blob: 39d1dfe27a08f8ebdd7ee46c881c8edc8eb6b1d2 [file] [log] [blame]
Chris Lattner7e044912010-01-04 07:17:19 +00001//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carrutha9174582015-01-22 05:25:13 +000015#include "InstCombineInternal.h"
James Molloy2b21a7c2015-05-20 18:41:25 +000016#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000018#include "llvm/IR/PatternMatch.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000019#include "llvm/Support/KnownBits.h"
Chris Lattner7e044912010-01-04 07:17:19 +000020
21using namespace llvm;
Shuxin Yang63e999e2012-12-04 00:04:54 +000022using namespace llvm::PatternMatch;
Chris Lattner7e044912010-01-04 07:17:19 +000023
Chandler Carruth964daaa2014-04-22 02:55:47 +000024#define DEBUG_TYPE "instcombine"
25
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000026/// Check to see if the specified operand of the specified instruction is a
27/// constant integer. If so, check to see if there are any bits set in the
28/// constant that are not demanded. If so, shrink the constant and return true.
Craig Topper4c947752012-12-22 18:09:02 +000029static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Craig Topper358cd9a2017-04-20 23:58:27 +000030 const APInt &Demanded) {
Chris Lattner7e044912010-01-04 07:17:19 +000031 assert(I && "No instruction?");
32 assert(OpNo < I->getNumOperands() && "Operand index too large");
33
Sanjay Patelae3b43e2017-02-09 21:43:06 +000034 // The operand must be a constant integer or splat integer.
35 Value *Op = I->getOperand(OpNo);
36 const APInt *C;
37 if (!match(Op, m_APInt(C)))
38 return false;
Chris Lattner7e044912010-01-04 07:17:19 +000039
40 // If there are no bits set that aren't demanded, nothing to do.
Craig Toppera8129a12017-04-20 16:17:13 +000041 if (C->isSubsetOf(Demanded))
Chris Lattner7e044912010-01-04 07:17:19 +000042 return false;
43
44 // This instruction is producing bits that are not demanded. Shrink the RHS.
Craig Topper358cd9a2017-04-20 23:58:27 +000045 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
David Majnemer42b83a52014-08-22 07:56:32 +000046
Chris Lattner7e044912010-01-04 07:17:19 +000047 return true;
48}
49
50
51
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000052/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
53/// the instruction has any properties that allow us to simplify its operands.
Chris Lattner7e044912010-01-04 07:17:19 +000054bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +000056 KnownBits Known(BitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +000057 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Craig Topper4c947752012-12-22 18:09:02 +000058
Craig Topperb45eabc2017-04-26 16:39:58 +000059 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 0, &Inst);
Craig Topperf40110f2014-04-25 05:29:35 +000061 if (!V) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000062 if (V == &Inst) return true;
Sanjay Patel4b198802016-02-01 22:23:39 +000063 replaceInstUsesWith(Inst, V);
Chris Lattner7e044912010-01-04 07:17:19 +000064 return true;
65}
66
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000067/// This form of SimplifyDemandedBits simplifies the specified instruction
68/// operand if possible, updating it in place. It returns true if it made any
69/// change and false otherwise.
Craig Topper47596dd2017-03-25 06:52:52 +000070bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
71 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +000072 KnownBits &Known,
Chris Lattner7e044912010-01-04 07:17:19 +000073 unsigned Depth) {
Craig Topper47596dd2017-03-25 06:52:52 +000074 Use &U = I->getOperandUse(OpNo);
Craig Topperb45eabc2017-04-26 16:39:58 +000075 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76 Depth, I);
Craig Topperf40110f2014-04-25 05:29:35 +000077 if (!NewVal) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000078 U = NewVal;
79 return true;
80}
81
82
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000083/// This function attempts to replace V with a simpler value based on the
84/// demanded bits. When this function is called, it is known that only the bits
85/// set in DemandedMask of the result of V are ever used downstream.
86/// Consequently, depending on the mask and V, it may be possible to replace V
87/// with a constant or one of its operands. In such cases, this function does
88/// the replacement and returns true. In all other cases, it returns false after
89/// analyzing the expression and setting KnownOne and known to be one in the
Craig Topperb45eabc2017-04-26 16:39:58 +000090/// expression. Known.Zero contains all the bits that are known to be zero in
91/// the expression. These are provided to potentially allow the caller (which
92/// might recursively be SimplifyDemandedBits itself) to simplify the
93/// expression.
94/// Known.One and Known.Zero always follow the invariant that:
95/// Known.One & Known.Zero == 0.
96/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
97/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
98/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
99/// be the same.
Chris Lattner7e044912010-01-04 07:17:19 +0000100///
101/// This returns null if it did not change anything and it permits no
102/// simplification. This returns V itself if it did some simplification of V's
103/// operands based on the information about what bits are demanded. This returns
104/// some other non-null value if it found out that V is equal to another value
105/// in the context where the specified bits are demanded, but not for all users.
106Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000107 KnownBits &Known, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000108 Instruction *CxtI) {
Craig Toppere73658d2014-04-28 04:05:08 +0000109 assert(V != nullptr && "Null pointer of Value???");
Chris Lattner7e044912010-01-04 07:17:19 +0000110 assert(Depth <= 6 && "Limit Search Depth");
111 uint32_t BitWidth = DemandedMask.getBitWidth();
Chris Lattner229907c2011-07-18 04:54:35 +0000112 Type *VTy = V->getType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000113 assert(
114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000115 Known.getBitWidth() == BitWidth &&
116 "Value *V, DemandedMask and Known must have same BitWidth");
Craig Topper83dc1c62017-04-20 16:14:58 +0000117
118 if (isa<Constant>(V)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000119 computeKnownBits(V, Known, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000120 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000121 }
122
Craig Topperf0aeee02017-05-05 17:36:09 +0000123 Known.resetAll();
Craig Topper73ba1c82017-06-07 07:40:37 +0000124 if (DemandedMask.isNullValue()) // Not demanding any bits from V.
Chris Lattner7e044912010-01-04 07:17:19 +0000125 return UndefValue::get(VTy);
Craig Topper4c947752012-12-22 18:09:02 +0000126
Chris Lattner7e044912010-01-04 07:17:19 +0000127 if (Depth == 6) // Limit search depth.
Craig Topperf40110f2014-04-25 05:29:35 +0000128 return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000129
Chris Lattner7e044912010-01-04 07:17:19 +0000130 Instruction *I = dyn_cast<Instruction>(V);
131 if (!I) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000132 computeKnownBits(V, Known, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000133 return nullptr; // Only analyze instructions.
Chris Lattner7e044912010-01-04 07:17:19 +0000134 }
135
136 // If there are multiple uses of this value and we aren't at the root, then
137 // we can't do any simplifications of the operands, because DemandedMask
138 // only reflects the bits demanded by *one* of the users.
Craig Topper7603dce2017-04-25 16:48:19 +0000139 if (Depth != 0 && !I->hasOneUse())
Craig Topperb45eabc2017-04-26 16:39:58 +0000140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
Craig Topper4c947752012-12-22 18:09:02 +0000141
Craig Topperb45eabc2017-04-26 16:39:58 +0000142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
Craig Topperb0076fe2017-04-12 18:05:21 +0000143
Chris Lattner7e044912010-01-04 07:17:19 +0000144 // If this is the root being simplified, allow it to have multiple uses,
145 // just set the DemandedMask to all bits so that we can try to simplify the
146 // operands. This allows visitTruncInst (for example) to simplify the
147 // operand of a trunc without duplicating all the logic below.
148 if (Depth == 0 && !V->hasOneUse())
Craig Toppere06b6bc2017-04-04 05:03:02 +0000149 DemandedMask.setAllBits();
Craig Topper4c947752012-12-22 18:09:02 +0000150
Chris Lattner7e044912010-01-04 07:17:19 +0000151 switch (I->getOpcode()) {
152 default:
Craig Topperb45eabc2017-04-26 16:39:58 +0000153 computeKnownBits(I, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000154 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000155 case Instruction::And: {
Chris Lattner7e044912010-01-04 07:17:19 +0000156 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
159 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000160 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000161 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
162 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000163
Craig Topper9a458cd2017-04-14 22:34:14 +0000164 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000166 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000167 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000168
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000169 // If the client is only demanding bits that we know, return the known
170 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000172 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000173
Chris Lattner7e044912010-01-04 07:17:19 +0000174 // If all of the demanded bits are known 1 on one side, return the other.
175 // These bits cannot contribute to the result of the 'and'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
Chris Lattner7e044912010-01-04 07:17:19 +0000177 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
Chris Lattner7e044912010-01-04 07:17:19 +0000179 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000180
Chris Lattner7e044912010-01-04 07:17:19 +0000181 // If the RHS is a constant, see if we can simplify it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000183 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000184
Craig Topperb45eabc2017-04-26 16:39:58 +0000185 Known.Zero = std::move(IKnownZero);
186 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000187 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000188 }
189 case Instruction::Or: {
Chris Lattner7e044912010-01-04 07:17:19 +0000190 // If either the LHS or the RHS are One, the result is One.
Craig Topperb45eabc2017-04-26 16:39:58 +0000191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
193 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000194 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000197
Craig Topper9a458cd2017-04-14 22:34:14 +0000198 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
200 // Output known-1 are known. to be set if s.et in either the LHS | RHS.
201 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000202
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000203 // If the client is only demanding bits that we know, return the known
204 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000206 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000207
Chris Lattner7e044912010-01-04 07:17:19 +0000208 // If all of the demanded bits are known zero on one side, return the other.
209 // These bits cannot contribute to the result of the 'or'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000211 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000213 return I->getOperand(1);
214
Chris Lattner7e044912010-01-04 07:17:19 +0000215 // If the RHS is a constant, see if we can simplify it.
216 if (ShrinkDemandedConstant(I, 1, DemandedMask))
217 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000218
Craig Topperb45eabc2017-04-26 16:39:58 +0000219 Known.Zero = std::move(IKnownZero);
220 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000221 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000222 }
Chris Lattner7e044912010-01-04 07:17:19 +0000223 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000226 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000227 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
228 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000229
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000230 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
232 (RHSKnown.One & LHSKnown.One);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000233 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
235 (RHSKnown.One & LHSKnown.Zero);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000236
237 // If the client is only demanding bits that we know, return the known
238 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000240 return Constant::getIntegerValue(VTy, IKnownOne);
241
Chris Lattner7e044912010-01-04 07:17:19 +0000242 // If all of the demanded bits are known zero on one side, return the other.
243 // These bits cannot contribute to the result of the 'xor'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000244 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000245 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000246 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000247 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000248
Chris Lattner7e044912010-01-04 07:17:19 +0000249 // If all of the demanded bits are known to be zero on one side or the
250 // other, turn this into an *inclusive* or.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Craig Topperb45eabc2017-04-26 16:39:58 +0000252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
Craig Topper4c947752012-12-22 18:09:02 +0000253 Instruction *Or =
Chris Lattner7e044912010-01-04 07:17:19 +0000254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
255 I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000256 return InsertNewInstWith(Or, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000257 }
Craig Topper4c947752012-12-22 18:09:02 +0000258
Chris Lattner7e044912010-01-04 07:17:19 +0000259 // If all of the demanded bits on one side are known, and all of the set
260 // bits on that side are also known to be set on the other side, turn this
261 // into an AND, as we know the bits will be cleared.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
Craig Topperb45eabc2017-04-26 16:39:58 +0000263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
264 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
Craig Topper17f37ba2017-04-20 20:47:35 +0000265 Constant *AndC = Constant::getIntegerValue(VTy,
Craig Topperb45eabc2017-04-26 16:39:58 +0000266 ~RHSKnown.One & DemandedMask);
Craig Topper17f37ba2017-04-20 20:47:35 +0000267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
268 return InsertNewInstWith(And, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000269 }
Craig Topper4c947752012-12-22 18:09:02 +0000270
Sanjay Patel8ce1d4c2017-04-21 20:29:17 +0000271 // If the RHS is a constant, see if we can simplify it.
272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
273 if (ShrinkDemandedConstant(I, 1, DemandedMask))
274 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000275
Chris Lattner7e044912010-01-04 07:17:19 +0000276 // If our LHS is an 'and' and if it has one use, and if any of the bits we
277 // are flipping are known to be set, then the xor is just resetting those
278 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
279 // simplifying both of them.
280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
282 isa<ConstantInt>(I->getOperand(1)) &&
283 isa<ConstantInt>(LHSInst->getOperand(1)) &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
Chris Lattner7e044912010-01-04 07:17:19 +0000285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
Craig Topperb45eabc2017-04-26 16:39:58 +0000287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
Craig Topper4c947752012-12-22 18:09:02 +0000288
Chris Lattner7e044912010-01-04 07:17:19 +0000289 Constant *AndC =
290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000292 InsertNewInstWith(NewAnd, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000293
Chris Lattner7e044912010-01-04 07:17:19 +0000294 Constant *XorC =
295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000297 return InsertNewInstWith(NewXor, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000298 }
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000299
300 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000301 Known.Zero = std::move(IKnownZero);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000302 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000303 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000304 break;
305 }
306 case Instruction::Select:
James Molloy2b21a7c2015-05-20 18:41:25 +0000307 // If this is a select as part of a min/max pattern, don't simplify any
308 // further in case we break the structure.
309 Value *LHS, *RHS;
James Molloy134bec22015-08-11 09:12:57 +0000310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
James Molloy2b21a7c2015-05-20 18:41:25 +0000311 return nullptr;
Simon Pilgrim61116dd2015-09-17 20:32:45 +0000312
Craig Topperb45eabc2017-04-26 16:39:58 +0000313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000315 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000316 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
317 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000318
Chris Lattner7e044912010-01-04 07:17:19 +0000319 // If the operands are constants, see if we can simplify them.
320 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
321 ShrinkDemandedConstant(I, 2, DemandedMask))
322 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000323
Chris Lattner7e044912010-01-04 07:17:19 +0000324 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000325 Known.One = RHSKnown.One & LHSKnown.One;
326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
Chris Lattner7e044912010-01-04 07:17:19 +0000327 break;
Craig Topper2f9c6da2017-05-24 18:40:25 +0000328 case Instruction::ZExt:
Chris Lattner7e044912010-01-04 07:17:19 +0000329 case Instruction::Trunc: {
Craig Topper2f9c6da2017-05-24 18:40:25 +0000330 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
331
332 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
333 KnownBits InputKnown(SrcBitWidth);
334 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000335 return I;
Craig Topper2f9c6da2017-05-24 18:40:25 +0000336 Known = Known.zextOrTrunc(BitWidth);
337 // Any top bits are known to be zero.
338 if (BitWidth > SrcBitWidth)
339 Known.Zero.setBitsFrom(SrcBitWidth);
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000340 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000341 break;
342 }
343 case Instruction::BitCast:
Duncan Sands9dff9be2010-02-15 16:12:20 +0000344 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
Craig Topperf40110f2014-04-25 05:29:35 +0000345 return nullptr; // vector->int or fp->int?
Chris Lattner7e044912010-01-04 07:17:19 +0000346
Chris Lattner229907c2011-07-18 04:54:35 +0000347 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
348 if (VectorType *SrcVTy =
Chris Lattner7e044912010-01-04 07:17:19 +0000349 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
350 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
351 // Don't touch a bitcast between vectors of different element counts.
Craig Topperf40110f2014-04-25 05:29:35 +0000352 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000353 } else
354 // Don't touch a scalar-to-vector bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000355 return nullptr;
Duncan Sands19d0b472010-02-16 11:11:14 +0000356 } else if (I->getOperand(0)->getType()->isVectorTy())
Chris Lattner7e044912010-01-04 07:17:19 +0000357 // Don't touch a vector-to-scalar bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000358 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000359
Craig Topperb45eabc2017-04-26 16:39:58 +0000360 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000361 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000362 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000363 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000364 case Instruction::SExt: {
365 // Compute the bits in the result that are not present in the input.
Craig Topper1c660db2017-05-24 17:33:30 +0000366 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000367
Craig Topper1c660db2017-05-24 17:33:30 +0000368 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000369
Chris Lattner7e044912010-01-04 07:17:19 +0000370 // If any of the sign extended bits are demanded, we know that the sign
371 // bit is demanded.
Craig Topper1c660db2017-05-24 17:33:30 +0000372 if (DemandedMask.getActiveBits() > SrcBitWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000373 InputDemandedBits.setBit(SrcBitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000374
Craig Topper1c660db2017-05-24 17:33:30 +0000375 KnownBits InputKnown(SrcBitWidth);
376 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000377 return I;
Chris Lattner7e044912010-01-04 07:17:19 +0000378
379 // If the input sign bit is known zero, or if the NewBits are not demanded
380 // convert this into a zero extension.
Craig Topper1c660db2017-05-24 17:33:30 +0000381 if (InputKnown.isNonNegative() ||
382 DemandedMask.getActiveBits() <= SrcBitWidth) {
383 // Convert to ZExt cast.
Chris Lattner7e044912010-01-04 07:17:19 +0000384 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000385 return InsertNewInstWith(NewCast, *I);
Craig Topper1c660db2017-05-24 17:33:30 +0000386 }
387
388 // If the sign bit of the input is known set or clear, then we know the
389 // top bits of the result.
390 Known = InputKnown.sext(BitWidth);
391 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000392 break;
393 }
Matthias Braune48484c2015-04-30 22:05:30 +0000394 case Instruction::Add:
395 case Instruction::Sub: {
396 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
397 /// about the high bits of the operands.
Chris Lattner7e044912010-01-04 07:17:19 +0000398 unsigned NLZ = DemandedMask.countLeadingZeros();
Craig Topper35171e52017-08-25 18:39:40 +0000399 // Right fill the mask of bits for this ADD/SUB to demand the most
400 // significant bit and all those below it.
401 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
402 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
403 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
404 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
405 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
406 if (NLZ > 0) {
Matthias Braune48484c2015-04-30 22:05:30 +0000407 // Disable the nsw and nuw flags here: We can no longer guarantee that
408 // we won't wrap after simplification. Removing the nsw/nuw flags is
409 // legal here because the top bit is not demanded.
410 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
411 BinOP.setHasNoSignedWrap(false);
412 BinOP.setHasNoUnsignedWrap(false);
David Majnemer7d0e99c2015-04-22 22:42:05 +0000413 }
Craig Topper35171e52017-08-25 18:39:40 +0000414 return I;
Chris Lattner7e044912010-01-04 07:17:19 +0000415 }
Benjamin Kramer010337c2011-12-24 17:31:38 +0000416
Craig Topper35171e52017-08-25 18:39:40 +0000417 // If we are known to be adding/subtracting zeros to every bit below
418 // the highest demanded bit, we just return the other side.
419 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
420 return I->getOperand(0);
421 // We can't do this with the LHS for subtraction, unless we are only
422 // demanding the LSB.
423 if ((I->getOpcode() == Instruction::Add ||
424 DemandedFromOps.isOneValue()) &&
425 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
426 return I->getOperand(1);
427
428 // Otherwise just compute the known bits of the result.
429 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
430 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
431 NSW, LHSKnown, RHSKnown);
Chris Lattner7e044912010-01-04 07:17:19 +0000432 break;
Matthias Braune48484c2015-04-30 22:05:30 +0000433 }
Sanjay Patel3e1ae722017-04-20 21:33:02 +0000434 case Instruction::Shl: {
435 const APInt *SA;
436 if (match(I->getOperand(1), m_APInt(SA))) {
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000437 const APInt *ShrAmt;
438 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) {
439 Instruction *Shr = cast<Instruction>(I->getOperand(0));
Sanjay Patelcc663b82017-04-20 22:37:01 +0000440 if (Value *R = simplifyShrShlDemandedBits(
Craig Topperb45eabc2017-04-26 16:39:58 +0000441 Shr, *ShrAmt, I, *SA, DemandedMask, Known))
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000442 return R;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000443 }
444
Chris Lattner768003c2011-02-10 05:09:34 +0000445 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner7e044912010-01-04 07:17:19 +0000446 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000447
Chris Lattner768003c2011-02-10 05:09:34 +0000448 // If the shift is NUW/NSW, then it does demand the high bits.
449 ShlOperator *IOp = cast<ShlOperator>(I);
450 if (IOp->hasNoSignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000451 DemandedMaskIn.setHighBits(ShiftAmt+1);
Chris Lattner768003c2011-02-10 05:09:34 +0000452 else if (IOp->hasNoUnsignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000453 DemandedMaskIn.setHighBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000454
Craig Topperb45eabc2017-04-26 16:39:58 +0000455 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000456 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000457 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperb45eabc2017-04-26 16:39:58 +0000458 Known.Zero <<= ShiftAmt;
459 Known.One <<= ShiftAmt;
Chris Lattner7e044912010-01-04 07:17:19 +0000460 // low bits known zero.
461 if (ShiftAmt)
Craig Topperb45eabc2017-04-26 16:39:58 +0000462 Known.Zero.setLowBits(ShiftAmt);
Chris Lattner7e044912010-01-04 07:17:19 +0000463 }
464 break;
Sanjay Patel3e1ae722017-04-20 21:33:02 +0000465 }
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000466 case Instruction::LShr: {
467 const APInt *SA;
468 if (match(I->getOperand(1), m_APInt(SA))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000469 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000470
Chris Lattner7e044912010-01-04 07:17:19 +0000471 // Unsigned shift right.
472 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000473
Chris Lattner768003c2011-02-10 05:09:34 +0000474 // If the shift is exact, then it does demand the low bits (and knows that
475 // they are zero).
476 if (cast<LShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000477 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000478
Craig Topperb45eabc2017-04-26 16:39:58 +0000479 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000480 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000481 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperb45eabc2017-04-26 16:39:58 +0000482 Known.Zero.lshrInPlace(ShiftAmt);
483 Known.One.lshrInPlace(ShiftAmt);
Craig Topper3a86a042017-03-19 05:49:16 +0000484 if (ShiftAmt)
Craig Topperb45eabc2017-04-26 16:39:58 +0000485 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
Chris Lattner7e044912010-01-04 07:17:19 +0000486 }
487 break;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000488 }
489 case Instruction::AShr: {
Chris Lattner7e044912010-01-04 07:17:19 +0000490 // If this is an arithmetic shift right and only the low-bit is set, we can
491 // always convert this into a logical shr, even if the shift amount is
492 // variable. The low bit of the shift cannot be an input sign bit unless
493 // the shift amount is >= the size of the datatype, which is undefined.
Craig Topper73ba1c82017-06-07 07:40:37 +0000494 if (DemandedMask.isOneValue()) {
Chris Lattner7e044912010-01-04 07:17:19 +0000495 // Perform the logical shift right.
496 Instruction *NewVal = BinaryOperator::CreateLShr(
497 I->getOperand(0), I->getOperand(1), I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000498 return InsertNewInstWith(NewVal, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000499 }
Chris Lattner7e044912010-01-04 07:17:19 +0000500
501 // If the sign bit is the only bit demanded by this ashr, then there is no
502 // need to do it, the shift doesn't change the high bit.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000503 if (DemandedMask.isSignMask())
Chris Lattner7e044912010-01-04 07:17:19 +0000504 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000505
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000506 const APInt *SA;
507 if (match(I->getOperand(1), m_APInt(SA))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000508 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000509
Chris Lattner7e044912010-01-04 07:17:19 +0000510 // Signed shift right.
511 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000512 // If any of the high bits are demanded, we should set the sign bit as
Chris Lattner7e044912010-01-04 07:17:19 +0000513 // demanded.
514 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
Craig Topperc9a4fc02017-04-14 05:09:04 +0000515 DemandedMaskIn.setSignBit();
Craig Topper4c947752012-12-22 18:09:02 +0000516
Chris Lattner768003c2011-02-10 05:09:34 +0000517 // If the shift is exact, then it does demand the low bits (and knows that
518 // they are zero).
519 if (cast<AShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000520 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000521
Craig Topperb45eabc2017-04-26 16:39:58 +0000522 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000523 return I;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000524
Amjad Aboud22178dd2017-08-25 11:07:54 +0000525 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
526
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000527 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Amjad Aboud22178dd2017-08-25 11:07:54 +0000528 // Compute the new bits that are at the top now plus sign bits.
529 APInt HighBits(APInt::getHighBitsSet(
530 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
Craig Topperb45eabc2017-04-26 16:39:58 +0000531 Known.Zero.lshrInPlace(ShiftAmt);
532 Known.One.lshrInPlace(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000533
Chris Lattner7e044912010-01-04 07:17:19 +0000534 // If the input sign bit is known to be zero, or if none of the top bits
535 // are demanded, turn this into an unsigned shift right.
Craig Topper4d5050b2017-08-01 15:10:25 +0000536 assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
537 if (Known.Zero[BitWidth-ShiftAmt-1] ||
Craig Topperff238892017-04-20 21:24:37 +0000538 !DemandedMask.intersects(HighBits)) {
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000539 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
540 I->getOperand(1));
541 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
542 return InsertNewInstWith(LShr, *I);
Craig Topperfc9bf502017-08-02 21:05:40 +0000543 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
Craig Topperb45eabc2017-04-26 16:39:58 +0000544 Known.One |= HighBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000545 }
546 }
547 break;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000548 }
Chris Lattner7e044912010-01-04 07:17:19 +0000549 case Instruction::SRem:
550 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Eli Friedmana81a82d2011-03-09 01:28:35 +0000551 // X % -1 demands all the bits because we don't want to introduce
552 // INT_MIN % -1 (== undef) by accident.
Craig Topper79ab6432017-07-06 18:39:47 +0000553 if (Rem->isMinusOne())
Eli Friedmana81a82d2011-03-09 01:28:35 +0000554 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000555 APInt RA = Rem->getValue().abs();
556 if (RA.isPowerOf2()) {
557 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
558 return I->getOperand(0);
559
560 APInt LowBits = RA - 1;
Craig Topperbcfd2d12017-04-20 16:56:25 +0000561 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000562 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000563 return I;
564
Duncan Sands3a48b872010-01-28 17:22:42 +0000565 // The low bits of LHS are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +0000566 Known.Zero = LHSKnown.Zero & LowBits;
567 Known.One = LHSKnown.One & LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000568
Duncan Sands3a48b872010-01-28 17:22:42 +0000569 // If LHS is non-negative or has all low bits zero, then the upper bits
570 // are all zero.
Craig Topperca48af32017-04-29 16:43:11 +0000571 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +0000572 Known.Zero |= ~LowBits;
Duncan Sands3a48b872010-01-28 17:22:42 +0000573
574 // If LHS is negative and not all low bits are zero, then the upper bits
575 // are all one.
Craig Topperca48af32017-04-29 16:43:11 +0000576 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
Craig Topperb45eabc2017-04-26 16:39:58 +0000577 Known.One |= ~LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000578
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000579 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +0000580 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000581 }
582 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000583
584 // The sign bit is the LHS's sign bit, except when the result of the
585 // remainder is zero.
Craig Topperd23004c2017-04-17 16:38:20 +0000586 if (DemandedMask.isSignBitSet()) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000587 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
Nick Lewyckye4679792011-03-07 01:50:10 +0000588 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +0000589 if (LHSKnown.isNonNegative())
590 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +0000591 }
Chris Lattner7e044912010-01-04 07:17:19 +0000592 break;
593 case Instruction::URem: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000594 KnownBits Known2(BitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000595 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000596 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
597 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000598 return I;
599
Craig Topper8df66c62017-05-12 17:20:30 +0000600 unsigned Leaders = Known2.countMinLeadingZeros();
Craig Topperb45eabc2017-04-26 16:39:58 +0000601 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Chris Lattner7e044912010-01-04 07:17:19 +0000602 break;
603 }
604 case Instruction::Call:
605 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
606 switch (II->getIntrinsicID()) {
607 default: break;
608 case Intrinsic::bswap: {
609 // If the only bits demanded come from one byte of the bswap result,
610 // just shift the input byte into position to eliminate the bswap.
611 unsigned NLZ = DemandedMask.countLeadingZeros();
612 unsigned NTZ = DemandedMask.countTrailingZeros();
Craig Topper4c947752012-12-22 18:09:02 +0000613
Chris Lattner7e044912010-01-04 07:17:19 +0000614 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
615 // we need all the bits down to bit 8. Likewise, round NLZ. If we
616 // have 14 leading zeros, round to 8.
617 NLZ &= ~7;
618 NTZ &= ~7;
619 // If we need exactly one byte, we can do this transformation.
620 if (BitWidth-NLZ-NTZ == 8) {
621 unsigned ResultBit = NTZ;
622 unsigned InputBit = BitWidth-NTZ-8;
Craig Topper4c947752012-12-22 18:09:02 +0000623
Chris Lattner7e044912010-01-04 07:17:19 +0000624 // Replace this with either a left or right shift to get the byte into
625 // the right place.
626 Instruction *NewVal;
627 if (InputBit > ResultBit)
Gabor Greif79430172010-06-24 12:35:13 +0000628 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000629 ConstantInt::get(I->getType(), InputBit-ResultBit));
630 else
Gabor Greif79430172010-06-24 12:35:13 +0000631 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000632 ConstantInt::get(I->getType(), ResultBit-InputBit));
633 NewVal->takeName(I);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000634 return InsertNewInstWith(NewVal, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000635 }
Craig Topper4c947752012-12-22 18:09:02 +0000636
Chris Lattner7e044912010-01-04 07:17:19 +0000637 // TODO: Could compute known zero/one bits based on the input.
638 break;
639 }
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000640 case Intrinsic::x86_mmx_pmovmskb:
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000641 case Intrinsic::x86_sse_movmsk_ps:
642 case Intrinsic::x86_sse2_movmsk_pd:
643 case Intrinsic::x86_sse2_pmovmskb_128:
644 case Intrinsic::x86_avx_movmsk_ps_256:
645 case Intrinsic::x86_avx_movmsk_pd_256:
646 case Intrinsic::x86_avx2_pmovmskb: {
647 // MOVMSK copies the vector elements' sign bits to the low bits
648 // and zeros the high bits.
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000649 unsigned ArgWidth;
650 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
651 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
652 } else {
653 auto Arg = II->getArgOperand(0);
654 auto ArgType = cast<VectorType>(Arg->getType());
655 ArgWidth = ArgType->getNumElements();
656 }
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000657
658 // If we don't need any of low bits then return zero,
659 // we know that DemandedMask is non-zero already.
660 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
Craig Topper73ba1c82017-06-07 07:40:37 +0000661 if (DemandedElts.isNullValue())
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000662 return ConstantInt::getNullValue(VTy);
663
Ahmed Bougacha17482a52016-04-28 14:36:07 +0000664 // We know that the upper bits are set to zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000665 Known.Zero.setBitsFrom(ArgWidth);
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000666 return nullptr;
667 }
Chad Rosierb3628842011-05-26 23:13:19 +0000668 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +0000669 Known.Zero.setBitsFrom(32);
Craig Topperf40110f2014-04-25 05:29:35 +0000670 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000671 }
672 }
Craig Topperb45eabc2017-04-26 16:39:58 +0000673 computeKnownBits(V, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000674 break;
675 }
Craig Topper4c947752012-12-22 18:09:02 +0000676
Chris Lattner7e044912010-01-04 07:17:19 +0000677 // If the client is only demanding bits that we know, return the known
678 // constant.
Craig Topperb45eabc2017-04-26 16:39:58 +0000679 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
680 return Constant::getIntegerValue(VTy, Known.One);
Craig Topperf40110f2014-04-25 05:29:35 +0000681 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000682}
683
Craig Topperb45eabc2017-04-26 16:39:58 +0000684/// Helper routine of SimplifyDemandedUseBits. It computes Known
Craig Topperb0076fe2017-04-12 18:05:21 +0000685/// bits. It also tries to handle simplifications that can be done based on
686/// DemandedMask, but without modifying the Instruction.
687Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
688 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000689 KnownBits &Known,
Craig Topperb0076fe2017-04-12 18:05:21 +0000690 unsigned Depth,
691 Instruction *CxtI) {
692 unsigned BitWidth = DemandedMask.getBitWidth();
693 Type *ITy = I->getType();
694
Craig Topperb45eabc2017-04-26 16:39:58 +0000695 KnownBits LHSKnown(BitWidth);
696 KnownBits RHSKnown(BitWidth);
Craig Topperb0076fe2017-04-12 18:05:21 +0000697
698 // Despite the fact that we can't simplify this instruction in all User's
Craig Topperb45eabc2017-04-26 16:39:58 +0000699 // context, we can at least compute the known bits, and we can
Craig Topperb0076fe2017-04-12 18:05:21 +0000700 // do simplifications that apply to *just* the one user if we know that
701 // this instruction has a simpler value in that context.
Craig Topperf35a7f72017-04-12 18:25:25 +0000702 switch (I->getOpcode()) {
Craig Topper9a458cd2017-04-14 22:34:14 +0000703 case Instruction::And: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000704 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000705 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
706 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000707 CxtI);
708
Craig Topper9a458cd2017-04-14 22:34:14 +0000709 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000710 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000711 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000712 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000713
Craig Topperc75f94b2017-04-12 19:32:47 +0000714 // If the client is only demanding bits that we know, return the known
715 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000716 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000717 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000718
Craig Topperb0076fe2017-04-12 18:05:21 +0000719 // If all of the demanded bits are known 1 on one side, return the other.
720 // These bits cannot contribute to the result of the 'and' in this
721 // context.
Craig Topperb45eabc2017-04-26 16:39:58 +0000722 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
Craig Topperb0076fe2017-04-12 18:05:21 +0000723 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000724 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
Craig Topperb0076fe2017-04-12 18:05:21 +0000725 return I->getOperand(1);
726
Craig Topperb45eabc2017-04-26 16:39:58 +0000727 Known.Zero = std::move(IKnownZero);
728 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000729 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000730 }
731 case Instruction::Or: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000732 // We can simplify (X|Y) -> X or Y in the user's context if we know that
733 // only bits from X or Y are demanded.
734
735 // If either the LHS or the RHS are One, the result is One.
Craig Topperb45eabc2017-04-26 16:39:58 +0000736 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
737 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000738 CxtI);
739
Craig Topper9a458cd2017-04-14 22:34:14 +0000740 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000741 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000742 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000743 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000744
Craig Topperc75f94b2017-04-12 19:32:47 +0000745 // If the client is only demanding bits that we know, return the known
746 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000747 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000748 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000749
Craig Topperb0076fe2017-04-12 18:05:21 +0000750 // If all of the demanded bits are known zero on one side, return the
751 // other. These bits cannot contribute to the result of the 'or' in this
752 // context.
Craig Topperb45eabc2017-04-26 16:39:58 +0000753 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000754 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000755 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000756 return I->getOperand(1);
757
Craig Topperb45eabc2017-04-26 16:39:58 +0000758 Known.Zero = std::move(IKnownZero);
759 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000760 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000761 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000762 case Instruction::Xor: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000763 // We can simplify (X^Y) -> X or Y in the user's context if we know that
764 // only bits from X or Y are demanded.
765
Craig Topperb45eabc2017-04-26 16:39:58 +0000766 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
767 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000768 CxtI);
769
Craig Topperc75f94b2017-04-12 19:32:47 +0000770 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000771 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
772 (RHSKnown.One & LHSKnown.One);
Craig Topperc75f94b2017-04-12 19:32:47 +0000773 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000774 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
775 (RHSKnown.One & LHSKnown.Zero);
Craig Topperc75f94b2017-04-12 19:32:47 +0000776
777 // If the client is only demanding bits that we know, return the known
778 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000779 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topperc75f94b2017-04-12 19:32:47 +0000780 return Constant::getIntegerValue(ITy, IKnownOne);
781
Craig Topperb0076fe2017-04-12 18:05:21 +0000782 // If all of the demanded bits are known zero on one side, return the
783 // other.
Craig Topperb45eabc2017-04-26 16:39:58 +0000784 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000785 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000786 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000787 return I->getOperand(1);
Craig Topperf35a7f72017-04-12 18:25:25 +0000788
Craig Topperc75f94b2017-04-12 19:32:47 +0000789 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000790 Known.Zero = std::move(IKnownZero);
Craig Topperc75f94b2017-04-12 19:32:47 +0000791 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000792 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000793 break;
Craig Topperb0076fe2017-04-12 18:05:21 +0000794 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000795 default:
Craig Topperb45eabc2017-04-26 16:39:58 +0000796 // Compute the Known bits to simplify things downstream.
797 computeKnownBits(I, Known, Depth, CxtI);
Craig Topperb0076fe2017-04-12 18:05:21 +0000798
Craig Topperc75f94b2017-04-12 19:32:47 +0000799 // If this user is only demanding bits that we know, return the known
800 // constant.
Craig Topperb45eabc2017-04-26 16:39:58 +0000801 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
802 return Constant::getIntegerValue(ITy, Known.One);
Craig Topper9a51c7f2017-04-12 18:17:46 +0000803
Craig Topperc75f94b2017-04-12 19:32:47 +0000804 break;
805 }
Craig Topper9a51c7f2017-04-12 18:17:46 +0000806
Craig Topperb0076fe2017-04-12 18:05:21 +0000807 return nullptr;
808}
809
810
Shuxin Yang63e999e2012-12-04 00:04:54 +0000811/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
812/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
813/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
814/// of "C2-C1".
815///
816/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
817/// ..., bn}, without considering the specific value X is holding.
818/// This transformation is legal iff one of following conditions is hold:
819/// 1) All the bit in S are 0, in this case E1 == E2.
820/// 2) We don't care those bits in S, per the input DemandedMask.
821/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
822/// rest bits.
823///
824/// Currently we only test condition 2).
825///
826/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
827/// not successful.
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000828Value *
Sanjay Patelcc663b82017-04-20 22:37:01 +0000829InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000830 Instruction *Shl, const APInt &ShlOp1,
831 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000832 KnownBits &Known) {
Benjamin Kramer010f1082013-08-30 14:35:35 +0000833 if (!ShlOp1 || !ShrOp1)
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000834 return nullptr; // No-op.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000835
836 Value *VarX = Shr->getOperand(0);
837 Type *Ty = VarX->getType();
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000838 unsigned BitWidth = Ty->getScalarSizeInBits();
Benjamin Kramer010f1082013-08-30 14:35:35 +0000839 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
Craig Topperf40110f2014-04-25 05:29:35 +0000840 return nullptr; // Undef.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000841
842 unsigned ShlAmt = ShlOp1.getZExtValue();
843 unsigned ShrAmt = ShrOp1.getZExtValue();
Shuxin Yang63e999e2012-12-04 00:04:54 +0000844
Craig Topperb45eabc2017-04-26 16:39:58 +0000845 Known.One.clearAllBits();
846 Known.Zero.setLowBits(ShlAmt - 1);
847 Known.Zero &= DemandedMask;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000848
Benjamin Kramer010f1082013-08-30 14:35:35 +0000849 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
850 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
Shuxin Yang63e999e2012-12-04 00:04:54 +0000851
852 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
853 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
854 (BitMask1.ashr(ShrAmt) << ShlAmt);
855
856 if (ShrAmt <= ShlAmt) {
857 BitMask2 <<= (ShlAmt - ShrAmt);
858 } else {
859 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
860 BitMask2.ashr(ShrAmt - ShlAmt);
861 }
862
863 // Check if condition-2 (see the comment to this function) is satified.
864 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
865 if (ShrAmt == ShlAmt)
866 return VarX;
867
868 if (!Shr->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +0000869 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000870
871 BinaryOperator *New;
872 if (ShrAmt < ShlAmt) {
873 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
874 New = BinaryOperator::CreateShl(VarX, Amt);
875 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
876 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
877 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
878 } else {
879 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
Shuxin Yang86c0e232012-12-04 03:28:32 +0000880 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
881 BinaryOperator::CreateAShr(VarX, Amt);
Shuxin Yang81b36782012-12-12 00:29:03 +0000882 if (cast<BinaryOperator>(Shr)->isExact())
883 New->setIsExact(true);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000884 }
885
886 return InsertNewInstWith(New, *Shl);
887 }
888
Craig Topperf40110f2014-04-25 05:29:35 +0000889 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000890}
Chris Lattner7e044912010-01-04 07:17:19 +0000891
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +0000892/// The specified value produces a vector with any number of elements.
893/// DemandedElts contains the set of elements that are actually used by the
894/// caller. This method analyzes which elements of the operand are undef and
895/// returns that information in UndefElts.
Chris Lattner7e044912010-01-04 07:17:19 +0000896///
897/// If the information about demanded elements can be used to simplify the
898/// operation, the operation is simplified, then the resultant value is
899/// returned. This returns null if no change was made.
900Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Chris Lattnerb22423c2010-02-08 23:56:03 +0000901 APInt &UndefElts,
Chris Lattner7e044912010-01-04 07:17:19 +0000902 unsigned Depth) {
Sanjay Patel9190b4a2016-04-29 20:54:56 +0000903 unsigned VWidth = V->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +0000904 APInt EltMask(APInt::getAllOnesValue(VWidth));
905 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
906
907 if (isa<UndefValue>(V)) {
908 // If the entire vector is undefined, just return this info.
909 UndefElts = EltMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000910 return nullptr;
Chris Lattnerb22423c2010-02-08 23:56:03 +0000911 }
Craig Topper4c947752012-12-22 18:09:02 +0000912
Craig Topper73ba1c82017-06-07 07:40:37 +0000913 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000914 UndefElts = EltMask;
915 return UndefValue::get(V->getType());
916 }
917
918 UndefElts = 0;
Craig Topper4c947752012-12-22 18:09:02 +0000919
Chris Lattner67058832012-01-25 06:48:06 +0000920 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
921 if (Constant *C = dyn_cast<Constant>(V)) {
922 // Check if this is identity. If so, return 0 since we are not simplifying
923 // anything.
924 if (DemandedElts.isAllOnesValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000925 return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +0000926
Chris Lattner229907c2011-07-18 04:54:35 +0000927 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner7e044912010-01-04 07:17:19 +0000928 Constant *Undef = UndefValue::get(EltTy);
Craig Topper4c947752012-12-22 18:09:02 +0000929
Chris Lattner67058832012-01-25 06:48:06 +0000930 SmallVector<Constant*, 16> Elts;
931 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7e044912010-01-04 07:17:19 +0000932 if (!DemandedElts[i]) { // If not demanded, set to undef.
933 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000934 UndefElts.setBit(i);
Chris Lattner67058832012-01-25 06:48:06 +0000935 continue;
936 }
Craig Topper4c947752012-12-22 18:09:02 +0000937
Chris Lattner67058832012-01-25 06:48:06 +0000938 Constant *Elt = C->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +0000939 if (!Elt) return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000940
Chris Lattner67058832012-01-25 06:48:06 +0000941 if (isa<UndefValue>(Elt)) { // Already undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000942 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000943 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +0000944 } else { // Otherwise, defined.
Chris Lattner67058832012-01-25 06:48:06 +0000945 Elts.push_back(Elt);
Chris Lattner7e044912010-01-04 07:17:19 +0000946 }
Chris Lattner67058832012-01-25 06:48:06 +0000947 }
Craig Topper4c947752012-12-22 18:09:02 +0000948
Chris Lattner7e044912010-01-04 07:17:19 +0000949 // If we changed the constant, return it.
Chris Lattner47a86bd2012-01-25 06:02:56 +0000950 Constant *NewCV = ConstantVector::get(Elts);
Craig Topperf40110f2014-04-25 05:29:35 +0000951 return NewCV != C ? NewCV : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000952 }
Craig Topper4c947752012-12-22 18:09:02 +0000953
Chris Lattner7e044912010-01-04 07:17:19 +0000954 // Limit search depth.
955 if (Depth == 10)
Craig Topperf40110f2014-04-25 05:29:35 +0000956 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000957
Stuart Hastings5bd18b62011-05-17 22:13:31 +0000958 // If multiple users are using the root value, proceed with
Chris Lattner7e044912010-01-04 07:17:19 +0000959 // simplification conservatively assuming that all elements
960 // are needed.
961 if (!V->hasOneUse()) {
962 // Quit if we find multiple users of a non-root value though.
963 // They'll be handled when it's their turn to be visited by
964 // the main instcombine process.
965 if (Depth != 0)
966 // TODO: Just compute the UndefElts information recursively.
Craig Topperf40110f2014-04-25 05:29:35 +0000967 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000968
969 // Conservatively assume that all elements are needed.
970 DemandedElts = EltMask;
971 }
Craig Topper4c947752012-12-22 18:09:02 +0000972
Chris Lattner7e044912010-01-04 07:17:19 +0000973 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000974 if (!I) return nullptr; // Only analyze instructions.
Craig Topper4c947752012-12-22 18:09:02 +0000975
Chris Lattner7e044912010-01-04 07:17:19 +0000976 bool MadeChange = false;
977 APInt UndefElts2(VWidth, 0);
Craig Topper23ebd952016-12-11 08:54:52 +0000978 APInt UndefElts3(VWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +0000979 Value *TmpV;
980 switch (I->getOpcode()) {
981 default: break;
Craig Topper4c947752012-12-22 18:09:02 +0000982
Chris Lattner7e044912010-01-04 07:17:19 +0000983 case Instruction::InsertElement: {
984 // If this is a variable index, we don't know which element it overwrites.
985 // demand exactly the same input as we produce.
986 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +0000987 if (!Idx) {
Chris Lattner7e044912010-01-04 07:17:19 +0000988 // Note that we can't propagate undef elt info, because we don't know
989 // which elt is getting updated.
990 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000991 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +0000992 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
993 break;
994 }
Craig Topper4c947752012-12-22 18:09:02 +0000995
Chris Lattner7e044912010-01-04 07:17:19 +0000996 // If this is inserting an element that isn't demanded, remove this
997 // insertelement.
998 unsigned IdxNo = Idx->getZExtValue();
999 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1000 Worklist.Add(I);
1001 return I->getOperand(0);
1002 }
Craig Topper4c947752012-12-22 18:09:02 +00001003
Chris Lattner7e044912010-01-04 07:17:19 +00001004 // Otherwise, the element inserted overwrites whatever was there, so the
1005 // input demanded set is simpler than the output set.
1006 APInt DemandedElts2 = DemandedElts;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001007 DemandedElts2.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001008 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001009 UndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001010 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1011
1012 // The inserted element is defined.
Jay Foad25a5e4c2010-12-01 08:53:58 +00001013 UndefElts.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001014 break;
1015 }
1016 case Instruction::ShuffleVector: {
1017 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Craig Topper2e18bcf2016-12-29 04:24:32 +00001018 unsigned LHSVWidth =
1019 Shuffle->getOperand(0)->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +00001020 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1021 for (unsigned i = 0; i < VWidth; i++) {
1022 if (DemandedElts[i]) {
1023 unsigned MaskVal = Shuffle->getMaskValue(i);
1024 if (MaskVal != -1u) {
1025 assert(MaskVal < LHSVWidth * 2 &&
1026 "shufflevector mask index out of range!");
1027 if (MaskVal < LHSVWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +00001028 LeftDemanded.setBit(MaskVal);
Chris Lattner7e044912010-01-04 07:17:19 +00001029 else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001030 RightDemanded.setBit(MaskVal - LHSVWidth);
Chris Lattner7e044912010-01-04 07:17:19 +00001031 }
1032 }
1033 }
1034
Alexey Bataevfee90782016-09-23 09:14:08 +00001035 APInt LHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001036 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001037 LHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001038 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1039
Alexey Bataevfee90782016-09-23 09:14:08 +00001040 APInt RHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001041 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001042 RHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001043 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1044
1045 bool NewUndefElts = false;
Alexey Bataev793c9462016-09-26 13:18:59 +00001046 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1047 unsigned RHSIdx = -1u, RHSValIdx = -1u;
Alexey Bataevfee90782016-09-23 09:14:08 +00001048 bool LHSUniform = true;
1049 bool RHSUniform = true;
Chris Lattner7e044912010-01-04 07:17:19 +00001050 for (unsigned i = 0; i < VWidth; i++) {
1051 unsigned MaskVal = Shuffle->getMaskValue(i);
1052 if (MaskVal == -1u) {
Jay Foad25a5e4c2010-12-01 08:53:58 +00001053 UndefElts.setBit(i);
Eli Friedman888bea02011-09-15 01:14:29 +00001054 } else if (!DemandedElts[i]) {
1055 NewUndefElts = true;
1056 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +00001057 } else if (MaskVal < LHSVWidth) {
Alexey Bataevfee90782016-09-23 09:14:08 +00001058 if (LHSUndefElts[MaskVal]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001059 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001060 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001061 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001062 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1063 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001064 LHSUniform = LHSUniform && (MaskVal == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001065 }
1066 } else {
Alexey Bataevfee90782016-09-23 09:14:08 +00001067 if (RHSUndefElts[MaskVal - LHSVWidth]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001068 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001069 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001070 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001071 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1072 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001073 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001074 }
1075 }
1076 }
1077
Alexey Bataevfee90782016-09-23 09:14:08 +00001078 // Try to transform shuffle with constant vector and single element from
1079 // this constant vector to single insertelement instruction.
1080 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1081 // insertelement V, C[ci], ci-n
1082 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1083 Value *Op = nullptr;
1084 Constant *Value = nullptr;
1085 unsigned Idx = -1u;
1086
Craig Topper62f06e22016-12-29 05:38:31 +00001087 // Find constant vector with the single element in shuffle (LHS or RHS).
Alexey Bataevfee90782016-09-23 09:14:08 +00001088 if (LHSIdx < LHSVWidth && RHSUniform) {
1089 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1090 Op = Shuffle->getOperand(1);
Alexey Bataev793c9462016-09-26 13:18:59 +00001091 Value = CV->getOperand(LHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001092 Idx = LHSIdx;
1093 }
1094 }
1095 if (RHSIdx < LHSVWidth && LHSUniform) {
1096 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1097 Op = Shuffle->getOperand(0);
Alexey Bataev793c9462016-09-26 13:18:59 +00001098 Value = CV->getOperand(RHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001099 Idx = RHSIdx;
1100 }
1101 }
1102 // Found constant vector with single element - convert to insertelement.
1103 if (Op && Value) {
1104 Instruction *New = InsertElementInst::Create(
1105 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1106 Shuffle->getName());
1107 InsertNewInstWith(New, *Shuffle);
1108 return New;
1109 }
1110 }
Chris Lattner7e044912010-01-04 07:17:19 +00001111 if (NewUndefElts) {
1112 // Add additional discovered undefs.
Chris Lattner0256be92012-01-27 03:08:05 +00001113 SmallVector<Constant*, 16> Elts;
Chris Lattner7e044912010-01-04 07:17:19 +00001114 for (unsigned i = 0; i < VWidth; ++i) {
1115 if (UndefElts[i])
1116 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1117 else
1118 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1119 Shuffle->getMaskValue(i)));
1120 }
1121 I->setOperand(2, ConstantVector::get(Elts));
1122 MadeChange = true;
1123 }
1124 break;
1125 }
Pete Cooperabc13af2012-07-26 23:10:24 +00001126 case Instruction::Select: {
1127 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1128 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1129 for (unsigned i = 0; i < VWidth; i++) {
Andrea Di Biagio40f59e42015-10-06 10:34:53 +00001130 Constant *CElt = CV->getAggregateElement(i);
1131 // Method isNullValue always returns false when called on a
1132 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1133 // to avoid propagating incorrect information.
1134 if (isa<ConstantExpr>(CElt))
1135 continue;
1136 if (CElt->isNullValue())
Pete Cooperabc13af2012-07-26 23:10:24 +00001137 LeftDemanded.clearBit(i);
1138 else
1139 RightDemanded.clearBit(i);
1140 }
1141 }
1142
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001143 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1144 Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001145 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1146
1147 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001148 UndefElts2, Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001149 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001150
Pete Cooperabc13af2012-07-26 23:10:24 +00001151 // Output elements are undefined if both are undefined.
1152 UndefElts &= UndefElts2;
1153 break;
1154 }
Chris Lattner7e044912010-01-04 07:17:19 +00001155 case Instruction::BitCast: {
1156 // Vector->vector casts only.
Chris Lattner229907c2011-07-18 04:54:35 +00001157 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
Chris Lattner7e044912010-01-04 07:17:19 +00001158 if (!VTy) break;
1159 unsigned InVWidth = VTy->getNumElements();
1160 APInt InputDemandedElts(InVWidth, 0);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001161 UndefElts2 = APInt(InVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001162 unsigned Ratio;
1163
1164 if (VWidth == InVWidth) {
1165 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1166 // elements as are demanded of us.
1167 Ratio = 1;
1168 InputDemandedElts = DemandedElts;
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001169 } else if ((VWidth % InVWidth) == 0) {
1170 // If the number of elements in the output is a multiple of the number of
1171 // elements in the input then an input element is live if any of the
1172 // corresponding output elements are live.
1173 Ratio = VWidth / InVWidth;
1174 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Chris Lattner7e044912010-01-04 07:17:19 +00001175 if (DemandedElts[OutIdx])
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001176 InputDemandedElts.setBit(OutIdx / Ratio);
1177 } else if ((InVWidth % VWidth) == 0) {
1178 // If the number of elements in the input is a multiple of the number of
1179 // elements in the output then an input element is live if the
1180 // corresponding output element is live.
1181 Ratio = InVWidth / VWidth;
Chris Lattner7e044912010-01-04 07:17:19 +00001182 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001183 if (DemandedElts[InIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001184 InputDemandedElts.setBit(InIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001185 } else {
1186 // Unsupported so far.
1187 break;
Chris Lattner7e044912010-01-04 07:17:19 +00001188 }
Craig Topper4c947752012-12-22 18:09:02 +00001189
Chris Lattner7e044912010-01-04 07:17:19 +00001190 // div/rem demand all inputs, because they don't want divide by zero.
1191 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001192 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001193 if (TmpV) {
1194 I->setOperand(0, TmpV);
1195 MadeChange = true;
1196 }
Craig Topper4c947752012-12-22 18:09:02 +00001197
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001198 if (VWidth == InVWidth) {
1199 UndefElts = UndefElts2;
1200 } else if ((VWidth % InVWidth) == 0) {
1201 // If the number of elements in the output is a multiple of the number of
1202 // elements in the input then an output element is undef if the
1203 // corresponding input element is undef.
Chris Lattner7e044912010-01-04 07:17:19 +00001204 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001205 if (UndefElts2[OutIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001206 UndefElts.setBit(OutIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001207 } else if ((InVWidth % VWidth) == 0) {
1208 // If the number of elements in the input is a multiple of the number of
1209 // elements in the output then an output element is undef if all of the
1210 // corresponding input elements are undef.
1211 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1212 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1213 if (SubUndef.countPopulation() == Ratio)
1214 UndefElts.setBit(OutIdx);
1215 }
1216 } else {
Chris Lattner7e044912010-01-04 07:17:19 +00001217 llvm_unreachable("Unimp");
Chris Lattner7e044912010-01-04 07:17:19 +00001218 }
1219 break;
1220 }
1221 case Instruction::And:
1222 case Instruction::Or:
1223 case Instruction::Xor:
1224 case Instruction::Add:
1225 case Instruction::Sub:
1226 case Instruction::Mul:
1227 // div/rem demand all inputs, because they don't want divide by zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001228 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1229 Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001230 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1231 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001232 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001233 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001234
Chris Lattner7e044912010-01-04 07:17:19 +00001235 // Output elements are undefined if both are undefined. Consider things
1236 // like undef&0. The result is known zero, not undef.
1237 UndefElts &= UndefElts2;
1238 break;
Pete Coopere807e452012-07-26 22:37:04 +00001239 case Instruction::FPTrunc:
1240 case Instruction::FPExt:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001241 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1242 Depth + 1);
Pete Coopere807e452012-07-26 22:37:04 +00001243 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1244 break;
Craig Topper4c947752012-12-22 18:09:02 +00001245
Chris Lattner7e044912010-01-04 07:17:19 +00001246 case Instruction::Call: {
1247 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1248 if (!II) break;
1249 switch (II->getIntrinsicID()) {
1250 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001251
Craig Topper7fc6d342016-12-11 22:32:38 +00001252 case Intrinsic::x86_xop_vfrcz_ss:
1253 case Intrinsic::x86_xop_vfrcz_sd:
1254 // The instructions for these intrinsics are speced to zero upper bits not
1255 // pass them through like other scalar intrinsics. So we shouldn't just
1256 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1257 // Instead we should return a zero vector.
Craig Topper1a8a3372016-12-29 03:30:17 +00001258 if (!DemandedElts[0]) {
1259 Worklist.Add(II);
Craig Topper7fc6d342016-12-11 22:32:38 +00001260 return ConstantAggregateZero::get(II->getType());
Craig Topper1a8a3372016-12-29 03:30:17 +00001261 }
Craig Topper7fc6d342016-12-11 22:32:38 +00001262
Craig Topperac75bca2016-12-13 07:45:45 +00001263 // Only the lower element is used.
1264 DemandedElts = 1;
Craig Topper7fc6d342016-12-11 22:32:38 +00001265 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1266 UndefElts, Depth + 1);
1267 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperac75bca2016-12-13 07:45:45 +00001268
1269 // Only the lower element is undefined. The high elements are zero.
1270 UndefElts = UndefElts[0];
Craig Topper7fc6d342016-12-11 22:32:38 +00001271 break;
1272
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001273 // Unary scalar-as-vector operations that work column-wise.
Simon Pilgrim83020942016-04-24 18:23:14 +00001274 case Intrinsic::x86_sse_rcp_ss:
1275 case Intrinsic::x86_sse_rsqrt_ss:
1276 case Intrinsic::x86_sse_sqrt_ss:
1277 case Intrinsic::x86_sse2_sqrt_sd:
Simon Pilgrim83020942016-04-24 18:23:14 +00001278 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1279 UndefElts, Depth + 1);
1280 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1281
1282 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001283 if (!DemandedElts[0]) {
1284 Worklist.Add(II);
Simon Pilgrim83020942016-04-24 18:23:14 +00001285 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001286 }
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001287 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1288 // checks).
Simon Pilgrim83020942016-04-24 18:23:14 +00001289 break;
1290
Craig Toppera0372de2016-12-14 03:17:27 +00001291 // Binary scalar-as-vector operations that work column-wise. The high
1292 // elements come from operand 0. The low element is a function of both
1293 // operands.
Chris Lattner7e044912010-01-04 07:17:19 +00001294 case Intrinsic::x86_sse_min_ss:
1295 case Intrinsic::x86_sse_max_ss:
Simon Pilgrim83020942016-04-24 18:23:14 +00001296 case Intrinsic::x86_sse_cmp_ss:
Chris Lattner7e044912010-01-04 07:17:19 +00001297 case Intrinsic::x86_sse2_min_sd:
1298 case Intrinsic::x86_sse2_max_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00001299 case Intrinsic::x86_sse2_cmp_sd: {
1300 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1301 UndefElts, Depth + 1);
1302 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1303
1304 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001305 if (!DemandedElts[0]) {
1306 Worklist.Add(II);
Craig Toppera0372de2016-12-14 03:17:27 +00001307 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001308 }
Craig Toppera0372de2016-12-14 03:17:27 +00001309
1310 // Only lower element is used for operand 1.
1311 DemandedElts = 1;
1312 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1313 UndefElts2, Depth + 1);
1314 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1315
1316 // Lower element is undefined if both lower elements are undefined.
1317 // Consider things like undef&0. The result is known zero, not undef.
1318 if (!UndefElts2[0])
1319 UndefElts.clearBit(0);
1320
1321 break;
1322 }
1323
Craig Toppereb6a20e2016-12-14 03:17:30 +00001324 // Binary scalar-as-vector operations that work column-wise. The high
1325 // elements come from operand 0 and the low element comes from operand 1.
Simon Pilgrim83020942016-04-24 18:23:14 +00001326 case Intrinsic::x86_sse41_round_ss:
Craig Toppereb6a20e2016-12-14 03:17:30 +00001327 case Intrinsic::x86_sse41_round_sd: {
1328 // Don't use the low element of operand 0.
1329 APInt DemandedElts2 = DemandedElts;
1330 DemandedElts2.clearBit(0);
1331 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001332 UndefElts, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001333 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001334
1335 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001336 if (!DemandedElts[0]) {
1337 Worklist.Add(II);
Craig Toppereb6a20e2016-12-14 03:17:30 +00001338 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001339 }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001340
1341 // Only lower element is used for operand 1.
1342 DemandedElts = 1;
Gabor Greife23efee2010-06-28 16:45:00 +00001343 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001344 UndefElts2, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001345 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
Chris Lattner7e044912010-01-04 07:17:19 +00001346
Craig Toppereb6a20e2016-12-14 03:17:30 +00001347 // Take the high undef elements from operand 0 and take the lower element
1348 // from operand 1.
1349 UndefElts.clearBit(0);
1350 UndefElts |= UndefElts2[0];
Chris Lattner7e044912010-01-04 07:17:19 +00001351 break;
Craig Toppereb6a20e2016-12-14 03:17:30 +00001352 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001353
Craig Topperdfd268d2016-12-14 05:43:05 +00001354 // Three input scalar-as-vector operations that work column-wise. The high
1355 // elements come from operand 0 and the low element is a function of all
1356 // three inputs.
Craig Topper268b3ab2016-12-14 06:06:58 +00001357 case Intrinsic::x86_avx512_mask_add_ss_round:
1358 case Intrinsic::x86_avx512_mask_div_ss_round:
1359 case Intrinsic::x86_avx512_mask_mul_ss_round:
1360 case Intrinsic::x86_avx512_mask_sub_ss_round:
1361 case Intrinsic::x86_avx512_mask_max_ss_round:
1362 case Intrinsic::x86_avx512_mask_min_ss_round:
1363 case Intrinsic::x86_avx512_mask_add_sd_round:
1364 case Intrinsic::x86_avx512_mask_div_sd_round:
1365 case Intrinsic::x86_avx512_mask_mul_sd_round:
1366 case Intrinsic::x86_avx512_mask_sub_sd_round:
1367 case Intrinsic::x86_avx512_mask_max_sd_round:
1368 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topper23ebd952016-12-11 08:54:52 +00001369 case Intrinsic::x86_fma_vfmadd_ss:
1370 case Intrinsic::x86_fma_vfmsub_ss:
1371 case Intrinsic::x86_fma_vfnmadd_ss:
1372 case Intrinsic::x86_fma_vfnmsub_ss:
1373 case Intrinsic::x86_fma_vfmadd_sd:
1374 case Intrinsic::x86_fma_vfmsub_sd:
1375 case Intrinsic::x86_fma_vfnmadd_sd:
1376 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Topperab5f3552016-12-15 03:49:45 +00001377 case Intrinsic::x86_avx512_mask_vfmadd_ss:
1378 case Intrinsic::x86_avx512_mask_vfmadd_sd:
1379 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1380 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
Craig Topper23ebd952016-12-11 08:54:52 +00001381 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1382 UndefElts, Depth + 1);
1383 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperdfd268d2016-12-14 05:43:05 +00001384
1385 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001386 if (!DemandedElts[0]) {
1387 Worklist.Add(II);
Craig Topperdfd268d2016-12-14 05:43:05 +00001388 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001389 }
Craig Topperdfd268d2016-12-14 05:43:05 +00001390
1391 // Only lower element is used for operand 1 and 2.
1392 DemandedElts = 1;
Craig Topper23ebd952016-12-11 08:54:52 +00001393 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1394 UndefElts2, Depth + 1);
1395 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1396 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1397 UndefElts3, Depth + 1);
1398 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1399
Craig Topperdfd268d2016-12-14 05:43:05 +00001400 // Lower element is undefined if all three lower elements are undefined.
1401 // Consider things like undef&0. The result is known zero, not undef.
1402 if (!UndefElts2[0] || !UndefElts3[0])
1403 UndefElts.clearBit(0);
Craig Topper23ebd952016-12-11 08:54:52 +00001404
Craig Topper23ebd952016-12-11 08:54:52 +00001405 break;
1406
Craig Topperab5f3552016-12-15 03:49:45 +00001407 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1408 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1409 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1410 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1411 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1412 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1413 // These intrinsics get the passthru bits from operand 2.
1414 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1415 UndefElts, Depth + 1);
1416 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1417
1418 // If lowest element of a scalar op isn't used then use Arg2.
Craig Topper1a8a3372016-12-29 03:30:17 +00001419 if (!DemandedElts[0]) {
1420 Worklist.Add(II);
Craig Topperab5f3552016-12-15 03:49:45 +00001421 return II->getArgOperand(2);
Craig Topper1a8a3372016-12-29 03:30:17 +00001422 }
Craig Topperab5f3552016-12-15 03:49:45 +00001423
1424 // Only lower element is used for operand 0 and 1.
1425 DemandedElts = 1;
1426 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1427 UndefElts2, Depth + 1);
1428 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1429 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1430 UndefElts3, Depth + 1);
1431 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1432
1433 // Lower element is undefined if all three lower elements are undefined.
1434 // Consider things like undef&0. The result is known zero, not undef.
1435 if (!UndefElts2[0] || !UndefElts3[0])
1436 UndefElts.clearBit(0);
1437
1438 break;
1439
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001440 case Intrinsic::x86_sse2_pmulu_dq:
1441 case Intrinsic::x86_sse41_pmuldq:
1442 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00001443 case Intrinsic::x86_avx2_pmulu_dq:
1444 case Intrinsic::x86_avx512_pmul_dq_512:
1445 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001446 Value *Op0 = II->getArgOperand(0);
1447 Value *Op1 = II->getArgOperand(1);
1448 unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1449 assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1450
1451 APInt InnerDemandedElts(InnerVWidth, 0);
1452 for (unsigned i = 0; i != VWidth; ++i)
1453 if (DemandedElts[i])
1454 InnerDemandedElts.setBit(i * 2);
1455
1456 UndefElts2 = APInt(InnerVWidth, 0);
1457 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1458 Depth + 1);
1459 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1460
1461 UndefElts3 = APInt(InnerVWidth, 0);
1462 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1463 Depth + 1);
1464 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1465
1466 break;
1467 }
1468
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001469 case Intrinsic::x86_sse2_packssdw_128:
1470 case Intrinsic::x86_sse2_packsswb_128:
1471 case Intrinsic::x86_sse2_packuswb_128:
1472 case Intrinsic::x86_sse41_packusdw:
1473 case Intrinsic::x86_avx2_packssdw:
1474 case Intrinsic::x86_avx2_packsswb:
1475 case Intrinsic::x86_avx2_packusdw:
Craig Topper3731f4d2017-02-16 07:35:23 +00001476 case Intrinsic::x86_avx2_packuswb:
1477 case Intrinsic::x86_avx512_packssdw_512:
1478 case Intrinsic::x86_avx512_packsswb_512:
1479 case Intrinsic::x86_avx512_packusdw_512:
1480 case Intrinsic::x86_avx512_packuswb_512: {
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001481 auto *Ty0 = II->getArgOperand(0)->getType();
1482 unsigned InnerVWidth = Ty0->getVectorNumElements();
1483 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1484
1485 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1486 unsigned VWidthPerLane = VWidth / NumLanes;
1487 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1488
1489 // Per lane, pack the elements of the first input and then the second.
1490 // e.g.
1491 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1492 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1493 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1494 APInt OpDemandedElts(InnerVWidth, 0);
1495 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1496 unsigned LaneIdx = Lane * VWidthPerLane;
1497 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1498 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1499 if (DemandedElts[Idx])
1500 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1501 }
1502 }
1503
1504 // Demand elements from the operand.
1505 auto *Op = II->getArgOperand(OpNum);
1506 APInt OpUndefElts(InnerVWidth, 0);
1507 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1508 Depth + 1);
1509 if (TmpV) {
1510 II->setArgOperand(OpNum, TmpV);
1511 MadeChange = true;
1512 }
1513
1514 // Pack the operand's UNDEF elements, one lane at a time.
1515 OpUndefElts = OpUndefElts.zext(VWidth);
1516 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1517 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1518 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
Craig Topper24e71012017-04-28 03:36:24 +00001519 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001520 UndefElts |= LaneElts;
1521 }
1522 }
1523 break;
1524 }
1525
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001526 // PSHUFB
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001527 case Intrinsic::x86_ssse3_pshuf_b_128:
1528 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001529 case Intrinsic::x86_avx512_pshuf_b_512:
1530 // PERMILVAR
1531 case Intrinsic::x86_avx_vpermilvar_ps:
1532 case Intrinsic::x86_avx_vpermilvar_ps_256:
1533 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1534 case Intrinsic::x86_avx_vpermilvar_pd:
1535 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrimfe2c0ed2017-01-18 14:47:49 +00001536 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1537 // PERMV
1538 case Intrinsic::x86_avx2_permd:
1539 case Intrinsic::x86_avx2_permps: {
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001540 Value *Op1 = II->getArgOperand(1);
1541 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1542 Depth + 1);
1543 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1544 break;
1545 }
1546
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001547 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1548 // in an undefined state.
1549 case Intrinsic::x86_sse4a_extrq:
1550 case Intrinsic::x86_sse4a_extrqi:
1551 case Intrinsic::x86_sse4a_insertq:
1552 case Intrinsic::x86_sse4a_insertqi:
Craig Topper3a86a042017-03-19 05:49:16 +00001553 UndefElts.setHighBits(VWidth / 2);
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001554 break;
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001555 case Intrinsic::amdgcn_buffer_load:
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001556 case Intrinsic::amdgcn_buffer_load_format:
1557 case Intrinsic::amdgcn_image_sample:
1558 case Intrinsic::amdgcn_image_sample_cl:
1559 case Intrinsic::amdgcn_image_sample_d:
1560 case Intrinsic::amdgcn_image_sample_d_cl:
1561 case Intrinsic::amdgcn_image_sample_l:
1562 case Intrinsic::amdgcn_image_sample_b:
1563 case Intrinsic::amdgcn_image_sample_b_cl:
1564 case Intrinsic::amdgcn_image_sample_lz:
1565 case Intrinsic::amdgcn_image_sample_cd:
1566 case Intrinsic::amdgcn_image_sample_cd_cl:
1567
1568 case Intrinsic::amdgcn_image_sample_c:
1569 case Intrinsic::amdgcn_image_sample_c_cl:
1570 case Intrinsic::amdgcn_image_sample_c_d:
1571 case Intrinsic::amdgcn_image_sample_c_d_cl:
1572 case Intrinsic::amdgcn_image_sample_c_l:
1573 case Intrinsic::amdgcn_image_sample_c_b:
1574 case Intrinsic::amdgcn_image_sample_c_b_cl:
1575 case Intrinsic::amdgcn_image_sample_c_lz:
1576 case Intrinsic::amdgcn_image_sample_c_cd:
1577 case Intrinsic::amdgcn_image_sample_c_cd_cl:
1578
1579 case Intrinsic::amdgcn_image_sample_o:
1580 case Intrinsic::amdgcn_image_sample_cl_o:
1581 case Intrinsic::amdgcn_image_sample_d_o:
1582 case Intrinsic::amdgcn_image_sample_d_cl_o:
1583 case Intrinsic::amdgcn_image_sample_l_o:
1584 case Intrinsic::amdgcn_image_sample_b_o:
1585 case Intrinsic::amdgcn_image_sample_b_cl_o:
1586 case Intrinsic::amdgcn_image_sample_lz_o:
1587 case Intrinsic::amdgcn_image_sample_cd_o:
1588 case Intrinsic::amdgcn_image_sample_cd_cl_o:
1589
1590 case Intrinsic::amdgcn_image_sample_c_o:
1591 case Intrinsic::amdgcn_image_sample_c_cl_o:
1592 case Intrinsic::amdgcn_image_sample_c_d_o:
1593 case Intrinsic::amdgcn_image_sample_c_d_cl_o:
1594 case Intrinsic::amdgcn_image_sample_c_l_o:
1595 case Intrinsic::amdgcn_image_sample_c_b_o:
1596 case Intrinsic::amdgcn_image_sample_c_b_cl_o:
1597 case Intrinsic::amdgcn_image_sample_c_lz_o:
1598 case Intrinsic::amdgcn_image_sample_c_cd_o:
1599 case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
1600
1601 case Intrinsic::amdgcn_image_getlod: {
Craig Topperd33ee1b2017-04-03 16:34:59 +00001602 if (VWidth == 1 || !DemandedElts.isMask())
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001603 return nullptr;
1604
1605 // TODO: Handle 3 vectors when supported in code gen.
1606 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1607 if (NewNumElts == VWidth)
1608 return nullptr;
1609
1610 Module *M = II->getParent()->getParent()->getParent();
1611 Type *EltTy = V->getType()->getVectorElementType();
1612
1613 Type *NewTy = (NewNumElts == 1) ? EltTy :
1614 VectorType::get(EltTy, NewNumElts);
1615
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001616 auto IID = II->getIntrinsicID();
1617
1618 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
1619 IID == Intrinsic::amdgcn_buffer_load_format;
1620
1621 Function *NewIntrin = IsBuffer ?
1622 Intrinsic::getDeclaration(M, IID, NewTy) :
1623 // Samplers have 3 mangled types.
1624 Intrinsic::getDeclaration(M, IID,
1625 { NewTy, II->getArgOperand(0)->getType(),
1626 II->getArgOperand(1)->getType()});
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001627
1628 SmallVector<Value *, 5> Args;
1629 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1630 Args.push_back(II->getArgOperand(I));
1631
Craig Topperbb4069e2017-07-07 23:16:26 +00001632 IRBuilderBase::InsertPointGuard Guard(Builder);
1633 Builder.SetInsertPoint(II);
Matt Arsenaulta3bdd8f2017-03-10 05:25:49 +00001634
Craig Topperbb4069e2017-07-07 23:16:26 +00001635 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001636 NewCall->takeName(II);
1637 NewCall->copyMetadata(*II);
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001638
1639 if (!IsBuffer) {
1640 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
1641 if (DMask) {
1642 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1643
1644 unsigned PopCnt = 0;
1645 unsigned NewDMask = 0;
1646 for (unsigned I = 0; I < 4; ++I) {
1647 const unsigned Bit = 1 << I;
1648 if (!!(DMaskVal & Bit)) {
1649 if (++PopCnt > NewNumElts)
1650 break;
1651
1652 NewDMask |= Bit;
1653 }
1654 }
1655
1656 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
1657 }
1658 }
1659
1660
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001661 if (NewNumElts == 1) {
Craig Topperbb4069e2017-07-07 23:16:26 +00001662 return Builder.CreateInsertElement(UndefValue::get(V->getType()),
1663 NewCall, static_cast<uint64_t>(0));
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001664 }
1665
1666 SmallVector<uint32_t, 8> EltMask;
1667 for (unsigned I = 0; I < VWidth; ++I)
1668 EltMask.push_back(I);
1669
Craig Topperbb4069e2017-07-07 23:16:26 +00001670 Value *Shuffle = Builder.CreateShuffleVector(
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001671 NewCall, UndefValue::get(NewTy), EltMask);
1672
1673 MadeChange = true;
1674 return Shuffle;
1675 }
Chris Lattner7e044912010-01-04 07:17:19 +00001676 }
1677 break;
1678 }
1679 }
Craig Topperf40110f2014-04-25 05:29:35 +00001680 return MadeChange ? I : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001681}