blob: 5b370e04088fcbb3f94b608fa07f8d895bdf5c75 [file] [log] [blame]
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +00001//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates n-ary add expressions and eliminates the redundancy
11// exposed by the reassociation.
12//
13// A motivating example:
14//
15// void foo(int a, int b) {
16// bar(a + b);
17// bar((a + 2) + b);
18// }
19//
20// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
21// the above code to
22//
23// int t = a + b;
24// bar(t);
25// bar(t + 2);
26//
27// However, the Reassociate pass is unable to do that because it processes each
28// instruction individually and believes (a + 2) + b is the best form according
29// to its rank system.
30//
31// To address this limitation, NaryReassociate reassociates an expression in a
32// form that reuses existing instructions. As a result, NaryReassociate can
33// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
34// (a + b) is computed before.
35//
36// NaryReassociate works as follows. For every instruction in the form of (a +
37// b) + c, it checks whether a + c or b + c is already computed by a dominating
38// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
Jingyue Wu8579b812015-04-17 00:25:10 +000039// c) + a and removes the redundancy accordingly. To efficiently look up whether
40// an expression is computed before, we store each instruction seen and its SCEV
41// into an SCEV-to-instruction map.
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +000042//
43// Although the algorithm pattern-matches only ternary additions, it
44// automatically handles many >3-ary expressions by walking through the function
45// in the depth-first order. For example, given
46//
47// (a + c) + d
48// ((a + b) + c) + d
49//
50// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
51// ((a + c) + b) + d into ((a + c) + d) + b.
52//
Jingyue Wu8579b812015-04-17 00:25:10 +000053// Finally, the above dominator-based algorithm may need to be run multiple
54// iterations before emitting optimal code. One source of this need is that we
55// only split an operand when it is used only once. The above algorithm can
56// eliminate an instruction and decrease the usage count of its operands. As a
57// result, an instruction that previously had multiple uses may become a
58// single-use instruction and thus eligible for split consideration. For
59// example,
60//
61// ac = a + c
62// ab = a + b
63// abc = ab + c
64// ab2 = ab + b
65// ab2c = ab2 + c
66//
67// In the first iteration, we cannot reassociate abc to ac+b because ab is used
68// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
69// result, ab2 becomes dead and ab will be used only once in the second
70// iteration.
71//
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +000072// Limitations and TODO items:
73//
74// 1) We only considers n-ary adds for now. This should be extended and
75// generalized.
76//
77// 2) Besides arithmetic operations, similar reassociation can be applied to
78// GEPs. For example, if
79// X = &arr[a]
80// dominates
81// Y = &arr[a + b]
82// we may rewrite Y into X + b.
83//
84//===----------------------------------------------------------------------===//
85
86#include "llvm/Analysis/ScalarEvolution.h"
Jingyue Wu8579b812015-04-17 00:25:10 +000087#include "llvm/Analysis/TargetLibraryInfo.h"
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +000088#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +000089#include "llvm/IR/Dominators.h"
90#include "llvm/IR/Module.h"
91#include "llvm/IR/PatternMatch.h"
92#include "llvm/Transforms/Scalar.h"
Jingyue Wu8579b812015-04-17 00:25:10 +000093#include "llvm/Transforms/Utils/Local.h"
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +000094using namespace llvm;
95using namespace PatternMatch;
96
97#define DEBUG_TYPE "nary-reassociate"
98
99namespace {
100class NaryReassociate : public FunctionPass {
101public:
102 static char ID;
103
104 NaryReassociate(): FunctionPass(ID) {
105 initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
106 }
107
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000108 bool doInitialization(Module &M) override {
109 DL = &M.getDataLayout();
110 return false;
111 }
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000112 bool runOnFunction(Function &F) override;
113
114 void getAnalysisUsage(AnalysisUsage &AU) const override {
115 AU.addPreserved<DominatorTreeWrapperPass>();
Jingyue Wu8579b812015-04-17 00:25:10 +0000116 AU.addPreserved<ScalarEvolution>();
117 AU.addPreserved<TargetLibraryInfoWrapperPass>();
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000118 AU.addRequired<DominatorTreeWrapperPass>();
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000119 AU.addRequired<ScalarEvolution>();
Jingyue Wu8579b812015-04-17 00:25:10 +0000120 AU.addRequired<TargetLibraryInfoWrapperPass>();
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000121 AU.addRequired<TargetTransformInfoWrapperPass>();
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000122 AU.setPreservesCFG();
123 }
124
125private:
Jingyue Wu8579b812015-04-17 00:25:10 +0000126 // Runs only one iteration of the dominator-based algorithm. See the header
127 // comments for why we need multiple iterations.
128 bool doOneIteration(Function &F);
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000129
130 // Reassociates I for better CSE.
131 Instruction *tryReassociate(Instruction *I);
132
133 // Reassociate GEP for better CSE.
134 Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
135 // Try splitting GEP at the I-th index and see whether either part can be
136 // CSE'ed. This is a helper function for tryReassociateGEP.
137 //
138 // \p IndexedType The element type indexed by GEP's I-th index. This is
139 // equivalent to
140 // GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
141 // ..., i-th index).
142 GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
143 unsigned I, Type *IndexedType);
144 // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
145 // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
146 GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
147 unsigned I, Value *LHS,
148 Value *RHS, Type *IndexedType);
149
150 // Reassociate Add for better CSE.
151 Instruction *tryReassociateAdd(BinaryOperator *I);
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000152 // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
153 Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
154 // Rewrites I to LHS + RHS if LHS is computed already.
155 Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
156
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000157 // Returns the closest dominator of \c Dominatee that computes
158 // \c CandidateExpr. Returns null if not found.
159 Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
160 Instruction *Dominatee);
161 // GetElementPtrInst implicitly sign-extends an index if the index is shorter
162 // than the pointer size. This function returns whether Index is shorter than
163 // GEP's pointer size, i.e., whether Index needs to be sign-extended in order
164 // to be an index of GEP.
165 bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
166
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000167 DominatorTree *DT;
168 ScalarEvolution *SE;
Jingyue Wu8579b812015-04-17 00:25:10 +0000169 TargetLibraryInfo *TLI;
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000170 TargetTransformInfo *TTI;
171 const DataLayout *DL;
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000172 // A lookup table quickly telling which instructions compute the given SCEV.
173 // Note that there can be multiple instructions at different locations
Jingyue Wu771dfe92015-04-16 18:42:31 +0000174 // computing to the same SCEV, so we map a SCEV to an instruction list. For
175 // example,
176 //
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000177 // if (p1)
178 // foo(a + b);
179 // if (p2)
180 // bar(a + b);
181 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
182};
183} // anonymous namespace
184
185char NaryReassociate::ID = 0;
186INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
187 false, false)
188INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
189INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
Jingyue Wu8579b812015-04-17 00:25:10 +0000190INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000191INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000192INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
193 false, false)
194
195FunctionPass *llvm::createNaryReassociatePass() {
196 return new NaryReassociate();
197}
198
199bool NaryReassociate::runOnFunction(Function &F) {
200 if (skipOptnoneFunction(F))
201 return false;
202
203 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
204 SE = &getAnalysis<ScalarEvolution>();
Jingyue Wu8579b812015-04-17 00:25:10 +0000205 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000206 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000207
Jingyue Wu8579b812015-04-17 00:25:10 +0000208 bool Changed = false, ChangedInThisIteration;
209 do {
210 ChangedInThisIteration = doOneIteration(F);
211 Changed |= ChangedInThisIteration;
212 } while (ChangedInThisIteration);
213 return Changed;
214}
215
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000216// Whitelist the instruction types NaryReassociate handles for now.
217static bool isPotentiallyNaryReassociable(Instruction *I) {
218 switch (I->getOpcode()) {
219 case Instruction::Add:
220 case Instruction::GetElementPtr:
221 return true;
222 default:
223 return false;
224 }
225}
226
Jingyue Wu8579b812015-04-17 00:25:10 +0000227bool NaryReassociate::doOneIteration(Function &F) {
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000228 bool Changed = false;
229 SeenExprs.clear();
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000230 // Process the basic blocks in pre-order of the dominator tree. This order
231 // ensures that all bases of a candidate are in Candidates when we process it.
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000232 for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
233 Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
234 BasicBlock *BB = Node->getBlock();
235 for (auto I = BB->begin(); I != BB->end(); ++I) {
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000236 if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(I)) {
237 if (Instruction *NewI = tryReassociate(I)) {
Jingyue Wu8579b812015-04-17 00:25:10 +0000238 Changed = true;
239 SE->forgetValue(I);
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000240 I->replaceAllUsesWith(NewI);
Jingyue Wu8579b812015-04-17 00:25:10 +0000241 RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000242 I = NewI;
243 }
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000244 // Add the rewritten instruction to SeenExprs; the original instruction
245 // is deleted.
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000246 SeenExprs[SE->getSCEV(I)].push_back(I);
247 }
248 }
249 }
250 return Changed;
251}
252
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000253Instruction *NaryReassociate::tryReassociate(Instruction *I) {
254 switch (I->getOpcode()) {
255 case Instruction::Add:
256 return tryReassociateAdd(cast<BinaryOperator>(I));
257 case Instruction::GetElementPtr:
258 return tryReassociateGEP(cast<GetElementPtrInst>(I));
259 default:
260 llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
261 }
262}
263
264// FIXME: extract this method into TTI->getGEPCost.
265static bool isGEPFoldable(GetElementPtrInst *GEP,
266 const TargetTransformInfo *TTI,
267 const DataLayout *DL) {
268 GlobalVariable *BaseGV = nullptr;
269 int64_t BaseOffset = 0;
270 bool HasBaseReg = false;
271 int64_t Scale = 0;
272
273 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
274 BaseGV = GV;
275 else
276 HasBaseReg = true;
277
278 gep_type_iterator GTI = gep_type_begin(GEP);
279 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
280 if (isa<SequentialType>(*GTI)) {
281 int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
282 if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
283 BaseOffset += ConstIdx->getSExtValue() * ElementSize;
284 } else {
285 // Needs scale register.
286 if (Scale != 0) {
287 // No addressing mode takes two scale registers.
288 return false;
289 }
290 Scale = ElementSize;
291 }
292 } else {
293 StructType *STy = cast<StructType>(*GTI);
294 uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
295 BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
296 }
297 }
298 return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
299 BaseOffset, HasBaseReg, Scale);
300}
301
302Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) {
303 // Not worth reassociating GEP if it is foldable.
304 if (isGEPFoldable(GEP, TTI, DL))
305 return nullptr;
306
307 gep_type_iterator GTI = gep_type_begin(*GEP);
308 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
309 if (isa<SequentialType>(*GTI++)) {
310 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, *GTI)) {
311 return NewGEP;
312 }
313 }
314 }
315 return nullptr;
316}
317
318bool NaryReassociate::requiresSignExtension(Value *Index,
319 GetElementPtrInst *GEP) {
320 unsigned PointerSizeInBits =
321 DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
322 return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
323}
324
325GetElementPtrInst *
326NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
327 Type *IndexedType) {
328 Value *IndexToSplit = GEP->getOperand(I + 1);
329 if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit))
330 IndexToSplit = SExt->getOperand(0);
331
332 if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
333 // If the I-th index needs sext and the underlying add is not equipped with
334 // nsw, we cannot split the add because
335 // sext(LHS + RHS) != sext(LHS) + sext(RHS).
336 if (requiresSignExtension(IndexToSplit, GEP) && !AO->hasNoSignedWrap())
337 return nullptr;
338 Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
339 // IndexToSplit = LHS + RHS.
340 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
341 return NewGEP;
342 // Symmetrically, try IndexToSplit = RHS + LHS.
343 if (LHS != RHS) {
344 if (auto *NewGEP =
345 tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
346 return NewGEP;
347 }
348 }
349 return nullptr;
350}
351
352GetElementPtrInst *
353NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
354 Value *LHS, Value *RHS,
355 Type *IndexedType) {
356 // Look for GEP's closest dominator that has the same SCEV as GEP except that
357 // the I-th index is replaced with LHS.
358 SmallVector<const SCEV *, 4> IndexExprs;
359 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
360 IndexExprs.push_back(SE->getSCEV(*Index));
361 // Replace the I-th index with LHS.
362 IndexExprs[I] = SE->getSCEV(LHS);
363 const SCEV *CandidateExpr = SE->getGEPExpr(
364 GEP->getSourceElementType(), SE->getSCEV(GEP->getPointerOperand()),
365 IndexExprs, GEP->isInBounds());
366
367 auto *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
368 if (Candidate == nullptr)
369 return nullptr;
370
371 PointerType *TypeOfCandidate = dyn_cast<PointerType>(Candidate->getType());
372 // Pretty rare but theoretically possible when a numeric value happens to
373 // share CandidateExpr.
374 if (TypeOfCandidate == nullptr)
375 return nullptr;
376
377 // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
378 uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
379 Type *ElementType = TypeOfCandidate->getElementType();
380 uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
381 // Another less rare case: because I is not necessarily the last index of the
382 // GEP, the size of the type at the I-th index (IndexedSize) is not
383 // necessarily divisible by ElementSize. For example,
384 //
385 // #pragma pack(1)
386 // struct S {
387 // int a[3];
388 // int64 b[8];
389 // };
390 // #pragma pack()
391 //
392 // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
393 //
394 // TODO: bail out on this case for now. We could emit uglygep.
395 if (IndexedSize % ElementSize != 0)
396 return nullptr;
397
398 // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
399 IRBuilder<> Builder(GEP);
400 Type *IntPtrTy = DL->getIntPtrType(TypeOfCandidate);
401 if (RHS->getType() != IntPtrTy)
402 RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
403 if (IndexedSize != ElementSize) {
404 RHS = Builder.CreateMul(
405 RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
406 }
407 GetElementPtrInst *NewGEP =
408 cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
409 NewGEP->setIsInBounds(GEP->isInBounds());
410 NewGEP->takeName(GEP);
411 return NewGEP;
412}
413
414Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) {
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000415 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
416 if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
417 return NewI;
418 if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
419 return NewI;
420 return nullptr;
421}
422
423Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
424 Instruction *I) {
425 Value *A = nullptr, *B = nullptr;
426 // To be conservative, we reassociate I only when it is the only user of A+B.
427 if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
428 // I = (A + B) + RHS
429 // = (A + RHS) + B or (B + RHS) + A
430 const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
431 const SCEV *RHSExpr = SE->getSCEV(RHS);
Jingyue Wuc74e33b2015-05-13 18:12:24 +0000432 if (BExpr != RHSExpr) {
433 if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
434 return NewI;
435 }
436 if (AExpr != RHSExpr) {
437 if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
438 return NewI;
439 }
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000440 }
441 return nullptr;
442}
443
444Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
445 Value *RHS, Instruction *I) {
446 auto Pos = SeenExprs.find(LHSExpr);
447 // Bail out if LHSExpr is not previously seen.
448 if (Pos == SeenExprs.end())
449 return nullptr;
450
Jingyue Wu771dfe92015-04-16 18:42:31 +0000451 // Look for the closest dominator LHS of I that computes LHSExpr, and replace
452 // I with LHS + RHS.
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000453 auto *LHS = findClosestMatchingDominator(LHSExpr, I);
454 if (LHS == nullptr)
455 return nullptr;
456
457 Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
458 NewI->takeName(I);
459 return NewI;
460}
461
462Instruction *
463NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr,
464 Instruction *Dominatee) {
465 auto Pos = SeenExprs.find(CandidateExpr);
466 if (Pos == SeenExprs.end())
467 return nullptr;
468
469 auto &Candidates = Pos->second;
470 // Because we process the basic blocks in pre-order of the dominator tree, a
Jingyue Wu771dfe92015-04-16 18:42:31 +0000471 // candidate that doesn't dominate the current instruction won't dominate any
472 // future instruction either. Therefore, we pop it out of the stack. This
473 // optimization makes the algorithm O(n).
Jingyue Wu4fc97f6d2015-05-21 23:17:30 +0000474 while (!Candidates.empty()) {
475 Instruction *Candidate = Candidates.back();
476 if (DT->dominates(Candidate, Dominatee))
477 return Candidate;
478 Candidates.pop_back();
Jingyue Wu8cb6b2a2015-04-14 04:59:22 +0000479 }
480 return nullptr;
481}