blob: a09ace5a1e2759d8d35815e0ae540c98c07815f4 [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengdac63782007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencera41e93b2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
Mehdi Amini47b292d2016-04-16 07:51:28 +000016#include "llvm/ADT/ArrayRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
Chris Lattner17f71652008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000020#include "llvm/ADT/StringRef.h"
Nico Weber432a3882018-04-30 14:59:11 +000021#include "llvm/Config/llvm-config.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000022#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000023#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000024#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000025#include "llvm/Support/raw_ostream.h"
Vassil Vassilev2ec8b152016-09-14 08:55:18 +000026#include <climits>
Chris Lattner17f71652008-08-17 07:19:36 +000027#include <cmath>
Zhou Shengdac63782007-02-06 03:00:16 +000028#include <cstdlib>
Chandler Carruthed0881b2012-12-03 16:50:05 +000029#include <cstring>
Zhou Shengdac63782007-02-06 03:00:16 +000030using namespace llvm;
31
Chandler Carruth64648262014-04-22 03:07:47 +000032#define DEBUG_TYPE "apint"
33
Reid Spencera41e93b2007-02-25 19:32:03 +000034/// A utility function for allocating memory, checking for allocation failures,
35/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000036inline static uint64_t* getClearedMemory(unsigned numWords) {
Fangrui Songc244a152018-03-23 17:26:12 +000037 uint64_t *result = new uint64_t[numWords];
Reid Spencera856b6e2007-02-18 18:38:44 +000038 memset(result, 0, numWords * sizeof(uint64_t));
39 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000040}
41
Eric Christopher820256b2009-08-21 04:06:45 +000042/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000043/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000044inline static uint64_t* getMemory(unsigned numWords) {
Fangrui Songc244a152018-03-23 17:26:12 +000045 return new uint64_t[numWords];
Reid Spencera856b6e2007-02-18 18:38:44 +000046}
47
Erick Tryzelaardadb15712009-08-21 03:15:28 +000048/// A utility function that converts a character to a digit.
49inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000050 unsigned r;
51
Douglas Gregor663c0682011-09-14 15:54:46 +000052 if (radix == 16 || radix == 36) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000053 r = cdigit - '0';
54 if (r <= 9)
55 return r;
56
57 r = cdigit - 'A';
Douglas Gregorc98ac852011-09-20 18:33:29 +000058 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000059 return r + 10;
60
61 r = cdigit - 'a';
Douglas Gregorc98ac852011-09-20 18:33:29 +000062 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000063 return r + 10;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +000064
Douglas Gregore4e20f42011-09-20 18:11:52 +000065 radix = 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000066 }
67
Erick Tryzelaar60964092009-08-21 06:48:37 +000068 r = cdigit - '0';
69 if (r < radix)
70 return r;
71
72 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000073}
74
75
Pawel Bylica68304012016-06-27 08:31:48 +000076void APInt::initSlowCase(uint64_t val, bool isSigned) {
Craig Topperb339c6d2017-05-03 15:46:24 +000077 U.pVal = getClearedMemory(getNumWords());
78 U.pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000079 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000080 for (unsigned i = 1; i < getNumWords(); ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +000081 U.pVal[i] = WORD_MAX;
Craig Topperf78a6f02017-03-01 21:06:18 +000082 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +000083}
84
Chris Lattnerd57b7602008-10-11 22:07:19 +000085void APInt::initSlowCase(const APInt& that) {
Craig Topperb339c6d2017-05-03 15:46:24 +000086 U.pVal = getMemory(getNumWords());
87 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
Chris Lattnerd57b7602008-10-11 22:07:19 +000088}
89
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000090void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000091 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000092 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengdac63782007-02-06 03:00:16 +000093 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +000094 U.VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000095 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000096 // Get memory, cleared to 0
Craig Topperb339c6d2017-05-03 15:46:24 +000097 U.pVal = getClearedMemory(getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000098 // Calculate the number of words to copy
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000099 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000100 // Copy the words from bigVal to pVal
Craig Topperb339c6d2017-05-03 15:46:24 +0000101 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000102 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000103 // Make sure unused high bits are cleared
104 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000105}
106
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000107APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
Craig Topper0085ffb2017-03-20 01:29:52 +0000108 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000109 initFromArray(bigVal);
110}
111
112APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Craig Topper0085ffb2017-03-20 01:29:52 +0000113 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000114 initFromArray(makeArrayRef(bigVal, numWords));
115}
116
Benjamin Kramer92d89982010-07-14 22:38:02 +0000117APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Craig Topperb339c6d2017-05-03 15:46:24 +0000118 : BitWidth(numbits) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000119 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000120 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000121}
122
Craig Toppera92fd0b2017-05-12 01:46:01 +0000123void APInt::reallocate(unsigned NewBitWidth) {
124 // If the number of words is the same we can just change the width and stop.
125 if (getNumWords() == getNumWords(NewBitWidth)) {
126 BitWidth = NewBitWidth;
127 return;
128 }
129
130 // If we have an allocation, delete it.
131 if (!isSingleWord())
132 delete [] U.pVal;
133
134 // Update BitWidth.
135 BitWidth = NewBitWidth;
136
137 // If we are supposed to have an allocation, create it.
138 if (!isSingleWord())
139 U.pVal = getMemory(getNumWords());
140}
141
Craig Topperc67fe572017-04-19 17:01:58 +0000142void APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000143 // Don't do anything for X = X
144 if (this == &RHS)
Craig Topperc67fe572017-04-19 17:01:58 +0000145 return;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000146
Craig Toppera92fd0b2017-05-12 01:46:01 +0000147 // Adjust the bit width and handle allocations as necessary.
148 reallocate(RHS.getBitWidth());
Reid Spencer7c16cd22007-02-26 23:38:21 +0000149
Craig Toppera92fd0b2017-05-12 01:46:01 +0000150 // Copy the data.
151 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000152 U.VAL = RHS.U.VAL;
Craig Toppera92fd0b2017-05-12 01:46:01 +0000153 else
154 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000155}
156
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000157/// This method 'profiles' an APInt for use with FoldingSet.
Ted Kremenek5c75d542008-01-19 04:23:33 +0000158void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000159 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000160
Ted Kremenek5c75d542008-01-19 04:23:33 +0000161 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000162 ID.AddInteger(U.VAL);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000163 return;
164 }
165
Chris Lattner77527f52009-01-21 18:09:24 +0000166 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000167 for (unsigned i = 0; i < NumWords; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000168 ID.AddInteger(U.pVal[i]);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000169}
170
Zhou Shengdac63782007-02-06 03:00:16 +0000171/// @brief Prefix increment operator. Increments the APInt by one.
172APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000173 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000174 ++U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000175 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000176 tcIncrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000177 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000178}
179
Zhou Shengdac63782007-02-06 03:00:16 +0000180/// @brief Prefix decrement operator. Decrements the APInt by one.
181APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000182 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000183 --U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000184 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000185 tcDecrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000186 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000187}
188
Reid Spencera41e93b2007-02-25 19:32:03 +0000189/// Adds the RHS APint to this APInt.
190/// @returns this, after addition of RHS.
Eric Christopher820256b2009-08-21 04:06:45 +0000191/// @brief Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000192APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000193 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000194 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000195 U.VAL += RHS.U.VAL;
Craig Topper15e484a2017-04-02 06:59:43 +0000196 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000197 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000198 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000199}
200
Pete Cooperfea21392016-07-22 20:55:46 +0000201APInt& APInt::operator+=(uint64_t RHS) {
202 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000203 U.VAL += RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000204 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000205 tcAddPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000206 return clearUnusedBits();
207}
208
Reid Spencera41e93b2007-02-25 19:32:03 +0000209/// Subtracts the RHS APInt from this APInt
210/// @returns this, after subtraction
Eric Christopher820256b2009-08-21 04:06:45 +0000211/// @brief Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000212APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000213 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000214 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000215 U.VAL -= RHS.U.VAL;
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000216 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000217 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000218 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000219}
220
Pete Cooperfea21392016-07-22 20:55:46 +0000221APInt& APInt::operator-=(uint64_t RHS) {
222 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000223 U.VAL -= RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000224 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000225 tcSubtractPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000226 return clearUnusedBits();
227}
228
Craig Topper93c68e12017-05-04 17:00:41 +0000229APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000230 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000231 if (isSingleWord())
232 return APInt(BitWidth, U.VAL * RHS.U.VAL);
Reid Spencer58a6a432007-02-21 08:21:52 +0000233
Craig Topper93c68e12017-05-04 17:00:41 +0000234 APInt Result(getMemory(getNumWords()), getBitWidth());
Reid Spencer58a6a432007-02-21 08:21:52 +0000235
Craig Topper93c68e12017-05-04 17:00:41 +0000236 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
Reid Spencer58a6a432007-02-21 08:21:52 +0000237
Craig Topper93c68e12017-05-04 17:00:41 +0000238 Result.clearUnusedBits();
239 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000240}
241
Craig Topperc67fe572017-04-19 17:01:58 +0000242void APInt::AndAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000243 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000244}
245
Craig Topperc67fe572017-04-19 17:01:58 +0000246void APInt::OrAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000247 tcOr(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000248}
249
Craig Topperc67fe572017-04-19 17:01:58 +0000250void APInt::XorAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000251 tcXor(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000252}
253
Craig Topper93c68e12017-05-04 17:00:41 +0000254APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000255 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000256 *this = *this * RHS;
257 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000258}
259
Craig Toppera51941f2017-05-08 04:55:09 +0000260APInt& APInt::operator*=(uint64_t RHS) {
261 if (isSingleWord()) {
262 U.VAL *= RHS;
263 } else {
264 unsigned NumWords = getNumWords();
265 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
266 }
267 return clearUnusedBits();
268}
269
Chris Lattner1ac3e252008-08-20 17:02:31 +0000270bool APInt::EqualSlowCase(const APInt& RHS) const {
Craig Topperb339c6d2017-05-03 15:46:24 +0000271 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
Zhou Shengdac63782007-02-06 03:00:16 +0000272}
273
Craig Topper1dc8fc82017-04-21 16:13:15 +0000274int APInt::compare(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000275 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
276 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000277 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000278
Craig Topperb339c6d2017-05-03 15:46:24 +0000279 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000280}
281
Craig Topper1dc8fc82017-04-21 16:13:15 +0000282int APInt::compareSigned(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000283 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000284 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000285 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
286 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
Craig Topper1dc8fc82017-04-21 16:13:15 +0000287 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000288 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000289
Reid Spencer54abdcf2007-02-27 18:23:40 +0000290 bool lhsNeg = isNegative();
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000291 bool rhsNeg = RHS.isNegative();
Reid Spencera41e93b2007-02-25 19:32:03 +0000292
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000293 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
294 if (lhsNeg != rhsNeg)
Craig Topper1dc8fc82017-04-21 16:13:15 +0000295 return lhsNeg ? -1 : 1;
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000296
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000297 // Otherwise we can just use an unsigned comparison, because even negative
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000298 // numbers compare correctly this way if both have the same signed-ness.
Craig Topperb339c6d2017-05-03 15:46:24 +0000299 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000300}
301
Craig Topperbafdd032017-03-07 01:56:01 +0000302void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
303 unsigned loWord = whichWord(loBit);
304 unsigned hiWord = whichWord(hiBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000305
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000306 // Create an initial mask for the low word with zeros below loBit.
Craig Topper5e113742017-04-22 06:31:36 +0000307 uint64_t loMask = WORD_MAX << whichBit(loBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000308
Craig Topperbafdd032017-03-07 01:56:01 +0000309 // If hiBit is not aligned, we need a high mask.
310 unsigned hiShiftAmt = whichBit(hiBit);
311 if (hiShiftAmt != 0) {
312 // Create a high mask with zeros above hiBit.
Craig Topper5e113742017-04-22 06:31:36 +0000313 uint64_t hiMask = WORD_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
Craig Topperbafdd032017-03-07 01:56:01 +0000314 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
315 // set the bits in hiWord.
316 if (hiWord == loWord)
317 loMask &= hiMask;
318 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000319 U.pVal[hiWord] |= hiMask;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000320 }
Craig Topperbafdd032017-03-07 01:56:01 +0000321 // Apply the mask to the low word.
Craig Topperb339c6d2017-05-03 15:46:24 +0000322 U.pVal[loWord] |= loMask;
Craig Topperbafdd032017-03-07 01:56:01 +0000323
324 // Fill any words between loWord and hiWord with all ones.
325 for (unsigned word = loWord + 1; word < hiWord; ++word)
Craig Topperb339c6d2017-05-03 15:46:24 +0000326 U.pVal[word] = WORD_MAX;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000327}
328
Zhou Shengdac63782007-02-06 03:00:16 +0000329/// @brief Toggle every bit to its opposite value.
Craig Topperafc9e352017-03-27 17:10:21 +0000330void APInt::flipAllBitsSlowCase() {
Craig Topperb339c6d2017-05-03 15:46:24 +0000331 tcComplement(U.pVal, getNumWords());
Craig Topperafc9e352017-03-27 17:10:21 +0000332 clearUnusedBits();
333}
Zhou Shengdac63782007-02-06 03:00:16 +0000334
Eric Christopher820256b2009-08-21 04:06:45 +0000335/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000336/// as "bitPosition".
337/// @brief Toggles a given bit to its opposite value.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000338void APInt::flipBit(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000339 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad25a5e4c2010-12-01 08:53:58 +0000340 if ((*this)[bitPosition]) clearBit(bitPosition);
341 else setBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000342}
343
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000344void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
345 unsigned subBitWidth = subBits.getBitWidth();
346 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
347 "Illegal bit insertion");
348
349 // Insertion is a direct copy.
350 if (subBitWidth == BitWidth) {
351 *this = subBits;
352 return;
353 }
354
355 // Single word result can be done as a direct bitmask.
356 if (isSingleWord()) {
Craig Topper5e113742017-04-22 06:31:36 +0000357 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000358 U.VAL &= ~(mask << bitPosition);
359 U.VAL |= (subBits.U.VAL << bitPosition);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000360 return;
361 }
362
363 unsigned loBit = whichBit(bitPosition);
364 unsigned loWord = whichWord(bitPosition);
365 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
366
367 // Insertion within a single word can be done as a direct bitmask.
368 if (loWord == hi1Word) {
Craig Topper5e113742017-04-22 06:31:36 +0000369 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000370 U.pVal[loWord] &= ~(mask << loBit);
371 U.pVal[loWord] |= (subBits.U.VAL << loBit);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000372 return;
373 }
374
375 // Insert on word boundaries.
376 if (loBit == 0) {
377 // Direct copy whole words.
378 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
Craig Topperb339c6d2017-05-03 15:46:24 +0000379 memcpy(U.pVal + loWord, subBits.getRawData(),
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000380 numWholeSubWords * APINT_WORD_SIZE);
381
382 // Mask+insert remaining bits.
383 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
384 if (remainingBits != 0) {
Craig Topper5e113742017-04-22 06:31:36 +0000385 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - remainingBits);
Craig Topperb339c6d2017-05-03 15:46:24 +0000386 U.pVal[hi1Word] &= ~mask;
387 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000388 }
389 return;
390 }
391
392 // General case - set/clear individual bits in dst based on src.
393 // TODO - there is scope for optimization here, but at the moment this code
394 // path is barely used so prefer readability over performance.
395 for (unsigned i = 0; i != subBitWidth; ++i) {
396 if (subBits[i])
397 setBit(bitPosition + i);
398 else
399 clearBit(bitPosition + i);
400 }
401}
402
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000403APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
404 assert(numBits > 0 && "Can't extract zero bits");
405 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
406 "Illegal bit extraction");
407
408 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000409 return APInt(numBits, U.VAL >> bitPosition);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000410
411 unsigned loBit = whichBit(bitPosition);
412 unsigned loWord = whichWord(bitPosition);
413 unsigned hiWord = whichWord(bitPosition + numBits - 1);
414
415 // Single word result extracting bits from a single word source.
416 if (loWord == hiWord)
Craig Topperb339c6d2017-05-03 15:46:24 +0000417 return APInt(numBits, U.pVal[loWord] >> loBit);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000418
419 // Extracting bits that start on a source word boundary can be done
420 // as a fast memory copy.
421 if (loBit == 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000422 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000423
424 // General case - shift + copy source words directly into place.
425 APInt Result(numBits, 0);
426 unsigned NumSrcWords = getNumWords();
427 unsigned NumDstWords = Result.getNumWords();
428
Tim Shen89337752018-02-16 01:44:36 +0000429 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000430 for (unsigned word = 0; word < NumDstWords; ++word) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000431 uint64_t w0 = U.pVal[loWord + word];
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000432 uint64_t w1 =
Craig Topperb339c6d2017-05-03 15:46:24 +0000433 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
Tim Shen89337752018-02-16 01:44:36 +0000434 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000435 }
436
437 return Result.clearUnusedBits();
438}
439
Benjamin Kramer92d89982010-07-14 22:38:02 +0000440unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000441 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000442 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +0000443 radix == 36) &&
444 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000445
446 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000447
Eric Christopher43a1dec2009-08-21 04:10:31 +0000448 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000449 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000450 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000451 if (*p == '-' || *p == '+') {
452 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000453 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000454 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000455 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000456
Reid Spencer9329e7b2007-04-13 19:19:07 +0000457 // For radixes of power-of-two values, the bits required is accurately and
458 // easily computed
459 if (radix == 2)
460 return slen + isNegative;
461 if (radix == 8)
462 return slen * 3 + isNegative;
463 if (radix == 16)
464 return slen * 4 + isNegative;
465
Douglas Gregor663c0682011-09-14 15:54:46 +0000466 // FIXME: base 36
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000467
Reid Spencer9329e7b2007-04-13 19:19:07 +0000468 // This is grossly inefficient but accurate. We could probably do something
469 // with a computation of roughly slen*64/20 and then adjust by the value of
470 // the first few digits. But, I'm not sure how accurate that could be.
471
472 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000473 // be too large. This avoids the assertion in the constructor. This
474 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
475 // bits in that case.
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000476 unsigned sufficient
Douglas Gregor663c0682011-09-14 15:54:46 +0000477 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
478 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000479
480 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000481 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000482
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000483 // Compute how many bits are required. If the log is infinite, assume we need
484 // just bit.
485 unsigned log = tmp.logBase2();
486 if (log == (unsigned)-1) {
487 return isNegative + 1;
488 } else {
489 return isNegative + log + 1;
490 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000491}
492
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000493hash_code llvm::hash_value(const APInt &Arg) {
494 if (Arg.isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000495 return hash_combine(Arg.U.VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000496
Craig Topperb339c6d2017-05-03 15:46:24 +0000497 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
Reid Spencerb2bc9852007-02-26 21:02:27 +0000498}
499
Benjamin Kramerb4b51502015-03-25 16:49:59 +0000500bool APInt::isSplat(unsigned SplatSizeInBits) const {
501 assert(getBitWidth() % SplatSizeInBits == 0 &&
502 "SplatSizeInBits must divide width!");
503 // We can check that all parts of an integer are equal by making use of a
504 // little trick: rotate and check if it's still the same value.
505 return *this == rotl(SplatSizeInBits);
506}
507
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000508/// This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000509APInt APInt::getHiBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000510 return this->lshr(BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000511}
512
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000513/// This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000514APInt APInt::getLoBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000515 APInt Result(getLowBitsSet(BitWidth, numBits));
516 Result &= *this;
517 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000518}
519
Craig Topper9881bd92017-05-02 06:32:27 +0000520/// Return a value containing V broadcasted over NewLen bits.
521APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
522 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
523
524 APInt Val = V.zextOrSelf(NewLen);
525 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
526 Val |= Val << I;
527
528 return Val;
529}
530
Chris Lattner77527f52009-01-21 18:09:24 +0000531unsigned APInt::countLeadingZerosSlowCase() const {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000532 unsigned Count = 0;
533 for (int i = getNumWords()-1; i >= 0; --i) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000534 uint64_t V = U.pVal[i];
Matthias Brauna6be4e82016-02-15 20:06:22 +0000535 if (V == 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +0000536 Count += APINT_BITS_PER_WORD;
537 else {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000538 Count += llvm::countLeadingZeros(V);
Chris Lattner1ac3e252008-08-20 17:02:31 +0000539 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000540 }
Zhou Shengdac63782007-02-06 03:00:16 +0000541 }
Matthias Brauna6be4e82016-02-15 20:06:22 +0000542 // Adjust for unused bits in the most significant word (they are zero).
543 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
544 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
John McCalldf951bd2010-02-03 03:42:44 +0000545 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000546}
547
Craig Topper40516522017-06-23 20:28:45 +0000548unsigned APInt::countLeadingOnesSlowCase() const {
Chris Lattner77527f52009-01-21 18:09:24 +0000549 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000550 unsigned shift;
551 if (!highWordBits) {
552 highWordBits = APINT_BITS_PER_WORD;
553 shift = 0;
554 } else {
555 shift = APINT_BITS_PER_WORD - highWordBits;
556 }
Reid Spencer31acef52007-02-27 21:59:26 +0000557 int i = getNumWords() - 1;
Craig Topperb339c6d2017-05-03 15:46:24 +0000558 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000559 if (Count == highWordBits) {
560 for (i--; i >= 0; --i) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000561 if (U.pVal[i] == WORD_MAX)
Reid Spencer31acef52007-02-27 21:59:26 +0000562 Count += APINT_BITS_PER_WORD;
563 else {
Craig Topperb339c6d2017-05-03 15:46:24 +0000564 Count += llvm::countLeadingOnes(U.pVal[i]);
Reid Spencer31acef52007-02-27 21:59:26 +0000565 break;
566 }
567 }
568 }
569 return Count;
570}
571
Craig Topper40516522017-06-23 20:28:45 +0000572unsigned APInt::countTrailingZerosSlowCase() const {
Chris Lattner77527f52009-01-21 18:09:24 +0000573 unsigned Count = 0;
574 unsigned i = 0;
Craig Topperb339c6d2017-05-03 15:46:24 +0000575 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000576 Count += APINT_BITS_PER_WORD;
577 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000578 Count += llvm::countTrailingZeros(U.pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000579 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000580}
581
Chris Lattner77527f52009-01-21 18:09:24 +0000582unsigned APInt::countTrailingOnesSlowCase() const {
583 unsigned Count = 0;
584 unsigned i = 0;
Craig Topperb339c6d2017-05-03 15:46:24 +0000585 for (; i < getNumWords() && U.pVal[i] == WORD_MAX; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000586 Count += APINT_BITS_PER_WORD;
587 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000588 Count += llvm::countTrailingOnes(U.pVal[i]);
Craig Topper3a29e3b82017-04-22 19:59:11 +0000589 assert(Count <= BitWidth);
590 return Count;
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000591}
592
Chris Lattner77527f52009-01-21 18:09:24 +0000593unsigned APInt::countPopulationSlowCase() const {
594 unsigned Count = 0;
595 for (unsigned i = 0; i < getNumWords(); ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000596 Count += llvm::countPopulation(U.pVal[i]);
Zhou Shengdac63782007-02-06 03:00:16 +0000597 return Count;
598}
599
Craig Topperbaa392e2017-04-20 02:11:27 +0000600bool APInt::intersectsSlowCase(const APInt &RHS) const {
601 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000602 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
Craig Topperbaa392e2017-04-20 02:11:27 +0000603 return true;
604
605 return false;
606}
607
Craig Toppera8129a12017-04-20 16:17:13 +0000608bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
609 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000610 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
Craig Toppera8129a12017-04-20 16:17:13 +0000611 return false;
612
613 return true;
614}
615
Reid Spencer1d072122007-02-16 22:36:51 +0000616APInt APInt::byteSwap() const {
617 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
618 if (BitWidth == 16)
Craig Topperb339c6d2017-05-03 15:46:24 +0000619 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000620 if (BitWidth == 32)
Craig Topperb339c6d2017-05-03 15:46:24 +0000621 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000622 if (BitWidth == 48) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000623 unsigned Tmp1 = unsigned(U.VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000624 Tmp1 = ByteSwap_32(Tmp1);
Craig Topperb339c6d2017-05-03 15:46:24 +0000625 uint16_t Tmp2 = uint16_t(U.VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000626 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000627 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000628 }
Richard Smith4f9a8082011-11-23 21:33:37 +0000629 if (BitWidth == 64)
Craig Topperb339c6d2017-05-03 15:46:24 +0000630 return APInt(BitWidth, ByteSwap_64(U.VAL));
Richard Smith4f9a8082011-11-23 21:33:37 +0000631
632 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
633 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
Craig Topperb339c6d2017-05-03 15:46:24 +0000634 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
Richard Smith4f9a8082011-11-23 21:33:37 +0000635 if (Result.BitWidth != BitWidth) {
Richard Smith55bd3752017-04-13 20:29:59 +0000636 Result.lshrInPlace(Result.BitWidth - BitWidth);
Richard Smith4f9a8082011-11-23 21:33:37 +0000637 Result.BitWidth = BitWidth;
638 }
639 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000640}
641
Matt Arsenault155dda92016-03-21 15:00:35 +0000642APInt APInt::reverseBits() const {
643 switch (BitWidth) {
644 case 64:
Craig Topperb339c6d2017-05-03 15:46:24 +0000645 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000646 case 32:
Craig Topperb339c6d2017-05-03 15:46:24 +0000647 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000648 case 16:
Craig Topperb339c6d2017-05-03 15:46:24 +0000649 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000650 case 8:
Craig Topperb339c6d2017-05-03 15:46:24 +0000651 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000652 default:
653 break;
654 }
655
656 APInt Val(*this);
Craig Topper9eaef072017-04-18 05:02:21 +0000657 APInt Reversed(BitWidth, 0);
658 unsigned S = BitWidth;
Matt Arsenault155dda92016-03-21 15:00:35 +0000659
Craig Topper9eaef072017-04-18 05:02:21 +0000660 for (; Val != 0; Val.lshrInPlace(1)) {
Matt Arsenault155dda92016-03-21 15:00:35 +0000661 Reversed <<= 1;
Craig Topper9eaef072017-04-18 05:02:21 +0000662 Reversed |= Val[0];
Matt Arsenault155dda92016-03-21 15:00:35 +0000663 --S;
664 }
665
666 Reversed <<= S;
667 return Reversed;
668}
669
Craig Topper278ebd22017-04-01 20:30:57 +0000670APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
Richard Smith55bd3752017-04-13 20:29:59 +0000671 // Fast-path a common case.
672 if (A == B) return A;
673
674 // Corner cases: if either operand is zero, the other is the gcd.
675 if (!A) return B;
676 if (!B) return A;
677
678 // Count common powers of 2 and remove all other powers of 2.
679 unsigned Pow2;
680 {
681 unsigned Pow2_A = A.countTrailingZeros();
682 unsigned Pow2_B = B.countTrailingZeros();
683 if (Pow2_A > Pow2_B) {
684 A.lshrInPlace(Pow2_A - Pow2_B);
685 Pow2 = Pow2_B;
686 } else if (Pow2_B > Pow2_A) {
687 B.lshrInPlace(Pow2_B - Pow2_A);
688 Pow2 = Pow2_A;
689 } else {
690 Pow2 = Pow2_A;
691 }
Zhou Shengdac63782007-02-06 03:00:16 +0000692 }
Richard Smith55bd3752017-04-13 20:29:59 +0000693
694 // Both operands are odd multiples of 2^Pow_2:
695 //
696 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
697 //
698 // This is a modified version of Stein's algorithm, taking advantage of
699 // efficient countTrailingZeros().
700 while (A != B) {
701 if (A.ugt(B)) {
702 A -= B;
703 A.lshrInPlace(A.countTrailingZeros() - Pow2);
704 } else {
705 B -= A;
706 B.lshrInPlace(B.countTrailingZeros() - Pow2);
707 }
708 }
709
Zhou Shengdac63782007-02-06 03:00:16 +0000710 return A;
711}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000712
Chris Lattner77527f52009-01-21 18:09:24 +0000713APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd707d632007-02-12 20:02:55 +0000714 union {
715 double D;
716 uint64_t I;
717 } T;
718 T.D = Double;
Reid Spencer974551a2007-02-27 01:28:10 +0000719
720 // Get the sign bit from the highest order bit
Zhou Shengd707d632007-02-12 20:02:55 +0000721 bool isNeg = T.I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000722
723 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd707d632007-02-12 20:02:55 +0000724 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000725
726 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000727 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000728 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000729
730 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
731 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
732
733 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000734 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000735 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000736 APInt(width, mantissa >> (52 - exp));
737
738 // If the client didn't provide enough bits for us to shift the mantissa into
739 // then the result is undefined, just return 0
740 if (width <= exp - 52)
741 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000742
743 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000744 APInt Tmp(width, mantissa);
Craig Topper24e71012017-04-28 03:36:24 +0000745 Tmp <<= (unsigned)exp - 52;
Zhou Shengd707d632007-02-12 20:02:55 +0000746 return isNeg ? -Tmp : Tmp;
747}
748
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000749/// This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000750/// The layout for double is as following (IEEE Standard 754):
751/// --------------------------------------
752/// | Sign Exponent Fraction Bias |
753/// |-------------------------------------- |
754/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000755/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000756double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000757
758 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000759 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000760 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
761 if (isSigned) {
David Majnemer03992262016-06-24 21:15:36 +0000762 int64_t sext = SignExtend64(getWord(0), BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000763 return double(sext);
764 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000765 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000766 }
767
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000768 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000769 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000770
771 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000772 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000773
774 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000775 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000776
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000777 // The exponent (without bias normalization) is just the number of bits
778 // we are using. Note that the sign bit is gone since we constructed the
779 // absolute value.
780 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000781
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000782 // Return infinity for exponent overflow
783 if (exp > 1023) {
784 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000785 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000786 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000787 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000788 }
789 exp += 1023; // Increment for 1023 bias
790
791 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
792 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000793 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000794 unsigned hiWord = whichWord(n-1);
795 if (hiWord == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000796 mantissa = Tmp.U.pVal[0];
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000797 if (n > 52)
798 mantissa >>= n - 52; // shift down, we want the top 52 bits.
799 } else {
800 assert(hiWord > 0 && "huh?");
Craig Topperb339c6d2017-05-03 15:46:24 +0000801 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
802 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000803 mantissa = hibits | lobits;
804 }
805
Zhou Shengd707d632007-02-12 20:02:55 +0000806 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000807 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd707d632007-02-12 20:02:55 +0000808 union {
809 double D;
810 uint64_t I;
811 } T;
812 T.I = sign | (exp << 52) | mantissa;
813 return T.D;
814}
815
Reid Spencer1d072122007-02-16 22:36:51 +0000816// Truncate to new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000817APInt APInt::trunc(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000818 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +0000819 assert(width && "Can't truncate to 0 bits");
Jay Foad583abbc2010-12-07 08:25:19 +0000820
821 if (width <= APINT_BITS_PER_WORD)
822 return APInt(width, getRawData()[0]);
823
824 APInt Result(getMemory(getNumWords(width)), width);
825
826 // Copy full words.
827 unsigned i;
828 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
Craig Topperb339c6d2017-05-03 15:46:24 +0000829 Result.U.pVal[i] = U.pVal[i];
Jay Foad583abbc2010-12-07 08:25:19 +0000830
831 // Truncate and copy any partial word.
832 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
833 if (bits != 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000834 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
Jay Foad583abbc2010-12-07 08:25:19 +0000835
836 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000837}
838
839// Sign extend to a new width.
Craig Topper1dec2812017-04-24 17:37:10 +0000840APInt APInt::sext(unsigned Width) const {
841 assert(Width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000842
Craig Topper1dec2812017-04-24 17:37:10 +0000843 if (Width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000844 return APInt(Width, SignExtend64(U.VAL, BitWidth));
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000845
Craig Topper1dec2812017-04-24 17:37:10 +0000846 APInt Result(getMemory(getNumWords(Width)), Width);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000847
Craig Topper1dec2812017-04-24 17:37:10 +0000848 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000849 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000850
Craig Topper1dec2812017-04-24 17:37:10 +0000851 // Sign extend the last word since there may be unused bits in the input.
Craig Topperb339c6d2017-05-03 15:46:24 +0000852 Result.U.pVal[getNumWords() - 1] =
853 SignExtend64(Result.U.pVal[getNumWords() - 1],
Craig Topper1dec2812017-04-24 17:37:10 +0000854 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Jay Foad583abbc2010-12-07 08:25:19 +0000855
Craig Topper1dec2812017-04-24 17:37:10 +0000856 // Fill with sign bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000857 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000858 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
859 Result.clearUnusedBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000860 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000861}
862
863// Zero extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000864APInt APInt::zext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000865 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000866
867 if (width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000868 return APInt(width, U.VAL);
Jay Foad583abbc2010-12-07 08:25:19 +0000869
870 APInt Result(getMemory(getNumWords(width)), width);
871
872 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000873 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000874
875 // Zero remaining words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000876 std::memset(Result.U.pVal + getNumWords(), 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000877 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000878
879 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000880}
881
Jay Foad583abbc2010-12-07 08:25:19 +0000882APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000883 if (BitWidth < width)
884 return zext(width);
885 if (BitWidth > width)
886 return trunc(width);
887 return *this;
888}
889
Jay Foad583abbc2010-12-07 08:25:19 +0000890APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000891 if (BitWidth < width)
892 return sext(width);
893 if (BitWidth > width)
894 return trunc(width);
895 return *this;
896}
897
Rafael Espindolabb893fe2012-01-27 23:33:07 +0000898APInt APInt::zextOrSelf(unsigned width) const {
899 if (BitWidth < width)
900 return zext(width);
901 return *this;
902}
903
904APInt APInt::sextOrSelf(unsigned width) const {
905 if (BitWidth < width)
906 return sext(width);
907 return *this;
908}
909
Zhou Shenge93db8f2007-02-09 07:48:24 +0000910/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000911/// @brief Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000912void APInt::ashrInPlace(const APInt &shiftAmt) {
913 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000914}
915
916/// Arithmetic right-shift this APInt by shiftAmt.
917/// @brief Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000918void APInt::ashrSlowCase(unsigned ShiftAmt) {
919 // Don't bother performing a no-op shift.
920 if (!ShiftAmt)
921 return;
Reid Spencer1825dd02007-03-02 22:39:11 +0000922
Craig Topper8b373262017-04-24 17:18:47 +0000923 // Save the original sign bit for later.
924 bool Negative = isNegative();
Reid Spencer522ca7c2007-02-25 01:56:07 +0000925
Hiroshi Inoue9ff23802018-04-09 04:37:53 +0000926 // WordShift is the inter-part shift; BitShift is intra-part shift.
Craig Topper8b373262017-04-24 17:18:47 +0000927 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
928 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000929
Craig Topper8b373262017-04-24 17:18:47 +0000930 unsigned WordsToMove = getNumWords() - WordShift;
931 if (WordsToMove != 0) {
932 // Sign extend the last word to fill in the unused bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000933 U.pVal[getNumWords() - 1] = SignExtend64(
934 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Renato Golincc4a9122017-04-23 12:02:07 +0000935
Craig Topper8b373262017-04-24 17:18:47 +0000936 // Fastpath for moving by whole words.
937 if (BitShift == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000938 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
Craig Topper8b373262017-04-24 17:18:47 +0000939 } else {
940 // Move the words containing significant bits.
941 for (unsigned i = 0; i != WordsToMove - 1; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000942 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
943 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
Renato Golincc4a9122017-04-23 12:02:07 +0000944
Craig Topper8b373262017-04-24 17:18:47 +0000945 // Handle the last word which has no high bits to copy.
Craig Topperb339c6d2017-05-03 15:46:24 +0000946 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
Craig Topper8b373262017-04-24 17:18:47 +0000947 // Sign extend one more time.
Craig Topperb339c6d2017-05-03 15:46:24 +0000948 U.pVal[WordsToMove - 1] =
949 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
Chris Lattnerdad2d092007-05-03 18:15:36 +0000950 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000951 }
952
Craig Topper8b373262017-04-24 17:18:47 +0000953 // Fill in the remainder based on the original sign.
Craig Topperb339c6d2017-05-03 15:46:24 +0000954 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
Craig Topper8b373262017-04-24 17:18:47 +0000955 WordShift * APINT_WORD_SIZE);
956 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000957}
958
Zhou Shenge93db8f2007-02-09 07:48:24 +0000959/// Logical right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000960/// @brief Logical right-shift function.
Craig Topperfc947bc2017-04-18 17:14:21 +0000961void APInt::lshrInPlace(const APInt &shiftAmt) {
962 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000963}
964
965/// Logical right-shift this APInt by shiftAmt.
966/// @brief Logical right-shift function.
Craig Topperae8bd672017-04-18 19:13:27 +0000967void APInt::lshrSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000968 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000969}
970
Zhou Shenge93db8f2007-02-09 07:48:24 +0000971/// Left-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000972/// @brief Left-shift function.
Craig Topper24e71012017-04-28 03:36:24 +0000973APInt &APInt::operator<<=(const APInt &shiftAmt) {
Nick Lewycky030c4502009-01-19 17:42:33 +0000974 // It's undefined behavior in C to shift by BitWidth or greater.
Craig Topper24e71012017-04-28 03:36:24 +0000975 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
976 return *this;
Dan Gohman105c1d42008-02-29 01:40:47 +0000977}
978
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000979void APInt::shlSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000980 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000981 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000982}
983
Joey Gouly51c0ae52017-02-07 11:58:22 +0000984// Calculate the rotate amount modulo the bit width.
985static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
986 unsigned rotBitWidth = rotateAmt.getBitWidth();
987 APInt rot = rotateAmt;
988 if (rotBitWidth < BitWidth) {
989 // Extend the rotate APInt, so that the urem doesn't divide by 0.
990 // e.g. APInt(1, 32) would give APInt(1, 0).
991 rot = rotateAmt.zext(BitWidth);
992 }
993 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
994 return rot.getLimitedValue(BitWidth);
995}
996
Dan Gohman105c1d42008-02-29 01:40:47 +0000997APInt APInt::rotl(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +0000998 return rotl(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +0000999}
1000
Chris Lattner77527f52009-01-21 18:09:24 +00001001APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001002 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001003 if (rotateAmt == 0)
1004 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001005 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001006}
1007
Dan Gohman105c1d42008-02-29 01:40:47 +00001008APInt APInt::rotr(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +00001009 return rotr(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001010}
1011
Chris Lattner77527f52009-01-21 18:09:24 +00001012APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001013 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001014 if (rotateAmt == 0)
1015 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001016 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001017}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001018
1019// Square Root - this method computes and returns the square root of "this".
1020// Three mechanisms are used for computation. For small values (<= 5 bits),
1021// a table lookup is done. This gets some performance for common cases. For
1022// values using less than 52 bits, the value is converted to double and then
1023// the libc sqrt function is called. The result is rounded and then converted
1024// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001025// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001026APInt APInt::sqrt() const {
1027
1028 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001029 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001030
1031 // Use a fast table for some small values. This also gets rid of some
1032 // rounding errors in libc sqrt for small values.
1033 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001034 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001035 /* 0 */ 0,
1036 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001037 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001038 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1039 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1040 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1041 /* 31 */ 6
1042 };
Craig Topperb339c6d2017-05-03 15:46:24 +00001043 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001044 }
1045
1046 // If the magnitude of the value fits in less than 52 bits (the precision of
1047 // an IEEE double precision floating point value), then we can use the
1048 // libc sqrt function which will probably use a hardware sqrt computation.
1049 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001050 if (magnitude < 52) {
Eric Christopher820256b2009-08-21 04:06:45 +00001051 return APInt(BitWidth,
Craig Topperb339c6d2017-05-03 15:46:24 +00001052 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1053 : U.pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001054 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001055
1056 // Okay, all the short cuts are exhausted. We must compute it. The following
1057 // is a classical Babylonian method for computing the square root. This code
Sanjay Patel4cb54e02014-09-11 15:41:01 +00001058 // was adapted to APInt from a wikipedia article on such computations.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001059 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001060 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001061 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001062 APInt testy(BitWidth, 16);
1063 APInt x_old(BitWidth, 1);
1064 APInt x_new(BitWidth, 0);
1065 APInt two(BitWidth, 2);
1066
1067 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001068 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001069 if (i >= nbits || this->ule(testy)) {
1070 x_old = x_old.shl(i / 2);
1071 break;
1072 }
1073
Eric Christopher820256b2009-08-21 04:06:45 +00001074 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001075 for (;;) {
1076 x_new = (this->udiv(x_old) + x_old).udiv(two);
1077 if (x_old.ule(x_new))
1078 break;
1079 x_old = x_new;
1080 }
1081
1082 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001083 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001084 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001085 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001086 // floating point representation after 192 bits. There are no discrepancies
1087 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001088 APInt square(x_old * x_old);
1089 APInt nextSquare((x_old + 1) * (x_old +1));
1090 if (this->ult(square))
1091 return x_old;
David Blaikie54c94622011-12-01 20:58:30 +00001092 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1093 APInt midpoint((nextSquare - square).udiv(two));
1094 APInt offset(*this - square);
1095 if (offset.ult(midpoint))
1096 return x_old;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001097 return x_old + 1;
1098}
1099
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001100/// Computes the multiplicative inverse of this APInt for a given modulo. The
1101/// iterative extended Euclidean algorithm is used to solve for this value,
1102/// however we simplify it to speed up calculating only the inverse, and take
1103/// advantage of div+rem calculations. We also use some tricks to avoid copying
1104/// (potentially large) APInts around.
1105APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1106 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1107
1108 // Using the properties listed at the following web page (accessed 06/21/08):
1109 // http://www.numbertheory.org/php/euclid.html
1110 // (especially the properties numbered 3, 4 and 9) it can be proved that
1111 // BitWidth bits suffice for all the computations in the algorithm implemented
1112 // below. More precisely, this number of bits suffice if the multiplicative
1113 // inverse exists, but may not suffice for the general extended Euclidean
1114 // algorithm.
1115
1116 APInt r[2] = { modulo, *this };
1117 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1118 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001119
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001120 unsigned i;
1121 for (i = 0; r[i^1] != 0; i ^= 1) {
1122 // An overview of the math without the confusing bit-flipping:
1123 // q = r[i-2] / r[i-1]
1124 // r[i] = r[i-2] % r[i-1]
1125 // t[i] = t[i-2] - t[i-1] * q
1126 udivrem(r[i], r[i^1], q, r[i]);
1127 t[i] -= t[i^1] * q;
1128 }
1129
1130 // If this APInt and the modulo are not coprime, there is no multiplicative
1131 // inverse, so return 0. We check this by looking at the next-to-last
1132 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1133 // algorithm.
1134 if (r[i] != 1)
1135 return APInt(BitWidth, 0);
1136
1137 // The next-to-last t is the multiplicative inverse. However, we are
Craig Topper3fbecad2017-05-11 17:57:43 +00001138 // interested in a positive inverse. Calculate a positive one from a negative
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001139 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001140 // abs(t[i]) is known to be less than *this/2 (see the link above).
Craig Topperdbd62192017-05-11 18:40:53 +00001141 if (t[i].isNegative())
1142 t[i] += modulo;
1143
1144 return std::move(t[i]);
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001145}
1146
Jay Foadfe0c6482009-04-30 10:15:35 +00001147/// Calculate the magic numbers required to implement a signed integer division
1148/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1149/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1150/// Warren, Jr., chapter 10.
1151APInt::ms APInt::magic() const {
1152 const APInt& d = *this;
1153 unsigned p;
1154 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001155 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001156 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001157
Jay Foadfe0c6482009-04-30 10:15:35 +00001158 ad = d.abs();
1159 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1160 anc = t - 1 - t.urem(ad); // absolute value of nc
1161 p = d.getBitWidth() - 1; // initialize p
1162 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1163 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1164 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1165 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1166 do {
1167 p = p + 1;
1168 q1 = q1<<1; // update q1 = 2p/abs(nc)
1169 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1170 if (r1.uge(anc)) { // must be unsigned comparison
1171 q1 = q1 + 1;
1172 r1 = r1 - anc;
1173 }
1174 q2 = q2<<1; // update q2 = 2p/abs(d)
1175 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1176 if (r2.uge(ad)) { // must be unsigned comparison
1177 q2 = q2 + 1;
1178 r2 = r2 - ad;
1179 }
1180 delta = ad - r2;
Cameron Zwarich8731d0c2011-02-21 00:22:02 +00001181 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001182
Jay Foadfe0c6482009-04-30 10:15:35 +00001183 mag.m = q2 + 1;
1184 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1185 mag.s = p - d.getBitWidth(); // resulting shift
1186 return mag;
1187}
1188
1189/// Calculate the magic numbers required to implement an unsigned integer
1190/// division by a constant as a sequence of multiplies, adds and shifts.
1191/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1192/// S. Warren, Jr., chapter 10.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001193/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001194/// of the divided value are known zero.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001195APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foadfe0c6482009-04-30 10:15:35 +00001196 const APInt& d = *this;
1197 unsigned p;
1198 APInt nc, delta, q1, r1, q2, r2;
1199 struct mu magu;
1200 magu.a = 0; // initialize "add" indicator
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001201 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foadfe0c6482009-04-30 10:15:35 +00001202 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1203 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1204
Benjamin Kramer3aab6a82012-07-11 18:31:59 +00001205 nc = allOnes - (allOnes - d).urem(d);
Jay Foadfe0c6482009-04-30 10:15:35 +00001206 p = d.getBitWidth() - 1; // initialize p
1207 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1208 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1209 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1210 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1211 do {
1212 p = p + 1;
1213 if (r1.uge(nc - r1)) {
1214 q1 = q1 + q1 + 1; // update q1
1215 r1 = r1 + r1 - nc; // update r1
1216 }
1217 else {
1218 q1 = q1+q1; // update q1
1219 r1 = r1+r1; // update r1
1220 }
1221 if ((r2 + 1).uge(d - r2)) {
1222 if (q2.uge(signedMax)) magu.a = 1;
1223 q2 = q2+q2 + 1; // update q2
1224 r2 = r2+r2 + 1 - d; // update r2
1225 }
1226 else {
1227 if (q2.uge(signedMin)) magu.a = 1;
1228 q2 = q2+q2; // update q2
1229 r2 = r2+r2 + 1; // update r2
1230 }
1231 delta = d - 1 - r2;
1232 } while (p < d.getBitWidth()*2 &&
1233 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1234 magu.m = q2 + 1; // resulting magic number
1235 magu.s = p - d.getBitWidth(); // resulting shift
1236 return magu;
1237}
1238
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001239/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1240/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1241/// variables here have the same names as in the algorithm. Comments explain
1242/// the algorithm and any deviation from it.
Craig Topper6271bc72017-05-10 18:15:20 +00001243static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
Chris Lattner77527f52009-01-21 18:09:24 +00001244 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001245 assert(u && "Must provide dividend");
1246 assert(v && "Must provide divisor");
1247 assert(q && "Must provide quotient");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001248 assert(u != v && u != q && v != q && "Must use different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001249 assert(n>1 && "n must be > 1");
1250
Yaron Keren39fc5a62015-03-26 19:45:19 +00001251 // b denotes the base of the number system. In our case b is 2^32.
George Burgess IV381fc0e2016-08-25 01:05:08 +00001252 const uint64_t b = uint64_t(1) << 32;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001253
Craig Topper03106bb2017-11-24 20:29:04 +00001254// The DEBUG macros here tend to be spam in the debug output if you're not
1255// debugging this code. Disable them unless KNUTH_DEBUG is defined.
1256#pragma push_macro("DEBUG")
1257#ifndef KNUTH_DEBUG
1258#undef DEBUG
1259#define DEBUG(X) do {} while (false)
1260#endif
1261
David Greenef32fcb42010-01-05 01:28:52 +00001262 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1263 DEBUG(dbgs() << "KnuthDiv: original:");
1264 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1265 DEBUG(dbgs() << " by");
1266 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1267 DEBUG(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001268 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1269 // u and v by d. Note that we have taken Knuth's advice here to use a power
1270 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1271 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001272 // shift amount from the leading zeros. We are basically normalizing the u
1273 // and v so that its high bits are shifted to the top of v's range without
1274 // overflow. Note that this can require an extra word in u so that u must
1275 // be of length m+n+1.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001276 unsigned shift = countLeadingZeros(v[n-1]);
Craig Topper6271bc72017-05-10 18:15:20 +00001277 uint32_t v_carry = 0;
1278 uint32_t u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001279 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001280 for (unsigned i = 0; i < m+n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001281 uint32_t u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001282 u[i] = (u[i] << shift) | u_carry;
1283 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001284 }
Chris Lattner77527f52009-01-21 18:09:24 +00001285 for (unsigned i = 0; i < n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001286 uint32_t v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001287 v[i] = (v[i] << shift) | v_carry;
1288 v_carry = v_tmp;
1289 }
1290 }
1291 u[m+n] = u_carry;
Yaron Keren39fc5a62015-03-26 19:45:19 +00001292
David Greenef32fcb42010-01-05 01:28:52 +00001293 DEBUG(dbgs() << "KnuthDiv: normal:");
1294 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1295 DEBUG(dbgs() << " by");
1296 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1297 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001298
1299 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1300 int j = m;
1301 do {
David Greenef32fcb42010-01-05 01:28:52 +00001302 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001303 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001304 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1305 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1306 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
Craig Topper4b83b4d2017-05-13 00:35:30 +00001307 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001308 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001309 // value qp is one too large, and it eliminates all cases where qp is two
1310 // too large.
Craig Topper2c9a7062017-05-13 07:14:17 +00001311 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
David Greenef32fcb42010-01-05 01:28:52 +00001312 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001313 uint64_t qp = dividend / v[n-1];
1314 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001315 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1316 qp--;
1317 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001318 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001319 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001320 }
David Greenef32fcb42010-01-05 01:28:52 +00001321 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001322
Reid Spencercb292e42007-02-23 01:57:13 +00001323 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1324 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1325 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001326 // a subtraction.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001327 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1328 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1329 // true value plus b**(n+1), namely as the b's complement of
1330 // the true value, and a "borrow" to the left should be remembered.
Pawel Bylica86ac4472015-04-24 07:38:39 +00001331 int64_t borrow = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001332 for (unsigned i = 0; i < n; ++i) {
Pawel Bylica86ac4472015-04-24 07:38:39 +00001333 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
Craig Topper2c9a7062017-05-13 07:14:17 +00001334 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1335 u[j+i] = Lo_32(subres);
1336 borrow = Hi_32(p) - Hi_32(subres);
Pawel Bylica86ac4472015-04-24 07:38:39 +00001337 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
Daniel Dunbar763ace92009-07-13 05:27:30 +00001338 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001339 }
Pawel Bylica86ac4472015-04-24 07:38:39 +00001340 bool isNeg = u[j+n] < borrow;
Craig Topper2c9a7062017-05-13 07:14:17 +00001341 u[j+n] -= Lo_32(borrow);
Pawel Bylica86ac4472015-04-24 07:38:39 +00001342
David Greenef32fcb42010-01-05 01:28:52 +00001343 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1344 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1345 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001346
Eric Christopher820256b2009-08-21 04:06:45 +00001347 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001348 // negative, go to step D6; otherwise go on to step D7.
Craig Topper2c9a7062017-05-13 07:14:17 +00001349 q[j] = Lo_32(qp);
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001350 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001351 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001352 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001353 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001354 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001355 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1356 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001357 // since it cancels with the borrow that occurred in D4.
1358 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001359 for (unsigned i = 0; i < n; i++) {
Craig Topper6271bc72017-05-10 18:15:20 +00001360 uint32_t limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001361 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001362 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001363 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001364 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001365 }
David Greenef32fcb42010-01-05 01:28:52 +00001366 DEBUG(dbgs() << "KnuthDiv: after correction:");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001367 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
David Greenef32fcb42010-01-05 01:28:52 +00001368 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001369
Reid Spencercb292e42007-02-23 01:57:13 +00001370 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1371 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001372
David Greenef32fcb42010-01-05 01:28:52 +00001373 DEBUG(dbgs() << "KnuthDiv: quotient:");
1374 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1375 DEBUG(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001376
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001377 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1378 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1379 // compute the remainder (urem uses this).
1380 if (r) {
1381 // The value d is expressed by the "shift" value above since we avoided
1382 // multiplication by d by using a shift left. So, all we have to do is
Simon Pilgrim0099beb2017-03-09 13:57:04 +00001383 // shift right here.
Reid Spencer468ad9112007-02-24 20:38:01 +00001384 if (shift) {
Craig Topper6271bc72017-05-10 18:15:20 +00001385 uint32_t carry = 0;
David Greenef32fcb42010-01-05 01:28:52 +00001386 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001387 for (int i = n-1; i >= 0; i--) {
1388 r[i] = (u[i] >> shift) | carry;
1389 carry = u[i] << (32 - shift);
David Greenef32fcb42010-01-05 01:28:52 +00001390 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001391 }
1392 } else {
1393 for (int i = n-1; i >= 0; i--) {
1394 r[i] = u[i];
David Greenef32fcb42010-01-05 01:28:52 +00001395 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001396 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001397 }
David Greenef32fcb42010-01-05 01:28:52 +00001398 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001399 }
David Greenef32fcb42010-01-05 01:28:52 +00001400 DEBUG(dbgs() << '\n');
Craig Topper03106bb2017-11-24 20:29:04 +00001401
1402#pragma pop_macro("DEBUG")
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001403}
1404
Craig Topper8885f932017-05-19 16:43:54 +00001405void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1406 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001407 assert(lhsWords >= rhsWords && "Fractional result");
1408
Eric Christopher820256b2009-08-21 04:06:45 +00001409 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001410 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001411 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001412 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1413 // can't use 64-bit operands here because we don't have native results of
1414 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001415 // work on large-endian machines.
Chris Lattner77527f52009-01-21 18:09:24 +00001416 unsigned n = rhsWords * 2;
1417 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001418
1419 // Allocate space for the temporary values we need either on the stack, if
1420 // it will fit, or on the heap if it won't.
Craig Topper6271bc72017-05-10 18:15:20 +00001421 uint32_t SPACE[128];
1422 uint32_t *U = nullptr;
1423 uint32_t *V = nullptr;
1424 uint32_t *Q = nullptr;
1425 uint32_t *R = nullptr;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001426 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1427 U = &SPACE[0];
1428 V = &SPACE[m+n+1];
1429 Q = &SPACE[(m+n+1) + n];
1430 if (Remainder)
1431 R = &SPACE[(m+n+1) + n + (m+n)];
1432 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001433 U = new uint32_t[m + n + 1];
1434 V = new uint32_t[n];
1435 Q = new uint32_t[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001436 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001437 R = new uint32_t[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001438 }
1439
1440 // Initialize the dividend
Craig Topper6271bc72017-05-10 18:15:20 +00001441 memset(U, 0, (m+n+1)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001442 for (unsigned i = 0; i < lhsWords; ++i) {
Craig Topper8885f932017-05-19 16:43:54 +00001443 uint64_t tmp = LHS[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001444 U[i * 2] = Lo_32(tmp);
1445 U[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001446 }
1447 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1448
Reid Spencer522ca7c2007-02-25 01:56:07 +00001449 // Initialize the divisor
Craig Topper6271bc72017-05-10 18:15:20 +00001450 memset(V, 0, (n)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001451 for (unsigned i = 0; i < rhsWords; ++i) {
Craig Topper8885f932017-05-19 16:43:54 +00001452 uint64_t tmp = RHS[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001453 V[i * 2] = Lo_32(tmp);
1454 V[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001455 }
1456
Reid Spencer522ca7c2007-02-25 01:56:07 +00001457 // initialize the quotient and remainder
Craig Topper6271bc72017-05-10 18:15:20 +00001458 memset(Q, 0, (m+n) * sizeof(uint32_t));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001459 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001460 memset(R, 0, n * sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001461
Eric Christopher820256b2009-08-21 04:06:45 +00001462 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001463 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001464 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001465 // contain any zero words or the Knuth algorithm fails.
1466 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1467 n--;
1468 m++;
1469 }
1470 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1471 m--;
1472
1473 // If we're left with only a single word for the divisor, Knuth doesn't work
1474 // so we implement the short division algorithm here. This is much simpler
1475 // and faster because we are certain that we can divide a 64-bit quantity
1476 // by a 32-bit quantity at hardware speed and short division is simply a
1477 // series of such operations. This is just like doing short division but we
1478 // are using base 2^32 instead of base 10.
1479 assert(n != 0 && "Divide by zero?");
1480 if (n == 1) {
Craig Topper6271bc72017-05-10 18:15:20 +00001481 uint32_t divisor = V[0];
1482 uint32_t remainder = 0;
Craig Topper6a1d0202017-05-15 22:01:03 +00001483 for (int i = m; i >= 0; i--) {
Craig Topper6271bc72017-05-10 18:15:20 +00001484 uint64_t partial_dividend = Make_64(remainder, U[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001485 if (partial_dividend == 0) {
1486 Q[i] = 0;
1487 remainder = 0;
1488 } else if (partial_dividend < divisor) {
1489 Q[i] = 0;
Craig Topper6271bc72017-05-10 18:15:20 +00001490 remainder = Lo_32(partial_dividend);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001491 } else if (partial_dividend == divisor) {
1492 Q[i] = 1;
1493 remainder = 0;
1494 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001495 Q[i] = Lo_32(partial_dividend / divisor);
1496 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001497 }
1498 }
1499 if (R)
1500 R[0] = remainder;
1501 } else {
1502 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1503 // case n > 1.
1504 KnuthDiv(U, V, Q, R, m, n);
1505 }
1506
1507 // If the caller wants the quotient
1508 if (Quotient) {
Craig Topper8885f932017-05-19 16:43:54 +00001509 for (unsigned i = 0; i < lhsWords; ++i)
1510 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001511 }
1512
1513 // If the caller wants the remainder
1514 if (Remainder) {
Craig Topper8885f932017-05-19 16:43:54 +00001515 for (unsigned i = 0; i < rhsWords; ++i)
1516 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001517 }
1518
1519 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001520 if (U != &SPACE[0]) {
1521 delete [] U;
1522 delete [] V;
1523 delete [] Q;
1524 delete [] R;
1525 }
Reid Spencer100502d2007-02-17 03:16:00 +00001526}
1527
Craig Topper8885f932017-05-19 16:43:54 +00001528APInt APInt::udiv(const APInt &RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001529 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001530
1531 // First, deal with the easy case
1532 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001533 assert(RHS.U.VAL != 0 && "Divide by zero?");
1534 return APInt(BitWidth, U.VAL / RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001535 }
Reid Spencer39867762007-02-17 02:07:07 +00001536
Reid Spencer39867762007-02-17 02:07:07 +00001537 // Get some facts about the LHS and RHS number of bits and words
Craig Topper62de0392017-05-10 07:50:15 +00001538 unsigned lhsWords = getNumWords(getActiveBits());
Craig Topperb1a71ca2017-05-12 21:45:50 +00001539 unsigned rhsBits = RHS.getActiveBits();
1540 unsigned rhsWords = getNumWords(rhsBits);
1541 assert(rhsWords && "Divided by zero???");
Reid Spencer39867762007-02-17 02:07:07 +00001542
1543 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001544 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001545 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001546 return APInt(BitWidth, 0);
Craig Topperb1a71ca2017-05-12 21:45:50 +00001547 if (rhsBits == 1)
1548 // X / 1 ===> X
1549 return *this;
Craig Topper24ae6952017-05-08 23:49:49 +00001550 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001551 // X / Y ===> 0, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001552 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001553 if (*this == RHS)
Reid Spencer58a6a432007-02-21 08:21:52 +00001554 // X / X ===> 1
1555 return APInt(BitWidth, 1);
Craig Topper06da0812017-05-12 18:18:57 +00001556 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
Reid Spencer39867762007-02-17 02:07:07 +00001557 // All high words are zero, just use native divide
Craig Topperb339c6d2017-05-03 15:46:24 +00001558 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001559
1560 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper8885f932017-05-19 16:43:54 +00001561 APInt Quotient(BitWidth, 0); // to hold result.
1562 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1563 return Quotient;
1564}
1565
1566APInt APInt::udiv(uint64_t RHS) const {
1567 assert(RHS != 0 && "Divide by zero?");
1568
1569 // First, deal with the easy case
1570 if (isSingleWord())
1571 return APInt(BitWidth, U.VAL / RHS);
1572
1573 // Get some facts about the LHS words.
1574 unsigned lhsWords = getNumWords(getActiveBits());
1575
1576 // Deal with some degenerate cases
1577 if (!lhsWords)
1578 // 0 / X ===> 0
1579 return APInt(BitWidth, 0);
1580 if (RHS == 1)
1581 // X / 1 ===> X
1582 return *this;
1583 if (this->ult(RHS))
1584 // X / Y ===> 0, iff X < Y
1585 return APInt(BitWidth, 0);
1586 if (*this == RHS)
1587 // X / X ===> 1
1588 return APInt(BitWidth, 1);
1589 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1590 // All high words are zero, just use native divide
1591 return APInt(BitWidth, this->U.pVal[0] / RHS);
1592
1593 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1594 APInt Quotient(BitWidth, 0); // to hold result.
1595 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001596 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001597}
1598
Jakub Staszak6605c602013-02-20 00:17:42 +00001599APInt APInt::sdiv(const APInt &RHS) const {
1600 if (isNegative()) {
1601 if (RHS.isNegative())
1602 return (-(*this)).udiv(-RHS);
1603 return -((-(*this)).udiv(RHS));
1604 }
1605 if (RHS.isNegative())
1606 return -(this->udiv(-RHS));
1607 return this->udiv(RHS);
1608}
1609
Craig Topper8885f932017-05-19 16:43:54 +00001610APInt APInt::sdiv(int64_t RHS) const {
1611 if (isNegative()) {
1612 if (RHS < 0)
1613 return (-(*this)).udiv(-RHS);
1614 return -((-(*this)).udiv(RHS));
1615 }
1616 if (RHS < 0)
1617 return -(this->udiv(-RHS));
1618 return this->udiv(RHS);
1619}
1620
1621APInt APInt::urem(const APInt &RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001622 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001623 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001624 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1625 return APInt(BitWidth, U.VAL % RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001626 }
Reid Spencer39867762007-02-17 02:07:07 +00001627
Reid Spencer58a6a432007-02-21 08:21:52 +00001628 // Get some facts about the LHS
Craig Topper62de0392017-05-10 07:50:15 +00001629 unsigned lhsWords = getNumWords(getActiveBits());
Reid Spencer39867762007-02-17 02:07:07 +00001630
1631 // Get some facts about the RHS
Craig Topperb1a71ca2017-05-12 21:45:50 +00001632 unsigned rhsBits = RHS.getActiveBits();
1633 unsigned rhsWords = getNumWords(rhsBits);
Reid Spencer39867762007-02-17 02:07:07 +00001634 assert(rhsWords && "Performing remainder operation by zero ???");
1635
Reid Spencer39867762007-02-17 02:07:07 +00001636 // Check the degenerate cases
Craig Topper24ae6952017-05-08 23:49:49 +00001637 if (lhsWords == 0)
Reid Spencer58a6a432007-02-21 08:21:52 +00001638 // 0 % Y ===> 0
1639 return APInt(BitWidth, 0);
Craig Topperb1a71ca2017-05-12 21:45:50 +00001640 if (rhsBits == 1)
1641 // X % 1 ===> 0
1642 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001643 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001644 // X % Y ===> X, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001645 return *this;
Craig Topper24ae6952017-05-08 23:49:49 +00001646 if (*this == RHS)
Reid Spencer39867762007-02-17 02:07:07 +00001647 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001648 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001649 if (lhsWords == 1)
Reid Spencer39867762007-02-17 02:07:07 +00001650 // All high words are zero, just use native remainder
Craig Topperb339c6d2017-05-03 15:46:24 +00001651 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001652
Reid Spencer4c50b522007-05-13 23:44:59 +00001653 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper8885f932017-05-19 16:43:54 +00001654 APInt Remainder(BitWidth, 0);
1655 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1656 return Remainder;
1657}
1658
1659uint64_t APInt::urem(uint64_t RHS) const {
1660 assert(RHS != 0 && "Remainder by zero?");
1661
1662 if (isSingleWord())
1663 return U.VAL % RHS;
1664
1665 // Get some facts about the LHS
1666 unsigned lhsWords = getNumWords(getActiveBits());
1667
1668 // Check the degenerate cases
1669 if (lhsWords == 0)
1670 // 0 % Y ===> 0
1671 return 0;
1672 if (RHS == 1)
1673 // X % 1 ===> 0
1674 return 0;
1675 if (this->ult(RHS))
1676 // X % Y ===> X, iff X < Y
1677 return getZExtValue();
1678 if (*this == RHS)
1679 // X % X == 0;
1680 return 0;
1681 if (lhsWords == 1)
1682 // All high words are zero, just use native remainder
1683 return U.pVal[0] % RHS;
1684
1685 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1686 uint64_t Remainder;
1687 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001688 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001689}
Reid Spencer100502d2007-02-17 03:16:00 +00001690
Jakub Staszak6605c602013-02-20 00:17:42 +00001691APInt APInt::srem(const APInt &RHS) const {
1692 if (isNegative()) {
1693 if (RHS.isNegative())
1694 return -((-(*this)).urem(-RHS));
1695 return -((-(*this)).urem(RHS));
1696 }
1697 if (RHS.isNegative())
1698 return this->urem(-RHS);
1699 return this->urem(RHS);
1700}
1701
Craig Topper8885f932017-05-19 16:43:54 +00001702int64_t APInt::srem(int64_t RHS) const {
1703 if (isNegative()) {
1704 if (RHS < 0)
1705 return -((-(*this)).urem(-RHS));
1706 return -((-(*this)).urem(RHS));
1707 }
1708 if (RHS < 0)
1709 return this->urem(-RHS);
1710 return this->urem(RHS);
1711}
1712
Eric Christopher820256b2009-08-21 04:06:45 +00001713void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00001714 APInt &Quotient, APInt &Remainder) {
David Majnemer7f039202014-12-14 09:41:56 +00001715 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper2579c7c2017-05-12 21:45:44 +00001716 unsigned BitWidth = LHS.BitWidth;
David Majnemer7f039202014-12-14 09:41:56 +00001717
1718 // First, deal with the easy case
1719 if (LHS.isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001720 assert(RHS.U.VAL != 0 && "Divide by zero?");
1721 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1722 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
Craig Topper2579c7c2017-05-12 21:45:44 +00001723 Quotient = APInt(BitWidth, QuotVal);
1724 Remainder = APInt(BitWidth, RemVal);
David Majnemer7f039202014-12-14 09:41:56 +00001725 return;
1726 }
1727
Reid Spencer4c50b522007-05-13 23:44:59 +00001728 // Get some size facts about the dividend and divisor
Craig Topper62de0392017-05-10 07:50:15 +00001729 unsigned lhsWords = getNumWords(LHS.getActiveBits());
Craig Topperb1a71ca2017-05-12 21:45:50 +00001730 unsigned rhsBits = RHS.getActiveBits();
1731 unsigned rhsWords = getNumWords(rhsBits);
Craig Topper4bdd6212017-05-12 18:19:01 +00001732 assert(rhsWords && "Performing divrem operation by zero ???");
Reid Spencer4c50b522007-05-13 23:44:59 +00001733
1734 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001735 if (lhsWords == 0) {
Reid Spencer4c50b522007-05-13 23:44:59 +00001736 Quotient = 0; // 0 / Y ===> 0
1737 Remainder = 0; // 0 % Y ===> 0
1738 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001739 }
1740
Craig Topperb1a71ca2017-05-12 21:45:50 +00001741 if (rhsBits == 1) {
1742 Quotient = LHS; // X / 1 ===> X
1743 Remainder = 0; // X % 1 ===> 0
1744 }
1745
Eric Christopher820256b2009-08-21 04:06:45 +00001746 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001747 Remainder = LHS; // X % Y ===> X, iff X < Y
1748 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00001749 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001750 }
1751
Reid Spencer4c50b522007-05-13 23:44:59 +00001752 if (LHS == RHS) {
1753 Quotient = 1; // X / X ===> 1
1754 Remainder = 0; // X % X ===> 0;
1755 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001756 }
1757
Craig Topper8885f932017-05-19 16:43:54 +00001758 // Make sure there is enough space to hold the results.
1759 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1760 // change the size. This is necessary if Quotient or Remainder is aliased
1761 // with LHS or RHS.
1762 Quotient.reallocate(BitWidth);
1763 Remainder.reallocate(BitWidth);
1764
Craig Topper06da0812017-05-12 18:18:57 +00001765 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
Reid Spencer4c50b522007-05-13 23:44:59 +00001766 // There is only one word to consider so use the native versions.
Craig Topper93eabae2017-05-10 18:15:14 +00001767 uint64_t lhsValue = LHS.U.pVal[0];
1768 uint64_t rhsValue = RHS.U.pVal[0];
Craig Topper87694032017-05-12 07:21:09 +00001769 Quotient = lhsValue / rhsValue;
1770 Remainder = lhsValue % rhsValue;
Reid Spencer4c50b522007-05-13 23:44:59 +00001771 return;
1772 }
1773
1774 // Okay, lets do it the long way
Craig Topper8885f932017-05-19 16:43:54 +00001775 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1776 Remainder.U.pVal);
1777 // Clear the rest of the Quotient and Remainder.
1778 std::memset(Quotient.U.pVal + lhsWords, 0,
1779 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1780 std::memset(Remainder.U.pVal + rhsWords, 0,
1781 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1782}
1783
1784void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1785 uint64_t &Remainder) {
1786 assert(RHS != 0 && "Divide by zero?");
1787 unsigned BitWidth = LHS.BitWidth;
1788
1789 // First, deal with the easy case
1790 if (LHS.isSingleWord()) {
1791 uint64_t QuotVal = LHS.U.VAL / RHS;
1792 Remainder = LHS.U.VAL % RHS;
1793 Quotient = APInt(BitWidth, QuotVal);
1794 return;
1795 }
1796
1797 // Get some size facts about the dividend and divisor
1798 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1799
1800 // Check the degenerate cases
1801 if (lhsWords == 0) {
1802 Quotient = 0; // 0 / Y ===> 0
1803 Remainder = 0; // 0 % Y ===> 0
1804 return;
1805 }
1806
1807 if (RHS == 1) {
1808 Quotient = LHS; // X / 1 ===> X
1809 Remainder = 0; // X % 1 ===> 0
1810 }
1811
1812 if (LHS.ult(RHS)) {
1813 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1814 Quotient = 0; // X / Y ===> 0, iff X < Y
1815 return;
1816 }
1817
1818 if (LHS == RHS) {
1819 Quotient = 1; // X / X ===> 1
1820 Remainder = 0; // X % X ===> 0;
1821 return;
1822 }
1823
1824 // Make sure there is enough space to hold the results.
1825 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1826 // change the size. This is necessary if Quotient is aliased with LHS.
1827 Quotient.reallocate(BitWidth);
1828
1829 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1830 // There is only one word to consider so use the native versions.
1831 uint64_t lhsValue = LHS.U.pVal[0];
1832 Quotient = lhsValue / RHS;
1833 Remainder = lhsValue % RHS;
1834 return;
1835 }
1836
1837 // Okay, lets do it the long way
1838 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1839 // Clear the rest of the Quotient.
1840 std::memset(Quotient.U.pVal + lhsWords, 0,
1841 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
Reid Spencer4c50b522007-05-13 23:44:59 +00001842}
1843
Jakub Staszak6605c602013-02-20 00:17:42 +00001844void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1845 APInt &Quotient, APInt &Remainder) {
1846 if (LHS.isNegative()) {
1847 if (RHS.isNegative())
1848 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1849 else {
1850 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
Craig Topperb3c1f562017-05-11 07:02:04 +00001851 Quotient.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001852 }
Craig Topperb3c1f562017-05-11 07:02:04 +00001853 Remainder.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001854 } else if (RHS.isNegative()) {
1855 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
Craig Topperb3c1f562017-05-11 07:02:04 +00001856 Quotient.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001857 } else {
1858 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1859 }
1860}
1861
Craig Topper8885f932017-05-19 16:43:54 +00001862void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1863 APInt &Quotient, int64_t &Remainder) {
1864 uint64_t R = Remainder;
1865 if (LHS.isNegative()) {
1866 if (RHS < 0)
1867 APInt::udivrem(-LHS, -RHS, Quotient, R);
1868 else {
1869 APInt::udivrem(-LHS, RHS, Quotient, R);
1870 Quotient.negate();
1871 }
1872 R = -R;
1873 } else if (RHS < 0) {
1874 APInt::udivrem(LHS, -RHS, Quotient, R);
1875 Quotient.negate();
1876 } else {
1877 APInt::udivrem(LHS, RHS, Quotient, R);
1878 }
1879 Remainder = R;
1880}
1881
Chris Lattner2c819b02010-10-13 23:54:10 +00001882APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001883 APInt Res = *this+RHS;
1884 Overflow = isNonNegative() == RHS.isNonNegative() &&
1885 Res.isNonNegative() != isNonNegative();
1886 return Res;
1887}
1888
Chris Lattner698661c2010-10-14 00:05:07 +00001889APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1890 APInt Res = *this+RHS;
1891 Overflow = Res.ult(RHS);
1892 return Res;
1893}
1894
Chris Lattner2c819b02010-10-13 23:54:10 +00001895APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001896 APInt Res = *this - RHS;
1897 Overflow = isNonNegative() != RHS.isNonNegative() &&
1898 Res.isNonNegative() != isNonNegative();
1899 return Res;
1900}
1901
Chris Lattner698661c2010-10-14 00:05:07 +00001902APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerb9681ad2010-10-14 00:30:00 +00001903 APInt Res = *this-RHS;
1904 Overflow = Res.ugt(*this);
Chris Lattner698661c2010-10-14 00:05:07 +00001905 return Res;
1906}
1907
Chris Lattner2c819b02010-10-13 23:54:10 +00001908APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001909 // MININT/-1 --> overflow.
1910 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1911 return sdiv(RHS);
1912}
1913
Chris Lattner2c819b02010-10-13 23:54:10 +00001914APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001915 APInt Res = *this * RHS;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001916
Chris Lattner79bdd882010-10-13 23:46:33 +00001917 if (*this != 0 && RHS != 0)
1918 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1919 else
1920 Overflow = false;
1921 return Res;
1922}
1923
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00001924APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1925 APInt Res = *this * RHS;
1926
1927 if (*this != 0 && RHS != 0)
1928 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
1929 else
1930 Overflow = false;
1931 return Res;
1932}
1933
David Majnemera2521382014-10-13 21:48:30 +00001934APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1935 Overflow = ShAmt.uge(getBitWidth());
Chris Lattner79bdd882010-10-13 23:46:33 +00001936 if (Overflow)
David Majnemera2521382014-10-13 21:48:30 +00001937 return APInt(BitWidth, 0);
Chris Lattner79bdd882010-10-13 23:46:33 +00001938
1939 if (isNonNegative()) // Don't allow sign change.
David Majnemera2521382014-10-13 21:48:30 +00001940 Overflow = ShAmt.uge(countLeadingZeros());
Chris Lattner79bdd882010-10-13 23:46:33 +00001941 else
David Majnemera2521382014-10-13 21:48:30 +00001942 Overflow = ShAmt.uge(countLeadingOnes());
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001943
Chris Lattner79bdd882010-10-13 23:46:33 +00001944 return *this << ShAmt;
1945}
1946
David Majnemera2521382014-10-13 21:48:30 +00001947APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1948 Overflow = ShAmt.uge(getBitWidth());
1949 if (Overflow)
1950 return APInt(BitWidth, 0);
1951
1952 Overflow = ShAmt.ugt(countLeadingZeros());
1953
1954 return *this << ShAmt;
1955}
1956
Chris Lattner79bdd882010-10-13 23:46:33 +00001957
1958
1959
Benjamin Kramer92d89982010-07-14 22:38:02 +00001960void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00001961 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001962 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001963 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00001964 radix == 36) &&
1965 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001966
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001967 StringRef::iterator p = str.begin();
1968 size_t slen = str.size();
1969 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001970 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001971 p++;
1972 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00001973 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001974 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00001975 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00001976 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
1977 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohmanb452d4e2010-03-24 19:38:02 +00001978 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
1979 "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00001980
Craig Topperb339c6d2017-05-03 15:46:24 +00001981 // Allocate memory if needed
1982 if (isSingleWord())
1983 U.VAL = 0;
1984 else
1985 U.pVal = getClearedMemory(getNumWords());
Reid Spencer1ba83352007-02-21 03:55:44 +00001986
1987 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00001988 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00001989
Reid Spencer1ba83352007-02-21 03:55:44 +00001990 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001991 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00001992 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00001993 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00001994
Reid Spencera93c9812007-05-16 19:18:22 +00001995 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00001996 if (slen > 1) {
1997 if (shift)
1998 *this <<= shift;
1999 else
Craig Topperf15bec52017-05-08 04:55:12 +00002000 *this *= radix;
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002001 }
Reid Spencer1ba83352007-02-21 03:55:44 +00002002
2003 // Add in the digit we just interpreted
Craig Topperb7d8faa2017-04-02 06:59:38 +00002004 *this += digit;
Reid Spencer100502d2007-02-17 03:16:00 +00002005 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002006 // If its negative, put it in two's complement form
Craig Topperef0114c2017-05-10 20:01:38 +00002007 if (isNeg)
2008 this->negate();
Reid Spencer100502d2007-02-17 03:16:00 +00002009}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002010
Chris Lattner17f71652008-08-17 07:19:36 +00002011void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002012 bool Signed, bool formatAsCLiteral) const {
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00002013 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00002014 Radix == 36) &&
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002015 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopher820256b2009-08-21 04:06:45 +00002016
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002017 const char *Prefix = "";
2018 if (formatAsCLiteral) {
2019 switch (Radix) {
2020 case 2:
2021 // Binary literals are a non-standard extension added in gcc 4.3:
2022 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2023 Prefix = "0b";
2024 break;
2025 case 8:
2026 Prefix = "0";
2027 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002028 case 10:
2029 break; // No prefix
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002030 case 16:
2031 Prefix = "0x";
2032 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002033 default:
2034 llvm_unreachable("Invalid radix!");
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002035 }
2036 }
2037
Chris Lattner17f71652008-08-17 07:19:36 +00002038 // First, check for a zero value and just short circuit the logic below.
2039 if (*this == 0) {
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002040 while (*Prefix) {
2041 Str.push_back(*Prefix);
2042 ++Prefix;
2043 };
Chris Lattner17f71652008-08-17 07:19:36 +00002044 Str.push_back('0');
2045 return;
2046 }
Eric Christopher820256b2009-08-21 04:06:45 +00002047
Douglas Gregor663c0682011-09-14 15:54:46 +00002048 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopher820256b2009-08-21 04:06:45 +00002049
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002050 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002051 char Buffer[65];
Craig Toppere6a23182017-05-24 07:00:55 +00002052 char *BufPtr = std::end(Buffer);
Eric Christopher820256b2009-08-21 04:06:45 +00002053
Chris Lattner17f71652008-08-17 07:19:36 +00002054 uint64_t N;
Chris Lattnerb91c9032010-08-18 00:33:47 +00002055 if (!Signed) {
Chris Lattner17f71652008-08-17 07:19:36 +00002056 N = getZExtValue();
Chris Lattnerb91c9032010-08-18 00:33:47 +00002057 } else {
2058 int64_t I = getSExtValue();
2059 if (I >= 0) {
2060 N = I;
2061 } else {
2062 Str.push_back('-');
2063 N = -(uint64_t)I;
2064 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002065 }
Eric Christopher820256b2009-08-21 04:06:45 +00002066
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002067 while (*Prefix) {
2068 Str.push_back(*Prefix);
2069 ++Prefix;
2070 };
2071
Chris Lattner17f71652008-08-17 07:19:36 +00002072 while (N) {
2073 *--BufPtr = Digits[N % Radix];
2074 N /= Radix;
2075 }
Craig Toppere6a23182017-05-24 07:00:55 +00002076 Str.append(BufPtr, std::end(Buffer));
Chris Lattner17f71652008-08-17 07:19:36 +00002077 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002078 }
2079
Chris Lattner17f71652008-08-17 07:19:36 +00002080 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00002081
Chris Lattner17f71652008-08-17 07:19:36 +00002082 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002083 // They want to print the signed version and it is a negative value
2084 // Flip the bits and add one to turn it into the equivalent positive
2085 // value and put a '-' in the result.
Craig Topperef0114c2017-05-10 20:01:38 +00002086 Tmp.negate();
Chris Lattner17f71652008-08-17 07:19:36 +00002087 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002088 }
Eric Christopher820256b2009-08-21 04:06:45 +00002089
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002090 while (*Prefix) {
2091 Str.push_back(*Prefix);
2092 ++Prefix;
2093 };
2094
Chris Lattner17f71652008-08-17 07:19:36 +00002095 // We insert the digits backward, then reverse them to get the right order.
2096 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00002097
2098 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2099 // because the number of bits per digit (1, 3 and 4 respectively) divides
Craig Topperd7ed50d2017-04-02 06:59:36 +00002100 // equally. We just shift until the value is zero.
Douglas Gregor663c0682011-09-14 15:54:46 +00002101 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattner17f71652008-08-17 07:19:36 +00002102 // Just shift tmp right for each digit width until it becomes zero
2103 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2104 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00002105
Craig Topperecb97da2017-05-10 18:15:24 +00002106 while (Tmp.getBoolValue()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002107 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2108 Str.push_back(Digits[Digit]);
Craig Topperfc947bc2017-04-18 17:14:21 +00002109 Tmp.lshrInPlace(ShiftAmt);
Chris Lattner17f71652008-08-17 07:19:36 +00002110 }
2111 } else {
Craig Topperecb97da2017-05-10 18:15:24 +00002112 while (Tmp.getBoolValue()) {
Craig Topper8885f932017-05-19 16:43:54 +00002113 uint64_t Digit;
2114 udivrem(Tmp, Radix, Tmp, Digit);
Chris Lattner17f71652008-08-17 07:19:36 +00002115 assert(Digit < Radix && "divide failed");
2116 Str.push_back(Digits[Digit]);
Chris Lattner17f71652008-08-17 07:19:36 +00002117 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002118 }
Eric Christopher820256b2009-08-21 04:06:45 +00002119
Chris Lattner17f71652008-08-17 07:19:36 +00002120 // Reverse the digits before returning.
2121 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002122}
2123
Pawel Bylica6eeeac72015-04-06 13:31:39 +00002124/// Returns the APInt as a std::string. Note that this is an inefficient method.
2125/// It is better to pass in a SmallVector/SmallString to the methods above.
Chris Lattner17f71652008-08-17 07:19:36 +00002126std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2127 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002128 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002129 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00002130}
Chris Lattner6b695682007-08-16 15:56:55 +00002131
Aaron Ballman615eb472017-10-15 14:32:27 +00002132#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Yaron Kereneb2a2542016-01-29 20:50:44 +00002133LLVM_DUMP_METHOD void APInt::dump() const {
Chris Lattner17f71652008-08-17 07:19:36 +00002134 SmallString<40> S, U;
2135 this->toStringUnsigned(U);
2136 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00002137 dbgs() << "APInt(" << BitWidth << "b, "
Davide Italiano5a473d22017-01-31 21:26:18 +00002138 << U << "u " << S << "s)\n";
Chris Lattner17f71652008-08-17 07:19:36 +00002139}
Matthias Braun8c209aa2017-01-28 02:02:38 +00002140#endif
Chris Lattner17f71652008-08-17 07:19:36 +00002141
Chris Lattner0c19df42008-08-23 22:23:09 +00002142void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00002143 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002144 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Yaron Keren92e1b622015-03-18 10:17:07 +00002145 OS << S;
Chris Lattner17f71652008-08-17 07:19:36 +00002146}
2147
Chris Lattner6b695682007-08-16 15:56:55 +00002148// This implements a variety of operations on a representation of
2149// arbitrary precision, two's-complement, bignum integer values.
2150
Chris Lattner96cffa62009-08-23 23:11:28 +00002151// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2152// and unrestricting assumption.
Craig Topper55229b72017-04-02 19:17:22 +00002153static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2154 "Part width must be divisible by 2!");
Chris Lattner6b695682007-08-16 15:56:55 +00002155
2156/* Some handy functions local to this file. */
Chris Lattner6b695682007-08-16 15:56:55 +00002157
Craig Topper76f42462017-03-28 05:32:53 +00002158/* Returns the integer part with the least significant BITS set.
2159 BITS cannot be zero. */
Craig Topper55229b72017-04-02 19:17:22 +00002160static inline APInt::WordType lowBitMask(unsigned bits) {
2161 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002162
Craig Topper55229b72017-04-02 19:17:22 +00002163 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
Craig Topper76f42462017-03-28 05:32:53 +00002164}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002165
Craig Topper76f42462017-03-28 05:32:53 +00002166/* Returns the value of the lower half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002167static inline APInt::WordType lowHalf(APInt::WordType part) {
2168 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002169}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002170
Craig Topper76f42462017-03-28 05:32:53 +00002171/* Returns the value of the upper half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002172static inline APInt::WordType highHalf(APInt::WordType part) {
2173 return part >> (APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002174}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002175
Craig Topper76f42462017-03-28 05:32:53 +00002176/* Returns the bit number of the most significant set bit of a part.
2177 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002178static unsigned partMSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002179 return findLastSet(value, ZB_Max);
2180}
Chris Lattner6b695682007-08-16 15:56:55 +00002181
Craig Topper76f42462017-03-28 05:32:53 +00002182/* Returns the bit number of the least significant set bit of a
2183 part. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002184static unsigned partLSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002185 return findFirstSet(value, ZB_Max);
Alexander Kornienkof00654e2015-06-23 09:49:53 +00002186}
Chris Lattner6b695682007-08-16 15:56:55 +00002187
2188/* Sets the least significant part of a bignum to the input value, and
2189 zeroes out higher parts. */
Craig Topper55229b72017-04-02 19:17:22 +00002190void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002191 assert(parts > 0);
Neil Boothb6182162007-10-08 13:47:12 +00002192
Chris Lattner6b695682007-08-16 15:56:55 +00002193 dst[0] = part;
Craig Topperb0038162017-03-28 05:32:52 +00002194 for (unsigned i = 1; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002195 dst[i] = 0;
2196}
2197
2198/* Assign one bignum to another. */
Craig Topper55229b72017-04-02 19:17:22 +00002199void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002200 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002201 dst[i] = src[i];
2202}
2203
2204/* Returns true if a bignum is zero, false otherwise. */
Craig Topper55229b72017-04-02 19:17:22 +00002205bool APInt::tcIsZero(const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002206 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002207 if (src[i])
2208 return false;
2209
2210 return true;
2211}
2212
2213/* Extract the given bit of a bignum; returns 0 or 1. */
Craig Topper55229b72017-04-02 19:17:22 +00002214int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002215 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002216}
2217
John McCalldcb9a7a2010-02-28 02:51:25 +00002218/* Set the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002219void APInt::tcSetBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002220 parts[whichWord(bit)] |= maskBit(bit);
Chris Lattner6b695682007-08-16 15:56:55 +00002221}
2222
John McCalldcb9a7a2010-02-28 02:51:25 +00002223/* Clears the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002224void APInt::tcClearBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002225 parts[whichWord(bit)] &= ~maskBit(bit);
John McCalldcb9a7a2010-02-28 02:51:25 +00002226}
2227
Neil Boothc8b650a2007-10-06 00:43:45 +00002228/* Returns the bit number of the least significant set bit of a
2229 number. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002230unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
Craig Topperb0038162017-03-28 05:32:52 +00002231 for (unsigned i = 0; i < n; i++) {
2232 if (parts[i] != 0) {
2233 unsigned lsb = partLSB(parts[i]);
Chris Lattner6b695682007-08-16 15:56:55 +00002234
Craig Topper55229b72017-04-02 19:17:22 +00002235 return lsb + i * APINT_BITS_PER_WORD;
Craig Topperb0038162017-03-28 05:32:52 +00002236 }
Chris Lattner6b695682007-08-16 15:56:55 +00002237 }
2238
2239 return -1U;
2240}
2241
Neil Boothc8b650a2007-10-06 00:43:45 +00002242/* Returns the bit number of the most significant set bit of a number.
2243 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002244unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
Chris Lattner6b695682007-08-16 15:56:55 +00002245 do {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002246 --n;
Chris Lattner6b695682007-08-16 15:56:55 +00002247
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002248 if (parts[n] != 0) {
Craig Topperb0038162017-03-28 05:32:52 +00002249 unsigned msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002250
Craig Topper55229b72017-04-02 19:17:22 +00002251 return msb + n * APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002252 }
Chris Lattner6b695682007-08-16 15:56:55 +00002253 } while (n);
2254
2255 return -1U;
2256}
2257
Neil Boothb6182162007-10-08 13:47:12 +00002258/* Copy the bit vector of width srcBITS from SRC, starting at bit
2259 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2260 the least significant bit of DST. All high bits above srcBITS in
2261 DST are zero-filled. */
2262void
Craig Topper55229b72017-04-02 19:17:22 +00002263APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
Craig Topper6a8518082017-03-28 05:32:55 +00002264 unsigned srcBits, unsigned srcLSB) {
Craig Topper55229b72017-04-02 19:17:22 +00002265 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002266 assert(dstParts <= dstCount);
Neil Boothb6182162007-10-08 13:47:12 +00002267
Craig Topper55229b72017-04-02 19:17:22 +00002268 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002269 tcAssign (dst, src + firstSrcPart, dstParts);
2270
Craig Topper55229b72017-04-02 19:17:22 +00002271 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002272 tcShiftRight (dst, dstParts, shift);
2273
Craig Topper55229b72017-04-02 19:17:22 +00002274 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
Neil Boothb6182162007-10-08 13:47:12 +00002275 in DST. If this is less that srcBits, append the rest, else
2276 clear the high bits. */
Craig Topper55229b72017-04-02 19:17:22 +00002277 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
Neil Boothb6182162007-10-08 13:47:12 +00002278 if (n < srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002279 WordType mask = lowBitMask (srcBits - n);
Neil Boothb6182162007-10-08 13:47:12 +00002280 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
Craig Topper55229b72017-04-02 19:17:22 +00002281 << n % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002282 } else if (n > srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002283 if (srcBits % APINT_BITS_PER_WORD)
2284 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002285 }
2286
2287 /* Clear high parts. */
2288 while (dstParts < dstCount)
2289 dst[dstParts++] = 0;
2290}
2291
Chris Lattner6b695682007-08-16 15:56:55 +00002292/* DST += RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002293APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2294 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002295 assert(c <= 1);
2296
Craig Topperb0038162017-03-28 05:32:52 +00002297 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002298 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002299 if (c) {
2300 dst[i] += rhs[i] + 1;
2301 c = (dst[i] <= l);
2302 } else {
2303 dst[i] += rhs[i];
2304 c = (dst[i] < l);
2305 }
2306 }
2307
2308 return c;
2309}
2310
Craig Topper92fc4772017-04-13 04:36:06 +00002311/// This function adds a single "word" integer, src, to the multiple
2312/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2313/// 1 is returned if there is a carry out, otherwise 0 is returned.
2314/// @returns the carry of the addition.
2315APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2316 unsigned parts) {
2317 for (unsigned i = 0; i < parts; ++i) {
2318 dst[i] += src;
2319 if (dst[i] >= src)
2320 return 0; // No need to carry so exit early.
2321 src = 1; // Carry one to next digit.
2322 }
2323
2324 return 1;
2325}
2326
Chris Lattner6b695682007-08-16 15:56:55 +00002327/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002328APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2329 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002330 assert(c <= 1);
2331
Craig Topperb0038162017-03-28 05:32:52 +00002332 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002333 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002334 if (c) {
2335 dst[i] -= rhs[i] + 1;
2336 c = (dst[i] >= l);
2337 } else {
2338 dst[i] -= rhs[i];
2339 c = (dst[i] > l);
2340 }
2341 }
2342
2343 return c;
2344}
2345
Craig Topper92fc4772017-04-13 04:36:06 +00002346/// This function subtracts a single "word" (64-bit word), src, from
2347/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2348/// no further borrowing is needed or it runs out of "words" in dst. The result
2349/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2350/// exhausted. In other words, if src > dst then this function returns 1,
2351/// otherwise 0.
2352/// @returns the borrow out of the subtraction
2353APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2354 unsigned parts) {
2355 for (unsigned i = 0; i < parts; ++i) {
2356 WordType Dst = dst[i];
2357 dst[i] -= src;
2358 if (src <= Dst)
2359 return 0; // No need to borrow so exit early.
2360 src = 1; // We have to "borrow 1" from next "word"
2361 }
2362
2363 return 1;
2364}
2365
Chris Lattner6b695682007-08-16 15:56:55 +00002366/* Negate a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002367void APInt::tcNegate(WordType *dst, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002368 tcComplement(dst, parts);
2369 tcIncrement(dst, parts);
2370}
2371
Neil Boothc8b650a2007-10-06 00:43:45 +00002372/* DST += SRC * MULTIPLIER + CARRY if add is true
2373 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002374
2375 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2376 they must start at the same point, i.e. DST == SRC.
2377
2378 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2379 returned. Otherwise DST is filled with the least significant
2380 DSTPARTS parts of the result, and if all of the omitted higher
2381 parts were zero return zero, otherwise overflow occurred and
2382 return one. */
Craig Topper55229b72017-04-02 19:17:22 +00002383int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2384 WordType multiplier, WordType carry,
Craig Topper6a8518082017-03-28 05:32:55 +00002385 unsigned srcParts, unsigned dstParts,
2386 bool add) {
Chris Lattner6b695682007-08-16 15:56:55 +00002387 /* Otherwise our writes of DST kill our later reads of SRC. */
2388 assert(dst <= src || dst >= src + srcParts);
2389 assert(dstParts <= srcParts + 1);
2390
2391 /* N loops; minimum of dstParts and srcParts. */
Craig Topper0cbab7c2017-05-08 06:34:39 +00002392 unsigned n = std::min(dstParts, srcParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002393
Craig Topperc96a84d2017-05-08 06:34:41 +00002394 for (unsigned i = 0; i < n; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002395 WordType low, mid, high, srcPart;
Chris Lattner6b695682007-08-16 15:56:55 +00002396
2397 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2398
2399 This cannot overflow, because
2400
2401 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2402
2403 which is less than n^2. */
2404
2405 srcPart = src[i];
2406
Craig Topper6a8518082017-03-28 05:32:55 +00002407 if (multiplier == 0 || srcPart == 0) {
Chris Lattner6b695682007-08-16 15:56:55 +00002408 low = carry;
2409 high = 0;
2410 } else {
2411 low = lowHalf(srcPart) * lowHalf(multiplier);
2412 high = highHalf(srcPart) * highHalf(multiplier);
2413
2414 mid = lowHalf(srcPart) * highHalf(multiplier);
2415 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002416 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002417 if (low + mid < low)
2418 high++;
2419 low += mid;
2420
2421 mid = highHalf(srcPart) * lowHalf(multiplier);
2422 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002423 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002424 if (low + mid < low)
2425 high++;
2426 low += mid;
2427
2428 /* Now add carry. */
2429 if (low + carry < low)
2430 high++;
2431 low += carry;
2432 }
2433
2434 if (add) {
2435 /* And now DST[i], and store the new low part there. */
2436 if (low + dst[i] < low)
2437 high++;
2438 dst[i] += low;
2439 } else
2440 dst[i] = low;
2441
2442 carry = high;
2443 }
2444
Craig Topperc96a84d2017-05-08 06:34:41 +00002445 if (srcParts < dstParts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002446 /* Full multiplication, there is no overflow. */
Craig Topperc96a84d2017-05-08 06:34:41 +00002447 assert(srcParts + 1 == dstParts);
2448 dst[srcParts] = carry;
Chris Lattner6b695682007-08-16 15:56:55 +00002449 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002450 }
Craig Toppera6c142a2017-05-08 06:34:36 +00002451
2452 /* We overflowed if there is carry. */
2453 if (carry)
2454 return 1;
2455
2456 /* We would overflow if any significant unwritten parts would be
2457 non-zero. This is true if any remaining src parts are non-zero
2458 and the multiplier is non-zero. */
2459 if (multiplier)
Craig Topperc96a84d2017-05-08 06:34:41 +00002460 for (unsigned i = dstParts; i < srcParts; i++)
Craig Toppera6c142a2017-05-08 06:34:36 +00002461 if (src[i])
2462 return 1;
2463
2464 /* We fitted in the narrow destination. */
2465 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002466}
2467
2468/* DST = LHS * RHS, where DST has the same width as the operands and
2469 is filled with the least significant parts of the result. Returns
2470 one if overflow occurred, otherwise zero. DST must be disjoint
2471 from both operands. */
Craig Topper55229b72017-04-02 19:17:22 +00002472int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2473 const WordType *rhs, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002474 assert(dst != lhs && dst != rhs);
2475
Craig Topperb0038162017-03-28 05:32:52 +00002476 int overflow = 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002477 tcSet(dst, 0, parts);
2478
Craig Topperb0038162017-03-28 05:32:52 +00002479 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002480 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2481 parts - i, true);
2482
2483 return overflow;
2484}
2485
Craig Topper0acb6652017-05-09 16:47:33 +00002486/// DST = LHS * RHS, where DST has width the sum of the widths of the
2487/// operands. No overflow occurs. DST must be disjoint from both operands.
2488void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2489 const WordType *rhs, unsigned lhsParts,
2490 unsigned rhsParts) {
Neil Booth0ea72a92007-10-06 00:24:48 +00002491 /* Put the narrower number on the LHS for less loops below. */
Craig Toppera6c142a2017-05-08 06:34:36 +00002492 if (lhsParts > rhsParts)
Neil Booth0ea72a92007-10-06 00:24:48 +00002493 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002494
Craig Toppera6c142a2017-05-08 06:34:36 +00002495 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002496
Craig Toppera6c142a2017-05-08 06:34:36 +00002497 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002498
Craig Toppera6c142a2017-05-08 06:34:36 +00002499 for (unsigned i = 0; i < lhsParts; i++)
2500 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002501}
2502
2503/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2504 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2505 set REMAINDER to the remainder, return zero. i.e.
2506
2507 OLD_LHS = RHS * LHS + REMAINDER
2508
2509 SCRATCH is a bignum of the same size as the operands and result for
2510 use by the routine; its contents need not be initialized and are
2511 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2512*/
Craig Topper55229b72017-04-02 19:17:22 +00002513int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2514 WordType *remainder, WordType *srhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002515 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002516 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2517
Craig Topperb0038162017-03-28 05:32:52 +00002518 unsigned shiftCount = tcMSB(rhs, parts) + 1;
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002519 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002520 return true;
2521
Craig Topper55229b72017-04-02 19:17:22 +00002522 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2523 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2524 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
Chris Lattner6b695682007-08-16 15:56:55 +00002525
2526 tcAssign(srhs, rhs, parts);
2527 tcShiftLeft(srhs, parts, shiftCount);
2528 tcAssign(remainder, lhs, parts);
2529 tcSet(lhs, 0, parts);
2530
2531 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2532 the total. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002533 for (;;) {
Craig Toppera584af52017-05-10 07:50:17 +00002534 int compare = tcCompare(remainder, srhs, parts);
2535 if (compare >= 0) {
2536 tcSubtract(remainder, srhs, 0, parts);
2537 lhs[n] |= mask;
2538 }
Chris Lattner6b695682007-08-16 15:56:55 +00002539
Craig Toppera584af52017-05-10 07:50:17 +00002540 if (shiftCount == 0)
2541 break;
2542 shiftCount--;
2543 tcShiftRight(srhs, parts, 1);
2544 if ((mask >>= 1) == 0) {
2545 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2546 n--;
2547 }
Chris Lattner6b695682007-08-16 15:56:55 +00002548 }
2549
2550 return false;
2551}
2552
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002553/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2554/// no restrictions on Count.
2555void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2556 // Don't bother performing a no-op shift.
2557 if (!Count)
2558 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002559
Craig Topperc6b05682017-04-24 17:00:22 +00002560 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002561 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2562 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002563
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002564 // Fastpath for moving by whole words.
2565 if (BitShift == 0) {
2566 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2567 } else {
2568 while (Words-- > WordShift) {
2569 Dst[Words] = Dst[Words - WordShift] << BitShift;
2570 if (Words > WordShift)
2571 Dst[Words] |=
2572 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002573 }
Neil Boothb6182162007-10-08 13:47:12 +00002574 }
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002575
2576 // Fill in the remainder with 0s.
2577 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002578}
2579
Craig Topper9575d8f2017-04-17 21:43:43 +00002580/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2581/// are no restrictions on Count.
2582void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2583 // Don't bother performing a no-op shift.
2584 if (!Count)
2585 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002586
Craig Topperc6b05682017-04-24 17:00:22 +00002587 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Topper9575d8f2017-04-17 21:43:43 +00002588 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2589 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002590
Craig Topper9575d8f2017-04-17 21:43:43 +00002591 unsigned WordsToMove = Words - WordShift;
2592 // Fastpath for moving by whole words.
2593 if (BitShift == 0) {
2594 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2595 } else {
2596 for (unsigned i = 0; i != WordsToMove; ++i) {
2597 Dst[i] = Dst[i + WordShift] >> BitShift;
2598 if (i + 1 != WordsToMove)
2599 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002600 }
Chris Lattner6b695682007-08-16 15:56:55 +00002601 }
Craig Topper9575d8f2017-04-17 21:43:43 +00002602
2603 // Fill in the remainder with 0s.
2604 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002605}
2606
2607/* Bitwise and of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002608void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002609 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002610 dst[i] &= rhs[i];
2611}
2612
2613/* Bitwise inclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002614void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002615 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002616 dst[i] |= rhs[i];
2617}
2618
2619/* Bitwise exclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002620void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002621 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002622 dst[i] ^= rhs[i];
2623}
2624
2625/* Complement a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002626void APInt::tcComplement(WordType *dst, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002627 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002628 dst[i] = ~dst[i];
2629}
2630
2631/* Comparison (unsigned) of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002632int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002633 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002634 while (parts) {
Craig Topper99cfe4f2017-04-01 21:50:06 +00002635 parts--;
Craig Topper1dc8fc82017-04-21 16:13:15 +00002636 if (lhs[parts] != rhs[parts])
2637 return (lhs[parts] > rhs[parts]) ? 1 : -1;
Craig Topper99cfe4f2017-04-01 21:50:06 +00002638 }
Chris Lattner6b695682007-08-16 15:56:55 +00002639
2640 return 0;
2641}
2642
Chris Lattner6b695682007-08-16 15:56:55 +00002643/* Set the least significant BITS bits of a bignum, clear the
2644 rest. */
Craig Topper55229b72017-04-02 19:17:22 +00002645void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
Craig Topper6a8518082017-03-28 05:32:55 +00002646 unsigned bits) {
Craig Topperb0038162017-03-28 05:32:52 +00002647 unsigned i = 0;
Craig Topper55229b72017-04-02 19:17:22 +00002648 while (bits > APINT_BITS_PER_WORD) {
2649 dst[i++] = ~(WordType) 0;
2650 bits -= APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002651 }
2652
2653 if (bits)
Craig Topper55229b72017-04-02 19:17:22 +00002654 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
Chris Lattner6b695682007-08-16 15:56:55 +00002655
2656 while (i < parts)
2657 dst[i++] = 0;
2658}