blob: 70ee35424eaf9165eb7eef876c4b61807ee37377 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Hal Finkel60db0582014-09-07 18:57:58 +000016#include "llvm/Analysis/AssumptionTracker.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
Sanjay Patelaee84212014-11-04 16:27:42 +000042/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
43/// 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
Benjamin Kramercfd8d902014-09-12 08:56:53 +000061namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000062// Simplifying using an assume can only be done in a particular control-flow
63// context (the context instruction provides that context). If an assume and
64// the context instruction are not in the same block then the DT helps in
65// figuring out if we can use it.
66struct Query {
67 ExclInvsSet ExclInvs;
68 AssumptionTracker *AT;
69 const Instruction *CxtI;
70 const DominatorTree *DT;
71
72 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr,
73 const DominatorTree *DT = nullptr)
74 : AT(AT), CxtI(CxtI), DT(DT) {}
75
76 Query(const Query &Q, const Value *NewExcl)
77 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) {
78 ExclInvs.insert(NewExcl);
79 }
80};
Benjamin Kramercfd8d902014-09-12 08:56:53 +000081} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +000082
Sanjay Patel547e9752014-11-04 16:09:50 +000083// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +000084// the preferred context instruction (if any).
85static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
86 // If we've been provided with a context instruction, then use that (provided
87 // it has been inserted).
88 if (CxtI && CxtI->getParent())
89 return CxtI;
90
91 // If the value is really an already-inserted instruction, then use that.
92 CxtI = dyn_cast<Instruction>(V);
93 if (CxtI && CxtI->getParent())
94 return CxtI;
95
96 return nullptr;
97}
98
99static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
100 const DataLayout *TD, unsigned Depth,
101 const Query &Q);
102
103void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
104 const DataLayout *TD, unsigned Depth,
105 AssumptionTracker *AT, const Instruction *CxtI,
106 const DominatorTree *DT) {
107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
108 Query(AT, safeCxtI(V, CxtI), DT));
109}
110
111static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
112 const DataLayout *TD, unsigned Depth,
113 const Query &Q);
114
115void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
116 const DataLayout *TD, unsigned Depth,
117 AssumptionTracker *AT, const Instruction *CxtI,
118 const DominatorTree *DT) {
119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
120 Query(AT, safeCxtI(V, CxtI), DT));
121}
122
123static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
124 const Query &Q);
125
126bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
127 AssumptionTracker *AT,
128 const Instruction *CxtI,
129 const DominatorTree *DT) {
130 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
131 Query(AT, safeCxtI(V, CxtI), DT));
132}
133
134static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
135 const Query &Q);
136
137bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
138 AssumptionTracker *AT, const Instruction *CxtI,
139 const DominatorTree *DT) {
140 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
141}
142
143static bool MaskedValueIsZero(Value *V, const APInt &Mask,
144 const DataLayout *TD, unsigned Depth,
145 const Query &Q);
146
147bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
148 const DataLayout *TD, unsigned Depth,
149 AssumptionTracker *AT, const Instruction *CxtI,
150 const DominatorTree *DT) {
151 return ::MaskedValueIsZero(V, Mask, TD, Depth,
152 Query(AT, safeCxtI(V, CxtI), DT));
153}
154
155static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
156 unsigned Depth, const Query &Q);
157
158unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
159 unsigned Depth, AssumptionTracker *AT,
160 const Instruction *CxtI,
161 const DominatorTree *DT) {
162 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
163}
164
Jay Foada0653a32014-05-14 21:14:37 +0000165static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
166 APInt &KnownZero, APInt &KnownOne,
167 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000168 const DataLayout *TD, unsigned Depth,
169 const Query &Q) {
170 if (!Add) {
171 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
172 // We know that the top bits of C-X are clear if X contains less bits
173 // than C (i.e. no wrap-around can happen). For example, 20-X is
174 // positive if we can prove that X is >= 0 and < 16.
175 if (!CLHS->getValue().isNegative()) {
176 unsigned BitWidth = KnownZero.getBitWidth();
177 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
178 // NLZ can't be BitWidth with no sign bit
179 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
180 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
181
182 // If all of the MaskV bits are known to be zero, then we know the
183 // output top bits are zero, because we now know that the output is
184 // from [0-C].
185 if ((KnownZero2 & MaskV) == MaskV) {
186 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
187 // Top bits known zero.
188 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
189 }
190 }
191 }
192 }
193
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000194 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000195
David Majnemer97ddca32014-08-22 00:40:43 +0000196 // If an initial sequence of bits in the result is not needed, the
197 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000199 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
200 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000201
David Majnemer97ddca32014-08-22 00:40:43 +0000202 // Carry in a 1 for a subtract, rather than a 0.
203 APInt CarryIn(BitWidth, 0);
204 if (!Add) {
205 // Sum = LHS + ~RHS + 1
206 std::swap(KnownZero2, KnownOne2);
207 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000208 }
209
David Majnemer97ddca32014-08-22 00:40:43 +0000210 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
211 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
212
213 // Compute known bits of the carry.
214 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
215 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
216
217 // Compute set of known bits (where all three relevant bits are known).
218 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
219 APInt RHSKnown = KnownZero2 | KnownOne2;
220 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
221 APInt Known = LHSKnown & RHSKnown & CarryKnown;
222
223 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
224 "known bits of sum differ");
225
226 // Compute known bits of the result.
227 KnownZero = ~PossibleSumOne & Known;
228 KnownOne = PossibleSumOne & Known;
229
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000231 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000232 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000233 // Adding two non-negative numbers, or subtracting a negative number from
234 // a non-negative one, can't wrap into negative.
235 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
236 KnownZero |= APInt::getSignBit(BitWidth);
237 // Adding two negative numbers, or subtracting a non-negative number from
238 // a negative one, can't wrap into non-negative.
239 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
240 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000241 }
242 }
243}
244
Jay Foada0653a32014-05-14 21:14:37 +0000245static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
246 APInt &KnownZero, APInt &KnownOne,
247 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000248 const DataLayout *TD, unsigned Depth,
249 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000250 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000251 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
252 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000253
254 bool isKnownNegative = false;
255 bool isKnownNonNegative = false;
256 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000257 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000258 if (Op0 == Op1) {
259 // The product of a number with itself is non-negative.
260 isKnownNonNegative = true;
261 } else {
262 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
263 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
264 bool isKnownNegativeOp1 = KnownOne.isNegative();
265 bool isKnownNegativeOp0 = KnownOne2.isNegative();
266 // The product of two numbers with the same sign is non-negative.
267 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
268 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
269 // The product of a negative number and a non-negative number is either
270 // negative or zero.
271 if (!isKnownNonNegative)
272 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000275 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000276 }
277 }
278
279 // If low bits are zero in either operand, output low known-0 bits.
280 // Also compute a conserative estimate for high known-0 bits.
281 // More trickiness is possible, but this is sufficient for the
282 // interesting case of alignment computation.
283 KnownOne.clearAllBits();
284 unsigned TrailZ = KnownZero.countTrailingOnes() +
285 KnownZero2.countTrailingOnes();
286 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
287 KnownZero2.countLeadingOnes(),
288 BitWidth) - BitWidth;
289
290 TrailZ = std::min(TrailZ, BitWidth);
291 LeadZ = std::min(LeadZ, BitWidth);
292 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
293 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000294
295 // Only make use of no-wrap flags if we failed to compute the sign bit
296 // directly. This matters if the multiplication always overflows, in
297 // which case we prefer to follow the result of the direct computation,
298 // though as the program is invoking undefined behaviour we can choose
299 // whatever we like here.
300 if (isKnownNonNegative && !KnownOne.isNegative())
301 KnownZero.setBit(BitWidth - 1);
302 else if (isKnownNegative && !KnownZero.isNegative())
303 KnownOne.setBit(BitWidth - 1);
304}
305
Jingyue Wu37fcb592014-06-19 16:50:16 +0000306void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
307 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000309 unsigned NumRanges = Ranges.getNumOperands() / 2;
310 assert(NumRanges >= 1);
311
312 // Use the high end of the ranges to find leading zeros.
313 unsigned MinLeadingZeros = BitWidth;
314 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000315 ConstantInt *Lower =
316 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
317 ConstantInt *Upper =
318 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000319 ConstantRange Range(Lower->getValue(), Upper->getValue());
320 if (Range.isWrappedSet())
321 MinLeadingZeros = 0; // -1 has no zeros
322 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
323 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
324 }
325
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000326 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000327}
Jay Foad5a29c362014-05-15 12:12:55 +0000328
Hal Finkel60db0582014-09-07 18:57:58 +0000329static bool isEphemeralValueOf(Instruction *I, const Value *E) {
330 SmallVector<const Value *, 16> WorkSet(1, I);
331 SmallPtrSet<const Value *, 32> Visited;
332 SmallPtrSet<const Value *, 16> EphValues;
333
334 while (!WorkSet.empty()) {
335 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000336 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000337 continue;
338
339 // If all uses of this value are ephemeral, then so is this value.
340 bool FoundNEUse = false;
341 for (const User *I : V->users())
342 if (!EphValues.count(I)) {
343 FoundNEUse = true;
344 break;
345 }
346
347 if (!FoundNEUse) {
348 if (V == E)
349 return true;
350
351 EphValues.insert(V);
352 if (const User *U = dyn_cast<User>(V))
353 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
354 J != JE; ++J) {
355 if (isSafeToSpeculativelyExecute(*J))
356 WorkSet.push_back(*J);
357 }
358 }
359 }
360
361 return false;
362}
363
364// Is this an intrinsic that cannot be speculated but also cannot trap?
365static bool isAssumeLikeIntrinsic(const Instruction *I) {
366 if (const CallInst *CI = dyn_cast<CallInst>(I))
367 if (Function *F = CI->getCalledFunction())
368 switch (F->getIntrinsicID()) {
369 default: break;
370 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
371 case Intrinsic::assume:
372 case Intrinsic::dbg_declare:
373 case Intrinsic::dbg_value:
374 case Intrinsic::invariant_start:
375 case Intrinsic::invariant_end:
376 case Intrinsic::lifetime_start:
377 case Intrinsic::lifetime_end:
378 case Intrinsic::objectsize:
379 case Intrinsic::ptr_annotation:
380 case Intrinsic::var_annotation:
381 return true;
382 }
383
384 return false;
385}
386
387static bool isValidAssumeForContext(Value *V, const Query &Q,
388 const DataLayout *DL) {
389 Instruction *Inv = cast<Instruction>(V);
390
391 // There are two restrictions on the use of an assume:
392 // 1. The assume must dominate the context (or the control flow must
393 // reach the assume whenever it reaches the context).
394 // 2. The context must not be in the assume's set of ephemeral values
395 // (otherwise we will use the assume to prove that the condition
396 // feeding the assume is trivially true, thus causing the removal of
397 // the assume).
398
399 if (Q.DT) {
400 if (Q.DT->dominates(Inv, Q.CxtI)) {
401 return true;
402 } else if (Inv->getParent() == Q.CxtI->getParent()) {
403 // The context comes first, but they're both in the same block. Make sure
404 // there is nothing in between that might interrupt the control flow.
405 for (BasicBlock::const_iterator I =
406 std::next(BasicBlock::const_iterator(Q.CxtI)),
407 IE(Inv); I != IE; ++I)
408 if (!isSafeToSpeculativelyExecute(I, DL) &&
409 !isAssumeLikeIntrinsic(I))
410 return false;
411
412 return !isEphemeralValueOf(Inv, Q.CxtI);
413 }
414
415 return false;
416 }
417
418 // When we don't have a DT, we do a limited search...
419 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
420 return true;
421 } else if (Inv->getParent() == Q.CxtI->getParent()) {
422 // Search forward from the assume until we reach the context (or the end
423 // of the block); the common case is that the assume will come first.
424 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
425 IE = Inv->getParent()->end(); I != IE; ++I)
426 if (I == Q.CxtI)
427 return true;
428
429 // The context must come first...
430 for (BasicBlock::const_iterator I =
431 std::next(BasicBlock::const_iterator(Q.CxtI)),
432 IE(Inv); I != IE; ++I)
433 if (!isSafeToSpeculativelyExecute(I, DL) &&
434 !isAssumeLikeIntrinsic(I))
435 return false;
436
437 return !isEphemeralValueOf(Inv, Q.CxtI);
438 }
439
440 return false;
441}
442
443bool llvm::isValidAssumeForContext(const Instruction *I,
444 const Instruction *CxtI,
445 const DataLayout *DL,
446 const DominatorTree *DT) {
447 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
448 Query(nullptr, CxtI, DT), DL);
449}
450
451template<typename LHS, typename RHS>
452inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
453 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
454m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
455 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
456}
457
458template<typename LHS, typename RHS>
459inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
460 BinaryOp_match<RHS, LHS, Instruction::And>>
461m_c_And(const LHS &L, const RHS &R) {
462 return m_CombineOr(m_And(L, R), m_And(R, L));
463}
464
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000465template<typename LHS, typename RHS>
466inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
467 BinaryOp_match<RHS, LHS, Instruction::Or>>
468m_c_Or(const LHS &L, const RHS &R) {
469 return m_CombineOr(m_Or(L, R), m_Or(R, L));
470}
471
472template<typename LHS, typename RHS>
473inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
474 BinaryOp_match<RHS, LHS, Instruction::Xor>>
475m_c_Xor(const LHS &L, const RHS &R) {
476 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
477}
478
Hal Finkel60db0582014-09-07 18:57:58 +0000479static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
480 APInt &KnownOne,
481 const DataLayout *DL,
482 unsigned Depth, const Query &Q) {
483 // Use of assumptions is context-sensitive. If we don't have a context, we
484 // cannot use them!
485 if (!Q.AT || !Q.CxtI)
486 return;
487
488 unsigned BitWidth = KnownZero.getBitWidth();
489
490 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent());
491 for (auto &CI : Q.AT->assumptions(F)) {
492 CallInst *I = CI;
493 if (Q.ExclInvs.count(I))
494 continue;
495
Philip Reames00d3b272014-11-24 23:44:28 +0000496 // Warning: This loop can end up being somewhat performance sensetive.
497 // We're running this loop for once for each value queried resulting in a
498 // runtime of ~O(#assumes * #values).
499
500 assert(isa<IntrinsicInst>(I) &&
501 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
502 "must be an assume intrinsic");
503
504 Value *Arg = I->getArgOperand(0);
505
506 if (Arg == V &&
Hal Finkel60db0582014-09-07 18:57:58 +0000507 isValidAssumeForContext(I, Q, DL)) {
508 assert(BitWidth == 1 && "assume operand is not i1?");
509 KnownZero.clearAllBits();
510 KnownOne.setAllBits();
511 return;
512 }
513
David Majnemer9b609752014-12-12 23:59:29 +0000514 // The remaining tests are all recursive, so bail out if we hit the limit.
515 if (Depth == MaxDepth)
516 continue;
517
Hal Finkel60db0582014-09-07 18:57:58 +0000518 Value *A, *B;
519 auto m_V = m_CombineOr(m_Specific(V),
520 m_CombineOr(m_PtrToInt(m_Specific(V)),
521 m_BitCast(m_Specific(V))));
522
523 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000524 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000525 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000526 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000527 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
528 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
529 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
530 KnownZero |= RHSKnownZero;
531 KnownOne |= RHSKnownOne;
532 // assume(v & b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000533 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
534 m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000535 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
536 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
537 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
538 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
539 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
540
541 // For those bits in the mask that are known to be one, we can propagate
542 // known bits from the RHS to V.
543 KnownZero |= RHSKnownZero & MaskKnownOne;
544 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000545 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000546 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
547 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000548 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
549 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
550 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
551 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
552 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
553
554 // For those bits in the mask that are known to be one, we can propagate
555 // inverted known bits from the RHS to V.
556 KnownZero |= RHSKnownOne & MaskKnownOne;
557 KnownOne |= RHSKnownZero & MaskKnownOne;
558 // assume(v | b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000559 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
560 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
564 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
565 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
566
567 // For those bits in B that are known to be zero, we can propagate known
568 // bits from the RHS to V.
569 KnownZero |= RHSKnownZero & BKnownZero;
570 KnownOne |= RHSKnownOne & BKnownZero;
571 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000572 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
573 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000574 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
575 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
576 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
577 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
578 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
579
580 // For those bits in B that are known to be zero, we can propagate
581 // inverted known bits from the RHS to V.
582 KnownZero |= RHSKnownOne & BKnownZero;
583 KnownOne |= RHSKnownZero & BKnownZero;
584 // assume(v ^ b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000585 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
586 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
588 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
589 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
590 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
591 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
592
593 // For those bits in B that are known to be zero, we can propagate known
594 // bits from the RHS to V. For those bits in B that are known to be one,
595 // we can propagate inverted known bits from the RHS to V.
596 KnownZero |= RHSKnownZero & BKnownZero;
597 KnownOne |= RHSKnownOne & BKnownZero;
598 KnownZero |= RHSKnownOne & BKnownOne;
599 KnownOne |= RHSKnownZero & BKnownOne;
600 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000601 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
602 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000603 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
604 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
605 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
606 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
607 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
608
609 // For those bits in B that are known to be zero, we can propagate
610 // inverted known bits from the RHS to V. For those bits in B that are
611 // known to be one, we can propagate known bits from the RHS to V.
612 KnownZero |= RHSKnownOne & BKnownZero;
613 KnownOne |= RHSKnownZero & BKnownZero;
614 KnownZero |= RHSKnownZero & BKnownOne;
615 KnownOne |= RHSKnownOne & BKnownOne;
616 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000617 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
618 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
620 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
621 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
622 // For those bits in RHS that are known, we can propagate them to known
623 // bits in V shifted to the right by C.
624 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
625 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
626 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000627 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
628 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
630 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
631 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
632 // For those bits in RHS that are known, we can propagate them inverted
633 // to known bits in V shifted to the right by C.
634 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
635 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
636 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000637 } else if (match(Arg,
638 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639 m_AShr(m_V,
640 m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000641 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000642 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
645 // For those bits in RHS that are known, we can propagate them to known
646 // bits in V shifted to the right by C.
647 KnownZero |= RHSKnownZero << C->getZExtValue();
648 KnownOne |= RHSKnownOne << C->getZExtValue();
649 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000650 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000651 m_LShr(m_V, m_ConstantInt(C)),
652 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000653 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
655 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
656 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
657 // For those bits in RHS that are known, we can propagate them inverted
658 // to known bits in V shifted to the right by C.
659 KnownZero |= RHSKnownOne << C->getZExtValue();
660 KnownOne |= RHSKnownZero << C->getZExtValue();
661 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000663 Pred == ICmpInst::ICMP_SGE &&
664 isValidAssumeForContext(I, Q, DL)) {
665 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
666 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
667
668 if (RHSKnownZero.isNegative()) {
669 // We know that the sign bit is zero.
670 KnownZero |= APInt::getSignBit(BitWidth);
671 }
672 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000673 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 Pred == ICmpInst::ICMP_SGT &&
675 isValidAssumeForContext(I, Q, DL)) {
676 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
677 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
678
679 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
680 // We know that the sign bit is zero.
681 KnownZero |= APInt::getSignBit(BitWidth);
682 }
683 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000684 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000685 Pred == ICmpInst::ICMP_SLE &&
686 isValidAssumeForContext(I, Q, DL)) {
687 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
688 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
689
690 if (RHSKnownOne.isNegative()) {
691 // We know that the sign bit is one.
692 KnownOne |= APInt::getSignBit(BitWidth);
693 }
694 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000695 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000696 Pred == ICmpInst::ICMP_SLT &&
697 isValidAssumeForContext(I, Q, DL)) {
698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
700
701 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
702 // We know that the sign bit is one.
703 KnownOne |= APInt::getSignBit(BitWidth);
704 }
705 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000706 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 Pred == ICmpInst::ICMP_ULE &&
708 isValidAssumeForContext(I, Q, DL)) {
709 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
710 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
711
712 // Whatever high bits in c are zero are known to be zero.
713 KnownZero |=
714 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
715 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000717 Pred == ICmpInst::ICMP_ULT &&
718 isValidAssumeForContext(I, Q, DL)) {
719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
721
722 // Whatever high bits in c are zero are known to be zero (if c is a power
723 // of 2, then one more).
724 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
725 KnownZero |=
726 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
727 else
728 KnownZero |=
729 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000730 }
731 }
732}
733
Jay Foada0653a32014-05-14 21:14:37 +0000734/// Determine which bits of V are known to be either zero or one and return
735/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000736///
Chris Lattner965c7692008-06-02 01:18:21 +0000737/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
738/// we cannot optimize based on the assumption that it is zero without changing
739/// it to be an explicit zero. If we don't change it to zero, other code could
740/// optimized based on the contradictory assumption that it is non-zero.
741/// Because instcombine aggressively folds operations with undef args anyway,
742/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000743///
744/// This function is defined on values with integer type, values with pointer
745/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000746/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000747/// same width as the vector element, and the bit is set only if it is true
748/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000749void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
750 const DataLayout *TD, unsigned Depth,
751 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000752 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000753 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000754 unsigned BitWidth = KnownZero.getBitWidth();
755
Nadav Rotem3924cb02011-12-05 06:29:09 +0000756 assert((V->getType()->isIntOrIntVectorTy() ||
757 V->getType()->getScalarType()->isPointerTy()) &&
758 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000759 assert((!TD ||
760 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000761 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000762 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000763 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000764 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000765 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000766
767 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
768 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000769 KnownOne = CI->getValue();
770 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000771 return;
772 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000773 // Null and aggregate-zero are all-zeros.
774 if (isa<ConstantPointerNull>(V) ||
775 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000776 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000777 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000778 return;
779 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000780 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000781 // each element. There is no real need to handle ConstantVector here, because
782 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000783 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
784 // We know that CDS must be a vector of integers. Take the intersection of
785 // each element.
786 KnownZero.setAllBits(); KnownOne.setAllBits();
787 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000788 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000789 Elt = CDS->getElementAsInteger(i);
790 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000791 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000792 }
793 return;
794 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000795
Chris Lattner965c7692008-06-02 01:18:21 +0000796 // The address of an aligned GlobalValue has trailing zeros.
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000797 if (auto *GO = dyn_cast<GlobalObject>(V)) {
798 unsigned Align = GO->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000799 if (Align == 0 && TD) {
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000800 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000801 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000802 if (ObjectType->isSized()) {
803 // If the object is defined in the current Module, we'll be giving
804 // it the preferred alignment. Otherwise, we have to assume that it
805 // may only have the minimum ABI alignment.
806 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
807 Align = TD->getPreferredAlignment(GVar);
808 else
809 Align = TD->getABITypeAlignment(ObjectType);
810 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000811 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000812 }
Chris Lattner965c7692008-06-02 01:18:21 +0000813 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000814 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000815 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000816 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000819 return;
820 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000821
Chris Lattner83791ce2011-05-23 00:03:39 +0000822 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000823 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000824
Hal Finkelccc70902014-07-22 16:58:55 +0000825 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000826 // An sret parameter has at least the ABI alignment of the return type.
827 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
828 if (EltTy->isSized())
829 Align = TD->getABITypeAlignment(EltTy);
830 }
831
832 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000833 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Hal Finkel60db0582014-09-07 18:57:58 +0000834
835 // Don't give up yet... there might be an assumption that provides more
836 // information...
837 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000838 return;
839 }
Chris Lattner965c7692008-06-02 01:18:21 +0000840
Chris Lattner83791ce2011-05-23 00:03:39 +0000841 // Start out not knowing anything.
842 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000843
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000844 // Limit search depth.
845 // All recursive calls that increase depth must come after this.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000846 if (Depth == MaxDepth)
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000847 return;
848
849 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
850 // the bits of its aliasee.
851 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
852 if (!GA->mayBeOverridden())
853 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
854 return;
855 }
Chris Lattner965c7692008-06-02 01:18:21 +0000856
Hal Finkel60db0582014-09-07 18:57:58 +0000857 // Check whether a nearby assume intrinsic can determine some known bits.
858 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
859
Dan Gohman80ca01c2009-07-17 20:47:02 +0000860 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000861 if (!I) return;
862
863 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000864 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000865 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000866 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000867 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000868 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000869 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000870 case Instruction::And: {
871 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000872 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
873 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000874
Chris Lattner965c7692008-06-02 01:18:21 +0000875 // Output known-1 bits are only known if set in both the LHS & RHS.
876 KnownOne &= KnownOne2;
877 // Output known-0 are known to be clear if zero in either the LHS | RHS.
878 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000879 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000880 }
881 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000882 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
883 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000884
Chris Lattner965c7692008-06-02 01:18:21 +0000885 // Output known-0 bits are only known if clear in both the LHS & RHS.
886 KnownZero &= KnownZero2;
887 // Output known-1 are known to be set if set in either the LHS | RHS.
888 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000889 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000890 }
891 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000892 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
893 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000894
Chris Lattner965c7692008-06-02 01:18:21 +0000895 // Output known-0 bits are known if clear or set in both the LHS & RHS.
896 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
897 // Output known-1 are known to be set if set in only one of the LHS, RHS.
898 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
899 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000900 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000901 }
902 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000903 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000904 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000905 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
906 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000907 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000908 }
909 case Instruction::UDiv: {
910 // For the purposes of computing leading zeros we can conservatively
911 // treat a udiv as a logical right shift by the power of 2 known to
912 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000913 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000914 unsigned LeadZ = KnownZero2.countLeadingOnes();
915
Jay Foad25a5e4c2010-12-01 08:53:58 +0000916 KnownOne2.clearAllBits();
917 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000918 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000919 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
920 if (RHSUnknownLeadingOnes != BitWidth)
921 LeadZ = std::min(BitWidth,
922 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
923
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000924 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000925 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000926 }
927 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000928 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
929 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000930
931 // Only known if known in both the LHS and RHS.
932 KnownOne &= KnownOne2;
933 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000934 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000935 case Instruction::FPTrunc:
936 case Instruction::FPExt:
937 case Instruction::FPToUI:
938 case Instruction::FPToSI:
939 case Instruction::SIToFP:
940 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000941 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000942 case Instruction::PtrToInt:
943 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000944 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000945 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000946 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000947 // FALL THROUGH and handle them the same as zext/trunc.
948 case Instruction::ZExt:
949 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000950 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000951
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000952 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000953 // Note that we handle pointer operands here because of inttoptr/ptrtoint
954 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000955 if(TD) {
956 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
957 } else {
958 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000959 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000960 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000961
962 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000963 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
964 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000965 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000966 KnownZero = KnownZero.zextOrTrunc(BitWidth);
967 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000968 // Any top bits are known to be zero.
969 if (BitWidth > SrcBitWidth)
970 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000971 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000972 }
973 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000974 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000975 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000976 // TODO: For now, not handling conversions like:
977 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000978 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000979 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000980 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000981 }
982 break;
983 }
984 case Instruction::SExt: {
985 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000986 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000987
Jay Foad583abbc2010-12-07 08:25:19 +0000988 KnownZero = KnownZero.trunc(SrcBitWidth);
989 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000990 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000991 KnownZero = KnownZero.zext(BitWidth);
992 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000993
994 // If the sign bit of the input is known set or clear, then we know the
995 // top bits of the result.
996 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
997 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
998 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
999 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001000 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001001 }
1002 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001003 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001004 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1005 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +00001006 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001007 KnownZero <<= ShiftAmt;
1008 KnownOne <<= ShiftAmt;
1009 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001010 }
1011 break;
1012 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001013 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001014 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1015 // Compute the new bits that are at the top now.
1016 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001017
Chris Lattner965c7692008-06-02 01:18:21 +00001018 // Unsigned shift right.
Sanjay Patel8f093f42014-11-05 18:00:07 +00001019 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001020 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1021 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1022 // high bits known zero.
1023 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001024 }
1025 break;
1026 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001027 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001028 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1029 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001030 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001031
Chris Lattner965c7692008-06-02 01:18:21 +00001032 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001033 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001034 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1035 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001036
Chris Lattner965c7692008-06-02 01:18:21 +00001037 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1038 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1039 KnownZero |= HighBits;
1040 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1041 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001042 }
1043 break;
1044 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001045 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001046 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001047 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001048 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001049 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001050 }
Chris Lattner965c7692008-06-02 01:18:21 +00001051 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001052 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001053 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001054 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001055 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001056 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001057 }
1058 case Instruction::SRem:
1059 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001060 APInt RA = Rem->getValue().abs();
1061 if (RA.isPowerOf2()) {
1062 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +00001063 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
1064 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001065
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001066 // The low bits of the first operand are unchanged by the srem.
1067 KnownZero = KnownZero2 & LowBits;
1068 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001069
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001070 // If the first operand is non-negative or has all low bits zero, then
1071 // the upper bits are all zero.
1072 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1073 KnownZero |= ~LowBits;
1074
1075 // If the first operand is negative and not all low bits are zero, then
1076 // the upper bits are all one.
1077 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1078 KnownOne |= ~LowBits;
1079
Craig Topper1bef2c82012-12-22 19:15:35 +00001080 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001081 }
1082 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001083
1084 // The sign bit is the LHS's sign bit, except when the result of the
1085 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001086 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001087 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001088 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001089 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001090 // If it's known zero, our sign bit is also zero.
1091 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001092 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001093 }
1094
Chris Lattner965c7692008-06-02 01:18:21 +00001095 break;
1096 case Instruction::URem: {
1097 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1098 APInt RA = Rem->getValue();
1099 if (RA.isPowerOf2()) {
1100 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +00001101 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001102 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001103 KnownZero |= ~LowBits;
1104 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001105 break;
1106 }
1107 }
1108
1109 // Since the result is less than or equal to either operand, any leading
1110 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001111 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
1112 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001113
Chris Lattner4612ae12009-01-20 18:22:57 +00001114 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001115 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001116 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001117 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 break;
1119 }
1120
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001121 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +00001122 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +00001123 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001124 if (Align == 0 && TD)
1125 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001126
Chris Lattner965c7692008-06-02 01:18:21 +00001127 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001128 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001129 break;
1130 }
1131 case Instruction::GetElementPtr: {
1132 // Analyze all of the subscripts of this getelementptr instruction
1133 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001134 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001135 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001136 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001137 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1138
1139 gep_type_iterator GTI = gep_type_begin(I);
1140 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1141 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001142 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001143 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +00001144 if (!TD) {
1145 TrailZ = 0;
1146 break;
1147 }
Matt Arsenault74742a12013-08-19 21:43:16 +00001148
1149 // Handle case when index is vector zeroinitializer
1150 Constant *CIndex = cast<Constant>(Index);
1151 if (CIndex->isZeroValue())
1152 continue;
1153
1154 if (CIndex->getType()->isVectorTy())
1155 Index = CIndex->getSplatValue();
1156
Chris Lattner965c7692008-06-02 01:18:21 +00001157 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +00001158 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001159 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001160 TrailZ = std::min<unsigned>(TrailZ,
1161 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001162 } else {
1163 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001164 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001165 if (!IndexedTy->isSized()) {
1166 TrailZ = 0;
1167 break;
1168 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001169 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +00001170 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +00001171 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001172 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001173 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001174 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001175 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001176 }
1177 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001178
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001179 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001180 break;
1181 }
1182 case Instruction::PHI: {
1183 PHINode *P = cast<PHINode>(I);
1184 // Handle the case of a simple two-predecessor recurrence PHI.
1185 // There's a lot more that could theoretically be done here, but
1186 // this is sufficient to catch some interesting cases.
1187 if (P->getNumIncomingValues() == 2) {
1188 for (unsigned i = 0; i != 2; ++i) {
1189 Value *L = P->getIncomingValue(i);
1190 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001191 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 if (!LU)
1193 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001194 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001195 // Check for operations that have the property that if
1196 // both their operands have low zero bits, the result
1197 // will have low zero bits.
1198 if (Opcode == Instruction::Add ||
1199 Opcode == Instruction::Sub ||
1200 Opcode == Instruction::And ||
1201 Opcode == Instruction::Or ||
1202 Opcode == Instruction::Mul) {
1203 Value *LL = LU->getOperand(0);
1204 Value *LR = LU->getOperand(1);
1205 // Find a recurrence.
1206 if (LL == I)
1207 L = LR;
1208 else if (LR == I)
1209 L = LL;
1210 else
1211 break;
1212 // Ok, we have a PHI of the form L op= R. Check for low
1213 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001214 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001215
1216 // We need to take the minimum number of known bits
1217 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001218 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001219
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001220 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001221 std::min(KnownZero2.countTrailingOnes(),
1222 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001223 break;
1224 }
1225 }
1226 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001227
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001228 // Unreachable blocks may have zero-operand PHI nodes.
1229 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001230 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001231
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001232 // Otherwise take the unions of the known bit sets of the operands,
1233 // taking conservative care to avoid excessive recursion.
1234 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001235 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001236 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001237 break;
1238
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001239 KnownZero = APInt::getAllOnesValue(BitWidth);
1240 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001241 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1242 // Skip direct self references.
1243 if (P->getIncomingValue(i) == P) continue;
1244
1245 KnownZero2 = APInt(BitWidth, 0);
1246 KnownOne2 = APInt(BitWidth, 0);
1247 // Recurse, but cap the recursion to one level, because we don't
1248 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001249 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001250 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001251 KnownZero &= KnownZero2;
1252 KnownOne &= KnownOne2;
1253 // If all bits have been ruled out, there's no need to check
1254 // more operands.
1255 if (!KnownZero && !KnownOne)
1256 break;
1257 }
1258 }
Chris Lattner965c7692008-06-02 01:18:21 +00001259 break;
1260 }
1261 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001262 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001263 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001264 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1265 // If a range metadata is attached to this IntrinsicInst, intersect the
1266 // explicit range specified by the metadata and the implicit range of
1267 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001268 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1269 switch (II->getIntrinsicID()) {
1270 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001271 case Intrinsic::ctlz:
1272 case Intrinsic::cttz: {
1273 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001274 // If this call is undefined for 0, the result will be less than 2^n.
1275 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1276 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001277 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001278 break;
1279 }
1280 case Intrinsic::ctpop: {
1281 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001282 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001283 break;
1284 }
Chad Rosierb3628842011-05-26 23:13:19 +00001285 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001286 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001287 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001288 }
1289 }
1290 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001291 case Instruction::ExtractValue:
1292 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1293 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1294 if (EVI->getNumIndices() != 1) break;
1295 if (EVI->getIndices()[0] == 0) {
1296 switch (II->getIntrinsicID()) {
1297 default: break;
1298 case Intrinsic::uadd_with_overflow:
1299 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001300 computeKnownBitsAddSub(true, II->getArgOperand(0),
1301 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001302 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001303 break;
1304 case Intrinsic::usub_with_overflow:
1305 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001306 computeKnownBitsAddSub(false, II->getArgOperand(0),
1307 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001308 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001309 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001310 case Intrinsic::umul_with_overflow:
1311 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001312 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1313 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001314 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001315 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001316 }
1317 }
1318 }
Chris Lattner965c7692008-06-02 01:18:21 +00001319 }
Jay Foad5a29c362014-05-15 12:12:55 +00001320
1321 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001322}
1323
Sanjay Patelaee84212014-11-04 16:27:42 +00001324/// Determine whether the sign bit is known to be zero or one.
1325/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001326void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1327 const DataLayout *TD, unsigned Depth,
1328 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001329 unsigned BitWidth = getBitWidth(V->getType(), TD);
1330 if (!BitWidth) {
1331 KnownZero = false;
1332 KnownOne = false;
1333 return;
1334 }
1335 APInt ZeroBits(BitWidth, 0);
1336 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001337 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001338 KnownOne = OneBits[BitWidth - 1];
1339 KnownZero = ZeroBits[BitWidth - 1];
1340}
1341
Sanjay Patelaee84212014-11-04 16:27:42 +00001342/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001343/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001344/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001345/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001346bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1347 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001348 if (Constant *C = dyn_cast<Constant>(V)) {
1349 if (C->isNullValue())
1350 return OrZero;
1351 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1352 return CI->getValue().isPowerOf2();
1353 // TODO: Handle vector constants.
1354 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001355
1356 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1357 // it is shifted off the end then the result is undefined.
1358 if (match(V, m_Shl(m_One(), m_Value())))
1359 return true;
1360
1361 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1362 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001363 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001364 return true;
1365
1366 // The remaining tests are all recursive, so bail out if we hit the limit.
1367 if (Depth++ == MaxDepth)
1368 return false;
1369
Craig Topper9f008862014-04-15 04:59:12 +00001370 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001371 // A shift of a power of two is a power of two or zero.
1372 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1373 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001374 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001375
Duncan Sandsd3951082011-01-25 09:38:29 +00001376 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001377 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001378
1379 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001380 return
1381 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1382 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001383
Duncan Sandsba286d72011-10-26 20:55:21 +00001384 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1385 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001386 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1387 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001388 return true;
1389 // X & (-X) is always a power of two or zero.
1390 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1391 return true;
1392 return false;
1393 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001394
David Majnemerb7d54092013-07-30 21:01:36 +00001395 // Adding a power-of-two or zero to the same power-of-two or zero yields
1396 // either the original power-of-two, a larger power-of-two or zero.
1397 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1398 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1399 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1400 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1401 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001402 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001403 return true;
1404 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1405 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001406 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001407 return true;
1408
1409 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1410 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001411 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001412
1413 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001414 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001415 // If i8 V is a power of two or zero:
1416 // ZeroBits: 1 1 1 0 1 1 1 1
1417 // ~ZeroBits: 0 0 0 1 0 0 0 0
1418 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1419 // If OrZero isn't set, we cannot give back a zero result.
1420 // Make sure either the LHS or RHS has a bit set.
1421 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1422 return true;
1423 }
1424 }
David Majnemerbeab5672013-05-18 19:30:37 +00001425
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001426 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001427 // is a power of two only if the first operand is a power of two and not
1428 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001429 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1430 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001431 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1432 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001433 }
1434
Duncan Sandsd3951082011-01-25 09:38:29 +00001435 return false;
1436}
1437
Chandler Carruth80d3e562012-12-07 02:08:58 +00001438/// \brief Test whether a GEP's result is known to be non-null.
1439///
1440/// Uses properties inherent in a GEP to try to determine whether it is known
1441/// to be non-null.
1442///
1443/// Currently this routine does not support vector GEPs.
1444static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001445 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001446 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1447 return false;
1448
1449 // FIXME: Support vector-GEPs.
1450 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1451
1452 // If the base pointer is non-null, we cannot walk to a null address with an
1453 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001454 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001455 return true;
1456
1457 // Past this, if we don't have DataLayout, we can't do much.
1458 if (!DL)
1459 return false;
1460
1461 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1462 // If so, then the GEP cannot produce a null pointer, as doing so would
1463 // inherently violate the inbounds contract within address space zero.
1464 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1465 GTI != GTE; ++GTI) {
1466 // Struct types are easy -- they must always be indexed by a constant.
1467 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1468 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1469 unsigned ElementIdx = OpC->getZExtValue();
1470 const StructLayout *SL = DL->getStructLayout(STy);
1471 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1472 if (ElementOffset > 0)
1473 return true;
1474 continue;
1475 }
1476
1477 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1478 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1479 continue;
1480
1481 // Fast path the constant operand case both for efficiency and so we don't
1482 // increment Depth when just zipping down an all-constant GEP.
1483 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1484 if (!OpC->isZero())
1485 return true;
1486 continue;
1487 }
1488
1489 // We post-increment Depth here because while isKnownNonZero increments it
1490 // as well, when we pop back up that increment won't persist. We don't want
1491 // to recurse 10k times just because we have 10k GEP operands. We don't
1492 // bail completely out because we want to handle constant GEPs regardless
1493 // of depth.
1494 if (Depth++ >= MaxDepth)
1495 continue;
1496
Hal Finkel60db0582014-09-07 18:57:58 +00001497 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001498 return true;
1499 }
1500
1501 return false;
1502}
1503
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001504/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1505/// ensure that the value it's attached to is never Value? 'RangeType' is
1506/// is the type of the value described by the range.
1507static bool rangeMetadataExcludesValue(MDNode* Ranges,
1508 const APInt& Value) {
1509 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1510 assert(NumRanges >= 1);
1511 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001512 ConstantInt *Lower =
1513 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1514 ConstantInt *Upper =
1515 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001516 ConstantRange Range(Lower->getValue(), Upper->getValue());
1517 if (Range.contains(Value))
1518 return false;
1519 }
1520 return true;
1521}
1522
Sanjay Patelaee84212014-11-04 16:27:42 +00001523/// Return true if the given value is known to be non-zero when defined.
1524/// For vectors return true if every element is known to be non-zero when
1525/// defined. Supports values with integer or pointer type and vectors of
1526/// integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001527bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1528 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001529 if (Constant *C = dyn_cast<Constant>(V)) {
1530 if (C->isNullValue())
1531 return false;
1532 if (isa<ConstantInt>(C))
1533 // Must be non-zero due to null test above.
1534 return true;
1535 // TODO: Handle vectors
1536 return false;
1537 }
1538
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001539 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001540 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001541 // If the possible ranges don't contain zero, then the value is
1542 // definitely non-zero.
1543 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1544 const APInt ZeroValue(Ty->getBitWidth(), 0);
1545 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1546 return true;
1547 }
1548 }
1549 }
1550
Duncan Sandsd3951082011-01-25 09:38:29 +00001551 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001552 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001553 return false;
1554
Chandler Carruth80d3e562012-12-07 02:08:58 +00001555 // Check for pointer simplifications.
1556 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001557 if (isKnownNonNull(V))
1558 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001559 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001560 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001561 return true;
1562 }
1563
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001564 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001565
1566 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001567 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001568 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001569 return isKnownNonZero(X, TD, Depth, Q) ||
1570 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001571
1572 // ext X != 0 if X != 0.
1573 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001574 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001575
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001576 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001577 // if the lowest bit is shifted off the end.
1578 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001579 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001580 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001581 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001582 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001583
Duncan Sandsd3951082011-01-25 09:38:29 +00001584 APInt KnownZero(BitWidth, 0);
1585 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001586 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001587 if (KnownOne[0])
1588 return true;
1589 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001590 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001591 // defined if the sign bit is shifted off the end.
1592 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001593 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001594 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001595 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001596 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001597
Duncan Sandsd3951082011-01-25 09:38:29 +00001598 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001599 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001600 if (XKnownNegative)
1601 return true;
1602 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001603 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001604 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001605 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001606 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001607 // X + Y.
1608 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1609 bool XKnownNonNegative, XKnownNegative;
1610 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001611 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1612 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001613
1614 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001615 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001616 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001617 if (isKnownNonZero(X, TD, Depth, Q) ||
1618 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001619 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001620
1621 // If X and Y are both negative (as signed values) then their sum is not
1622 // zero unless both X and Y equal INT_MIN.
1623 if (BitWidth && XKnownNegative && YKnownNegative) {
1624 APInt KnownZero(BitWidth, 0);
1625 APInt KnownOne(BitWidth, 0);
1626 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1627 // The sign bit of X is set. If some other bit is set then X is not equal
1628 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001629 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001630 if ((KnownOne & Mask) != 0)
1631 return true;
1632 // The sign bit of Y is set. If some other bit is set then Y is not equal
1633 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001634 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001635 if ((KnownOne & Mask) != 0)
1636 return true;
1637 }
1638
1639 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001640 if (XKnownNonNegative &&
1641 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001642 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001643 if (YKnownNonNegative &&
1644 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001645 return true;
1646 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001647 // X * Y.
1648 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1649 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1650 // If X and Y are non-zero then so is X * Y as long as the multiplication
1651 // does not overflow.
1652 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001653 isKnownNonZero(X, TD, Depth, Q) &&
1654 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001655 return true;
1656 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001657 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1658 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001659 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1660 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001661 return true;
1662 }
1663
1664 if (!BitWidth) return false;
1665 APInt KnownZero(BitWidth, 0);
1666 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001667 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001668 return KnownOne != 0;
1669}
1670
Sanjay Patelaee84212014-11-04 16:27:42 +00001671/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1672/// simplify operations downstream. Mask is known to be zero for bits that V
1673/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001674///
1675/// This function is defined on values with integer type, values with pointer
1676/// type (but only if TD is non-null), and vectors of integers. In the case
1677/// where V is a vector, the mask, known zero, and known one values are the
1678/// same width as the vector element, and the bit is set only if it is true
1679/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001680bool MaskedValueIsZero(Value *V, const APInt &Mask,
1681 const DataLayout *TD, unsigned Depth,
1682 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001683 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001684 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001685 return (KnownZero & Mask) == Mask;
1686}
1687
1688
1689
Sanjay Patelaee84212014-11-04 16:27:42 +00001690/// Return the number of times the sign bit of the register is replicated into
1691/// the other bits. We know that at least 1 bit is always equal to the sign bit
1692/// (itself), but other cases can give us information. For example, immediately
1693/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1694/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001695///
1696/// 'Op' must have a scalar integer type.
1697///
Hal Finkel60db0582014-09-07 18:57:58 +00001698unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1699 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001700 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001701 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001702 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001703 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001704 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1705 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001706 unsigned Tmp, Tmp2;
1707 unsigned FirstAnswer = 1;
1708
Jay Foada0653a32014-05-14 21:14:37 +00001709 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001710 // below.
1711
Chris Lattner965c7692008-06-02 01:18:21 +00001712 if (Depth == 6)
1713 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001714
Dan Gohman80ca01c2009-07-17 20:47:02 +00001715 Operator *U = dyn_cast<Operator>(V);
1716 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001717 default: break;
1718 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001719 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001720 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001721
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001722 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001723 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001724 // ashr X, C -> adds C sign bits. Vectors too.
1725 const APInt *ShAmt;
1726 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1727 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001728 if (Tmp > TyBits) Tmp = TyBits;
1729 }
1730 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001731 }
1732 case Instruction::Shl: {
1733 const APInt *ShAmt;
1734 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001735 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001736 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001737 Tmp2 = ShAmt->getZExtValue();
1738 if (Tmp2 >= TyBits || // Bad shift.
1739 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1740 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001741 }
1742 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001743 }
Chris Lattner965c7692008-06-02 01:18:21 +00001744 case Instruction::And:
1745 case Instruction::Or:
1746 case Instruction::Xor: // NOT is handled here.
1747 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001748 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001749 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001750 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001751 FirstAnswer = std::min(Tmp, Tmp2);
1752 // We computed what we know about the sign bits as our first
1753 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001754 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001755 }
1756 break;
1757
1758 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001759 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001760 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001761 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001762 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001763
Chris Lattner965c7692008-06-02 01:18:21 +00001764 case Instruction::Add:
1765 // Add can have at most one carry bit. Thus we know that the output
1766 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001767 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001768 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001769
Chris Lattner965c7692008-06-02 01:18:21 +00001770 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00001771 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001772 if (CRHS->isAllOnesValue()) {
1773 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001774 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001775
Chris Lattner965c7692008-06-02 01:18:21 +00001776 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1777 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001778 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001779 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001780
Chris Lattner965c7692008-06-02 01:18:21 +00001781 // If we are subtracting one from a positive number, there is no carry
1782 // out of the result.
1783 if (KnownZero.isNegative())
1784 return Tmp;
1785 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001786
Hal Finkel60db0582014-09-07 18:57:58 +00001787 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001788 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001789 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001790
Chris Lattner965c7692008-06-02 01:18:21 +00001791 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001792 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001793 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001794
Chris Lattner965c7692008-06-02 01:18:21 +00001795 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00001796 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00001797 if (CLHS->isNullValue()) {
1798 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001799 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001800 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1801 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001802 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001803 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001804
Chris Lattner965c7692008-06-02 01:18:21 +00001805 // If the input is known to be positive (the sign bit is known clear),
1806 // the output of the NEG has the same number of sign bits as the input.
1807 if (KnownZero.isNegative())
1808 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001809
Chris Lattner965c7692008-06-02 01:18:21 +00001810 // Otherwise, we treat this like a SUB.
1811 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001812
Chris Lattner965c7692008-06-02 01:18:21 +00001813 // Sub can have at most one carry bit. Thus we know that the output
1814 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001815 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001816 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001817 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001818
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001819 case Instruction::PHI: {
1820 PHINode *PN = cast<PHINode>(U);
1821 // Don't analyze large in-degree PHIs.
1822 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001823
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001824 // Take the minimum of all incoming values. This can't infinitely loop
1825 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001826 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001827 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1828 if (Tmp == 1) return Tmp;
1829 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001830 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1831 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001832 }
1833 return Tmp;
1834 }
1835
Chris Lattner965c7692008-06-02 01:18:21 +00001836 case Instruction::Trunc:
1837 // FIXME: it's tricky to do anything useful for this, but it is an important
1838 // case for targets like X86.
1839 break;
1840 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001841
Chris Lattner965c7692008-06-02 01:18:21 +00001842 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1843 // use this information.
1844 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001845 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001846 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001847
Chris Lattner965c7692008-06-02 01:18:21 +00001848 if (KnownZero.isNegative()) { // sign bit is 0
1849 Mask = KnownZero;
1850 } else if (KnownOne.isNegative()) { // sign bit is 1;
1851 Mask = KnownOne;
1852 } else {
1853 // Nothing known.
1854 return FirstAnswer;
1855 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001856
Chris Lattner965c7692008-06-02 01:18:21 +00001857 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1858 // the number of identical bits in the top of the input value.
1859 Mask = ~Mask;
1860 Mask <<= Mask.getBitWidth()-TyBits;
1861 // Return # leading zeros. We use 'min' here in case Val was zero before
1862 // shifting. We don't want to return '64' as for an i32 "0".
1863 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1864}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001865
Sanjay Patelaee84212014-11-04 16:27:42 +00001866/// This function computes the integer multiple of Base that equals V.
1867/// If successful, it returns true and returns the multiple in
1868/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001869/// through SExt instructions only if LookThroughSExt is true.
1870bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001871 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001872 const unsigned MaxDepth = 6;
1873
Dan Gohman6a976bb2009-11-18 00:58:27 +00001874 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001875 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001876 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001877
Chris Lattner229907c2011-07-18 04:54:35 +00001878 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001879
Dan Gohman6a976bb2009-11-18 00:58:27 +00001880 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001881
1882 if (Base == 0)
1883 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001884
Victor Hernandez47444882009-11-10 08:28:35 +00001885 if (Base == 1) {
1886 Multiple = V;
1887 return true;
1888 }
1889
1890 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1891 Constant *BaseVal = ConstantInt::get(T, Base);
1892 if (CO && CO == BaseVal) {
1893 // Multiple is 1.
1894 Multiple = ConstantInt::get(T, 1);
1895 return true;
1896 }
1897
1898 if (CI && CI->getZExtValue() % Base == 0) {
1899 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001900 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001901 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001902
Victor Hernandez47444882009-11-10 08:28:35 +00001903 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001904
Victor Hernandez47444882009-11-10 08:28:35 +00001905 Operator *I = dyn_cast<Operator>(V);
1906 if (!I) return false;
1907
1908 switch (I->getOpcode()) {
1909 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001910 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001911 if (!LookThroughSExt) return false;
1912 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001913 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001914 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1915 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001916 case Instruction::Shl:
1917 case Instruction::Mul: {
1918 Value *Op0 = I->getOperand(0);
1919 Value *Op1 = I->getOperand(1);
1920
1921 if (I->getOpcode() == Instruction::Shl) {
1922 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1923 if (!Op1CI) return false;
1924 // Turn Op0 << Op1 into Op0 * 2^Op1
1925 APInt Op1Int = Op1CI->getValue();
1926 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001927 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001928 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001929 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001930 }
1931
Craig Topper9f008862014-04-15 04:59:12 +00001932 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001933 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1934 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1935 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001936 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001937 MulC->getType()->getPrimitiveSizeInBits())
1938 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001939 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001940 MulC->getType()->getPrimitiveSizeInBits())
1941 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001942
Chris Lattner72d283c2010-09-05 17:20:46 +00001943 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1944 Multiple = ConstantExpr::getMul(MulC, Op1C);
1945 return true;
1946 }
Victor Hernandez47444882009-11-10 08:28:35 +00001947
1948 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1949 if (Mul0CI->getValue() == 1) {
1950 // V == Base * Op1, so return Op1
1951 Multiple = Op1;
1952 return true;
1953 }
1954 }
1955
Craig Topper9f008862014-04-15 04:59:12 +00001956 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001957 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1958 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1959 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001960 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001961 MulC->getType()->getPrimitiveSizeInBits())
1962 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001963 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001964 MulC->getType()->getPrimitiveSizeInBits())
1965 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001966
Chris Lattner72d283c2010-09-05 17:20:46 +00001967 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1968 Multiple = ConstantExpr::getMul(MulC, Op0C);
1969 return true;
1970 }
Victor Hernandez47444882009-11-10 08:28:35 +00001971
1972 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1973 if (Mul1CI->getValue() == 1) {
1974 // V == Base * Op0, so return Op0
1975 Multiple = Op0;
1976 return true;
1977 }
1978 }
Victor Hernandez47444882009-11-10 08:28:35 +00001979 }
1980 }
1981
1982 // We could not determine if V is a multiple of Base.
1983 return false;
1984}
1985
Sanjay Patelaee84212014-11-04 16:27:42 +00001986/// Return true if we can prove that the specified FP value is never equal to
1987/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00001988///
1989/// NOTE: this function will need to be revisited when we support non-default
1990/// rounding modes!
1991///
1992bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1993 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1994 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001995
Chris Lattnera12a6de2008-06-02 01:29:46 +00001996 if (Depth == 6)
1997 return 1; // Limit search depth.
1998
Dan Gohman80ca01c2009-07-17 20:47:02 +00001999 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002000 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002001
2002 // Check if the nsz fast-math flag is set
2003 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2004 if (FPO->hasNoSignedZeros())
2005 return true;
2006
Chris Lattnera12a6de2008-06-02 01:29:46 +00002007 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002008 if (I->getOpcode() == Instruction::FAdd)
2009 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2010 if (CFP->isNullValue())
2011 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002012
Chris Lattnera12a6de2008-06-02 01:29:46 +00002013 // sitofp and uitofp turn into +0.0 for zero.
2014 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2015 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002016
Chris Lattnera12a6de2008-06-02 01:29:46 +00002017 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2018 // sqrt(-0.0) = -0.0, no other negative results are possible.
2019 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002020 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002021
Chris Lattnera12a6de2008-06-02 01:29:46 +00002022 if (const CallInst *CI = dyn_cast<CallInst>(I))
2023 if (const Function *F = CI->getCalledFunction()) {
2024 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002025 // abs(x) != -0.0
2026 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002027 // fabs[lf](x) != -0.0
2028 if (F->getName() == "fabs") return true;
2029 if (F->getName() == "fabsf") return true;
2030 if (F->getName() == "fabsl") return true;
2031 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2032 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002033 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002034 }
2035 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002036
Chris Lattnera12a6de2008-06-02 01:29:46 +00002037 return false;
2038}
2039
Sanjay Patelaee84212014-11-04 16:27:42 +00002040/// If the specified value can be set by repeating the same byte in memory,
2041/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002042/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2043/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2044/// byte store (e.g. i16 0x1234), return null.
2045Value *llvm::isBytewiseValue(Value *V) {
2046 // All byte-wide stores are splatable, even of arbitrary variables.
2047 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002048
2049 // Handle 'null' ConstantArrayZero etc.
2050 if (Constant *C = dyn_cast<Constant>(V))
2051 if (C->isNullValue())
2052 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002053
Chris Lattner9cb10352010-12-26 20:15:01 +00002054 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002055 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002056 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2057 if (CFP->getType()->isFloatTy())
2058 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2059 if (CFP->getType()->isDoubleTy())
2060 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2061 // Don't handle long double formats, which have strange constraints.
2062 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002063
2064 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00002065 // multiple of 8 bits.
2066 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2067 unsigned Width = CI->getBitWidth();
2068 if (isPowerOf2_32(Width) && Width > 8) {
2069 // We can handle this value if the recursive binary decomposition is the
2070 // same at all levels.
2071 APInt Val = CI->getValue();
2072 APInt Val2;
2073 while (Val.getBitWidth() != 8) {
2074 unsigned NextWidth = Val.getBitWidth()/2;
2075 Val2 = Val.lshr(NextWidth);
2076 Val2 = Val2.trunc(Val.getBitWidth()/2);
2077 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002078
Chris Lattner9cb10352010-12-26 20:15:01 +00002079 // If the top/bottom halves aren't the same, reject it.
2080 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00002081 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002082 }
2083 return ConstantInt::get(V->getContext(), Val);
2084 }
2085 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002086
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002087 // A ConstantDataArray/Vector is splatable if all its members are equal and
2088 // also splatable.
2089 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2090 Value *Elt = CA->getElementAsConstant(0);
2091 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002092 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002093 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002094
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002095 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2096 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002097 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002098
Chris Lattner9cb10352010-12-26 20:15:01 +00002099 return Val;
2100 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002101
Chris Lattner9cb10352010-12-26 20:15:01 +00002102 // Conceptually, we could handle things like:
2103 // %a = zext i8 %X to i16
2104 // %b = shl i16 %a, 8
2105 // %c = or i16 %a, %b
2106 // but until there is an example that actually needs this, it doesn't seem
2107 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002108 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002109}
2110
2111
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002112// This is the recursive version of BuildSubAggregate. It takes a few different
2113// arguments. Idxs is the index within the nested struct From that we are
2114// looking at now (which is of type IndexedType). IdxSkip is the number of
2115// indices from Idxs that should be left out when inserting into the resulting
2116// struct. To is the result struct built so far, new insertvalue instructions
2117// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002118static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002119 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002120 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002121 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002122 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002123 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002124 // Save the original To argument so we can modify it
2125 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002126 // General case, the type indexed by Idxs is a struct
2127 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2128 // Process each struct element recursively
2129 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002130 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002131 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002132 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002133 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002134 if (!To) {
2135 // Couldn't find any inserted value for this index? Cleanup
2136 while (PrevTo != OrigTo) {
2137 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2138 PrevTo = Del->getAggregateOperand();
2139 Del->eraseFromParent();
2140 }
2141 // Stop processing elements
2142 break;
2143 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002144 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002145 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002146 if (To)
2147 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002148 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002149 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2150 // the struct's elements had a value that was inserted directly. In the latter
2151 // case, perhaps we can't determine each of the subelements individually, but
2152 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002153
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002154 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002155 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002156
2157 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002158 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002159
2160 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002161 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002162 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002163}
2164
2165// This helper takes a nested struct and extracts a part of it (which is again a
2166// struct) into a new value. For example, given the struct:
2167// { a, { b, { c, d }, e } }
2168// and the indices "1, 1" this returns
2169// { c, d }.
2170//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002171// It does this by inserting an insertvalue for each element in the resulting
2172// struct, as opposed to just inserting a single struct. This will only work if
2173// each of the elements of the substruct are known (ie, inserted into From by an
2174// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002175//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002176// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002177static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002178 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002179 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002180 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002181 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002182 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002183 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002184 unsigned IdxSkip = Idxs.size();
2185
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002186 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002187}
2188
Sanjay Patelaee84212014-11-04 16:27:42 +00002189/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002190/// the scalar value indexed is already around as a register, for example if it
2191/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002192///
2193/// If InsertBefore is not null, this function will duplicate (modified)
2194/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002195Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2196 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002197 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002198 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002199 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002200 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002201 // We have indices, so V should have an indexable type.
2202 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2203 "Not looking at a struct or array?");
2204 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2205 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002206
Chris Lattner67058832012-01-25 06:48:06 +00002207 if (Constant *C = dyn_cast<Constant>(V)) {
2208 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002209 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002210 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2211 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002212
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002213 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002214 // Loop the indices for the insertvalue instruction in parallel with the
2215 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002216 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002217 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2218 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002219 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002220 // We can't handle this without inserting insertvalues
2221 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002222 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002223
2224 // The requested index identifies a part of a nested aggregate. Handle
2225 // this specially. For example,
2226 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2227 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2228 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2229 // This can be changed into
2230 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2231 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2232 // which allows the unused 0,0 element from the nested struct to be
2233 // removed.
2234 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2235 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002236 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002237
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002238 // This insert value inserts something else than what we are looking for.
2239 // See if the (aggregrate) value inserted into has the value we are
2240 // looking for, then.
2241 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002242 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002243 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002244 }
2245 // If we end up here, the indices of the insertvalue match with those
2246 // requested (though possibly only partially). Now we recursively look at
2247 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002248 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002249 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002250 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002251 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002252
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002253 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002254 // If we're extracting a value from an aggregrate that was extracted from
2255 // something else, we can extract from that something else directly instead.
2256 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002257
2258 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002259 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002260 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002261 SmallVector<unsigned, 5> Idxs;
2262 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002263 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002264 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002266 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002267 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002268
Craig Topper1bef2c82012-12-22 19:15:35 +00002269 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002270 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002271
Jay Foad57aa6362011-07-13 10:26:04 +00002272 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002273 }
2274 // Otherwise, we don't know (such as, extracting from a function return value
2275 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002276 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002277}
Evan Chengda3db112008-06-30 07:31:25 +00002278
Sanjay Patelaee84212014-11-04 16:27:42 +00002279/// Analyze the specified pointer to see if it can be expressed as a base
2280/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002281Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002282 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002283 // Without DataLayout, conservatively assume 64-bit offsets, which is
2284 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002285 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002286 APInt ByteOffset(BitWidth, 0);
2287 while (1) {
2288 if (Ptr->getType()->isVectorTy())
2289 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Nuno Lopes368c4d02012-12-31 20:48:35 +00002291 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002292 if (DL) {
2293 APInt GEPOffset(BitWidth, 0);
2294 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2295 break;
2296
2297 ByteOffset += GEPOffset;
2298 }
2299
Nuno Lopes368c4d02012-12-31 20:48:35 +00002300 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002301 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2302 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002303 Ptr = cast<Operator>(Ptr)->getOperand(0);
2304 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2305 if (GA->mayBeOverridden())
2306 break;
2307 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002308 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002309 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002310 }
2311 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002312 Offset = ByteOffset.getSExtValue();
2313 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002314}
2315
2316
Sanjay Patelaee84212014-11-04 16:27:42 +00002317/// This function computes the length of a null-terminated C string pointed to
2318/// by V. If successful, it returns true and returns the string in Str.
2319/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002320bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2321 uint64_t Offset, bool TrimAtNul) {
2322 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002323
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002324 // Look through bitcast instructions and geps.
2325 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002326
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002327 // If the value is a GEP instructionor constant expression, treat it as an
2328 // offset.
2329 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002330 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002331 if (GEP->getNumOperands() != 3)
2332 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002333
Evan Chengda3db112008-06-30 07:31:25 +00002334 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002335 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2336 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002337 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002338 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002339
Evan Chengda3db112008-06-30 07:31:25 +00002340 // Check to make sure that the first operand of the GEP is an integer and
2341 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002342 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002343 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002344 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002345
Evan Chengda3db112008-06-30 07:31:25 +00002346 // If the second index isn't a ConstantInt, then this is a variable index
2347 // into the array. If this occurs, we can't say anything meaningful about
2348 // the string.
2349 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002350 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002351 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002352 else
2353 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002354 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002355 }
Nick Lewycky46209882011-10-20 00:34:35 +00002356
Evan Chengda3db112008-06-30 07:31:25 +00002357 // The GEP instruction, constant or instruction, must reference a global
2358 // variable that is a constant and is initialized. The referenced constant
2359 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002360 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002361 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002362 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002363
Nick Lewycky46209882011-10-20 00:34:35 +00002364 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002365 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002366 // This is a degenerate case. The initializer is constant zero so the
2367 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002368 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002369 return true;
2370 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002371
Evan Chengda3db112008-06-30 07:31:25 +00002372 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002373 const ConstantDataArray *Array =
2374 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002375 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002376 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002377
Evan Chengda3db112008-06-30 07:31:25 +00002378 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002379 uint64_t NumElts = Array->getType()->getArrayNumElements();
2380
2381 // Start out with the entire array in the StringRef.
2382 Str = Array->getAsString();
2383
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002384 if (Offset > NumElts)
2385 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002386
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002387 // Skip over 'offset' bytes.
2388 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002389
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002390 if (TrimAtNul) {
2391 // Trim off the \0 and anything after it. If the array is not nul
2392 // terminated, we just return the whole end of string. The client may know
2393 // some other way that the string is length-bound.
2394 Str = Str.substr(0, Str.find('\0'));
2395 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002396 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002397}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002398
2399// These next two are very similar to the above, but also look through PHI
2400// nodes.
2401// TODO: See if we can integrate these two together.
2402
Sanjay Patelaee84212014-11-04 16:27:42 +00002403/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002404/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002405static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002406 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002407 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002408
2409 // If this is a PHI node, there are two cases: either we have already seen it
2410 // or we haven't.
2411 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002412 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002413 return ~0ULL; // already in the set.
2414
2415 // If it was new, see if all the input strings are the same length.
2416 uint64_t LenSoFar = ~0ULL;
2417 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2418 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2419 if (Len == 0) return 0; // Unknown length -> unknown.
2420
2421 if (Len == ~0ULL) continue;
2422
2423 if (Len != LenSoFar && LenSoFar != ~0ULL)
2424 return 0; // Disagree -> unknown.
2425 LenSoFar = Len;
2426 }
2427
2428 // Success, all agree.
2429 return LenSoFar;
2430 }
2431
2432 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2433 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2434 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2435 if (Len1 == 0) return 0;
2436 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2437 if (Len2 == 0) return 0;
2438 if (Len1 == ~0ULL) return Len2;
2439 if (Len2 == ~0ULL) return Len1;
2440 if (Len1 != Len2) return 0;
2441 return Len1;
2442 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002443
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002444 // Otherwise, see if we can read the string.
2445 StringRef StrData;
2446 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002447 return 0;
2448
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002449 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002450}
2451
Sanjay Patelaee84212014-11-04 16:27:42 +00002452/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002453/// the specified pointer, return 'len+1'. If we can't, return 0.
2454uint64_t llvm::GetStringLength(Value *V) {
2455 if (!V->getType()->isPointerTy()) return 0;
2456
2457 SmallPtrSet<PHINode*, 32> PHIs;
2458 uint64_t Len = GetStringLengthH(V, PHIs);
2459 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2460 // an empty string as a length.
2461 return Len == ~0ULL ? 1 : Len;
2462}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002463
Dan Gohman0f124e12011-01-24 18:53:32 +00002464Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002465llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002466 if (!V->getType()->isPointerTy())
2467 return V;
2468 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2469 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2470 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002471 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2472 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002473 V = cast<Operator>(V)->getOperand(0);
2474 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2475 if (GA->mayBeOverridden())
2476 return V;
2477 V = GA->getAliasee();
2478 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002479 // See if InstructionSimplify knows any relevant tricks.
2480 if (Instruction *I = dyn_cast<Instruction>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00002481 // TODO: Acquire a DominatorTree and AssumptionTracker and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002482 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002483 V = Simplified;
2484 continue;
2485 }
2486
Dan Gohmana4fcd242010-12-15 20:02:24 +00002487 return V;
2488 }
2489 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2490 }
2491 return V;
2492}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002493
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002494void
2495llvm::GetUnderlyingObjects(Value *V,
2496 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002497 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002498 unsigned MaxLookup) {
2499 SmallPtrSet<Value *, 4> Visited;
2500 SmallVector<Value *, 4> Worklist;
2501 Worklist.push_back(V);
2502 do {
2503 Value *P = Worklist.pop_back_val();
2504 P = GetUnderlyingObject(P, TD, MaxLookup);
2505
David Blaikie70573dc2014-11-19 07:49:26 +00002506 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002507 continue;
2508
2509 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2510 Worklist.push_back(SI->getTrueValue());
2511 Worklist.push_back(SI->getFalseValue());
2512 continue;
2513 }
2514
2515 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2516 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2517 Worklist.push_back(PN->getIncomingValue(i));
2518 continue;
2519 }
2520
2521 Objects.push_back(P);
2522 } while (!Worklist.empty());
2523}
2524
Sanjay Patelaee84212014-11-04 16:27:42 +00002525/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002526bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002527 for (const User *U : V->users()) {
2528 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002529 if (!II) return false;
2530
2531 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2532 II->getIntrinsicID() != Intrinsic::lifetime_end)
2533 return false;
2534 }
2535 return true;
2536}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002537
Dan Gohman7ac046a2012-01-04 23:01:09 +00002538bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002539 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002540 const Operator *Inst = dyn_cast<Operator>(V);
2541 if (!Inst)
2542 return false;
2543
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002544 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2545 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2546 if (C->canTrap())
2547 return false;
2548
2549 switch (Inst->getOpcode()) {
2550 default:
2551 return true;
2552 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00002553 case Instruction::URem: {
2554 // x / y is undefined if y == 0.
2555 const APInt *V;
2556 if (match(Inst->getOperand(1), m_APInt(V)))
2557 return *V != 0;
2558 return false;
2559 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002560 case Instruction::SDiv:
2561 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00002562 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
2563 const APInt *X, *Y;
2564 if (match(Inst->getOperand(1), m_APInt(Y))) {
2565 if (*Y != 0) {
2566 if (*Y == -1) {
2567 // The numerator can't be MinSignedValue if the denominator is -1.
2568 if (match(Inst->getOperand(0), m_APInt(X)))
2569 return !Y->isMinSignedValue();
2570 // The numerator *might* be MinSignedValue.
2571 return false;
2572 }
2573 // The denominator is not 0 or -1, it's safe to proceed.
2574 return true;
2575 }
2576 }
2577 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002578 }
2579 case Instruction::Load: {
2580 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002581 if (!LI->isUnordered() ||
2582 // Speculative load may create a race that did not exist in the source.
2583 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002584 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002585 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002586 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002587 case Instruction::Call: {
Michael Liao736bac62014-11-06 19:05:57 +00002588 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2589 switch (II->getIntrinsicID()) {
2590 // These synthetic intrinsics have no side-effects and just mark
2591 // information about their operands.
2592 // FIXME: There are other no-op synthetic instructions that potentially
2593 // should be considered at least *safe* to speculate...
2594 case Intrinsic::dbg_declare:
2595 case Intrinsic::dbg_value:
2596 return true;
Chandler Carruth28192c92012-04-07 19:22:18 +00002597
Michael Liao736bac62014-11-06 19:05:57 +00002598 case Intrinsic::bswap:
2599 case Intrinsic::ctlz:
2600 case Intrinsic::ctpop:
2601 case Intrinsic::cttz:
2602 case Intrinsic::objectsize:
2603 case Intrinsic::sadd_with_overflow:
2604 case Intrinsic::smul_with_overflow:
2605 case Intrinsic::ssub_with_overflow:
2606 case Intrinsic::uadd_with_overflow:
2607 case Intrinsic::umul_with_overflow:
2608 case Intrinsic::usub_with_overflow:
2609 return true;
2610 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2611 // errno like libm sqrt would.
2612 case Intrinsic::sqrt:
2613 case Intrinsic::fma:
2614 case Intrinsic::fmuladd:
2615 case Intrinsic::fabs:
2616 case Intrinsic::minnum:
2617 case Intrinsic::maxnum:
2618 return true;
2619 // TODO: some fp intrinsics are marked as having the same error handling
2620 // as libm. They're safe to speculate when they won't error.
2621 // TODO: are convert_{from,to}_fp16 safe?
2622 // TODO: can we list target-specific intrinsics here?
2623 default: break;
2624 }
2625 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002626 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002627 // side-effects, even if marked readnone nounwind.
2628 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002629 case Instruction::VAArg:
2630 case Instruction::Alloca:
2631 case Instruction::Invoke:
2632 case Instruction::PHI:
2633 case Instruction::Store:
2634 case Instruction::Ret:
2635 case Instruction::Br:
2636 case Instruction::IndirectBr:
2637 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002638 case Instruction::Unreachable:
2639 case Instruction::Fence:
2640 case Instruction::LandingPad:
2641 case Instruction::AtomicRMW:
2642 case Instruction::AtomicCmpXchg:
2643 case Instruction::Resume:
2644 return false; // Misc instructions which have effects
2645 }
2646}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002647
Sanjay Patelaee84212014-11-04 16:27:42 +00002648/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002649bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002650 // Alloca never returns null, malloc might.
2651 if (isa<AllocaInst>(V)) return true;
2652
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002653 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002654 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002655 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002656
2657 // Global values are not null unless extern weak.
2658 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2659 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002660
Philip Reamescdb72f32014-10-20 22:40:55 +00002661 // A Load tagged w/nonnull metadata is never null.
2662 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00002663 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00002664
Nick Lewyckyec373542014-05-20 05:13:21 +00002665 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002666 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002667 return true;
2668
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002669 // operator new never returns null.
2670 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2671 return true;
2672
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002673 return false;
2674}