blob: e67d95782ae397ee326c49443fad4d6444e02ed0 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000030#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000031#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000033#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000034#include "llvm/IR/Function.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000037#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000038#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000039#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000040#include "llvm/IR/PassManager.h"
41#include "llvm/IR/Use.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000047#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000048#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000049#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000050#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000051#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000052#include <cassert>
53#include <iterator>
54#include <memory>
55#include <utility>
56
57using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000058
59#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000060
Geoff Berryefb0dd12016-06-14 21:19:40 +000061INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000062 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000063INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000065INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000067
Chad Rosier232e29e2016-07-06 21:20:47 +000068INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72 "Memory SSA Printer", false, false)
73
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000074static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
78
Chad Rosier232e29e2016-07-06 21:20:47 +000079static cl::opt<bool>
80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
81 cl::desc("Verify MemorySSA in legacy printer pass."));
82
George Burgess IVe1100f52016-02-02 22:46:49 +000083namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000084
George Burgess IVe1100f52016-02-02 22:46:49 +000085/// \brief An assembly annotator class to print Memory SSA information in
86/// comments.
87class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
88 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090 const MemorySSA *MSSA;
91
92public:
93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
94
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000095 void emitBasicBlockStartAnnot(const BasicBlock *BB,
96 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +000097 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
98 OS << "; " << *MA << "\n";
99 }
100
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000101 void emitInstructionAnnot(const Instruction *I,
102 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
104 OS << "; " << *MA << "\n";
105 }
106};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000107
108} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000109
George Burgess IV5f308972016-07-19 01:29:15 +0000110namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000111
Daniel Berlindff31de2016-08-02 21:57:52 +0000112/// Our current alias analysis API differentiates heavily between calls and
113/// non-calls, and functions called on one usually assert on the other.
114/// This class encapsulates the distinction to simplify other code that wants
115/// "Memory affecting instructions and related data" to use as a key.
116/// For example, this class is used as a densemap key in the use optimizer.
117class MemoryLocOrCall {
118public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000119 bool IsCall = false;
120
121 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000122 MemoryLocOrCall(MemoryUseOrDef *MUD)
123 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000124 MemoryLocOrCall(const MemoryUseOrDef *MUD)
125 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000126
127 MemoryLocOrCall(Instruction *Inst) {
128 if (ImmutableCallSite(Inst)) {
129 IsCall = true;
130 CS = ImmutableCallSite(Inst);
131 } else {
132 IsCall = false;
133 // There is no such thing as a memorylocation for a fence inst, and it is
134 // unique in that regard.
135 if (!isa<FenceInst>(Inst))
136 Loc = MemoryLocation::get(Inst);
137 }
138 }
139
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000141
Daniel Berlindff31de2016-08-02 21:57:52 +0000142 ImmutableCallSite getCS() const {
143 assert(IsCall);
144 return CS;
145 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000146
Daniel Berlindff31de2016-08-02 21:57:52 +0000147 MemoryLocation getLoc() const {
148 assert(!IsCall);
149 return Loc;
150 }
151
152 bool operator==(const MemoryLocOrCall &Other) const {
153 if (IsCall != Other.IsCall)
154 return false;
155
George Burgess IV3588fd42018-03-29 00:54:39 +0000156 if (!IsCall)
157 return Loc == Other.Loc;
158
159 if (CS.getCalledValue() != Other.CS.getCalledValue())
160 return false;
161
162 assert(CS.arg_size() == Other.CS.arg_size());
163 return std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000164 }
165
166private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000167 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000168 ImmutableCallSite CS;
169 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000170 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000171};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000172
173} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000174
175namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000176
Daniel Berlindff31de2016-08-02 21:57:52 +0000177template <> struct DenseMapInfo<MemoryLocOrCall> {
178 static inline MemoryLocOrCall getEmptyKey() {
179 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
180 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000181
Daniel Berlindff31de2016-08-02 21:57:52 +0000182 static inline MemoryLocOrCall getTombstoneKey() {
183 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
184 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000185
Daniel Berlindff31de2016-08-02 21:57:52 +0000186 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000187 if (!MLOC.IsCall)
188 return hash_combine(
189 MLOC.IsCall,
190 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
191
192 hash_code hash =
193 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
194 MLOC.getCS().getCalledValue()));
195
196 for (const Value *Arg : MLOC.getCS().args())
197 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
198 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000199 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000200
Daniel Berlindff31de2016-08-02 21:57:52 +0000201 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
202 return LHS == RHS;
203 }
204};
Daniel Berlindf101192016-08-03 00:01:46 +0000205
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000206} // end namespace llvm
207
George Burgess IV82e355c2016-08-03 19:39:54 +0000208/// This does one-way checks to see if Use could theoretically be hoisted above
209/// MayClobber. This will not check the other way around.
210///
211/// This assumes that, for the purposes of MemorySSA, Use comes directly after
212/// MayClobber, with no potentially clobbering operations in between them.
213/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000214static bool areLoadsReorderable(const LoadInst *Use,
215 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000216 bool VolatileUse = Use->isVolatile();
217 bool VolatileClobber = MayClobber->isVolatile();
218 // Volatile operations may never be reordered with other volatile operations.
219 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000220 return false;
221 // Otherwise, volatile doesn't matter here. From the language reference:
222 // 'optimizers may change the order of volatile operations relative to
223 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000224
225 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
226 // is weaker, it can be moved above other loads. We just need to be sure that
227 // MayClobber isn't an acquire load, because loads can't be moved above
228 // acquire loads.
229 //
230 // Note that this explicitly *does* allow the free reordering of monotonic (or
231 // weaker) loads of the same address.
232 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
233 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
234 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000235 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000236}
237
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000238namespace {
239
240struct ClobberAlias {
241 bool IsClobber;
242 Optional<AliasResult> AR;
243};
244
245} // end anonymous namespace
246
247// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
248// ignored if IsClobber = false.
249static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
250 const MemoryLocation &UseLoc,
251 const Instruction *UseInst,
252 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000253 Instruction *DefInst = MD->getMemoryInst();
254 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000255 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000256 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000257
Daniel Berlindf101192016-08-03 00:01:46 +0000258 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
259 // These intrinsics will show up as affecting memory, but they are just
260 // markers.
261 switch (II->getIntrinsicID()) {
262 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000263 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000264 return {false, NoAlias};
265 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
266 return {AR == MustAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000267 case Intrinsic::lifetime_end:
268 case Intrinsic::invariant_start:
269 case Intrinsic::invariant_end:
270 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000271 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000272 default:
273 break;
274 }
275 }
276
Hans Wennborg70e22d12017-11-21 18:00:01 +0000277 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000278 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000279 AR = isMustSet(I) ? MustAlias : MayAlias;
280 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000281 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000282
Alina Sbirleaca741a82017-12-22 19:54:03 +0000283 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
284 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000285 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000286
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000287 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
288 AR = isMustSet(I) ? MustAlias : MayAlias;
289 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000290}
291
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000292static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
293 const MemoryUseOrDef *MU,
294 const MemoryLocOrCall &UseMLOC,
295 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000296 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
297 // to exist while MemoryLocOrCall is pushed through places.
298 if (UseMLOC.IsCall)
299 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
300 AA);
301 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
302 AA);
303}
304
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000305// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000306bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
307 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000308 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000309}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000310
311namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000312
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000313struct UpwardsMemoryQuery {
314 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000315 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000316 // The pointer location we started the query with. This will be empty if
317 // IsCall is true.
318 MemoryLocation StartingLoc;
319 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000320 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000321 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000322 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000323 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000324
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000325 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000326
327 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
328 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
329 if (!IsCall)
330 StartingLoc = MemoryLocation::get(Inst);
331 }
332};
333
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000334} // end anonymous namespace
335
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000336static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
337 AliasAnalysis &AA) {
338 Instruction *Inst = MD->getMemoryInst();
339 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
340 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000341 case Intrinsic::lifetime_end:
342 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
343 default:
344 return false;
345 }
346 }
347 return false;
348}
349
350static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
351 const Instruction *I) {
352 // If the memory can't be changed, then loads of the memory can't be
353 // clobbered.
354 //
355 // FIXME: We should handle invariant groups, as well. It's a bit harder,
356 // because we need to pay close attention to invariant group barriers.
357 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000358 AA.pointsToConstantMemory(cast<LoadInst>(I)->
359 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000360}
361
George Burgess IV5f308972016-07-19 01:29:15 +0000362/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
363/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
364///
365/// This is meant to be as simple and self-contained as possible. Because it
366/// uses no cache, etc., it can be relatively expensive.
367///
368/// \param Start The MemoryAccess that we want to walk from.
369/// \param ClobberAt A clobber for Start.
370/// \param StartLoc The MemoryLocation for Start.
371/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
372/// \param Query The UpwardsMemoryQuery we used for our search.
373/// \param AA The AliasAnalysis we used for our search.
374static void LLVM_ATTRIBUTE_UNUSED
375checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
376 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
377 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
378 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
379
380 if (MSSA.isLiveOnEntryDef(Start)) {
381 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
382 "liveOnEntry must clobber itself");
383 return;
384 }
385
George Burgess IV5f308972016-07-19 01:29:15 +0000386 bool FoundClobber = false;
387 DenseSet<MemoryAccessPair> VisitedPhis;
388 SmallVector<MemoryAccessPair, 8> Worklist;
389 Worklist.emplace_back(Start, StartLoc);
390 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
391 // is found, complain.
392 while (!Worklist.empty()) {
393 MemoryAccessPair MAP = Worklist.pop_back_val();
394 // All we care about is that nothing from Start to ClobberAt clobbers Start.
395 // We learn nothing from revisiting nodes.
396 if (!VisitedPhis.insert(MAP).second)
397 continue;
398
399 for (MemoryAccess *MA : def_chain(MAP.first)) {
400 if (MA == ClobberAt) {
401 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
402 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
403 // since it won't let us short-circuit.
404 //
405 // Also, note that this can't be hoisted out of the `Worklist` loop,
406 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000407 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
408 if (!FoundClobber) {
409 ClobberAlias CA =
410 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
411 if (CA.IsClobber) {
412 FoundClobber = true;
413 // Not used: CA.AR;
414 }
415 }
George Burgess IV5f308972016-07-19 01:29:15 +0000416 }
417 break;
418 }
419
420 // We should never hit liveOnEntry, unless it's the clobber.
421 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
422
423 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
424 (void)MD;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000425 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
426 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000427 "Found clobber before reaching ClobberAt!");
428 continue;
429 }
430
431 assert(isa<MemoryPhi>(MA));
432 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
433 }
434 }
435
436 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
437 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
438 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
439 "ClobberAt never acted as a clobber");
440}
441
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000442namespace {
443
George Burgess IV5f308972016-07-19 01:29:15 +0000444/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
445/// in one class.
446class ClobberWalker {
447 /// Save a few bytes by using unsigned instead of size_t.
448 using ListIndex = unsigned;
449
450 /// Represents a span of contiguous MemoryDefs, potentially ending in a
451 /// MemoryPhi.
452 struct DefPath {
453 MemoryLocation Loc;
454 // Note that, because we always walk in reverse, Last will always dominate
455 // First. Also note that First and Last are inclusive.
456 MemoryAccess *First;
457 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000458 Optional<ListIndex> Previous;
459
460 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
461 Optional<ListIndex> Previous)
462 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
463
464 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
465 Optional<ListIndex> Previous)
466 : DefPath(Loc, Init, Init, Previous) {}
467 };
468
469 const MemorySSA &MSSA;
470 AliasAnalysis &AA;
471 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000472 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000473
474 // Phi optimization bookkeeping
475 SmallVector<DefPath, 32> Paths;
476 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000477
George Burgess IV5f308972016-07-19 01:29:15 +0000478 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000479 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000480 assert(From->getNumOperands() && "Phi with no operands?");
481
482 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000483 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
484 DomTreeNode *Node = DT.getNode(BB);
485 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000486 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
487 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000488 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000489 }
George Burgess IV5f308972016-07-19 01:29:15 +0000490 return Result;
491 }
492
493 /// Result of calling walkToPhiOrClobber.
494 struct UpwardsWalkResult {
495 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000496 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000497 MemoryAccess *Result;
498 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000499 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000500 };
501
502 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
503 /// This will update Desc.Last as it walks. It will (optionally) also stop at
504 /// StopAt.
505 ///
506 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000507 UpwardsWalkResult
508 walkToPhiOrClobber(DefPath &Desc,
509 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000510 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
511
512 for (MemoryAccess *Current : def_chain(Desc.Last)) {
513 Desc.Last = Current;
514 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000515 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000516
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000517 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
518 if (MSSA.isLiveOnEntryDef(MD))
519 return {MD, true, MustAlias};
520 ClobberAlias CA =
521 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
522 if (CA.IsClobber)
523 return {MD, true, CA.AR};
524 }
George Burgess IV5f308972016-07-19 01:29:15 +0000525 }
526
527 assert(isa<MemoryPhi>(Desc.Last) &&
528 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000529 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000530 }
531
532 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
533 ListIndex PriorNode) {
534 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
535 upward_defs_end());
536 for (const MemoryAccessPair &P : UpwardDefs) {
537 PausedSearches.push_back(Paths.size());
538 Paths.emplace_back(P.second, P.first, PriorNode);
539 }
540 }
541
542 /// Represents a search that terminated after finding a clobber. This clobber
543 /// may or may not be present in the path of defs from LastNode..SearchStart,
544 /// since it may have been retrieved from cache.
545 struct TerminatedPath {
546 MemoryAccess *Clobber;
547 ListIndex LastNode;
548 };
549
550 /// Get an access that keeps us from optimizing to the given phi.
551 ///
552 /// PausedSearches is an array of indices into the Paths array. Its incoming
553 /// value is the indices of searches that stopped at the last phi optimization
554 /// target. It's left in an unspecified state.
555 ///
556 /// If this returns None, NewPaused is a vector of searches that terminated
557 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000558 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000559 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000560 SmallVectorImpl<ListIndex> &PausedSearches,
561 SmallVectorImpl<ListIndex> &NewPaused,
562 SmallVectorImpl<TerminatedPath> &Terminated) {
563 assert(!PausedSearches.empty() && "No searches to continue?");
564
565 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
566 // PausedSearches as our stack.
567 while (!PausedSearches.empty()) {
568 ListIndex PathIndex = PausedSearches.pop_back_val();
569 DefPath &Node = Paths[PathIndex];
570
571 // If we've already visited this path with this MemoryLocation, we don't
572 // need to do so again.
573 //
574 // NOTE: That we just drop these paths on the ground makes caching
575 // behavior sporadic. e.g. given a diamond:
576 // A
577 // B C
578 // D
579 //
580 // ...If we walk D, B, A, C, we'll only cache the result of phi
581 // optimization for A, B, and D; C will be skipped because it dies here.
582 // This arguably isn't the worst thing ever, since:
583 // - We generally query things in a top-down order, so if we got below D
584 // without needing cache entries for {C, MemLoc}, then chances are
585 // that those cache entries would end up ultimately unused.
586 // - We still cache things for A, so C only needs to walk up a bit.
587 // If this behavior becomes problematic, we can fix without a ton of extra
588 // work.
589 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
590 continue;
591
592 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
593 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000594 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000595 // If this wasn't a cache hit, we hit a clobber when walking. That's a
596 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000597 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000598 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000599 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000600
601 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000602 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000603 continue;
604 }
605
606 if (Res.Result == StopWhere) {
607 // We've hit our target. Save this path off for if we want to continue
608 // walking.
609 NewPaused.push_back(PathIndex);
610 continue;
611 }
612
613 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
614 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
615 }
616
617 return None;
618 }
619
620 template <typename T, typename Walker>
621 struct generic_def_path_iterator
622 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
623 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000624 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000625 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
626
627 T &operator*() const { return curNode(); }
628
629 generic_def_path_iterator &operator++() {
630 N = curNode().Previous;
631 return *this;
632 }
633
634 bool operator==(const generic_def_path_iterator &O) const {
635 if (N.hasValue() != O.N.hasValue())
636 return false;
637 return !N.hasValue() || *N == *O.N;
638 }
639
640 private:
641 T &curNode() const { return W->Paths[*N]; }
642
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000643 Walker *W = nullptr;
644 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000645 };
646
647 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
648 using const_def_path_iterator =
649 generic_def_path_iterator<const DefPath, const ClobberWalker>;
650
651 iterator_range<def_path_iterator> def_path(ListIndex From) {
652 return make_range(def_path_iterator(this, From), def_path_iterator());
653 }
654
655 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
656 return make_range(const_def_path_iterator(this, From),
657 const_def_path_iterator());
658 }
659
660 struct OptznResult {
661 /// The path that contains our result.
662 TerminatedPath PrimaryClobber;
663 /// The paths that we can legally cache back from, but that aren't
664 /// necessarily the result of the Phi optimization.
665 SmallVector<TerminatedPath, 4> OtherClobbers;
666 };
667
668 ListIndex defPathIndex(const DefPath &N) const {
669 // The assert looks nicer if we don't need to do &N
670 const DefPath *NP = &N;
671 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
672 "Out of bounds DefPath!");
673 return NP - &Paths.front();
674 }
675
676 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
677 /// that act as legal clobbers. Note that this won't return *all* clobbers.
678 ///
679 /// Phi optimization algorithm tl;dr:
680 /// - Find the earliest def/phi, A, we can optimize to
681 /// - Find if all paths from the starting memory access ultimately reach A
682 /// - If not, optimization isn't possible.
683 /// - Otherwise, walk from A to another clobber or phi, A'.
684 /// - If A' is a def, we're done.
685 /// - If A' is a phi, try to optimize it.
686 ///
687 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
688 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
689 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
690 const MemoryLocation &Loc) {
691 assert(Paths.empty() && VisitedPhis.empty() &&
692 "Reset the optimization state.");
693
694 Paths.emplace_back(Loc, Start, Phi, None);
695 // Stores how many "valid" optimization nodes we had prior to calling
696 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
697 auto PriorPathsSize = Paths.size();
698
699 SmallVector<ListIndex, 16> PausedSearches;
700 SmallVector<ListIndex, 8> NewPaused;
701 SmallVector<TerminatedPath, 4> TerminatedPaths;
702
703 addSearches(Phi, PausedSearches, 0);
704
705 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
706 // Paths.
707 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
708 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000709 auto Dom = Paths.begin();
710 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
711 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
712 Dom = I;
713 auto Last = Paths.end() - 1;
714 if (Last != Dom)
715 std::iter_swap(Last, Dom);
716 };
717
718 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000719 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000720 assert(!MSSA.isLiveOnEntryDef(Current) &&
721 "liveOnEntry wasn't treated as a clobber?");
722
Daniel Berlind0420312017-04-01 09:01:12 +0000723 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000724 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
725 // optimization for the prior phi.
726 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
727 return MSSA.dominates(P.Clobber, Target);
728 }));
729
730 // FIXME: This is broken, because the Blocker may be reported to be
731 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000732 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000733 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000734 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000735
736 // Find the node we started at. We can't search based on N->Last, since
737 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000738 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000739 return defPathIndex(N) < PriorPathsSize;
740 });
741 assert(Iter != def_path_iterator());
742
743 DefPath &CurNode = *Iter;
744 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000745
746 // Two things:
747 // A. We can't reliably cache all of NewPaused back. Consider a case
748 // where we have two paths in NewPaused; one of which can't optimize
749 // above this phi, whereas the other can. If we cache the second path
750 // back, we'll end up with suboptimal cache entries. We can handle
751 // cases like this a bit better when we either try to find all
752 // clobbers that block phi optimization, or when our cache starts
753 // supporting unfinished searches.
754 // B. We can't reliably cache TerminatedPaths back here without doing
755 // extra checks; consider a case like:
756 // T
757 // / \
758 // D C
759 // \ /
760 // S
761 // Where T is our target, C is a node with a clobber on it, D is a
762 // diamond (with a clobber *only* on the left or right node, N), and
763 // S is our start. Say we walk to D, through the node opposite N
764 // (read: ignoring the clobber), and see a cache entry in the top
765 // node of D. That cache entry gets put into TerminatedPaths. We then
766 // walk up to C (N is later in our worklist), find the clobber, and
767 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
768 // the bottom part of D to the cached clobber, ignoring the clobber
769 // in N. Again, this problem goes away if we start tracking all
770 // blockers for a given phi optimization.
771 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
772 return {Result, {}};
773 }
774
775 // If there's nothing left to search, then all paths led to valid clobbers
776 // that we got from our cache; pick the nearest to the start, and allow
777 // the rest to be cached back.
778 if (NewPaused.empty()) {
779 MoveDominatedPathToEnd(TerminatedPaths);
780 TerminatedPath Result = TerminatedPaths.pop_back_val();
781 return {Result, std::move(TerminatedPaths)};
782 }
783
784 MemoryAccess *DefChainEnd = nullptr;
785 SmallVector<TerminatedPath, 4> Clobbers;
786 for (ListIndex Paused : NewPaused) {
787 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
788 if (WR.IsKnownClobber)
789 Clobbers.push_back({WR.Result, Paused});
790 else
791 // Micro-opt: If we hit the end of the chain, save it.
792 DefChainEnd = WR.Result;
793 }
794
795 if (!TerminatedPaths.empty()) {
796 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
797 // do it now.
798 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000799 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000800 DefChainEnd = MA;
801
802 // If any of the terminated paths don't dominate the phi we'll try to
803 // optimize, we need to figure out what they are and quit.
804 const BasicBlock *ChainBB = DefChainEnd->getBlock();
805 for (const TerminatedPath &TP : TerminatedPaths) {
806 // Because we know that DefChainEnd is as "high" as we can go, we
807 // don't need local dominance checks; BB dominance is sufficient.
808 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
809 Clobbers.push_back(TP);
810 }
811 }
812
813 // If we have clobbers in the def chain, find the one closest to Current
814 // and quit.
815 if (!Clobbers.empty()) {
816 MoveDominatedPathToEnd(Clobbers);
817 TerminatedPath Result = Clobbers.pop_back_val();
818 return {Result, std::move(Clobbers)};
819 }
820
821 assert(all_of(NewPaused,
822 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
823
824 // Because liveOnEntry is a clobber, this must be a phi.
825 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
826
827 PriorPathsSize = Paths.size();
828 PausedSearches.clear();
829 for (ListIndex I : NewPaused)
830 addSearches(DefChainPhi, PausedSearches, I);
831 NewPaused.clear();
832
833 Current = DefChainPhi;
834 }
835 }
836
George Burgess IV5f308972016-07-19 01:29:15 +0000837 void verifyOptResult(const OptznResult &R) const {
838 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
839 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
840 }));
841 }
842
843 void resetPhiOptznState() {
844 Paths.clear();
845 VisitedPhis.clear();
846 }
847
848public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000849 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
850 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000851
Daniel Berlin7500c562017-04-01 08:59:45 +0000852 void reset() {}
George Burgess IV5f308972016-07-19 01:29:15 +0000853
854 /// Finds the nearest clobber for the given query, optimizing phis if
855 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000856 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000857 Query = &Q;
858
859 MemoryAccess *Current = Start;
860 // This walker pretends uses don't exist. If we're handed one, silently grab
861 // its def. (This has the nice side-effect of ensuring we never cache uses)
862 if (auto *MU = dyn_cast<MemoryUse>(Start))
863 Current = MU->getDefiningAccess();
864
865 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
866 // Fast path for the overly-common case (no crazy phi optimization
867 // necessary)
868 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000869 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000870 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000871 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000872 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000873 } else {
874 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
875 Current, Q.StartingLoc);
876 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000877 resetPhiOptznState();
878 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000879 }
880
George Burgess IV5f308972016-07-19 01:29:15 +0000881#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000882 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000883#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000884 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000885 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000886
887 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000888};
889
890struct RenamePassData {
891 DomTreeNode *DTN;
892 DomTreeNode::const_iterator ChildIt;
893 MemoryAccess *IncomingVal;
894
895 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
896 MemoryAccess *M)
897 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000898
George Burgess IV5f308972016-07-19 01:29:15 +0000899 void swap(RenamePassData &RHS) {
900 std::swap(DTN, RHS.DTN);
901 std::swap(ChildIt, RHS.ChildIt);
902 std::swap(IncomingVal, RHS.IncomingVal);
903 }
904};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000905
906} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000907
908namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000909
Daniel Berlind952cea2017-04-07 01:28:36 +0000910/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
911/// longer does caching on its own,
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000912/// but the name has been retained for the moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000913class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000914 ClobberWalker Walker;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000915 bool AutoResetWalker = true;
George Burgess IV5f308972016-07-19 01:29:15 +0000916
917 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000918
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000919public:
920 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000921 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000922
George Burgess IV400ae402016-07-20 19:51:34 +0000923 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000924
George Burgess IV400ae402016-07-20 19:51:34 +0000925 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000926 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000927 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000928 void invalidateInfo(MemoryAccess *) override;
929
George Burgess IV5f308972016-07-19 01:29:15 +0000930 /// Whether we call resetClobberWalker() after each time we *actually* walk to
931 /// answer a clobber query.
932 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000933
Daniel Berlin7500c562017-04-01 08:59:45 +0000934 /// Drop the walker's persistent data structures.
George Burgess IV5f308972016-07-19 01:29:15 +0000935 void resetClobberWalker() { Walker.reset(); }
Geoff Berrycdf53332016-08-08 17:52:01 +0000936
937 void verify(const MemorySSA *MSSA) override {
938 MemorySSAWalker::verify(MSSA);
939 Walker.verify(MSSA);
940 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000941};
George Burgess IVe1100f52016-02-02 22:46:49 +0000942
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000943} // end namespace llvm
944
Daniel Berlin78cbd282017-02-20 22:26:03 +0000945void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
946 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000947 // Pass through values to our successors
948 for (const BasicBlock *S : successors(BB)) {
949 auto It = PerBlockAccesses.find(S);
950 // Rename the phi nodes in our successor block
951 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
952 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000953 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000954 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000955 if (RenameAllUses) {
956 int PhiIndex = Phi->getBasicBlockIndex(BB);
957 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
958 Phi->setIncomingValue(PhiIndex, IncomingVal);
959 } else
960 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000961 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000962}
George Burgess IVe1100f52016-02-02 22:46:49 +0000963
Daniel Berlin78cbd282017-02-20 22:26:03 +0000964/// \brief Rename a single basic block into MemorySSA form.
965/// Uses the standard SSA renaming algorithm.
966/// \returns The new incoming value.
967MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
968 bool RenameAllUses) {
969 auto It = PerBlockAccesses.find(BB);
970 // Skip most processing if the list is empty.
971 if (It != PerBlockAccesses.end()) {
972 AccessList *Accesses = It->second.get();
973 for (MemoryAccess &L : *Accesses) {
974 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
975 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
976 MUD->setDefiningAccess(IncomingVal);
977 if (isa<MemoryDef>(&L))
978 IncomingVal = &L;
979 } else {
980 IncomingVal = &L;
981 }
982 }
983 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000984 return IncomingVal;
985}
986
987/// \brief This is the standard SSA renaming algorithm.
988///
989/// We walk the dominator tree in preorder, renaming accesses, and then filling
990/// in phi nodes in our successors.
991void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000992 SmallPtrSetImpl<BasicBlock *> &Visited,
993 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000994 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +0000995 // Skip everything if we already renamed this block and we are skipping.
996 // Note: You can't sink this into the if, because we need it to occur
997 // regardless of whether we skip blocks or not.
998 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
999 if (SkipVisited && AlreadyVisited)
1000 return;
1001
1002 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1003 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001004 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001005
1006 while (!WorkStack.empty()) {
1007 DomTreeNode *Node = WorkStack.back().DTN;
1008 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1009 IncomingVal = WorkStack.back().IncomingVal;
1010
1011 if (ChildIt == Node->end()) {
1012 WorkStack.pop_back();
1013 } else {
1014 DomTreeNode *Child = *ChildIt;
1015 ++WorkStack.back().ChildIt;
1016 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001017 // Note: You can't sink this into the if, because we need it to occur
1018 // regardless of whether we skip blocks or not.
1019 AlreadyVisited = !Visited.insert(BB).second;
1020 if (SkipVisited && AlreadyVisited) {
1021 // We already visited this during our renaming, which can happen when
1022 // being asked to rename multiple blocks. Figure out the incoming val,
1023 // which is the last def.
1024 // Incoming value can only change if there is a block def, and in that
1025 // case, it's the last block def in the list.
1026 if (auto *BlockDefs = getWritableBlockDefs(BB))
1027 IncomingVal = &*BlockDefs->rbegin();
1028 } else
1029 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1030 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001031 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1032 }
1033 }
1034}
1035
George Burgess IVa362b092016-07-06 00:28:43 +00001036/// \brief This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001037/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1038/// being uses of the live on entry definition.
1039void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1040 assert(!DT->isReachableFromEntry(BB) &&
1041 "Reachable block found while handling unreachable blocks");
1042
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001043 // Make sure phi nodes in our reachable successors end up with a
1044 // LiveOnEntryDef for our incoming edge, even though our block is forward
1045 // unreachable. We could just disconnect these blocks from the CFG fully,
1046 // but we do not right now.
1047 for (const BasicBlock *S : successors(BB)) {
1048 if (!DT->isReachableFromEntry(S))
1049 continue;
1050 auto It = PerBlockAccesses.find(S);
1051 // Rename the phi nodes in our successor block
1052 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1053 continue;
1054 AccessList *Accesses = It->second.get();
1055 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1056 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1057 }
1058
George Burgess IVe1100f52016-02-02 22:46:49 +00001059 auto It = PerBlockAccesses.find(BB);
1060 if (It == PerBlockAccesses.end())
1061 return;
1062
1063 auto &Accesses = It->second;
1064 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1065 auto Next = std::next(AI);
1066 // If we have a phi, just remove it. We are going to replace all
1067 // users with live on entry.
1068 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1069 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1070 else
1071 Accesses->erase(AI);
1072 AI = Next;
1073 }
1074}
1075
Geoff Berryb96d3b22016-06-01 21:30:40 +00001076MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1077 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001078 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001079 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001080}
1081
George Burgess IVe1100f52016-02-02 22:46:49 +00001082MemorySSA::~MemorySSA() {
1083 // Drop all our references
1084 for (const auto &Pair : PerBlockAccesses)
1085 for (MemoryAccess &MA : *Pair.second)
1086 MA.dropAllReferences();
1087}
1088
Daniel Berlin14300262016-06-21 18:39:20 +00001089MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001090 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1091
1092 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001093 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001094 return Res.first->second.get();
1095}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001096
Daniel Berlind602e042017-01-25 20:56:19 +00001097MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1098 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1099
1100 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001101 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001102 return Res.first->second.get();
1103}
George Burgess IVe1100f52016-02-02 22:46:49 +00001104
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001105namespace llvm {
1106
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001107/// This class is a batch walker of all MemoryUse's in the program, and points
1108/// their defining access at the thing that actually clobbers them. Because it
1109/// is a batch walker that touches everything, it does not operate like the
1110/// other walkers. This walker is basically performing a top-down SSA renaming
1111/// pass, where the version stack is used as the cache. This enables it to be
1112/// significantly more time and memory efficient than using the regular walker,
1113/// which is walking bottom-up.
1114class MemorySSA::OptimizeUses {
1115public:
1116 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1117 DominatorTree *DT)
1118 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1119 Walker = MSSA->getWalker();
1120 }
1121
1122 void optimizeUses();
1123
1124private:
1125 /// This represents where a given memorylocation is in the stack.
1126 struct MemlocStackInfo {
1127 // This essentially is keeping track of versions of the stack. Whenever
1128 // the stack changes due to pushes or pops, these versions increase.
1129 unsigned long StackEpoch;
1130 unsigned long PopEpoch;
1131 // This is the lower bound of places on the stack to check. It is equal to
1132 // the place the last stack walk ended.
1133 // Note: Correctness depends on this being initialized to 0, which densemap
1134 // does
1135 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001136 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001137 // This is where the last walk for this memory location ended.
1138 unsigned long LastKill;
1139 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001140 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001141 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001142
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001143 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1144 SmallVectorImpl<MemoryAccess *> &,
1145 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001146
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001147 MemorySSA *MSSA;
1148 MemorySSAWalker *Walker;
1149 AliasAnalysis *AA;
1150 DominatorTree *DT;
1151};
1152
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001153} // end namespace llvm
1154
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001155/// Optimize the uses in a given block This is basically the SSA renaming
1156/// algorithm, with one caveat: We are able to use a single stack for all
1157/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1158/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1159/// going to be some position in that stack of possible ones.
1160///
1161/// We track the stack positions that each MemoryLocation needs
1162/// to check, and last ended at. This is because we only want to check the
1163/// things that changed since last time. The same MemoryLocation should
1164/// get clobbered by the same store (getModRefInfo does not use invariantness or
1165/// things like this, and if they start, we can modify MemoryLocOrCall to
1166/// include relevant data)
1167void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1168 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1169 SmallVectorImpl<MemoryAccess *> &VersionStack,
1170 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1171
1172 /// If no accesses, nothing to do.
1173 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1174 if (Accesses == nullptr)
1175 return;
1176
1177 // Pop everything that doesn't dominate the current block off the stack,
1178 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001179 while (true) {
1180 assert(
1181 !VersionStack.empty() &&
1182 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001183 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1184 if (DT->dominates(BackBlock, BB))
1185 break;
1186 while (VersionStack.back()->getBlock() == BackBlock)
1187 VersionStack.pop_back();
1188 ++PopEpoch;
1189 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001190
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001191 for (MemoryAccess &MA : *Accesses) {
1192 auto *MU = dyn_cast<MemoryUse>(&MA);
1193 if (!MU) {
1194 VersionStack.push_back(&MA);
1195 ++StackEpoch;
1196 continue;
1197 }
1198
George Burgess IV024f3d22016-08-03 19:57:02 +00001199 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001200 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001201 continue;
1202 }
1203
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001204 MemoryLocOrCall UseMLOC(MU);
1205 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001206 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001207 // stack due to changing blocks. We may have to reset the lower bound or
1208 // last kill info.
1209 if (LocInfo.PopEpoch != PopEpoch) {
1210 LocInfo.PopEpoch = PopEpoch;
1211 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001212 // If the lower bound was in something that no longer dominates us, we
1213 // have to reset it.
1214 // We can't simply track stack size, because the stack may have had
1215 // pushes/pops in the meantime.
1216 // XXX: This is non-optimal, but only is slower cases with heavily
1217 // branching dominator trees. To get the optimal number of queries would
1218 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1219 // the top of that stack dominates us. This does not seem worth it ATM.
1220 // A much cheaper optimization would be to always explore the deepest
1221 // branch of the dominator tree first. This will guarantee this resets on
1222 // the smallest set of blocks.
1223 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001224 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001225 // Reset the lower bound of things to check.
1226 // TODO: Some day we should be able to reset to last kill, rather than
1227 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001228 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001229 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001230 LocInfo.LastKillValid = false;
1231 }
1232 } else if (LocInfo.StackEpoch != StackEpoch) {
1233 // If all that has changed is the StackEpoch, we only have to check the
1234 // new things on the stack, because we've checked everything before. In
1235 // this case, the lower bound of things to check remains the same.
1236 LocInfo.PopEpoch = PopEpoch;
1237 LocInfo.StackEpoch = StackEpoch;
1238 }
1239 if (!LocInfo.LastKillValid) {
1240 LocInfo.LastKill = VersionStack.size() - 1;
1241 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001242 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001243 }
1244
1245 // At this point, we should have corrected last kill and LowerBound to be
1246 // in bounds.
1247 assert(LocInfo.LowerBound < VersionStack.size() &&
1248 "Lower bound out of range");
1249 assert(LocInfo.LastKill < VersionStack.size() &&
1250 "Last kill info out of range");
1251 // In any case, the new upper bound is the top of the stack.
1252 unsigned long UpperBound = VersionStack.size() - 1;
1253
1254 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Daniel Berlin26fcea92016-08-02 20:02:21 +00001255 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1256 << *(MU->getMemoryInst()) << ")"
1257 << " because there are " << UpperBound - LocInfo.LowerBound
1258 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001259 // Because we did not walk, LastKill is no longer valid, as this may
1260 // have been a kill.
1261 LocInfo.LastKillValid = false;
1262 continue;
1263 }
1264 bool FoundClobberResult = false;
1265 while (UpperBound > LocInfo.LowerBound) {
1266 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1267 // For phis, use the walker, see where we ended up, go there
1268 Instruction *UseInst = MU->getMemoryInst();
1269 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1270 // We are guaranteed to find it or something is wrong
1271 while (VersionStack[UpperBound] != Result) {
1272 assert(UpperBound != 0);
1273 --UpperBound;
1274 }
1275 FoundClobberResult = true;
1276 break;
1277 }
1278
1279 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001280 // If the lifetime of the pointer ends at this instruction, it's live on
1281 // entry.
1282 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1283 // Reset UpperBound to liveOnEntryDef's place in the stack
1284 UpperBound = 0;
1285 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001286 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001287 break;
1288 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001289 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1290 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001291 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001292 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001293 break;
1294 }
1295 --UpperBound;
1296 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001297
1298 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1299
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001300 // At the end of this loop, UpperBound is either a clobber, or lower bound
1301 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1302 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001303 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001304 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1305 LocInfo.AR = None;
1306 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001307 LocInfo.LastKill = UpperBound;
1308 } else {
1309 // Otherwise, we checked all the new ones, and now we know we can get to
1310 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001311 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001312 }
1313 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001314 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001315 }
1316}
1317
1318/// Optimize uses to point to their actual clobbering definitions.
1319void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001320 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001321 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001322 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1323
1324 unsigned long StackEpoch = 1;
1325 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001326 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001327 for (const auto *DomNode : depth_first(DT->getRootNode()))
1328 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1329 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001330}
1331
Daniel Berlin3d512a22016-08-22 19:14:30 +00001332void MemorySSA::placePHINodes(
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001333 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
1334 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001335 // Determine where our MemoryPhi's should go
1336 ForwardIDFCalculator IDFs(*DT);
1337 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001338 SmallVector<BasicBlock *, 32> IDFBlocks;
1339 IDFs.calculate(IDFBlocks);
1340
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001341 std::sort(IDFBlocks.begin(), IDFBlocks.end(),
1342 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
1343 return BBNumbers.lookup(A) < BBNumbers.lookup(B);
1344 });
1345
Daniel Berlin3d512a22016-08-22 19:14:30 +00001346 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001347 for (auto &BB : IDFBlocks)
1348 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001349}
1350
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001351void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001352 // We create an access to represent "live on entry", for things like
1353 // arguments or users of globals, where the memory they use is defined before
1354 // the beginning of the function. We do not actually insert it into the IR.
1355 // We do not define a live on exit for the immediate uses, and thus our
1356 // semantics do *not* imply that something with no immediate uses can simply
1357 // be removed.
1358 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001359 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1360 &StartingPoint, NextID++));
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001361 DenseMap<const BasicBlock *, unsigned int> BBNumbers;
1362 unsigned NextBBNum = 0;
George Burgess IVe1100f52016-02-02 22:46:49 +00001363
1364 // We maintain lists of memory accesses per-block, trading memory for time. We
1365 // could just look up the memory access for every possible instruction in the
1366 // stream.
1367 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001368 // Go through each block, figure out where defs occur, and chain together all
1369 // the accesses.
1370 for (BasicBlock &B : F) {
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001371 BBNumbers[&B] = NextBBNum++;
Daniel Berlin7898ca62016-02-07 01:52:15 +00001372 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001373 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001374 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001375 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001376 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001377 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001378 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001379
George Burgess IVe1100f52016-02-02 22:46:49 +00001380 if (!Accesses)
1381 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001382 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001383 if (isa<MemoryDef>(MUD)) {
1384 InsertIntoDef = true;
1385 if (!Defs)
1386 Defs = getOrCreateDefsList(&B);
1387 Defs->push_back(*MUD);
1388 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001389 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001390 if (InsertIntoDef)
1391 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001392 }
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001393 placePHINodes(DefiningBlocks, BBNumbers);
George Burgess IVe1100f52016-02-02 22:46:49 +00001394
1395 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1396 // filled in with all blocks.
1397 SmallPtrSet<BasicBlock *, 16> Visited;
1398 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1399
George Burgess IV5f308972016-07-19 01:29:15 +00001400 CachingWalker *Walker = getWalkerImpl();
1401
1402 // We're doing a batch of updates; don't drop useful caches between them.
1403 Walker->setAutoResetWalker(false);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001404 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001405 Walker->setAutoResetWalker(true);
1406 Walker->resetClobberWalker();
1407
George Burgess IVe1100f52016-02-02 22:46:49 +00001408 // Mark the uses in unreachable blocks as live on entry, so that they go
1409 // somewhere.
1410 for (auto &BB : F)
1411 if (!Visited.count(&BB))
1412 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001413}
George Burgess IVe1100f52016-02-02 22:46:49 +00001414
George Burgess IV5f308972016-07-19 01:29:15 +00001415MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1416
1417MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001418 if (Walker)
1419 return Walker.get();
1420
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001421 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001422 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001423}
1424
Daniel Berlind602e042017-01-25 20:56:19 +00001425// This is a helper function used by the creation routines. It places NewAccess
1426// into the access and defs lists for a given basic block, at the given
1427// insertion point.
1428void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1429 const BasicBlock *BB,
1430 InsertionPlace Point) {
1431 auto *Accesses = getOrCreateAccessList(BB);
1432 if (Point == Beginning) {
1433 // If it's a phi node, it goes first, otherwise, it goes after any phi
1434 // nodes.
1435 if (isa<MemoryPhi>(NewAccess)) {
1436 Accesses->push_front(NewAccess);
1437 auto *Defs = getOrCreateDefsList(BB);
1438 Defs->push_front(*NewAccess);
1439 } else {
1440 auto AI = find_if_not(
1441 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1442 Accesses->insert(AI, NewAccess);
1443 if (!isa<MemoryUse>(NewAccess)) {
1444 auto *Defs = getOrCreateDefsList(BB);
1445 auto DI = find_if_not(
1446 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1447 Defs->insert(DI, *NewAccess);
1448 }
1449 }
1450 } else {
1451 Accesses->push_back(NewAccess);
1452 if (!isa<MemoryUse>(NewAccess)) {
1453 auto *Defs = getOrCreateDefsList(BB);
1454 Defs->push_back(*NewAccess);
1455 }
1456 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001457 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001458}
1459
1460void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1461 AccessList::iterator InsertPt) {
1462 auto *Accesses = getWritableBlockAccesses(BB);
1463 bool WasEnd = InsertPt == Accesses->end();
1464 Accesses->insert(AccessList::iterator(InsertPt), What);
1465 if (!isa<MemoryUse>(What)) {
1466 auto *Defs = getOrCreateDefsList(BB);
1467 // If we got asked to insert at the end, we have an easy job, just shove it
1468 // at the end. If we got asked to insert before an existing def, we also get
1469 // an terator. If we got asked to insert before a use, we have to hunt for
1470 // the next def.
1471 if (WasEnd) {
1472 Defs->push_back(*What);
1473 } else if (isa<MemoryDef>(InsertPt)) {
1474 Defs->insert(InsertPt->getDefsIterator(), *What);
1475 } else {
1476 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1477 ++InsertPt;
1478 // Either we found a def, or we are inserting at the end
1479 if (InsertPt == Accesses->end())
1480 Defs->push_back(*What);
1481 else
1482 Defs->insert(InsertPt->getDefsIterator(), *What);
1483 }
1484 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001485 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001486}
1487
Daniel Berlin60ead052017-01-28 01:23:13 +00001488// Move What before Where in the IR. The end result is taht What will belong to
1489// the right lists and have the right Block set, but will not otherwise be
1490// correct. It will not have the right defining access, and if it is a def,
1491// things below it will not properly be updated.
1492void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1493 AccessList::iterator Where) {
1494 // Keep it in the lookup tables, remove from the lists
1495 removeFromLists(What, false);
1496 What->setBlock(BB);
1497 insertIntoListsBefore(What, BB, Where);
1498}
1499
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001500void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1501 InsertionPlace Point) {
1502 removeFromLists(What, false);
1503 What->setBlock(BB);
1504 insertIntoListsForBlock(What, BB, Point);
1505}
1506
Daniel Berlin14300262016-06-21 18:39:20 +00001507MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1508 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001509 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001510 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001511 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001512 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001513 return Phi;
1514}
1515
1516MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1517 MemoryAccess *Definition) {
1518 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1519 MemoryUseOrDef *NewAccess = createNewAccess(I);
1520 assert(
1521 NewAccess != nullptr &&
1522 "Tried to create a memory access for a non-memory touching instruction");
1523 NewAccess->setDefiningAccess(Definition);
1524 return NewAccess;
1525}
1526
Daniel Berlind952cea2017-04-07 01:28:36 +00001527// Return true if the instruction has ordering constraints.
1528// Note specifically that this only considers stores and loads
1529// because others are still considered ModRef by getModRefInfo.
1530static inline bool isOrdered(const Instruction *I) {
1531 if (auto *SI = dyn_cast<StoreInst>(I)) {
1532 if (!SI->isUnordered())
1533 return true;
1534 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1535 if (!LI->isUnordered())
1536 return true;
1537 }
1538 return false;
1539}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001540
George Burgess IVe1100f52016-02-02 22:46:49 +00001541/// \brief Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001542MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001543 // The assume intrinsic has a control dependency which we model by claiming
1544 // that it writes arbitrarily. Ignore that fake memory dependency here.
1545 // FIXME: Replace this special casing with a more accurate modelling of
1546 // assume's control dependency.
1547 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1548 if (II->getIntrinsicID() == Intrinsic::assume)
1549 return nullptr;
1550
George Burgess IVe1100f52016-02-02 22:46:49 +00001551 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001552 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001553 // The isOrdered check is used to ensure that volatiles end up as defs
1554 // (atomics end up as ModRef right now anyway). Until we separate the
1555 // ordering chain from the memory chain, this enables people to see at least
1556 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1557 // will still give an answer that bypasses other volatile loads. TODO:
1558 // Separate memory aliasing and ordering into two different chains so that we
1559 // can precisely represent both "what memory will this read/write/is clobbered
1560 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001561 bool Def = isModSet(ModRef) || isOrdered(I);
1562 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001563
1564 // It's possible for an instruction to not modify memory at all. During
1565 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001566 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001567 return nullptr;
1568
1569 assert((Def || Use) &&
1570 "Trying to create a memory access with a non-memory instruction");
1571
George Burgess IVb42b7622016-03-11 19:34:03 +00001572 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001573 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001574 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001575 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001576 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001577 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001578 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001579}
1580
George Burgess IVe1100f52016-02-02 22:46:49 +00001581/// \brief Returns true if \p Replacer dominates \p Replacee .
1582bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1583 const MemoryAccess *Replacee) const {
1584 if (isa<MemoryUseOrDef>(Replacee))
1585 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1586 const auto *MP = cast<MemoryPhi>(Replacee);
1587 // For a phi node, the use occurs in the predecessor block of the phi node.
1588 // Since we may occur multiple times in the phi node, we have to check each
1589 // operand to ensure Replacer dominates each operand where Replacee occurs.
1590 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001591 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001592 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1593 return false;
1594 }
1595 return true;
1596}
1597
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001598/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001599void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1600 assert(MA->use_empty() &&
1601 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001602 BlockNumbering.erase(MA);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001603 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
1604 MUD->setDefiningAccess(nullptr);
1605 // Invalidate our walker's cache if necessary
1606 if (!isa<MemoryUse>(MA))
1607 Walker->invalidateInfo(MA);
1608 // The call below to erase will destroy MA, so we can't change the order we
1609 // are doing things here
1610 Value *MemoryInst;
1611 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1612 MemoryInst = MUD->getMemoryInst();
1613 } else {
1614 MemoryInst = MA->getBlock();
1615 }
Daniel Berlin5130cc82016-07-31 21:08:20 +00001616 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1617 if (VMA->second == MA)
1618 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001619}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001620
Daniel Berlin60ead052017-01-28 01:23:13 +00001621/// \brief Properly remove \p MA from all of MemorySSA's lists.
1622///
1623/// Because of the way the intrusive list and use lists work, it is important to
1624/// do removal in the right order.
1625/// ShouldDelete defaults to true, and will cause the memory access to also be
1626/// deleted, not just removed.
1627void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Daniel Berlind602e042017-01-25 20:56:19 +00001628 // The access list owns the reference, so we erase it from the non-owning list
1629 // first.
1630 if (!isa<MemoryUse>(MA)) {
1631 auto DefsIt = PerBlockDefs.find(MA->getBlock());
1632 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1633 Defs->remove(*MA);
1634 if (Defs->empty())
1635 PerBlockDefs.erase(DefsIt);
1636 }
1637
Daniel Berlin60ead052017-01-28 01:23:13 +00001638 // The erase call here will delete it. If we don't want it deleted, we call
1639 // remove instead.
George Burgess IVe0e6e482016-03-02 02:35:04 +00001640 auto AccessIt = PerBlockAccesses.find(MA->getBlock());
Daniel Berlinada263d2016-06-20 20:21:33 +00001641 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001642 if (ShouldDelete)
1643 Accesses->erase(MA);
1644 else
1645 Accesses->remove(MA);
1646
George Burgess IVe0e6e482016-03-02 02:35:04 +00001647 if (Accesses->empty())
1648 PerBlockAccesses.erase(AccessIt);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001649}
1650
George Burgess IVe1100f52016-02-02 22:46:49 +00001651void MemorySSA::print(raw_ostream &OS) const {
1652 MemorySSAAnnotatedWriter Writer(this);
1653 F.print(OS, &Writer);
1654}
1655
Aaron Ballman615eb472017-10-15 14:32:27 +00001656#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001657LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001658#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001659
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001660void MemorySSA::verifyMemorySSA() const {
1661 verifyDefUses(F);
1662 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001663 verifyOrdering(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001664 Walker->verify(this);
Daniel Berlin14300262016-06-21 18:39:20 +00001665}
1666
1667/// \brief Verify that the order and existence of MemoryAccesses matches the
1668/// order and existence of memory affecting instructions.
1669void MemorySSA::verifyOrdering(Function &F) const {
1670 // Walk all the blocks, comparing what the lookups think and what the access
1671 // lists think, as well as the order in the blocks vs the order in the access
1672 // lists.
1673 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001674 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001675 for (BasicBlock &B : F) {
1676 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001677 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001678 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001679 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001680 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001681 ActualDefs.push_back(Phi);
1682 }
1683
Daniel Berlin14300262016-06-21 18:39:20 +00001684 for (Instruction &I : B) {
1685 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001686 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1687 "We have memory affecting instructions "
1688 "in this block but they are not in the "
1689 "access list or defs list");
1690 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001691 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001692 if (isa<MemoryDef>(MA))
1693 ActualDefs.push_back(MA);
1694 }
Daniel Berlin14300262016-06-21 18:39:20 +00001695 }
1696 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001697 // accesses and an access list.
1698 // Same with defs.
1699 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001700 continue;
1701 assert(AL->size() == ActualAccesses.size() &&
1702 "We don't have the same number of accesses in the block as on the "
1703 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001704 assert((DL || ActualDefs.size() == 0) &&
1705 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001706 assert((!DL || DL->size() == ActualDefs.size()) &&
1707 "We don't have the same number of defs in the block as on the "
1708 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001709 auto ALI = AL->begin();
1710 auto AAI = ActualAccesses.begin();
1711 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1712 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1713 ++ALI;
1714 ++AAI;
1715 }
1716 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001717 if (DL) {
1718 auto DLI = DL->begin();
1719 auto ADI = ActualDefs.begin();
1720 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1721 assert(&*DLI == *ADI && "Not the same defs in the same order");
1722 ++DLI;
1723 ++ADI;
1724 }
1725 }
1726 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001727 }
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001728}
1729
George Burgess IVe1100f52016-02-02 22:46:49 +00001730/// \brief Verify the domination properties of MemorySSA by checking that each
1731/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001732void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001733#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001734 for (BasicBlock &B : F) {
1735 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001736 if (MemoryPhi *MP = getMemoryAccess(&B))
1737 for (const Use &U : MP->uses())
1738 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001739
George Burgess IVe1100f52016-02-02 22:46:49 +00001740 for (Instruction &I : B) {
1741 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1742 if (!MD)
1743 continue;
1744
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001745 for (const Use &U : MD->uses())
1746 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001747 }
1748 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001749#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001750}
1751
1752/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
1753/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001754void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001755#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001756 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001757 if (!Def)
1758 assert(isLiveOnEntryDef(Use) &&
1759 "Null def but use not point to live on entry def");
1760 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001761 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001762 "Did not find use in def's use list");
1763#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001764}
1765
1766/// \brief Verify the immediate use information, by walking all the memory
1767/// accesses and verifying that, for each use, it appears in the
1768/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001769void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001770 for (BasicBlock &B : F) {
1771 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001772 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001773 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1774 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001775 "Incomplete MemoryPhi Node");
George Burgess IVe1100f52016-02-02 22:46:49 +00001776 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1777 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Daniel Berlin14300262016-06-21 18:39:20 +00001778 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001779
1780 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001781 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1782 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001783 }
1784 }
1785 }
1786}
1787
George Burgess IV66837ab2016-11-01 21:17:46 +00001788MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1789 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
George Burgess IVe1100f52016-02-02 22:46:49 +00001790}
1791
1792MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
George Burgess IV66837ab2016-11-01 21:17:46 +00001793 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
George Burgess IVe1100f52016-02-02 22:46:49 +00001794}
1795
Daniel Berlin5c46b942016-07-19 22:49:43 +00001796/// Perform a local numbering on blocks so that instruction ordering can be
1797/// determined in constant time.
1798/// TODO: We currently just number in order. If we numbered by N, we could
1799/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1800/// log2(N) sequences of mixed before and after) without needing to invalidate
1801/// the numbering.
1802void MemorySSA::renumberBlock(const BasicBlock *B) const {
1803 // The pre-increment ensures the numbers really start at 1.
1804 unsigned long CurrentNumber = 0;
1805 const AccessList *AL = getBlockAccesses(B);
1806 assert(AL != nullptr && "Asking to renumber an empty block");
1807 for (const auto &I : *AL)
1808 BlockNumbering[&I] = ++CurrentNumber;
1809 BlockNumberingValid.insert(B);
1810}
1811
George Burgess IVe1100f52016-02-02 22:46:49 +00001812/// \brief Determine, for two memory accesses in the same block,
1813/// whether \p Dominator dominates \p Dominatee.
1814/// \returns True if \p Dominator dominates \p Dominatee.
1815bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1816 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001817 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001818
Daniel Berlin19860302016-07-19 23:08:08 +00001819 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001820 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001821 // A node dominates itself.
1822 if (Dominatee == Dominator)
1823 return true;
1824
1825 // When Dominatee is defined on function entry, it is not dominated by another
1826 // memory access.
1827 if (isLiveOnEntryDef(Dominatee))
1828 return false;
1829
1830 // When Dominator is defined on function entry, it dominates the other memory
1831 // access.
1832 if (isLiveOnEntryDef(Dominator))
1833 return true;
1834
Daniel Berlin5c46b942016-07-19 22:49:43 +00001835 if (!BlockNumberingValid.count(DominatorBlock))
1836 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001837
Daniel Berlin5c46b942016-07-19 22:49:43 +00001838 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1839 // All numbers start with 1
1840 assert(DominatorNum != 0 && "Block was not numbered properly");
1841 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1842 assert(DominateeNum != 0 && "Block was not numbered properly");
1843 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001844}
1845
George Burgess IV5f308972016-07-19 01:29:15 +00001846bool MemorySSA::dominates(const MemoryAccess *Dominator,
1847 const MemoryAccess *Dominatee) const {
1848 if (Dominator == Dominatee)
1849 return true;
1850
1851 if (isLiveOnEntryDef(Dominatee))
1852 return false;
1853
1854 if (Dominator->getBlock() != Dominatee->getBlock())
1855 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1856 return locallyDominates(Dominator, Dominatee);
1857}
1858
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001859bool MemorySSA::dominates(const MemoryAccess *Dominator,
1860 const Use &Dominatee) const {
1861 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1862 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1863 // The def must dominate the incoming block of the phi.
1864 if (UseBB != Dominator->getBlock())
1865 return DT->dominates(Dominator->getBlock(), UseBB);
1866 // If the UseBB and the DefBB are the same, compare locally.
1867 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1868 }
1869 // If it's not a PHI node use, the normal dominates can already handle it.
1870 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1871}
1872
George Burgess IVe1100f52016-02-02 22:46:49 +00001873const static char LiveOnEntryStr[] = "liveOnEntry";
1874
Reid Kleckner96ab8722017-05-18 17:24:10 +00001875void MemoryAccess::print(raw_ostream &OS) const {
1876 switch (getValueID()) {
1877 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1878 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1879 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1880 }
1881 llvm_unreachable("invalid value id");
1882}
1883
George Burgess IVe1100f52016-02-02 22:46:49 +00001884void MemoryDef::print(raw_ostream &OS) const {
1885 MemoryAccess *UO = getDefiningAccess();
1886
1887 OS << getID() << " = MemoryDef(";
1888 if (UO && UO->getID())
1889 OS << UO->getID();
1890 else
1891 OS << LiveOnEntryStr;
1892 OS << ')';
1893}
1894
1895void MemoryPhi::print(raw_ostream &OS) const {
1896 bool First = true;
1897 OS << getID() << " = MemoryPhi(";
1898 for (const auto &Op : operands()) {
1899 BasicBlock *BB = getIncomingBlock(Op);
1900 MemoryAccess *MA = cast<MemoryAccess>(Op);
1901 if (!First)
1902 OS << ',';
1903 else
1904 First = false;
1905
1906 OS << '{';
1907 if (BB->hasName())
1908 OS << BB->getName();
1909 else
1910 BB->printAsOperand(OS, false);
1911 OS << ',';
1912 if (unsigned ID = MA->getID())
1913 OS << ID;
1914 else
1915 OS << LiveOnEntryStr;
1916 OS << '}';
1917 }
1918 OS << ')';
1919}
1920
George Burgess IVe1100f52016-02-02 22:46:49 +00001921void MemoryUse::print(raw_ostream &OS) const {
1922 MemoryAccess *UO = getDefiningAccess();
1923 OS << "MemoryUse(";
1924 if (UO && UO->getID())
1925 OS << UO->getID();
1926 else
1927 OS << LiveOnEntryStr;
1928 OS << ')';
1929}
1930
1931void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00001932// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00001933#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00001934 print(dbgs());
1935 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00001936#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001937}
1938
Chad Rosier232e29e2016-07-06 21:20:47 +00001939char MemorySSAPrinterLegacyPass::ID = 0;
1940
1941MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1942 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1943}
1944
1945void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1946 AU.setPreservesAll();
1947 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00001948}
1949
1950bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1951 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1952 MSSA.print(dbgs());
1953 if (VerifyMemorySSA)
1954 MSSA.verifyMemorySSA();
1955 return false;
1956}
1957
Chandler Carruthdab4eae2016-11-23 17:53:26 +00001958AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00001959
Daniel Berlin1e98c042016-09-26 17:22:54 +00001960MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
1961 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00001962 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1963 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001964 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001965}
1966
Geoff Berryb96d3b22016-06-01 21:30:40 +00001967PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
1968 FunctionAnalysisManager &AM) {
1969 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00001970 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001971
1972 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00001973}
1974
Geoff Berryb96d3b22016-06-01 21:30:40 +00001975PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
1976 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00001977 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001978
1979 return PreservedAnalyses::all();
1980}
1981
1982char MemorySSAWrapperPass::ID = 0;
1983
1984MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
1985 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
1986}
1987
1988void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
1989
1990void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001991 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001992 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1993 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001994}
1995
Geoff Berryb96d3b22016-06-01 21:30:40 +00001996bool MemorySSAWrapperPass::runOnFunction(Function &F) {
1997 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1998 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1999 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002000 return false;
2001}
2002
Geoff Berryb96d3b22016-06-01 21:30:40 +00002003void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002004
Geoff Berryb96d3b22016-06-01 21:30:40 +00002005void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002006 MSSA->print(OS);
2007}
2008
George Burgess IVe1100f52016-02-02 22:46:49 +00002009MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2010
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002011MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2012 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002013 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00002014
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002015void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002016 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2017 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00002018}
2019
George Burgess IVe1100f52016-02-02 22:46:49 +00002020/// \brief Walk the use-def chains starting at \p MA and find
2021/// the MemoryAccess that actually clobbers Loc.
2022///
2023/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002024MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2025 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +00002026 MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
2027#ifdef EXPENSIVE_CHECKS
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002028 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
George Burgess IV5f308972016-07-19 01:29:15 +00002029 assert(NewNoCache == New && "Cache made us hand back a different result?");
Simon Pilgrim51693842017-06-11 12:49:29 +00002030 (void)NewNoCache;
George Burgess IV5f308972016-07-19 01:29:15 +00002031#endif
2032 if (AutoResetWalker)
2033 resetClobberWalker();
2034 return New;
George Burgess IVe1100f52016-02-02 22:46:49 +00002035}
2036
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002037MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002038 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002039 if (isa<MemoryPhi>(StartingAccess))
2040 return StartingAccess;
2041
2042 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2043 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2044 return StartingUseOrDef;
2045
2046 Instruction *I = StartingUseOrDef->getMemoryInst();
2047
2048 // Conservatively, fences are always clobbers, so don't perform the walk if we
2049 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002050 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002051 return StartingUseOrDef;
2052
2053 UpwardsMemoryQuery Q;
2054 Q.OriginalAccess = StartingUseOrDef;
2055 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002056 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002057 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002058
George Burgess IVe1100f52016-02-02 22:46:49 +00002059 // Unlike the other function, do not walk to the def of a def, because we are
2060 // handed something we already believe is the clobbering access.
2061 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2062 ? StartingUseOrDef->getDefiningAccess()
2063 : StartingUseOrDef;
2064
2065 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002066 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2067 DEBUG(dbgs() << *StartingUseOrDef << "\n");
2068 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2069 DEBUG(dbgs() << *Clobber << "\n");
2070 return Clobber;
2071}
2072
2073MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002074MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2075 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2076 // If this is a MemoryPhi, we can't do anything.
2077 if (!StartingAccess)
2078 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002079
Daniel Berlincd2deac2016-10-20 20:13:45 +00002080 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002081 // Note: Currently, we store the optimized def result in a separate field,
2082 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002083 if (StartingAccess->isOptimized())
2084 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002085
George Burgess IV400ae402016-07-20 19:51:34 +00002086 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002087 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002088 // We can't sanely do anything with a fence, since they conservatively clobber
2089 // all memory, and have no locations to get pointers from to try to
2090 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002091 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002092 return StartingAccess;
2093
George Burgess IV024f3d22016-08-03 19:57:02 +00002094 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2095 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002096 StartingAccess->setOptimized(LiveOnEntry);
2097 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002098 return LiveOnEntry;
2099 }
2100
George Burgess IVe1100f52016-02-02 22:46:49 +00002101 // Start with the thing we already think clobbers this location
2102 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2103
2104 // At this point, DefiningAccess may be the live on entry def.
2105 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002106 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002107 StartingAccess->setOptimized(DefiningAccess);
2108 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002109 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002110 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002111
2112 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002113 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2114 DEBUG(dbgs() << *DefiningAccess << "\n");
2115 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2116 DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002117
George Burgess IV44477c62018-03-11 04:16:12 +00002118 StartingAccess->setOptimized(Result);
2119 if (MSSA->isLiveOnEntryDef(Result))
2120 StartingAccess->setOptimizedAccessType(None);
2121 else if (Q.AR == MustAlias)
2122 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002123
2124 return Result;
2125}
2126
George Burgess IVe1100f52016-02-02 22:46:49 +00002127MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002128DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002129 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2130 return Use->getDefiningAccess();
2131 return MA;
2132}
2133
2134MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002135 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002136 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2137 return Use->getDefiningAccess();
2138 return StartingAccess;
2139}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002140
2141void MemoryPhi::deleteMe(DerivedUser *Self) {
2142 delete static_cast<MemoryPhi *>(Self);
2143}
2144
2145void MemoryDef::deleteMe(DerivedUser *Self) {
2146 delete static_cast<MemoryDef *>(Self);
2147}
2148
2149void MemoryUse::deleteMe(DerivedUser *Self) {
2150 delete static_cast<MemoryUse *>(Self);
2151}