blob: 2154a485dc69eb3e3276b195dee038d4776f9398 [file] [log] [blame]
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001//===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexagon-lir"
11
Eugene Zelenko4d060b72017-07-29 00:56:56 +000012#include "llvm/ADT/APInt.h"
13#include "llvm/ADT/DenseMap.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000014#include "llvm/ADT/SetVector.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000015#include "llvm/ADT/SmallPtrSet.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000016#include "llvm/ADT/SmallSet.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000017#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Triple.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000020#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/InstructionSimplify.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000022#include "llvm/Analysis/LoopInfo.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000023#include "llvm/Analysis/LoopPass.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000024#include "llvm/Analysis/MemoryLocation.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000025#include "llvm/Analysis/ScalarEvolution.h"
26#include "llvm/Analysis/ScalarEvolutionExpander.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000030#include "llvm/IR/Attributes.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000034#include "llvm/IR/DataLayout.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000035#include "llvm/IR/DebugLoc.h"
36#include "llvm/IR/DerivedTypes.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000037#include "llvm/IR/Dominators.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000038#include "llvm/IR/Function.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000039#include "llvm/IR/IRBuilder.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000040#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/Module.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000046#include "llvm/IR/PatternMatch.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000047#include "llvm/IR/Type.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/Casting.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Compiler.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000054#include "llvm/Support/Debug.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000055#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000056#include "llvm/Support/KnownBits.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000057#include "llvm/Support/raw_ostream.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000058#include "llvm/Transforms/Scalar.h"
59#include "llvm/Transforms/Utils/Local.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000060#include <algorithm>
61#include <array>
Eugene Zelenko4d060b72017-07-29 00:56:56 +000062#include <cassert>
63#include <cstdint>
64#include <cstdlib>
65#include <deque>
66#include <functional>
67#include <iterator>
68#include <map>
69#include <set>
70#include <utility>
71#include <vector>
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000072
73using namespace llvm;
74
75static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
76 cl::Hidden, cl::init(false),
77 cl::desc("Disable generation of memcpy in loop idiom recognition"));
78
79static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
80 cl::Hidden, cl::init(false),
81 cl::desc("Disable generation of memmove in loop idiom recognition"));
82
83static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
84 cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
85 "check guarding the memmove."));
86
87static cl::opt<unsigned> CompileTimeMemSizeThreshold(
88 "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
89 cl::desc("Threshold (in bytes) to perform the transformation, if the "
90 "runtime loop count (mem transfer size) is known at compile-time."));
91
92static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
93 cl::Hidden, cl::init(true),
94 cl::desc("Only enable generating memmove in non-nested loops"));
95
96cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
97 cl::Hidden, cl::init(false),
98 cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
99
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000100static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
101 cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
102
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000103static const char *HexagonVolatileMemcpyName
104 = "hexagon_memcpy_forward_vp4cp4n2";
105
106
107namespace llvm {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000108
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000109 void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
110 Pass *createHexagonLoopIdiomPass();
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000111
112} // end namespace llvm
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000113
114namespace {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000115
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000116 class HexagonLoopIdiomRecognize : public LoopPass {
117 public:
118 static char ID;
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000119
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000120 explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
121 initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
122 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000123
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000124 StringRef getPassName() const override {
125 return "Recognize Hexagon-specific loop idioms";
126 }
127
128 void getAnalysisUsage(AnalysisUsage &AU) const override {
129 AU.addRequired<LoopInfoWrapperPass>();
130 AU.addRequiredID(LoopSimplifyID);
131 AU.addRequiredID(LCSSAID);
132 AU.addRequired<AAResultsWrapperPass>();
133 AU.addPreserved<AAResultsWrapperPass>();
134 AU.addRequired<ScalarEvolutionWrapperPass>();
135 AU.addRequired<DominatorTreeWrapperPass>();
136 AU.addRequired<TargetLibraryInfoWrapperPass>();
137 AU.addPreserved<TargetLibraryInfoWrapperPass>();
138 }
139
140 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
141
142 private:
143 unsigned getStoreSizeInBytes(StoreInst *SI);
144 int getSCEVStride(const SCEVAddRecExpr *StoreEv);
145 bool isLegalStore(Loop *CurLoop, StoreInst *SI);
146 void collectStores(Loop *CurLoop, BasicBlock *BB,
147 SmallVectorImpl<StoreInst*> &Stores);
148 bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
149 bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
150 bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
151 SmallVectorImpl<BasicBlock*> &ExitBlocks);
152 bool runOnCountableLoop(Loop *L);
153
154 AliasAnalysis *AA;
155 const DataLayout *DL;
156 DominatorTree *DT;
157 LoopInfo *LF;
158 const TargetLibraryInfo *TLI;
159 ScalarEvolution *SE;
160 bool HasMemcpy, HasMemmove;
161 };
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000162
163 struct Simplifier {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000164 struct Rule {
165 using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
166 Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
167 StringRef Name; // For debugging.
168 FuncType Fn;
169 };
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000170
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000171 void addRule(StringRef N, const Rule::FuncType &F) {
172 Rules.push_back(Rule(N, F));
173 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000174
175 private:
176 struct WorkListType {
177 WorkListType() = default;
178
179 void push_back(Value* V) {
180 // Do not push back duplicates.
181 if (!S.count(V)) { Q.push_back(V); S.insert(V); }
182 }
183
184 Value *pop_front_val() {
185 Value *V = Q.front(); Q.pop_front(); S.erase(V);
186 return V;
187 }
188
189 bool empty() const { return Q.empty(); }
190
191 private:
192 std::deque<Value*> Q;
193 std::set<Value*> S;
194 };
195
196 using ValueSetType = std::set<Value *>;
197
198 std::vector<Rule> Rules;
199
200 public:
201 struct Context {
202 using ValueMapType = DenseMap<Value *, Value *>;
203
204 Value *Root;
205 ValueSetType Used; // The set of all cloned values used by Root.
206 ValueSetType Clones; // The set of all cloned values.
207 LLVMContext &Ctx;
208
209 Context(Instruction *Exp)
210 : Ctx(Exp->getParent()->getParent()->getContext()) {
211 initialize(Exp);
212 }
213
214 ~Context() { cleanup(); }
215
216 void print(raw_ostream &OS, const Value *V) const;
217 Value *materialize(BasicBlock *B, BasicBlock::iterator At);
218
219 private:
220 friend struct Simplifier;
221
222 void initialize(Instruction *Exp);
223 void cleanup();
224
225 template <typename FuncT> void traverse(Value *V, FuncT F);
226 void record(Value *V);
227 void use(Value *V);
228 void unuse(Value *V);
229
230 bool equal(const Instruction *I, const Instruction *J) const;
231 Value *find(Value *Tree, Value *Sub) const;
232 Value *subst(Value *Tree, Value *OldV, Value *NewV);
233 void replace(Value *OldV, Value *NewV);
234 void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
235 };
236
237 Value *simplify(Context &C);
238 };
239
240 struct PE {
241 PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
242
243 const Simplifier::Context &C;
244 const Value *V;
245 };
246
247 raw_ostream &operator<< (raw_ostream &OS, const PE &P) LLVM_ATTRIBUTE_USED;
248 raw_ostream &operator<< (raw_ostream &OS, const PE &P) {
249 P.C.print(OS, P.V ? P.V : P.C.Root);
250 return OS;
251 }
252
253} // end anonymous namespace
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000254
255char HexagonLoopIdiomRecognize::ID = 0;
256
257INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
258 "Recognize Hexagon-specific loop idioms", false, false)
259INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
260INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
261INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
262INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
263INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
264INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
265INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
266INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
267 "Recognize Hexagon-specific loop idioms", false, false)
268
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000269template <typename FuncT>
270void Simplifier::Context::traverse(Value *V, FuncT F) {
271 WorkListType Q;
272 Q.push_back(V);
273
274 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000275 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000276 if (!U || U->getParent())
277 continue;
278 if (!F(U))
279 continue;
280 for (Value *Op : U->operands())
281 Q.push_back(Op);
282 }
283}
284
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000285void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
286 const auto *U = dyn_cast<const Instruction>(V);
287 if (!U) {
288 OS << V << '(' << *V << ')';
289 return;
290 }
291
292 if (U->getParent()) {
293 OS << U << '(';
294 U->printAsOperand(OS, true);
295 OS << ')';
296 return;
297 }
298
299 unsigned N = U->getNumOperands();
300 if (N != 0)
301 OS << U << '(';
302 OS << U->getOpcodeName();
303 for (const Value *Op : U->operands()) {
304 OS << ' ';
305 print(OS, Op);
306 }
307 if (N != 0)
308 OS << ')';
309}
310
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000311void Simplifier::Context::initialize(Instruction *Exp) {
312 // Perform a deep clone of the expression, set Root to the root
313 // of the clone, and build a map from the cloned values to the
314 // original ones.
315 ValueMapType M;
316 BasicBlock *Block = Exp->getParent();
317 WorkListType Q;
318 Q.push_back(Exp);
319
320 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000321 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000322 if (M.find(V) != M.end())
323 continue;
324 if (Instruction *U = dyn_cast<Instruction>(V)) {
325 if (isa<PHINode>(U) || U->getParent() != Block)
326 continue;
327 for (Value *Op : U->operands())
328 Q.push_back(Op);
329 M.insert({U, U->clone()});
330 }
331 }
332
333 for (std::pair<Value*,Value*> P : M) {
334 Instruction *U = cast<Instruction>(P.second);
335 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
336 auto F = M.find(U->getOperand(i));
337 if (F != M.end())
338 U->setOperand(i, F->second);
339 }
340 }
341
342 auto R = M.find(Exp);
343 assert(R != M.end());
344 Root = R->second;
345
346 record(Root);
347 use(Root);
348}
349
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000350void Simplifier::Context::record(Value *V) {
351 auto Record = [this](Instruction *U) -> bool {
352 Clones.insert(U);
353 return true;
354 };
355 traverse(V, Record);
356}
357
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000358void Simplifier::Context::use(Value *V) {
359 auto Use = [this](Instruction *U) -> bool {
360 Used.insert(U);
361 return true;
362 };
363 traverse(V, Use);
364}
365
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000366void Simplifier::Context::unuse(Value *V) {
367 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
368 return;
369
370 auto Unuse = [this](Instruction *U) -> bool {
371 if (!U->use_empty())
372 return false;
373 Used.erase(U);
374 return true;
375 };
376 traverse(V, Unuse);
377}
378
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000379Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
380 if (Tree == OldV)
381 return NewV;
382 if (OldV == NewV)
383 return Tree;
384
385 WorkListType Q;
386 Q.push_back(Tree);
387 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000388 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000389 // If U is not an instruction, or it's not a clone, skip it.
390 if (!U || U->getParent())
391 continue;
392 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
393 Value *Op = U->getOperand(i);
394 if (Op == OldV) {
395 U->setOperand(i, NewV);
396 unuse(OldV);
397 } else {
398 Q.push_back(Op);
399 }
400 }
401 }
402 return Tree;
403}
404
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000405void Simplifier::Context::replace(Value *OldV, Value *NewV) {
406 if (Root == OldV) {
407 Root = NewV;
408 use(Root);
409 return;
410 }
411
412 // NewV may be a complex tree that has just been created by one of the
413 // transformation rules. We need to make sure that it is commoned with
414 // the existing Root to the maximum extent possible.
415 // Identify all subtrees of NewV (including NewV itself) that have
416 // equivalent counterparts in Root, and replace those subtrees with
417 // these counterparts.
418 WorkListType Q;
419 Q.push_back(NewV);
420 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000421 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000422 Instruction *U = dyn_cast<Instruction>(V);
423 if (!U || U->getParent())
424 continue;
425 if (Value *DupV = find(Root, V)) {
426 if (DupV != V)
427 NewV = subst(NewV, V, DupV);
428 } else {
429 for (Value *Op : U->operands())
430 Q.push_back(Op);
431 }
432 }
433
434 // Now, simply replace OldV with NewV in Root.
435 Root = subst(Root, OldV, NewV);
436 use(Root);
437}
438
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000439void Simplifier::Context::cleanup() {
440 for (Value *V : Clones) {
441 Instruction *U = cast<Instruction>(V);
442 if (!U->getParent())
443 U->dropAllReferences();
444 }
445
446 for (Value *V : Clones) {
447 Instruction *U = cast<Instruction>(V);
448 if (!U->getParent())
Reid Kleckner96ab8722017-05-18 17:24:10 +0000449 U->deleteValue();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000450 }
451}
452
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000453bool Simplifier::Context::equal(const Instruction *I,
454 const Instruction *J) const {
455 if (I == J)
456 return true;
457 if (!I->isSameOperationAs(J))
458 return false;
459 if (isa<PHINode>(I))
460 return I->isIdenticalTo(J);
461
462 for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
463 Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
464 if (OpI == OpJ)
465 continue;
466 auto *InI = dyn_cast<const Instruction>(OpI);
467 auto *InJ = dyn_cast<const Instruction>(OpJ);
468 if (InI && InJ) {
469 if (!equal(InI, InJ))
470 return false;
471 } else if (InI != InJ || !InI)
472 return false;
473 }
474 return true;
475}
476
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000477Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
478 Instruction *SubI = dyn_cast<Instruction>(Sub);
479 WorkListType Q;
480 Q.push_back(Tree);
481
482 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000483 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000484 if (V == Sub)
485 return V;
486 Instruction *U = dyn_cast<Instruction>(V);
487 if (!U || U->getParent())
488 continue;
489 if (SubI && equal(SubI, U))
490 return U;
491 assert(!isa<PHINode>(U));
492 for (Value *Op : U->operands())
493 Q.push_back(Op);
494 }
495 return nullptr;
496}
497
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000498void Simplifier::Context::link(Instruction *I, BasicBlock *B,
499 BasicBlock::iterator At) {
500 if (I->getParent())
501 return;
502
503 for (Value *Op : I->operands()) {
504 if (Instruction *OpI = dyn_cast<Instruction>(Op))
505 link(OpI, B, At);
506 }
507
508 B->getInstList().insert(At, I);
509}
510
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000511Value *Simplifier::Context::materialize(BasicBlock *B,
512 BasicBlock::iterator At) {
513 if (Instruction *RootI = dyn_cast<Instruction>(Root))
514 link(RootI, B, At);
515 return Root;
516}
517
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000518Value *Simplifier::simplify(Context &C) {
519 WorkListType Q;
520 Q.push_back(C.Root);
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000521 unsigned Count = 0;
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000522 const unsigned Limit = SimplifyLimit;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000523
524 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000525 if (Count++ >= Limit)
526 break;
527 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000528 if (!U || U->getParent() || !C.Used.count(U))
529 continue;
530 bool Changed = false;
531 for (Rule &R : Rules) {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000532 Value *W = R.Fn(U, C.Ctx);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000533 if (!W)
534 continue;
535 Changed = true;
536 C.record(W);
537 C.replace(U, W);
538 Q.push_back(C.Root);
539 break;
540 }
541 if (!Changed) {
542 for (Value *Op : U->operands())
543 Q.push_back(Op);
544 }
545 }
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000546 return Count < Limit ? C.Root : nullptr;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000547}
548
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000549//===----------------------------------------------------------------------===//
550//
551// Implementation of PolynomialMultiplyRecognize
552//
553//===----------------------------------------------------------------------===//
554
555namespace {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000556
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000557 class PolynomialMultiplyRecognize {
558 public:
559 explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
560 const DominatorTree &dt, const TargetLibraryInfo &tli,
561 ScalarEvolution &se)
562 : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
563
564 bool recognize();
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000565
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000566 private:
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000567 using ValueSeq = SetVector<Value *>;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000568
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000569 IntegerType *getPmpyType() const {
570 LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
571 return IntegerType::get(Ctx, 32);
572 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000573
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000574 bool isPromotableTo(Value *V, IntegerType *Ty);
575 void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
576 bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
577
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000578 Value *getCountIV(BasicBlock *BB);
579 bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
580 void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
581 ValueSeq &Late);
582 bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
583 bool commutesWithShift(Instruction *I);
584 bool highBitsAreZero(Value *V, unsigned IterCount);
585 bool keepsHighBitsZero(Value *V, unsigned IterCount);
586 bool isOperandShifted(Instruction *I, Value *Op);
587 bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
588 unsigned IterCount);
589 void cleanupLoopBody(BasicBlock *LoopB);
590
591 struct ParsedValues {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000592 ParsedValues() = default;
593
594 Value *M = nullptr;
595 Value *P = nullptr;
596 Value *Q = nullptr;
597 Value *R = nullptr;
598 Value *X = nullptr;
599 Instruction *Res = nullptr;
600 unsigned IterCount = 0;
601 bool Left = false;
602 bool Inv = false;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000603 };
604
605 bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
606 bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
607 bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
608 Value *CIV, ParsedValues &PV, bool PreScan);
609 unsigned getInverseMxN(unsigned QP);
610 Value *generate(BasicBlock::iterator At, ParsedValues &PV);
611
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000612 void setupSimplifier();
613
614 Simplifier Simp;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000615 Loop *CurLoop;
616 const DataLayout &DL;
617 const DominatorTree &DT;
618 const TargetLibraryInfo &TLI;
619 ScalarEvolution &SE;
620 };
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000621
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000622} // end anonymous namespace
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000623
624Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
625 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
626 if (std::distance(PI, PE) != 2)
627 return nullptr;
628 BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
629
630 for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
631 auto *PN = cast<PHINode>(I);
632 Value *InitV = PN->getIncomingValueForBlock(PB);
633 if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
634 continue;
635 Value *IterV = PN->getIncomingValueForBlock(BB);
636 if (!isa<BinaryOperator>(IterV))
637 continue;
638 auto *BO = dyn_cast<BinaryOperator>(IterV);
639 if (BO->getOpcode() != Instruction::Add)
640 continue;
641 Value *IncV = nullptr;
642 if (BO->getOperand(0) == PN)
643 IncV = BO->getOperand(1);
644 else if (BO->getOperand(1) == PN)
645 IncV = BO->getOperand(0);
646 if (IncV == nullptr)
647 continue;
648
649 if (auto *T = dyn_cast<ConstantInt>(IncV))
650 if (T->getZExtValue() == 1)
651 return PN;
652 }
653 return nullptr;
654}
655
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000656static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
657 for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
658 Use &TheUse = UI.getUse();
659 ++UI;
660 if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
661 if (BB == II->getParent())
662 II->replaceUsesOfWith(I, J);
663 }
664}
665
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000666bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
667 Value *CIV, ParsedValues &PV) {
668 // Match the following:
669 // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
670 // select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
671 // The condition may also check for equality with the masked value, i.e
672 // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
673 // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
674
675 Value *CondV = SelI->getCondition();
676 Value *TrueV = SelI->getTrueValue();
677 Value *FalseV = SelI->getFalseValue();
678
679 using namespace PatternMatch;
680
681 CmpInst::Predicate P;
682 Value *A = nullptr, *B = nullptr, *C = nullptr;
683
684 if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
685 !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
686 return false;
687 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
688 return false;
689 // Matched: select (A & B) == C ? ... : ...
690 // select (A & B) != C ? ... : ...
691
692 Value *X = nullptr, *Sh1 = nullptr;
693 // Check (A & B) for (X & (1 << i)):
694 if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
695 Sh1 = A;
696 X = B;
697 } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
698 Sh1 = B;
699 X = A;
700 } else {
701 // TODO: Could also check for an induction variable containing single
702 // bit shifted left by 1 in each iteration.
703 return false;
704 }
705
706 bool TrueIfZero;
707
708 // Check C against the possible values for comparison: 0 and (1 << i):
709 if (match(C, m_Zero()))
710 TrueIfZero = (P == CmpInst::ICMP_EQ);
711 else if (C == Sh1)
712 TrueIfZero = (P == CmpInst::ICMP_NE);
713 else
714 return false;
715
716 // So far, matched:
717 // select (X & (1 << i)) ? ... : ...
718 // including variations of the check against zero/non-zero value.
719
720 Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
721 if (TrueIfZero) {
722 ShouldSameV = TrueV;
723 ShouldXoredV = FalseV;
724 } else {
725 ShouldSameV = FalseV;
726 ShouldXoredV = TrueV;
727 }
728
729 Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
730 Value *T = nullptr;
731 if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
732 // Matched: select +++ ? ... : Y ^ Z
733 // select +++ ? Y ^ Z : ...
734 // where +++ denotes previously checked matches.
735 if (ShouldSameV == Y)
736 T = Z;
737 else if (ShouldSameV == Z)
738 T = Y;
739 else
740 return false;
741 R = ShouldSameV;
742 // Matched: select +++ ? R : R ^ T
743 // select +++ ? R ^ T : R
744 // depending on TrueIfZero.
745
746 } else if (match(ShouldSameV, m_Zero())) {
747 // Matched: select +++ ? 0 : ...
748 // select +++ ? ... : 0
749 if (!SelI->hasOneUse())
750 return false;
751 T = ShouldXoredV;
752 // Matched: select +++ ? 0 : T
753 // select +++ ? T : 0
754
755 Value *U = *SelI->user_begin();
756 if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
757 !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
758 return false;
759 // Matched: xor (select +++ ? 0 : T), R
760 // xor (select +++ ? T : 0), R
761 } else
762 return false;
763
764 // The xor input value T is isolated into its own match so that it could
765 // be checked against an induction variable containing a shifted bit
766 // (todo).
767 // For now, check against (Q << i).
768 if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
769 !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
770 return false;
771 // Matched: select +++ ? R : R ^ (Q << i)
772 // select +++ ? R ^ (Q << i) : R
773
774 PV.X = X;
775 PV.Q = Q;
776 PV.R = R;
777 PV.Left = true;
778 return true;
779}
780
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000781bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
782 ParsedValues &PV) {
783 // Match the following:
784 // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
785 // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
786 // The condition may also check for equality with the masked value, i.e
787 // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
788 // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
789
790 Value *CondV = SelI->getCondition();
791 Value *TrueV = SelI->getTrueValue();
792 Value *FalseV = SelI->getFalseValue();
793
794 using namespace PatternMatch;
795
796 Value *C = nullptr;
797 CmpInst::Predicate P;
798 bool TrueIfZero;
799
800 if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
801 match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
802 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
803 return false;
804 // Matched: select C == 0 ? ... : ...
805 // select C != 0 ? ... : ...
806 TrueIfZero = (P == CmpInst::ICMP_EQ);
807 } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
808 match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
809 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
810 return false;
811 // Matched: select C == 1 ? ... : ...
812 // select C != 1 ? ... : ...
813 TrueIfZero = (P == CmpInst::ICMP_NE);
814 } else
815 return false;
816
817 Value *X = nullptr;
818 if (!match(C, m_And(m_Value(X), m_One())) &&
819 !match(C, m_And(m_One(), m_Value(X))))
820 return false;
821 // Matched: select (X & 1) == +++ ? ... : ...
822 // select (X & 1) != +++ ? ... : ...
823
824 Value *R = nullptr, *Q = nullptr;
825 if (TrueIfZero) {
826 // The select's condition is true if the tested bit is 0.
827 // TrueV must be the shift, FalseV must be the xor.
828 if (!match(TrueV, m_LShr(m_Value(R), m_One())))
829 return false;
830 // Matched: select +++ ? (R >> 1) : ...
831 if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
832 !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
833 return false;
834 // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
835 // with commuting ^.
836 } else {
837 // The select's condition is true if the tested bit is 1.
838 // TrueV must be the xor, FalseV must be the shift.
839 if (!match(FalseV, m_LShr(m_Value(R), m_One())))
840 return false;
841 // Matched: select +++ ? ... : (R >> 1)
842 if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
843 !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
844 return false;
845 // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
846 // with commuting ^.
847 }
848
849 PV.X = X;
850 PV.Q = Q;
851 PV.R = R;
852 PV.Left = false;
853 return true;
854}
855
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000856bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
857 BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
858 bool PreScan) {
859 using namespace PatternMatch;
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000860
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000861 // The basic pattern for R = P.Q is:
862 // for i = 0..31
863 // R = phi (0, R')
864 // if (P & (1 << i)) ; test-bit(P, i)
865 // R' = R ^ (Q << i)
866 //
867 // Similarly, the basic pattern for R = (P/Q).Q - P
868 // for i = 0..31
869 // R = phi(P, R')
870 // if (R & (1 << i))
871 // R' = R ^ (Q << i)
872
873 // There exist idioms, where instead of Q being shifted left, P is shifted
874 // right. This produces a result that is shifted right by 32 bits (the
875 // non-shifted result is 64-bit).
876 //
877 // For R = P.Q, this would be:
878 // for i = 0..31
879 // R = phi (0, R')
880 // if ((P >> i) & 1)
881 // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must
882 // else ; be shifted by 1, not i.
883 // R' = R >> 1
884 //
885 // And for the inverse:
886 // for i = 0..31
887 // R = phi (P, R')
888 // if (R & 1)
889 // R' = (R >> 1) ^ Q
890 // else
891 // R' = R >> 1
892
893 // The left-shifting idioms share the same pattern:
894 // select (X & (1 << i)) ? R ^ (Q << i) : R
895 // Similarly for right-shifting idioms:
896 // select (X & 1) ? (R >> 1) ^ Q
897
898 if (matchLeftShift(SelI, CIV, PV)) {
899 // If this is a pre-scan, getting this far is sufficient.
900 if (PreScan)
901 return true;
902
903 // Need to make sure that the SelI goes back into R.
904 auto *RPhi = dyn_cast<PHINode>(PV.R);
905 if (!RPhi)
906 return false;
907 if (SelI != RPhi->getIncomingValueForBlock(LoopB))
908 return false;
909 PV.Res = SelI;
910
911 // If X is loop invariant, it must be the input polynomial, and the
912 // idiom is the basic polynomial multiply.
913 if (CurLoop->isLoopInvariant(PV.X)) {
914 PV.P = PV.X;
915 PV.Inv = false;
916 } else {
917 // X is not loop invariant. If X == R, this is the inverse pmpy.
918 // Otherwise, check for an xor with an invariant value. If the
919 // variable argument to the xor is R, then this is still a valid
920 // inverse pmpy.
921 PV.Inv = true;
922 if (PV.X != PV.R) {
923 Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
924 if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
925 return false;
926 auto *I1 = dyn_cast<Instruction>(X1);
927 auto *I2 = dyn_cast<Instruction>(X2);
928 if (!I1 || I1->getParent() != LoopB) {
929 Var = X2;
930 Inv = X1;
931 } else if (!I2 || I2->getParent() != LoopB) {
932 Var = X1;
933 Inv = X2;
934 } else
935 return false;
936 if (Var != PV.R)
937 return false;
938 PV.M = Inv;
939 }
940 // The input polynomial P still needs to be determined. It will be
941 // the entry value of R.
942 Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
943 PV.P = EntryP;
944 }
945
946 return true;
947 }
948
949 if (matchRightShift(SelI, PV)) {
950 // If this is an inverse pattern, the Q polynomial must be known at
951 // compile time.
952 if (PV.Inv && !isa<ConstantInt>(PV.Q))
953 return false;
954 if (PreScan)
955 return true;
956 // There is no exact matching of right-shift pmpy.
957 return false;
958 }
959
960 return false;
961}
962
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000963bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
964 IntegerType *DestTy) {
965 IntegerType *T = dyn_cast<IntegerType>(Val->getType());
966 if (!T || T->getBitWidth() > DestTy->getBitWidth())
967 return false;
968 if (T->getBitWidth() == DestTy->getBitWidth())
969 return true;
970 // Non-instructions are promotable. The reason why an instruction may not
971 // be promotable is that it may produce a different result if its operands
972 // and the result are promoted, for example, it may produce more non-zero
973 // bits. While it would still be possible to represent the proper result
974 // in a wider type, it may require adding additional instructions (which
975 // we don't want to do).
976 Instruction *In = dyn_cast<Instruction>(Val);
977 if (!In)
978 return true;
979 // The bitwidth of the source type is smaller than the destination.
980 // Check if the individual operation can be promoted.
981 switch (In->getOpcode()) {
982 case Instruction::PHI:
983 case Instruction::ZExt:
984 case Instruction::And:
985 case Instruction::Or:
986 case Instruction::Xor:
987 case Instruction::LShr: // Shift right is ok.
988 case Instruction::Select:
989 return true;
990 case Instruction::ICmp:
991 if (CmpInst *CI = cast<CmpInst>(In))
992 return CI->isEquality() || CI->isUnsigned();
993 llvm_unreachable("Cast failed unexpectedly");
994 case Instruction::Add:
995 return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
996 }
997 return false;
998}
999
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001000void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1001 IntegerType *DestTy, BasicBlock *LoopB) {
1002 // Leave boolean values alone.
1003 if (!In->getType()->isIntegerTy(1))
1004 In->mutateType(DestTy);
1005 unsigned DestBW = DestTy->getBitWidth();
1006
1007 // Handle PHIs.
1008 if (PHINode *P = dyn_cast<PHINode>(In)) {
1009 unsigned N = P->getNumIncomingValues();
1010 for (unsigned i = 0; i != N; ++i) {
1011 BasicBlock *InB = P->getIncomingBlock(i);
1012 if (InB == LoopB)
1013 continue;
1014 Value *InV = P->getIncomingValue(i);
1015 IntegerType *Ty = cast<IntegerType>(InV->getType());
1016 // Do not promote values in PHI nodes of type i1.
1017 if (Ty != P->getType()) {
1018 // If the value type does not match the PHI type, the PHI type
1019 // must have been promoted.
1020 assert(Ty->getBitWidth() < DestBW);
1021 InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1022 P->setIncomingValue(i, InV);
1023 }
1024 }
1025 } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1026 Value *Op = Z->getOperand(0);
1027 if (Op->getType() == Z->getType())
1028 Z->replaceAllUsesWith(Op);
1029 Z->eraseFromParent();
1030 return;
1031 }
1032
1033 // Promote immediates.
1034 for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1035 if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1036 if (CI->getType()->getBitWidth() < DestBW)
1037 In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1038 }
1039}
1040
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001041bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1042 BasicBlock *ExitB) {
1043 assert(LoopB);
1044 // Skip loops where the exit block has more than one predecessor. The values
1045 // coming from the loop block will be promoted to another type, and so the
1046 // values coming into the exit block from other predecessors would also have
1047 // to be promoted.
1048 if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1049 return false;
1050 IntegerType *DestTy = getPmpyType();
1051 // Check if the exit values have types that are no wider than the type
1052 // that we want to promote to.
1053 unsigned DestBW = DestTy->getBitWidth();
1054 for (Instruction &In : *ExitB) {
1055 PHINode *P = dyn_cast<PHINode>(&In);
1056 if (!P)
1057 break;
1058 if (P->getNumIncomingValues() != 1)
1059 return false;
1060 assert(P->getIncomingBlock(0) == LoopB);
1061 IntegerType *T = dyn_cast<IntegerType>(P->getType());
1062 if (!T || T->getBitWidth() > DestBW)
1063 return false;
1064 }
1065
1066 // Check all instructions in the loop.
1067 for (Instruction &In : *LoopB)
1068 if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1069 return false;
1070
1071 // Perform the promotion.
1072 std::vector<Instruction*> LoopIns;
1073 std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1074 [](Instruction &In) { return &In; });
1075 for (Instruction *In : LoopIns)
1076 promoteTo(In, DestTy, LoopB);
1077
1078 // Fix up the PHI nodes in the exit block.
1079 Instruction *EndI = ExitB->getFirstNonPHI();
1080 BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1081 for (auto I = ExitB->begin(); I != End; ++I) {
1082 PHINode *P = dyn_cast<PHINode>(I);
1083 if (!P)
1084 break;
1085 Type *Ty0 = P->getIncomingValue(0)->getType();
1086 Type *PTy = P->getType();
1087 if (PTy != Ty0) {
1088 assert(Ty0 == DestTy);
1089 // In order to create the trunc, P must have the promoted type.
1090 P->mutateType(Ty0);
1091 Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1092 // In order for the RAUW to work, the types of P and T must match.
1093 P->mutateType(PTy);
1094 P->replaceAllUsesWith(T);
1095 // Final update of the P's type.
1096 P->mutateType(Ty0);
1097 cast<Instruction>(T)->setOperand(0, P);
1098 }
1099 }
1100
1101 return true;
1102}
1103
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001104bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1105 ValueSeq &Cycle) {
1106 // Out = ..., In, ...
1107 if (Out == In)
1108 return true;
1109
1110 auto *BB = cast<Instruction>(Out)->getParent();
1111 bool HadPhi = false;
1112
1113 for (auto U : Out->users()) {
1114 auto *I = dyn_cast<Instruction>(&*U);
1115 if (I == nullptr || I->getParent() != BB)
1116 continue;
1117 // Make sure that there are no multi-iteration cycles, e.g.
1118 // p1 = phi(p2)
1119 // p2 = phi(p1)
1120 // The cycle p1->p2->p1 would span two loop iterations.
1121 // Check that there is only one phi in the cycle.
1122 bool IsPhi = isa<PHINode>(I);
1123 if (IsPhi && HadPhi)
1124 return false;
1125 HadPhi |= IsPhi;
1126 if (Cycle.count(I))
1127 return false;
1128 Cycle.insert(I);
1129 if (findCycle(I, In, Cycle))
1130 break;
1131 Cycle.remove(I);
1132 }
1133 return !Cycle.empty();
1134}
1135
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001136void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1137 ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1138 // All the values in the cycle that are between the phi node and the
1139 // divider instruction will be classified as "early", all other values
1140 // will be "late".
1141
1142 bool IsE = true;
1143 unsigned I, N = Cycle.size();
1144 for (I = 0; I < N; ++I) {
1145 Value *V = Cycle[I];
1146 if (DivI == V)
1147 IsE = false;
1148 else if (!isa<PHINode>(V))
1149 continue;
1150 // Stop if found either.
1151 break;
1152 }
1153 // "I" is the index of either DivI or the phi node, whichever was first.
1154 // "E" is "false" or "true" respectively.
1155 ValueSeq &First = !IsE ? Early : Late;
1156 for (unsigned J = 0; J < I; ++J)
1157 First.insert(Cycle[J]);
1158
1159 ValueSeq &Second = IsE ? Early : Late;
1160 Second.insert(Cycle[I]);
1161 for (++I; I < N; ++I) {
1162 Value *V = Cycle[I];
1163 if (DivI == V || isa<PHINode>(V))
1164 break;
1165 Second.insert(V);
1166 }
1167
1168 for (; I < N; ++I)
1169 First.insert(Cycle[I]);
1170}
1171
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001172bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1173 ValueSeq &Early, ValueSeq &Late) {
1174 // Select is an exception, since the condition value does not have to be
1175 // classified in the same way as the true/false values. The true/false
1176 // values do have to be both early or both late.
1177 if (UseI->getOpcode() == Instruction::Select) {
1178 Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1179 if (Early.count(TV) || Early.count(FV)) {
1180 if (Late.count(TV) || Late.count(FV))
1181 return false;
1182 Early.insert(UseI);
1183 } else if (Late.count(TV) || Late.count(FV)) {
1184 if (Early.count(TV) || Early.count(FV))
1185 return false;
1186 Late.insert(UseI);
1187 }
1188 return true;
1189 }
1190
1191 // Not sure what would be the example of this, but the code below relies
1192 // on having at least one operand.
1193 if (UseI->getNumOperands() == 0)
1194 return true;
1195
1196 bool AE = true, AL = true;
1197 for (auto &I : UseI->operands()) {
1198 if (Early.count(&*I))
1199 AL = false;
1200 else if (Late.count(&*I))
1201 AE = false;
1202 }
1203 // If the operands appear "all early" and "all late" at the same time,
1204 // then it means that none of them are actually classified as either.
1205 // This is harmless.
1206 if (AE && AL)
1207 return true;
1208 // Conversely, if they are neither "all early" nor "all late", then
1209 // we have a mixture of early and late operands that is not a known
1210 // exception.
1211 if (!AE && !AL)
1212 return false;
1213
1214 // Check that we have covered the two special cases.
1215 assert(AE != AL);
1216
1217 if (AE)
1218 Early.insert(UseI);
1219 else
1220 Late.insert(UseI);
1221 return true;
1222}
1223
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001224bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1225 switch (I->getOpcode()) {
1226 case Instruction::And:
1227 case Instruction::Or:
1228 case Instruction::Xor:
1229 case Instruction::LShr:
1230 case Instruction::Shl:
1231 case Instruction::Select:
1232 case Instruction::ICmp:
1233 case Instruction::PHI:
1234 break;
1235 default:
1236 return false;
1237 }
1238 return true;
1239}
1240
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001241bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1242 unsigned IterCount) {
1243 auto *T = dyn_cast<IntegerType>(V->getType());
1244 if (!T)
1245 return false;
1246
Craig Topperb45eabc2017-04-26 16:39:58 +00001247 KnownBits Known(T->getBitWidth());
1248 computeKnownBits(V, Known, DL);
Craig Topper8df66c62017-05-12 17:20:30 +00001249 return Known.countMinLeadingZeros() >= IterCount;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001250}
1251
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001252bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1253 unsigned IterCount) {
1254 // Assume that all inputs to the value have the high bits zero.
1255 // Check if the value itself preserves the zeros in the high bits.
1256 if (auto *C = dyn_cast<ConstantInt>(V))
1257 return C->getValue().countLeadingZeros() >= IterCount;
1258
1259 if (auto *I = dyn_cast<Instruction>(V)) {
1260 switch (I->getOpcode()) {
1261 case Instruction::And:
1262 case Instruction::Or:
1263 case Instruction::Xor:
1264 case Instruction::LShr:
1265 case Instruction::Select:
1266 case Instruction::ICmp:
1267 case Instruction::PHI:
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001268 case Instruction::ZExt:
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001269 return true;
1270 }
1271 }
1272
1273 return false;
1274}
1275
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001276bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1277 unsigned Opc = I->getOpcode();
1278 if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1279 return Op != I->getOperand(1);
1280 return true;
1281}
1282
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001283bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1284 BasicBlock *ExitB, unsigned IterCount) {
1285 Value *CIV = getCountIV(LoopB);
1286 if (CIV == nullptr)
1287 return false;
1288 auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1289 if (CIVTy == nullptr)
1290 return false;
1291
1292 ValueSeq RShifts;
1293 ValueSeq Early, Late, Cycled;
1294
1295 // Find all value cycles that contain logical right shifts by 1.
1296 for (Instruction &I : *LoopB) {
1297 using namespace PatternMatch;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001298
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001299 Value *V = nullptr;
1300 if (!match(&I, m_LShr(m_Value(V), m_One())))
1301 continue;
1302 ValueSeq C;
1303 if (!findCycle(&I, V, C))
1304 continue;
1305
1306 // Found a cycle.
1307 C.insert(&I);
1308 classifyCycle(&I, C, Early, Late);
1309 Cycled.insert(C.begin(), C.end());
1310 RShifts.insert(&I);
1311 }
1312
1313 // Find the set of all values affected by the shift cycles, i.e. all
1314 // cycled values, and (recursively) all their users.
1315 ValueSeq Users(Cycled.begin(), Cycled.end());
1316 for (unsigned i = 0; i < Users.size(); ++i) {
1317 Value *V = Users[i];
1318 if (!isa<IntegerType>(V->getType()))
1319 return false;
1320 auto *R = cast<Instruction>(V);
1321 // If the instruction does not commute with shifts, the loop cannot
1322 // be unshifted.
1323 if (!commutesWithShift(R))
1324 return false;
1325 for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1326 auto *T = cast<Instruction>(*I);
1327 // Skip users from outside of the loop. They will be handled later.
1328 // Also, skip the right-shifts and phi nodes, since they mix early
1329 // and late values.
1330 if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1331 continue;
1332
1333 Users.insert(T);
1334 if (!classifyInst(T, Early, Late))
1335 return false;
1336 }
1337 }
1338
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001339 if (Users.empty())
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001340 return false;
1341
1342 // Verify that high bits remain zero.
1343 ValueSeq Internal(Users.begin(), Users.end());
1344 ValueSeq Inputs;
1345 for (unsigned i = 0; i < Internal.size(); ++i) {
1346 auto *R = dyn_cast<Instruction>(Internal[i]);
1347 if (!R)
1348 continue;
1349 for (Value *Op : R->operands()) {
1350 auto *T = dyn_cast<Instruction>(Op);
1351 if (T && T->getParent() != LoopB)
1352 Inputs.insert(Op);
1353 else
1354 Internal.insert(Op);
1355 }
1356 }
1357 for (Value *V : Inputs)
1358 if (!highBitsAreZero(V, IterCount))
1359 return false;
1360 for (Value *V : Internal)
1361 if (!keepsHighBitsZero(V, IterCount))
1362 return false;
1363
1364 // Finally, the work can be done. Unshift each user.
1365 IRBuilder<> IRB(LoopB);
1366 std::map<Value*,Value*> ShiftMap;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001367
1368 using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1369
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001370 CastMapType CastMap;
1371
1372 auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1373 IntegerType *Ty) -> Value* {
1374 auto H = CM.find(std::make_pair(V, Ty));
1375 if (H != CM.end())
1376 return H->second;
1377 Value *CV = IRB.CreateIntCast(V, Ty, false);
1378 CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1379 return CV;
1380 };
1381
1382 for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001383 using namespace PatternMatch;
1384
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001385 if (isa<PHINode>(I) || !Users.count(&*I))
1386 continue;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001387
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001388 // Match lshr x, 1.
1389 Value *V = nullptr;
1390 if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1391 replaceAllUsesOfWithIn(&*I, V, LoopB);
1392 continue;
1393 }
1394 // For each non-cycled operand, replace it with the corresponding
1395 // value shifted left.
1396 for (auto &J : I->operands()) {
1397 Value *Op = J.get();
1398 if (!isOperandShifted(&*I, Op))
1399 continue;
1400 if (Users.count(Op))
1401 continue;
1402 // Skip shifting zeros.
1403 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1404 continue;
1405 // Check if we have already generated a shift for this value.
1406 auto F = ShiftMap.find(Op);
1407 Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1408 if (W == nullptr) {
1409 IRB.SetInsertPoint(&*I);
1410 // First, the shift amount will be CIV or CIV+1, depending on
1411 // whether the value is early or late. Instead of creating CIV+1,
1412 // do a single shift of the value.
1413 Value *ShAmt = CIV, *ShVal = Op;
1414 auto *VTy = cast<IntegerType>(ShVal->getType());
1415 auto *ATy = cast<IntegerType>(ShAmt->getType());
1416 if (Late.count(&*I))
1417 ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1418 // Second, the types of the shifted value and the shift amount
1419 // must match.
1420 if (VTy != ATy) {
1421 if (VTy->getBitWidth() < ATy->getBitWidth())
1422 ShVal = upcast(CastMap, IRB, ShVal, ATy);
1423 else
1424 ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1425 }
1426 // Ready to generate the shift and memoize it.
1427 W = IRB.CreateShl(ShVal, ShAmt);
1428 ShiftMap.insert(std::make_pair(Op, W));
1429 }
1430 I->replaceUsesOfWith(Op, W);
1431 }
1432 }
1433
1434 // Update the users outside of the loop to account for having left
1435 // shifts. They would normally be shifted right in the loop, so shift
1436 // them right after the loop exit.
1437 // Take advantage of the loop-closed SSA form, which has all the post-
1438 // loop values in phi nodes.
1439 IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1440 for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1441 if (!isa<PHINode>(P))
1442 break;
1443 auto *PN = cast<PHINode>(P);
1444 Value *U = PN->getIncomingValueForBlock(LoopB);
1445 if (!Users.count(U))
1446 continue;
1447 Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1448 PN->replaceAllUsesWith(S);
1449 // The above RAUW will create
1450 // S = lshr S, IterCount
1451 // so we need to fix it back into
1452 // S = lshr PN, IterCount
1453 cast<User>(S)->replaceUsesOfWith(S, PN);
1454 }
1455
1456 return true;
1457}
1458
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001459void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1460 for (auto &I : *LoopB)
Daniel Berlin4d0fe642017-04-28 19:55:38 +00001461 if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001462 I.replaceAllUsesWith(SV);
1463
1464 for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1465 N = std::next(I);
1466 RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1467 }
1468}
1469
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001470unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1471 // Arrays of coefficients of Q and the inverse, C.
1472 // Q[i] = coefficient at x^i.
1473 std::array<char,32> Q, C;
1474
1475 for (unsigned i = 0; i < 32; ++i) {
1476 Q[i] = QP & 1;
1477 QP >>= 1;
1478 }
1479 assert(Q[0] == 1);
1480
1481 // Find C, such that
1482 // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1483 //
1484 // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1485 // operations * and + are & and ^ respectively.
1486 //
1487 // Find C[i] recursively, by comparing i-th coefficient in the product
1488 // with 0 (or 1 for i=0).
1489 //
1490 // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1491 C[0] = 1;
1492 for (unsigned i = 1; i < 32; ++i) {
1493 // Solve for C[i] in:
1494 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1495 // This is equivalent to
1496 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1497 // which is
1498 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1499 unsigned T = 0;
1500 for (unsigned j = 0; j < i; ++j)
1501 T = T ^ (C[j] & Q[i-j]);
1502 C[i] = T;
1503 }
1504
1505 unsigned QV = 0;
1506 for (unsigned i = 0; i < 32; ++i)
1507 if (C[i])
1508 QV |= (1 << i);
1509
1510 return QV;
1511}
1512
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001513Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1514 ParsedValues &PV) {
1515 IRBuilder<> B(&*At);
1516 Module *M = At->getParent()->getParent()->getParent();
1517 Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1518
1519 Value *P = PV.P, *Q = PV.Q, *P0 = P;
1520 unsigned IC = PV.IterCount;
1521
1522 if (PV.M != nullptr)
1523 P0 = P = B.CreateXor(P, PV.M);
1524
1525 // Create a bit mask to clear the high bits beyond IterCount.
1526 auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1527
1528 if (PV.IterCount != 32)
1529 P = B.CreateAnd(P, BMI);
1530
1531 if (PV.Inv) {
1532 auto *QI = dyn_cast<ConstantInt>(PV.Q);
1533 assert(QI && QI->getBitWidth() <= 32);
1534
1535 // Again, clearing bits beyond IterCount.
1536 unsigned M = (1 << PV.IterCount) - 1;
1537 unsigned Tmp = (QI->getZExtValue() | 1) & M;
1538 unsigned QV = getInverseMxN(Tmp) & M;
1539 auto *QVI = ConstantInt::get(QI->getType(), QV);
1540 P = B.CreateCall(PMF, {P, QVI});
1541 P = B.CreateTrunc(P, QI->getType());
1542 if (IC != 32)
1543 P = B.CreateAnd(P, BMI);
1544 }
1545
1546 Value *R = B.CreateCall(PMF, {P, Q});
1547
1548 if (PV.M != nullptr)
1549 R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1550
1551 return R;
1552}
1553
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001554static bool hasZeroSignBit(const Value *V) {
1555 if (const auto *CI = dyn_cast<const ConstantInt>(V))
1556 return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1557 const Instruction *I = dyn_cast<const Instruction>(V);
1558 if (!I)
1559 return false;
1560 switch (I->getOpcode()) {
1561 case Instruction::LShr:
1562 if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1563 return SI->getZExtValue() > 0;
1564 return false;
1565 case Instruction::Or:
1566 case Instruction::Xor:
1567 return hasZeroSignBit(I->getOperand(0)) &&
1568 hasZeroSignBit(I->getOperand(1));
1569 case Instruction::And:
1570 return hasZeroSignBit(I->getOperand(0)) ||
1571 hasZeroSignBit(I->getOperand(1));
1572 }
1573 return false;
1574}
1575
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001576void PolynomialMultiplyRecognize::setupSimplifier() {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001577 Simp.addRule("sink-zext",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001578 // Sink zext past bitwise operations.
1579 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1580 if (I->getOpcode() != Instruction::ZExt)
1581 return nullptr;
1582 Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1583 if (!T)
1584 return nullptr;
1585 switch (T->getOpcode()) {
1586 case Instruction::And:
1587 case Instruction::Or:
1588 case Instruction::Xor:
1589 break;
1590 default:
1591 return nullptr;
1592 }
1593 IRBuilder<> B(Ctx);
1594 return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1595 B.CreateZExt(T->getOperand(0), I->getType()),
1596 B.CreateZExt(T->getOperand(1), I->getType()));
1597 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001598 Simp.addRule("xor/and -> and/xor",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001599 // (xor (and x a) (and y a)) -> (and (xor x y) a)
1600 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1601 if (I->getOpcode() != Instruction::Xor)
1602 return nullptr;
1603 Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1604 Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1605 if (!And0 || !And1)
1606 return nullptr;
1607 if (And0->getOpcode() != Instruction::And ||
1608 And1->getOpcode() != Instruction::And)
1609 return nullptr;
1610 if (And0->getOperand(1) != And1->getOperand(1))
1611 return nullptr;
1612 IRBuilder<> B(Ctx);
1613 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1614 And0->getOperand(1));
1615 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001616 Simp.addRule("sink binop into select",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001617 // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1618 // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1619 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1620 BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1621 if (!BO)
1622 return nullptr;
1623 Instruction::BinaryOps Op = BO->getOpcode();
1624 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1625 IRBuilder<> B(Ctx);
1626 Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1627 Value *Z = BO->getOperand(1);
1628 return B.CreateSelect(Sel->getCondition(),
1629 B.CreateBinOp(Op, X, Z),
1630 B.CreateBinOp(Op, Y, Z));
1631 }
1632 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1633 IRBuilder<> B(Ctx);
1634 Value *X = BO->getOperand(0);
1635 Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1636 return B.CreateSelect(Sel->getCondition(),
1637 B.CreateBinOp(Op, X, Y),
1638 B.CreateBinOp(Op, X, Z));
1639 }
1640 return nullptr;
1641 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001642 Simp.addRule("fold select-select",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001643 // (select c (select c x y) z) -> (select c x z)
1644 // (select c x (select c y z)) -> (select c x z)
1645 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1646 SelectInst *Sel = dyn_cast<SelectInst>(I);
1647 if (!Sel)
1648 return nullptr;
1649 IRBuilder<> B(Ctx);
1650 Value *C = Sel->getCondition();
1651 if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1652 if (Sel0->getCondition() == C)
1653 return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1654 }
1655 if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1656 if (Sel1->getCondition() == C)
1657 return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1658 }
1659 return nullptr;
1660 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001661 Simp.addRule("or-signbit -> xor-signbit",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001662 // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1663 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1664 if (I->getOpcode() != Instruction::Or)
1665 return nullptr;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001666 ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1667 if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1668 return nullptr;
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001669 if (!hasZeroSignBit(I->getOperand(0)))
1670 return nullptr;
1671 return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001672 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001673 Simp.addRule("sink lshr into binop",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001674 // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1675 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1676 if (I->getOpcode() != Instruction::LShr)
1677 return nullptr;
1678 BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1679 if (!BitOp)
1680 return nullptr;
1681 switch (BitOp->getOpcode()) {
1682 case Instruction::And:
1683 case Instruction::Or:
1684 case Instruction::Xor:
1685 break;
1686 default:
1687 return nullptr;
1688 }
1689 IRBuilder<> B(Ctx);
1690 Value *S = I->getOperand(1);
1691 return B.CreateBinOp(BitOp->getOpcode(),
1692 B.CreateLShr(BitOp->getOperand(0), S),
1693 B.CreateLShr(BitOp->getOperand(1), S));
1694 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001695 Simp.addRule("expose bitop-const",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001696 // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1697 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1698 auto IsBitOp = [](unsigned Op) -> bool {
1699 switch (Op) {
1700 case Instruction::And:
1701 case Instruction::Or:
1702 case Instruction::Xor:
1703 return true;
1704 }
1705 return false;
1706 };
1707 BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1708 if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1709 return nullptr;
1710 BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1711 if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1712 return nullptr;
1713 ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1714 ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1715 if (!CA || !CB)
1716 return nullptr;
1717 IRBuilder<> B(Ctx);
1718 Value *X = BitOp2->getOperand(0);
1719 return B.CreateBinOp(BitOp2->getOpcode(), X,
1720 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1721 });
1722}
1723
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001724bool PolynomialMultiplyRecognize::recognize() {
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001725 DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1726 << *CurLoop << '\n');
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001727 // Restrictions:
1728 // - The loop must consist of a single block.
1729 // - The iteration count must be known at compile-time.
1730 // - The loop must have an induction variable starting from 0, and
1731 // incremented in each iteration of the loop.
1732 BasicBlock *LoopB = CurLoop->getHeader();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001733 DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1734
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001735 if (LoopB != CurLoop->getLoopLatch())
1736 return false;
1737 BasicBlock *ExitB = CurLoop->getExitBlock();
1738 if (ExitB == nullptr)
1739 return false;
1740 BasicBlock *EntryB = CurLoop->getLoopPreheader();
1741 if (EntryB == nullptr)
1742 return false;
1743
1744 unsigned IterCount = 0;
1745 const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1746 if (isa<SCEVCouldNotCompute>(CT))
1747 return false;
1748 if (auto *CV = dyn_cast<SCEVConstant>(CT))
1749 IterCount = CV->getValue()->getZExtValue() + 1;
1750
1751 Value *CIV = getCountIV(LoopB);
1752 ParsedValues PV;
1753 PV.IterCount = IterCount;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001754 DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n');
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001755
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001756 setupSimplifier();
1757
1758 // Perform a preliminary scan of select instructions to see if any of them
1759 // looks like a generator of the polynomial multiply steps. Assume that a
1760 // loop can only contain a single transformable operation, so stop the
1761 // traversal after the first reasonable candidate was found.
1762 // XXX: Currently this approach can modify the loop before being 100% sure
1763 // that the transformation can be carried out.
1764 bool FoundPreScan = false;
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001765 auto FeedsPHI = [LoopB](const Value *V) -> bool {
1766 for (const Value *U : V->users()) {
1767 if (const auto *P = dyn_cast<const PHINode>(U))
1768 if (P->getParent() == LoopB)
1769 return true;
1770 }
1771 return false;
1772 };
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001773 for (Instruction &In : *LoopB) {
1774 SelectInst *SI = dyn_cast<SelectInst>(&In);
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001775 if (!SI || !FeedsPHI(SI))
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001776 continue;
1777
1778 Simplifier::Context C(SI);
1779 Value *T = Simp.simplify(C);
1780 SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1781 DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1782 if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1783 FoundPreScan = true;
1784 if (SelI != SI) {
1785 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1786 SI->replaceAllUsesWith(NewSel);
1787 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1788 }
1789 break;
1790 }
1791 }
1792
1793 if (!FoundPreScan) {
1794 DEBUG(dbgs() << "Have not found candidates for pmpy\n");
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001795 return false;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001796 }
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001797
1798 if (!PV.Left) {
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001799 // The right shift version actually only returns the higher bits of
1800 // the result (each iteration discards the LSB). If we want to convert it
1801 // to a left-shifting loop, the working data type must be at least as
1802 // wide as the target's pmpy instruction.
1803 if (!promoteTypes(LoopB, ExitB))
1804 return false;
Krzysztof Parzyszek9bd4d912017-06-13 13:51:49 +00001805 if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1806 return false;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001807 cleanupLoopBody(LoopB);
1808 }
1809
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001810 // Scan the loop again, find the generating select instruction.
1811 bool FoundScan = false;
1812 for (Instruction &In : *LoopB) {
1813 SelectInst *SelI = dyn_cast<SelectInst>(&In);
1814 if (!SelI)
1815 continue;
1816 DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1817 FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1818 if (FoundScan)
1819 break;
1820 }
1821 assert(FoundScan);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001822
1823 DEBUG({
1824 StringRef PP = (PV.M ? "(P+M)" : "P");
1825 if (!PV.Inv)
1826 dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1827 else
1828 dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1829 << PP << "\n";
1830 dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n";
1831 if (PV.M)
1832 dbgs() << " M:" << *PV.M << "\n";
1833 dbgs() << " Q:" << *PV.Q << "\n";
1834 dbgs() << " Iteration count:" << PV.IterCount << "\n";
1835 });
1836
1837 BasicBlock::iterator At(EntryB->getTerminator());
1838 Value *PM = generate(At, PV);
1839 if (PM == nullptr)
1840 return false;
1841
1842 if (PM->getType() != PV.Res->getType())
1843 PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1844
1845 PV.Res->replaceAllUsesWith(PM);
1846 PV.Res->eraseFromParent();
1847 return true;
1848}
1849
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001850unsigned HexagonLoopIdiomRecognize::getStoreSizeInBytes(StoreInst *SI) {
1851 uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
1852 assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
1853 "Don't overflow unsigned.");
1854 return (unsigned)SizeInBits >> 3;
1855}
1856
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001857int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1858 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1859 return SC->getAPInt().getSExtValue();
1860 return 0;
1861}
1862
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001863bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
Krzysztof Parzyszek35ce5da2017-01-27 20:40:14 +00001864 // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1865 if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001866 return false;
1867
1868 Value *StoredVal = SI->getValueOperand();
1869 Value *StorePtr = SI->getPointerOperand();
1870
1871 // Reject stores that are so large that they overflow an unsigned.
1872 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1873 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1874 return false;
1875
1876 // See if the pointer expression is an AddRec like {base,+,1} on the current
1877 // loop, which indicates a strided store. If we have something else, it's a
1878 // random store we can't handle.
1879 auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1880 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1881 return false;
1882
1883 // Check to see if the stride matches the size of the store. If so, then we
1884 // know that every byte is touched in the loop.
1885 int Stride = getSCEVStride(StoreEv);
1886 if (Stride == 0)
1887 return false;
1888 unsigned StoreSize = getStoreSizeInBytes(SI);
1889 if (StoreSize != unsigned(std::abs(Stride)))
1890 return false;
1891
1892 // The store must be feeding a non-volatile load.
1893 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1894 if (!LI || !LI->isSimple())
1895 return false;
1896
1897 // See if the pointer expression is an AddRec like {base,+,1} on the current
1898 // loop, which indicates a strided load. If we have something else, it's a
1899 // random load we can't handle.
1900 Value *LoadPtr = LI->getPointerOperand();
1901 auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1902 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1903 return false;
1904
1905 // The store and load must share the same stride.
1906 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1907 return false;
1908
1909 // Success. This store can be converted into a memcpy.
1910 return true;
1911}
1912
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001913/// mayLoopAccessLocation - Return true if the specified loop might access the
1914/// specified pointer location, which is a loop-strided access. The 'Access'
1915/// argument specifies what the verboten forms of access are (read or write).
1916static bool
1917mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1918 const SCEV *BECount, unsigned StoreSize,
1919 AliasAnalysis &AA,
1920 SmallPtrSetImpl<Instruction *> &Ignored) {
1921 // Get the location that may be stored across the loop. Since the access
1922 // is strided positively through memory, we say that the modified location
1923 // starts at the pointer and has infinite size.
1924 uint64_t AccessSize = MemoryLocation::UnknownSize;
1925
1926 // If the loop iterates a fixed number of times, we can refine the access
1927 // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1928 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1929 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
1930
1931 // TODO: For this to be really effective, we have to dive into the pointer
1932 // operand in the store. Store to &A[i] of 100 will always return may alias
1933 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1934 // which will then no-alias a store to &A[100].
1935 MemoryLocation StoreLoc(Ptr, AccessSize);
1936
1937 for (auto *B : L->blocks())
1938 for (auto &I : *B)
1939 if (Ignored.count(&I) == 0 && (AA.getModRefInfo(&I, StoreLoc) & Access))
1940 return true;
1941
1942 return false;
1943}
1944
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001945void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
1946 SmallVectorImpl<StoreInst*> &Stores) {
1947 Stores.clear();
1948 for (Instruction &I : *BB)
1949 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
1950 if (isLegalStore(CurLoop, SI))
1951 Stores.push_back(SI);
1952}
1953
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001954bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
1955 StoreInst *SI, const SCEV *BECount) {
Michael Kupersteine18aad32017-01-31 22:48:45 +00001956 assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
1957 "Expected only non-volatile stores, or Hexagon-specific memcpy"
1958 "to volatile destination.");
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001959
1960 Value *StorePtr = SI->getPointerOperand();
1961 auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1962 unsigned Stride = getSCEVStride(StoreEv);
1963 unsigned StoreSize = getStoreSizeInBytes(SI);
1964 if (Stride != StoreSize)
1965 return false;
1966
1967 // See if the pointer expression is an AddRec like {base,+,1} on the current
1968 // loop, which indicates a strided load. If we have something else, it's a
1969 // random load we can't handle.
1970 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1971 auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1972
1973 // The trip count of the loop and the base pointer of the addrec SCEV is
1974 // guaranteed to be loop invariant, which means that it should dominate the
1975 // header. This allows us to insert code for it in the preheader.
1976 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1977 Instruction *ExpPt = Preheader->getTerminator();
1978 IRBuilder<> Builder(ExpPt);
1979 SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
1980
1981 Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
1982
1983 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1984 // this into a memcpy/memmove in the loop preheader now if we want. However,
1985 // this would be unsafe to do if there is anything else in the loop that may
1986 // read or write the memory region we're storing to. For memcpy, this
1987 // includes the load that feeds the stores. Check for an alias by generating
1988 // the base address and checking everything.
1989 Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
1990 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
1991 Value *LoadBasePtr = nullptr;
1992
1993 bool Overlap = false;
1994 bool DestVolatile = SI->isVolatile();
1995 Type *BECountTy = BECount->getType();
1996
1997 if (DestVolatile) {
1998 // The trip count must fit in i32, since it is the type of the "num_words"
1999 // argument to hexagon_memcpy_forward_vp4cp4n2.
2000 if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2001CleanupAndExit:
2002 // If we generated new code for the base pointer, clean up.
2003 Expander.clear();
2004 if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2005 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2006 StoreBasePtr = nullptr;
2007 }
2008 if (LoadBasePtr) {
2009 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2010 LoadBasePtr = nullptr;
2011 }
2012 return false;
2013 }
2014 }
2015
2016 SmallPtrSet<Instruction*, 2> Ignore1;
2017 Ignore1.insert(SI);
2018 if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
2019 StoreSize, *AA, Ignore1)) {
2020 // Check if the load is the offending instruction.
2021 Ignore1.insert(LI);
2022 if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
2023 StoreSize, *AA, Ignore1)) {
2024 // Still bad. Nothing we can do.
2025 goto CleanupAndExit;
2026 }
2027 // It worked with the load ignored.
2028 Overlap = true;
2029 }
2030
2031 if (!Overlap) {
2032 if (DisableMemcpyIdiom || !HasMemcpy)
2033 goto CleanupAndExit;
2034 } else {
2035 // Don't generate memmove if this function will be inlined. This is
2036 // because the caller will undergo this transformation after inlining.
2037 Function *Func = CurLoop->getHeader()->getParent();
2038 if (Func->hasFnAttribute(Attribute::AlwaysInline))
2039 goto CleanupAndExit;
2040
2041 // In case of a memmove, the call to memmove will be executed instead
2042 // of the loop, so we need to make sure that there is nothing else in
2043 // the loop than the load, store and instructions that these two depend
2044 // on.
2045 SmallVector<Instruction*,2> Insts;
2046 Insts.push_back(SI);
2047 Insts.push_back(LI);
2048 if (!coverLoop(CurLoop, Insts))
2049 goto CleanupAndExit;
2050
2051 if (DisableMemmoveIdiom || !HasMemmove)
2052 goto CleanupAndExit;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00002053 bool IsNested = CurLoop->getParentLoop() != nullptr;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002054 if (IsNested && OnlyNonNestedMemmove)
2055 goto CleanupAndExit;
2056 }
2057
2058 // For a memcpy, we have to make sure that the input array is not being
2059 // mutated by the loop.
2060 LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2061 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2062
2063 SmallPtrSet<Instruction*, 2> Ignore2;
2064 Ignore2.insert(SI);
2065 if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
2066 *AA, Ignore2))
2067 goto CleanupAndExit;
2068
2069 // Check the stride.
2070 bool StridePos = getSCEVStride(LoadEv) >= 0;
2071
2072 // Currently, the volatile memcpy only emulates traversing memory forward.
2073 if (!StridePos && DestVolatile)
2074 goto CleanupAndExit;
2075
2076 bool RuntimeCheck = (Overlap || DestVolatile);
2077
2078 BasicBlock *ExitB;
2079 if (RuntimeCheck) {
2080 // The runtime check needs a single exit block.
2081 SmallVector<BasicBlock*, 8> ExitBlocks;
2082 CurLoop->getUniqueExitBlocks(ExitBlocks);
2083 if (ExitBlocks.size() != 1)
2084 goto CleanupAndExit;
2085 ExitB = ExitBlocks[0];
2086 }
2087
2088 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
2089 // pointer size if it isn't already.
2090 LLVMContext &Ctx = SI->getContext();
2091 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2092 unsigned Alignment = std::min(SI->getAlignment(), LI->getAlignment());
2093 DebugLoc DLoc = SI->getDebugLoc();
2094
2095 const SCEV *NumBytesS =
2096 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2097 if (StoreSize != 1)
2098 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2099 SCEV::FlagNUW);
2100 Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2101 if (Instruction *In = dyn_cast<Instruction>(NumBytes))
Daniel Berlin4d0fe642017-04-28 19:55:38 +00002102 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002103 NumBytes = Simp;
2104
2105 CallInst *NewCall;
2106
2107 if (RuntimeCheck) {
2108 unsigned Threshold = RuntimeMemSizeThreshold;
2109 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2110 uint64_t C = CI->getZExtValue();
2111 if (Threshold != 0 && C < Threshold)
2112 goto CleanupAndExit;
2113 if (C < CompileTimeMemSizeThreshold)
2114 goto CleanupAndExit;
2115 }
2116
2117 BasicBlock *Header = CurLoop->getHeader();
2118 Function *Func = Header->getParent();
2119 Loop *ParentL = LF->getLoopFor(Preheader);
2120 StringRef HeaderName = Header->getName();
2121
2122 // Create a new (empty) preheader, and update the PHI nodes in the
2123 // header to use the new preheader.
2124 BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2125 Func, Header);
2126 if (ParentL)
2127 ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2128 IRBuilder<>(NewPreheader).CreateBr(Header);
2129 for (auto &In : *Header) {
2130 PHINode *PN = dyn_cast<PHINode>(&In);
2131 if (!PN)
2132 break;
2133 int bx = PN->getBasicBlockIndex(Preheader);
2134 if (bx >= 0)
2135 PN->setIncomingBlock(bx, NewPreheader);
2136 }
2137 DT->addNewBlock(NewPreheader, Preheader);
2138 DT->changeImmediateDominator(Header, NewPreheader);
2139
2140 // Check for safe conditions to execute memmove.
2141 // If stride is positive, copying things from higher to lower addresses
2142 // is equivalent to memmove. For negative stride, it's the other way
2143 // around. Copying forward in memory with positive stride may not be
2144 // same as memmove since we may be copying values that we just stored
2145 // in some previous iteration.
2146 Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2147 Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2148 Value *LowA = StridePos ? SA : LA;
2149 Value *HighA = StridePos ? LA : SA;
2150 Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2151 Value *Cond = CmpA;
2152
Krzysztof Parzyszekc09a14e2017-08-24 11:59:53 +00002153 // Check for distance between pointers. Since the case LowA < HighA
2154 // is checked for above, assume LowA >= HighA.
2155 Value *Dist = Builder.CreateSub(LowA, HighA);
2156 Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002157 Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2158 Cond = CmpEither;
2159
2160 if (Threshold != 0) {
2161 Type *Ty = NumBytes->getType();
2162 Value *Thr = ConstantInt::get(Ty, Threshold);
2163 Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2164 Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2165 Cond = CmpBoth;
2166 }
2167 BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2168 Func, NewPreheader);
2169 if (ParentL)
2170 ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2171 Instruction *OldT = Preheader->getTerminator();
2172 Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2173 OldT->eraseFromParent();
2174 Preheader->setName(Preheader->getName()+".old");
2175 DT->addNewBlock(MemmoveB, Preheader);
2176 // Find the new immediate dominator of the exit block.
2177 BasicBlock *ExitD = Preheader;
2178 for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2179 BasicBlock *PB = *PI;
2180 ExitD = DT->findNearestCommonDominator(ExitD, PB);
2181 if (!ExitD)
2182 break;
2183 }
2184 // If the prior immediate dominator of ExitB was dominated by the
2185 // old preheader, then the old preheader becomes the new immediate
2186 // dominator. Otherwise don't change anything (because the newly
2187 // added blocks are dominated by the old preheader).
2188 if (ExitD && DT->dominates(Preheader, ExitD)) {
2189 DomTreeNode *BN = DT->getNode(ExitB);
2190 DomTreeNode *DN = DT->getNode(ExitD);
2191 BN->setIDom(DN);
2192 }
2193
2194 // Add a call to memmove to the conditional block.
2195 IRBuilder<> CondBuilder(MemmoveB);
2196 CondBuilder.CreateBr(ExitB);
2197 CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2198
2199 if (DestVolatile) {
2200 Type *Int32Ty = Type::getInt32Ty(Ctx);
2201 Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2202 Type *VoidTy = Type::getVoidTy(Ctx);
2203 Module *M = Func->getParent();
2204 Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy,
Serge Guelton59a2d7b2017-04-11 15:01:18 +00002205 Int32PtrTy, Int32PtrTy, Int32Ty);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002206 Function *Fn = cast<Function>(CF);
2207 Fn->setLinkage(Function::ExternalLinkage);
2208
2209 const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2210 const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2211 const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2212 Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2213 MemmoveB->getTerminator());
2214 if (Instruction *In = dyn_cast<Instruction>(NumWords))
Daniel Berlin4d0fe642017-04-28 19:55:38 +00002215 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002216 NumWords = Simp;
2217
2218 Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2219 ? StoreBasePtr
2220 : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2221 Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2222 ? LoadBasePtr
2223 : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2224 NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2225 } else {
2226 NewCall = CondBuilder.CreateMemMove(StoreBasePtr, LoadBasePtr,
2227 NumBytes, Alignment);
2228 }
2229 } else {
2230 NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr,
2231 NumBytes, Alignment);
2232 // Okay, the memcpy has been formed. Zap the original store and
2233 // anything that feeds into it.
2234 RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2235 }
2236
2237 NewCall->setDebugLoc(DLoc);
2238
2239 DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ")
2240 << *NewCall << "\n"
2241 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2242 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
2243
2244 return true;
2245}
2246
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002247// \brief Check if the instructions in Insts, together with their dependencies
2248// cover the loop in the sense that the loop could be safely eliminated once
2249// the instructions in Insts are removed.
2250bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2251 SmallVectorImpl<Instruction*> &Insts) const {
2252 SmallSet<BasicBlock*,8> LoopBlocks;
2253 for (auto *B : L->blocks())
2254 LoopBlocks.insert(B);
2255
2256 SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2257
2258 // Collect all instructions from the loop that the instructions in Insts
2259 // depend on (plus their dependencies, etc.). These instructions will
2260 // constitute the expression trees that feed those in Insts, but the trees
2261 // will be limited only to instructions contained in the loop.
2262 for (unsigned i = 0; i < Worklist.size(); ++i) {
2263 Instruction *In = Worklist[i];
2264 for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2265 Instruction *OpI = dyn_cast<Instruction>(I);
2266 if (!OpI)
2267 continue;
2268 BasicBlock *PB = OpI->getParent();
2269 if (!LoopBlocks.count(PB))
2270 continue;
2271 Worklist.insert(OpI);
2272 }
2273 }
2274
2275 // Scan all instructions in the loop, if any of them have a user outside
2276 // of the loop, or outside of the expressions collected above, then either
2277 // the loop has a side-effect visible outside of it, or there are
2278 // instructions in it that are not involved in the original set Insts.
2279 for (auto *B : L->blocks()) {
2280 for (auto &In : *B) {
2281 if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2282 continue;
2283 if (!Worklist.count(&In) && In.mayHaveSideEffects())
2284 return false;
2285 for (const auto &K : In.users()) {
2286 Instruction *UseI = dyn_cast<Instruction>(K);
2287 if (!UseI)
2288 continue;
2289 BasicBlock *UseB = UseI->getParent();
2290 if (LF->getLoopFor(UseB) != L)
2291 return false;
2292 }
2293 }
2294 }
2295
2296 return true;
2297}
2298
2299/// runOnLoopBlock - Process the specified block, which lives in a counted loop
2300/// with the specified backedge count. This block is known to be in the current
2301/// loop and not in any subloops.
2302bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2303 const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2304 // We can only promote stores in this block if they are unconditionally
2305 // executed in the loop. For a block to be unconditionally executed, it has
2306 // to dominate all the exit blocks of the loop. Verify this now.
2307 auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2308 return DT->dominates(BB, EB);
2309 };
2310 if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB))
2311 return false;
2312
2313 bool MadeChange = false;
2314 // Look for store instructions, which may be optimized to memset/memcpy.
2315 SmallVector<StoreInst*,8> Stores;
2316 collectStores(CurLoop, BB, Stores);
2317
2318 // Optimize the store into a memcpy, if it feeds an similarly strided load.
2319 for (auto &SI : Stores)
2320 MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2321
2322 return MadeChange;
2323}
2324
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002325bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2326 PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2327 if (PMR.recognize())
2328 return true;
2329
2330 if (!HasMemcpy && !HasMemmove)
2331 return false;
2332
2333 const SCEV *BECount = SE->getBackedgeTakenCount(L);
2334 assert(!isa<SCEVCouldNotCompute>(BECount) &&
2335 "runOnCountableLoop() called on a loop without a predictable"
2336 "backedge-taken count");
2337
2338 SmallVector<BasicBlock *, 8> ExitBlocks;
2339 L->getUniqueExitBlocks(ExitBlocks);
2340
2341 bool Changed = false;
2342
2343 // Scan all the blocks in the loop that are not in subloops.
2344 for (auto *BB : L->getBlocks()) {
2345 // Ignore blocks in subloops.
2346 if (LF->getLoopFor(BB) != L)
2347 continue;
2348 Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2349 }
2350
2351 return Changed;
2352}
2353
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002354bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
2355 const Module &M = *L->getHeader()->getParent()->getParent();
2356 if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2357 return false;
2358
2359 if (skipLoop(L))
2360 return false;
2361
2362 // If the loop could not be converted to canonical form, it must have an
2363 // indirectbr in it, just give up.
2364 if (!L->getLoopPreheader())
2365 return false;
2366
2367 // Disable loop idiom recognition if the function's name is a common idiom.
2368 StringRef Name = L->getHeader()->getParent()->getName();
2369 if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2370 return false;
2371
2372 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2373 DL = &L->getHeader()->getModule()->getDataLayout();
2374 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2375 LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2376 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2377 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2378
2379 HasMemcpy = TLI->has(LibFunc_memcpy);
2380 HasMemmove = TLI->has(LibFunc_memmove);
2381
2382 if (SE->hasLoopInvariantBackedgeTakenCount(L))
2383 return runOnCountableLoop(L);
2384 return false;
2385}
2386
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002387Pass *llvm::createHexagonLoopIdiomPass() {
2388 return new HexagonLoopIdiomRecognize();
2389}