowed.
787 // Thus, A would be sunk below B. We release A's group to prevent this
788 // illegal code motion. A will then be free to form another group with
789 // instructions that precede it.
790 if (isInterleaved(A)) {
791 InterleaveGroup *StoreGroup = getInterleaveGroup(A);
792 StoreGroups.remove(StoreGroup);
793 releaseGroup(StoreGroup);
794 }
795
796 // If a dependence exists and A is not already in a group (or it was
797 // and we just released it), B might be hoisted above A (if B is a
798 // load) or another store might be sunk below A (if B is a store). In
799 // either case, we can't add additional instructions to B's group. B
800 // will only form a group with instructions that it precedes.
801 break;
802 }
803
804 // At this point, we've checked for illegal code motion. If either A or B
805 // isn't strided, there's nothing left to do.
806 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
807 continue;
808
809 // Ignore A if it's already in a group or isn't the same kind of memory
810 // operation as B.
811 // Note that mayReadFromMemory() isn't mutually exclusive to
812 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
813 // here, canVectorizeMemory() should have returned false - except for the
814 // case we asked for optimization remarks.
815 if (isInterleaved(A) ||
816 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
817 (A->mayWriteToMemory() != B->mayWriteToMemory()))
818 continue;
819
820 // Check rules 1 and 2. Ignore A if its stride or size is different from
821 // that of B.
822 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
823 continue;
824
825 // Ignore A if the memory object of A and B don't belong to the same
826 // address space
827 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
828 continue;
829
830 // Calculate the distance from A to B.
831 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
832 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
833 if (!DistToB)
834 continue;
835 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
836
837 // Check rule 3. Ignore A if its distance to B is not a multiple of the
838 // size.
839 if (DistanceToB % static_cast<int64_t>(DesB.Size))
840 continue;
841
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000842 // All members of a predicated interleave-group must have the same predicate,
843 // and currently must reside in the same BB.
844 BasicBlock *BlockA = A->getParent();
845 BasicBlock *BlockB = B->getParent();
846 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
847 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
Florian Hahn1086ce22018-09-12 08:01:57 +0000848 continue;
849
850 // The index of A is the index of B plus A's distance to B in multiples
851 // of the size.
852 int IndexA =
853 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
854
855 // Try to insert A into B's group.
856 if (Group->insertMember(A, IndexA, DesA.Align)) {
857 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
858 << " into the interleave group with" << *B
859 << '\n');
860 InterleaveGroupMap[A] = Group;
861
862 // Set the first load in program order as the insert position.
863 if (A->mayReadFromMemory())
864 Group->setInsertPos(A);
865 }
866 } // Iteration over A accesses.
867 } // Iteration over B accesses.
868
869 // Remove interleaved store groups with gaps.
870 for (InterleaveGroup *Group : StoreGroups)
871 if (Group->getNumMembers() != Group->getFactor()) {
872 LLVM_DEBUG(
873 dbgs() << "LV: Invalidate candidate interleaved store group due "
874 "to gaps.\n");
875 releaseGroup(Group);
876 }
877 // Remove interleaved groups with gaps (currently only loads) whose memory
878 // accesses may wrap around. We have to revisit the getPtrStride analysis,
879 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
880 // not check wrapping (see documentation there).
881 // FORNOW we use Assume=false;
882 // TODO: Change to Assume=true but making sure we don't exceed the threshold
883 // of runtime SCEV assumptions checks (thereby potentially failing to
884 // vectorize altogether).
885 // Additional optional optimizations:
886 // TODO: If we are peeling the loop and we know that the first pointer doesn't
887 // wrap then we can deduce that all pointers in the group don't wrap.
888 // This means that we can forcefully peel the loop in order to only have to
889 // check the first pointer for no-wrap. When we'll change to use Assume=true
890 // we'll only need at most one runtime check per interleaved group.
891 for (InterleaveGroup *Group : LoadGroups) {
892 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
893 // load would wrap around the address space we would do a memory access at
894 // nullptr even without the transformation.
895 if (Group->getNumMembers() == Group->getFactor())
896 continue;
897
898 // Case 2: If first and last members of the group don't wrap this implies
899 // that all the pointers in the group don't wrap.
900 // So we check only group member 0 (which is always guaranteed to exist),
901 // and group member Factor - 1; If the latter doesn't exist we rely on
902 // peeling (if it is a non-reveresed accsess -- see Case 3).
903 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
904 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
905 /*ShouldCheckWrap=*/true)) {
906 LLVM_DEBUG(
907 dbgs() << "LV: Invalidate candidate interleaved group due to "
908 "first group member potentially pointer-wrapping.\n");
909 releaseGroup(Group);
910 continue;
911 }
912 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
913 if (LastMember) {
914 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
915 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
916 /*ShouldCheckWrap=*/true)) {
917 LLVM_DEBUG(
918 dbgs() << "LV: Invalidate candidate interleaved group due to "
919 "last group member potentially pointer-wrapping.\n");
920 releaseGroup(Group);
921 }
922 } else {
923 // Case 3: A non-reversed interleaved load group with gaps: We need
924 // to execute at least one scalar epilogue iteration. This will ensure
925 // we don't speculatively access memory out-of-bounds. We only need
926 // to look for a member at index factor - 1, since every group must have
927 // a member at index zero.
928 if (Group->isReverse()) {
929 LLVM_DEBUG(
930 dbgs() << "LV: Invalidate candidate interleaved group due to "
931 "a reverse access with gaps.\n");
932 releaseGroup(Group);
933 continue;
934 }
935 LLVM_DEBUG(
936 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
937 RequiresScalarEpilogue = true;
938 }
939 }
940}
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000941
942void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
943 // If no group had triggered the requirement to create an epilogue loop,
944 // there is nothing to do.
945 if (!requiresScalarEpilogue())
946 return;
947
948 // Avoid releasing a Group twice.
949 SmallPtrSet<InterleaveGroup *, 4> DelSet;
950 for (auto &I : InterleaveGroupMap) {
951 InterleaveGroup *Group = I.second;
952 if (Group->requiresScalarEpilogue())
953 DelSet.insert(Group);
954 }
955 for (auto *Ptr : DelSet) {
956 LLVM_DEBUG(
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000957 dbgs()
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000958 << "LV: Invalidate candidate interleaved group due to gaps that "
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000959 "require a scalar epilogue (not allowed under optsize) and cannot "
960 "be masked (not enabled). \n");
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000961 releaseGroup(Ptr);
962 }
963
964 RequiresScalarEpilogue = false;
965}