blob: 6d9e234ee1425842fa53559ddd607851a7621f57 [file] [log] [blame]
Eugene Zelenko52889212017-08-01 21:20:10 +00001//===- RDFGraph.cpp -------------------------------------------------------===//
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Target-independent, SSA-based data flow graph for register data flow (RDF).
11//
12#include "RDFGraph.h"
Eugene Zelenko52889212017-08-01 21:20:10 +000013#include "RDFRegisters.h"
14#include "llvm/ADT/BitVector.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000015#include "llvm/ADT/STLExtras.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000016#include "llvm/ADT/SetVector.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000017#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineDominanceFrontier.h"
19#include "llvm/CodeGen/MachineDominators.h"
20#include "llvm/CodeGen/MachineFunction.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000021#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineOperand.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000023#include "llvm/CodeGen/MachineRegisterInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000024#include "llvm/IR/Function.h"
25#include "llvm/MC/LaneBitmask.h"
26#include "llvm/MC/MCInstrDesc.h"
27#include "llvm/MC/MCRegisterInfo.h"
Eugene Zelenko52889212017-08-01 21:20:10 +000028#include "llvm/Support/Debug.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000029#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000031#include "llvm/Target/TargetInstrInfo.h"
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +000032#include "llvm/Target/TargetLowering.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000033#include "llvm/Target/TargetRegisterInfo.h"
Eugene Zelenko52889212017-08-01 21:20:10 +000034#include "llvm/Target/TargetSubtargetInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000035#include <algorithm>
36#include <cassert>
37#include <cstdint>
38#include <cstring>
39#include <iterator>
Eugene Zelenko52889212017-08-01 21:20:10 +000040#include <set>
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000041#include <utility>
42#include <vector>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000043
44using namespace llvm;
45using namespace rdf;
46
47// Printing functions. Have them here first, so that the rest of the code
48// can use them.
Benjamin Kramer922efd72016-05-27 10:06:40 +000049namespace llvm {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000050namespace rdf {
51
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +000052raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +000053 if (!P.Mask.all())
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +000054 OS << ':' << PrintLaneMask(P.Mask);
55 return OS;
56}
57
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000058template<>
59raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
60 auto &TRI = P.G.getTRI();
61 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
62 OS << TRI.getName(P.Obj.Reg);
63 else
64 OS << '#' << P.Obj.Reg;
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +000065 OS << PrintLaneMaskOpt(P.Obj.Mask);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000066 return OS;
67}
68
69template<>
70raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
71 auto NA = P.G.addr<NodeBase*>(P.Obj);
72 uint16_t Attrs = NA.Addr->getAttrs();
73 uint16_t Kind = NodeAttrs::kind(Attrs);
74 uint16_t Flags = NodeAttrs::flags(Attrs);
75 switch (NodeAttrs::type(Attrs)) {
76 case NodeAttrs::Code:
77 switch (Kind) {
78 case NodeAttrs::Func: OS << 'f'; break;
79 case NodeAttrs::Block: OS << 'b'; break;
80 case NodeAttrs::Stmt: OS << 's'; break;
81 case NodeAttrs::Phi: OS << 'p'; break;
82 default: OS << "c?"; break;
83 }
84 break;
85 case NodeAttrs::Ref:
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +000086 if (Flags & NodeAttrs::Undef)
87 OS << '/';
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +000088 if (Flags & NodeAttrs::Dead)
89 OS << '\\';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000090 if (Flags & NodeAttrs::Preserving)
91 OS << '+';
92 if (Flags & NodeAttrs::Clobbering)
93 OS << '~';
94 switch (Kind) {
95 case NodeAttrs::Use: OS << 'u'; break;
96 case NodeAttrs::Def: OS << 'd'; break;
97 case NodeAttrs::Block: OS << 'b'; break;
98 default: OS << "r?"; break;
99 }
100 break;
101 default:
102 OS << '?';
103 break;
104 }
105 OS << P.Obj;
106 if (Flags & NodeAttrs::Shadow)
107 OS << '"';
108 return OS;
109}
110
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000111static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
112 const DataFlowGraph &G) {
113 OS << Print<NodeId>(RA.Id, G) << '<'
114 << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
115 if (RA.Addr->getFlags() & NodeAttrs::Fixed)
116 OS << '!';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000117}
118
119template<>
120raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
121 printRefHeader(OS, P.Obj, P.G);
122 OS << '(';
123 if (NodeId N = P.Obj.Addr->getReachingDef())
124 OS << Print<NodeId>(N, P.G);
125 OS << ',';
126 if (NodeId N = P.Obj.Addr->getReachedDef())
127 OS << Print<NodeId>(N, P.G);
128 OS << ',';
129 if (NodeId N = P.Obj.Addr->getReachedUse())
130 OS << Print<NodeId>(N, P.G);
131 OS << "):";
132 if (NodeId N = P.Obj.Addr->getSibling())
133 OS << Print<NodeId>(N, P.G);
134 return OS;
135}
136
137template<>
138raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
139 printRefHeader(OS, P.Obj, P.G);
140 OS << '(';
141 if (NodeId N = P.Obj.Addr->getReachingDef())
142 OS << Print<NodeId>(N, P.G);
143 OS << "):";
144 if (NodeId N = P.Obj.Addr->getSibling())
145 OS << Print<NodeId>(N, P.G);
146 return OS;
147}
148
149template<>
150raw_ostream &operator<< (raw_ostream &OS,
151 const Print<NodeAddr<PhiUseNode*>> &P) {
152 printRefHeader(OS, P.Obj, P.G);
153 OS << '(';
154 if (NodeId N = P.Obj.Addr->getReachingDef())
155 OS << Print<NodeId>(N, P.G);
156 OS << ',';
157 if (NodeId N = P.Obj.Addr->getPredecessor())
158 OS << Print<NodeId>(N, P.G);
159 OS << "):";
160 if (NodeId N = P.Obj.Addr->getSibling())
161 OS << Print<NodeId>(N, P.G);
162 return OS;
163}
164
165template<>
166raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
167 switch (P.Obj.Addr->getKind()) {
168 case NodeAttrs::Def:
169 OS << PrintNode<DefNode*>(P.Obj, P.G);
170 break;
171 case NodeAttrs::Use:
172 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
173 OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
174 else
175 OS << PrintNode<UseNode*>(P.Obj, P.G);
176 break;
177 }
178 return OS;
179}
180
181template<>
182raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
183 unsigned N = P.Obj.size();
184 for (auto I : P.Obj) {
185 OS << Print<NodeId>(I.Id, P.G);
186 if (--N)
187 OS << ' ';
188 }
189 return OS;
190}
191
192template<>
193raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
194 unsigned N = P.Obj.size();
195 for (auto I : P.Obj) {
196 OS << Print<NodeId>(I, P.G);
197 if (--N)
198 OS << ' ';
199 }
200 return OS;
201}
202
203namespace {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000204
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000205 template <typename T>
206 struct PrintListV {
207 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000208
Eugene Zelenko52889212017-08-01 21:20:10 +0000209 using Type = T;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000210 const NodeList &List;
211 const DataFlowGraph &G;
212 };
213
214 template <typename T>
215 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
216 unsigned N = P.List.size();
217 for (NodeAddr<T> A : P.List) {
218 OS << PrintNode<T>(A, P.G);
219 if (--N)
220 OS << ", ";
221 }
222 return OS;
223 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000224
225} // end anonymous namespace
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000226
227template<>
228raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
229 OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
230 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
231 return OS;
232}
233
234template<>
235raw_ostream &operator<< (raw_ostream &OS,
236 const Print<NodeAddr<StmtNode*>> &P) {
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000237 const MachineInstr &MI = *P.Obj.Addr->getCode();
238 unsigned Opc = MI.getOpcode();
239 OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000240 // Print the target for calls and branches (for readability).
241 if (MI.isCall() || MI.isBranch()) {
242 MachineInstr::const_mop_iterator T =
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000243 llvm::find_if(MI.operands(),
244 [] (const MachineOperand &Op) -> bool {
245 return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
246 });
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000247 if (T != MI.operands_end()) {
248 OS << ' ';
249 if (T->isMBB())
250 OS << "BB#" << T->getMBB()->getNumber();
251 else if (T->isGlobal())
252 OS << T->getGlobal()->getName();
253 else if (T->isSymbol())
254 OS << T->getSymbolName();
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000255 }
256 }
257 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000258 return OS;
259}
260
261template<>
262raw_ostream &operator<< (raw_ostream &OS,
263 const Print<NodeAddr<InstrNode*>> &P) {
264 switch (P.Obj.Addr->getKind()) {
265 case NodeAttrs::Phi:
266 OS << PrintNode<PhiNode*>(P.Obj, P.G);
267 break;
268 case NodeAttrs::Stmt:
269 OS << PrintNode<StmtNode*>(P.Obj, P.G);
270 break;
271 default:
272 OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
273 break;
274 }
275 return OS;
276}
277
278template<>
279raw_ostream &operator<< (raw_ostream &OS,
280 const Print<NodeAddr<BlockNode*>> &P) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000281 MachineBasicBlock *BB = P.Obj.Addr->getCode();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000282 unsigned NP = BB->pred_size();
283 std::vector<int> Ns;
Malcolm Parsons17d266b2017-01-13 17:12:16 +0000284 auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000285 unsigned N = Ns.size();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000286 for (int I : Ns) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000287 OS << "BB#" << I;
288 if (--N)
289 OS << ", ";
290 }
291 };
292
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000293 OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- BB#" << BB->getNumber()
294 << " --- preds(" << NP << "): ";
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000295 for (MachineBasicBlock *B : BB->predecessors())
296 Ns.push_back(B->getNumber());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000297 PrintBBs(Ns);
298
299 unsigned NS = BB->succ_size();
300 OS << " succs(" << NS << "): ";
301 Ns.clear();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000302 for (MachineBasicBlock *B : BB->successors())
303 Ns.push_back(B->getNumber());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000304 PrintBBs(Ns);
305 OS << '\n';
306
307 for (auto I : P.Obj.Addr->members(P.G))
308 OS << PrintNode<InstrNode*>(I, P.G) << '\n';
309 return OS;
310}
311
312template<>
313raw_ostream &operator<< (raw_ostream &OS,
314 const Print<NodeAddr<FuncNode*>> &P) {
315 OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
316 << P.Obj.Addr->getCode()->getName() << '\n';
317 for (auto I : P.Obj.Addr->members(P.G))
318 OS << PrintNode<BlockNode*>(I, P.G) << '\n';
319 OS << "]\n";
320 return OS;
321}
322
323template<>
324raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
325 OS << '{';
326 for (auto I : P.Obj)
327 OS << ' ' << Print<RegisterRef>(I, P.G);
328 OS << " }";
329 return OS;
330}
331
332template<>
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000333raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
334 P.Obj.print(OS);
335 return OS;
336}
337
338template<>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000339raw_ostream &operator<< (raw_ostream &OS,
340 const Print<DataFlowGraph::DefStack> &P) {
341 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
342 OS << Print<NodeId>(I->Id, P.G)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000343 << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000344 I.down();
345 if (I != E)
346 OS << ' ';
347 }
348 return OS;
349}
350
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000351} // end namespace rdf
352} // end namespace llvm
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000353
354// Node allocation functions.
355//
356// Node allocator is like a slab memory allocator: it allocates blocks of
357// memory in sizes that are multiples of the size of a node. Each block has
358// the same size. Nodes are allocated from the currently active block, and
359// when it becomes full, a new one is created.
360// There is a mapping scheme between node id and its location in a block,
361// and within that block is described in the header file.
362//
363void NodeAllocator::startNewBlock() {
364 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
365 char *P = static_cast<char*>(T);
366 Blocks.push_back(P);
367 // Check if the block index is still within the allowed range, i.e. less
368 // than 2^N, where N is the number of bits in NodeId for the block index.
369 // BitsPerIndex is the number of bits per node index.
Simon Pilgrim99c6c292016-01-18 21:11:19 +0000370 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000371 "Out of bits for block index");
372 ActiveEnd = P;
373}
374
375bool NodeAllocator::needNewBlock() {
376 if (Blocks.empty())
377 return true;
378
379 char *ActiveBegin = Blocks.back();
380 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
381 return Index >= NodesPerBlock;
382}
383
384NodeAddr<NodeBase*> NodeAllocator::New() {
385 if (needNewBlock())
386 startNewBlock();
387
388 uint32_t ActiveB = Blocks.size()-1;
389 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
390 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
391 makeId(ActiveB, Index) };
392 ActiveEnd += NodeMemSize;
393 return NA;
394}
395
396NodeId NodeAllocator::id(const NodeBase *P) const {
397 uintptr_t A = reinterpret_cast<uintptr_t>(P);
398 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
399 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
400 if (A < B || A >= B + NodesPerBlock*NodeMemSize)
401 continue;
402 uint32_t Idx = (A-B)/NodeMemSize;
403 return makeId(i, Idx);
404 }
405 llvm_unreachable("Invalid node address");
406}
407
408void NodeAllocator::clear() {
409 MemPool.Reset();
410 Blocks.clear();
411 ActiveEnd = nullptr;
412}
413
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000414// Insert node NA after "this" in the circular chain.
415void NodeBase::append(NodeAddr<NodeBase*> NA) {
416 NodeId Nx = Next;
417 // If NA is already "next", do nothing.
418 if (Next != NA.Id) {
419 Next = NA.Id;
420 NA.Addr->Next = Nx;
421 }
422}
423
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000424// Fundamental node manipulator functions.
425
426// Obtain the register reference from a reference node.
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000427RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000428 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
429 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000430 return G.unpack(Ref.PR);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000431 assert(Ref.Op != nullptr);
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +0000432 return G.makeRegRef(*Ref.Op);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000433}
434
435// Set the register reference in the reference node directly (for references
436// in phi nodes).
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000437void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000438 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
439 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000440 Ref.PR = G.pack(RR);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000441}
442
443// Set the register reference in the reference node based on a machine
444// operand (for references in statement nodes).
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000445void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000446 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
447 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000448 (void)G;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000449 Ref.Op = Op;
450}
451
452// Get the owner of a given reference node.
453NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
454 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
455
456 while (NA.Addr != this) {
457 if (NA.Addr->getType() == NodeAttrs::Code)
458 return NA;
459 NA = G.addr<NodeBase*>(NA.Addr->getNext());
460 }
461 llvm_unreachable("No owner in circular list");
462}
463
464// Connect the def node to the reaching def node.
465void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
466 Ref.RD = DA.Id;
467 Ref.Sib = DA.Addr->getReachedDef();
468 DA.Addr->setReachedDef(Self);
469}
470
471// Connect the use node to the reaching def node.
472void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
473 Ref.RD = DA.Id;
474 Ref.Sib = DA.Addr->getReachedUse();
475 DA.Addr->setReachedUse(Self);
476}
477
478// Get the first member of the code node.
479NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
480 if (Code.FirstM == 0)
481 return NodeAddr<NodeBase*>();
482 return G.addr<NodeBase*>(Code.FirstM);
483}
484
485// Get the last member of the code node.
486NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
487 if (Code.LastM == 0)
488 return NodeAddr<NodeBase*>();
489 return G.addr<NodeBase*>(Code.LastM);
490}
491
492// Add node NA at the end of the member list of the given code node.
493void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000494 NodeAddr<NodeBase*> ML = getLastMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000495 if (ML.Id != 0) {
496 ML.Addr->append(NA);
497 } else {
498 Code.FirstM = NA.Id;
499 NodeId Self = G.id(this);
500 NA.Addr->setNext(Self);
501 }
502 Code.LastM = NA.Id;
503}
504
505// Add node NA after member node MA in the given code node.
506void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
507 const DataFlowGraph &G) {
508 MA.Addr->append(NA);
509 if (Code.LastM == MA.Id)
510 Code.LastM = NA.Id;
511}
512
513// Remove member node NA from the given code node.
514void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000515 NodeAddr<NodeBase*> MA = getFirstMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000516 assert(MA.Id != 0);
517
518 // Special handling if the member to remove is the first member.
519 if (MA.Id == NA.Id) {
520 if (Code.LastM == MA.Id) {
521 // If it is the only member, set both first and last to 0.
522 Code.FirstM = Code.LastM = 0;
523 } else {
524 // Otherwise, advance the first member.
525 Code.FirstM = MA.Addr->getNext();
526 }
527 return;
528 }
529
530 while (MA.Addr != this) {
531 NodeId MX = MA.Addr->getNext();
532 if (MX == NA.Id) {
533 MA.Addr->setNext(NA.Addr->getNext());
534 // If the member to remove happens to be the last one, update the
535 // LastM indicator.
536 if (Code.LastM == NA.Id)
537 Code.LastM = MA.Id;
538 return;
539 }
540 MA = G.addr<NodeBase*>(MX);
541 }
542 llvm_unreachable("No such member");
543}
544
545// Return the list of all members of the code node.
546NodeList CodeNode::members(const DataFlowGraph &G) const {
547 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
548 return members_if(True, G);
549}
550
551// Return the owner of the given instr node.
552NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
553 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
554
555 while (NA.Addr != this) {
556 assert(NA.Addr->getType() == NodeAttrs::Code);
557 if (NA.Addr->getKind() == NodeAttrs::Block)
558 return NA;
559 NA = G.addr<NodeBase*>(NA.Addr->getNext());
560 }
561 llvm_unreachable("No owner in circular list");
562}
563
564// Add the phi node PA to the given block node.
565void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000566 NodeAddr<NodeBase*> M = getFirstMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000567 if (M.Id == 0) {
568 addMember(PA, G);
569 return;
570 }
571
572 assert(M.Addr->getType() == NodeAttrs::Code);
573 if (M.Addr->getKind() == NodeAttrs::Stmt) {
574 // If the first member of the block is a statement, insert the phi as
575 // the first member.
576 Code.FirstM = PA.Id;
577 PA.Addr->setNext(M.Id);
578 } else {
579 // If the first member is a phi, find the last phi, and append PA to it.
580 assert(M.Addr->getKind() == NodeAttrs::Phi);
581 NodeAddr<NodeBase*> MN = M;
582 do {
583 M = MN;
584 MN = G.addr<NodeBase*>(M.Addr->getNext());
585 assert(MN.Addr->getType() == NodeAttrs::Code);
586 } while (MN.Addr->getKind() == NodeAttrs::Phi);
587
588 // M is the last phi.
589 addMemberAfter(M, PA, G);
590 }
591}
592
593// Find the block node corresponding to the machine basic block BB in the
594// given func node.
595NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
596 const DataFlowGraph &G) const {
597 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
598 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
599 };
600 NodeList Ms = members_if(EqBB, G);
601 if (!Ms.empty())
602 return Ms[0];
603 return NodeAddr<BlockNode*>();
604}
605
606// Get the block node for the entry block in the given function.
607NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
608 MachineBasicBlock *EntryB = &getCode()->front();
609 return findBlock(EntryB, G);
610}
611
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000612// Target operand information.
613//
614
615// For a given instruction, check if there are any bits of RR that can remain
616// unchanged across this def.
617bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
618 const {
Duncan P. N. Exon Smith6307eb52016-02-23 02:46:52 +0000619 return TII.isPredicated(In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000620}
621
622// Check if the definition of RR produces an unspecified value.
623bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
624 const {
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +0000625 const MachineOperand &Op = In.getOperand(OpNum);
626 if (Op.isRegMask())
627 return true;
628 assert(Op.isReg());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000629 if (In.isCall())
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +0000630 if (Op.isDef() && Op.isDead())
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000631 return true;
632 return false;
633}
634
Krzysztof Parzyszekc5a4e262016-04-28 20:33:33 +0000635// Check if the given instruction specifically requires
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000636bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
637 const {
Krzysztof Parzyszekc5a4e262016-04-28 20:33:33 +0000638 if (In.isCall() || In.isReturn() || In.isInlineAsm())
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000639 return true;
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +0000640 // Check for a tail call.
641 if (In.isBranch())
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000642 for (const MachineOperand &O : In.operands())
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +0000643 if (O.isGlobal() || O.isSymbol())
644 return true;
645
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000646 const MCInstrDesc &D = In.getDesc();
647 if (!D.getImplicitDefs() && !D.getImplicitUses())
648 return false;
649 const MachineOperand &Op = In.getOperand(OpNum);
650 // If there is a sub-register, treat the operand as non-fixed. Currently,
651 // fixed registers are those that are listed in the descriptor as implicit
652 // uses or defs, and those lists do not allow sub-registers.
653 if (Op.getSubReg() != 0)
654 return false;
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000655 RegisterId Reg = Op.getReg();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000656 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
657 : D.getImplicitUses();
658 if (!ImpR)
659 return false;
660 while (*ImpR)
661 if (*ImpR++ == Reg)
662 return true;
663 return false;
664}
665
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000666//
667// The data flow graph construction.
668//
669
670DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
671 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000672 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
Krzysztof Parzyszek49ffff12017-01-30 17:46:56 +0000673 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
674 LiveIns(PRI) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000675}
676
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000677// The implementation of the definition stack.
678// Each register reference has its own definition stack. In particular,
679// for a register references "Reg" and "Reg:subreg" will each have their
680// own definition stacks.
681
682// Construct a stack iterator.
683DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
684 bool Top) : DS(S) {
685 if (!Top) {
686 // Initialize to bottom.
687 Pos = 0;
688 return;
689 }
690 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
691 Pos = DS.Stack.size();
692 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
693 Pos--;
694}
695
696// Return the size of the stack, including block delimiters.
697unsigned DataFlowGraph::DefStack::size() const {
698 unsigned S = 0;
699 for (auto I = top(), E = bottom(); I != E; I.down())
700 S++;
701 return S;
702}
703
704// Remove the top entry from the stack. Remove all intervening delimiters
705// so that after this, the stack is either empty, or the top of the stack
706// is a non-delimiter.
707void DataFlowGraph::DefStack::pop() {
708 assert(!empty());
709 unsigned P = nextDown(Stack.size());
710 Stack.resize(P);
711}
712
713// Push a delimiter for block node N on the stack.
714void DataFlowGraph::DefStack::start_block(NodeId N) {
715 assert(N != 0);
716 Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
717}
718
719// Remove all nodes from the top of the stack, until the delimited for
720// block node N is encountered. Remove the delimiter as well. In effect,
721// this will remove from the stack all definitions from block N.
722void DataFlowGraph::DefStack::clear_block(NodeId N) {
723 assert(N != 0);
724 unsigned P = Stack.size();
725 while (P > 0) {
726 bool Found = isDelimiter(Stack[P-1], N);
727 P--;
728 if (Found)
729 break;
730 }
731 // This will also remove the delimiter, if found.
732 Stack.resize(P);
733}
734
735// Move the stack iterator up by one.
736unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
737 // Get the next valid position after P (skipping all delimiters).
738 // The input position P does not have to point to a non-delimiter.
739 unsigned SS = Stack.size();
740 bool IsDelim;
Krzysztof Parzyszek8dca45e2016-01-12 16:51:55 +0000741 assert(P < SS);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000742 do {
743 P++;
744 IsDelim = isDelimiter(Stack[P-1]);
745 } while (P < SS && IsDelim);
746 assert(!IsDelim);
747 return P;
748}
749
750// Move the stack iterator down by one.
751unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
752 // Get the preceding valid position before P (skipping all delimiters).
753 // The input position P does not have to point to a non-delimiter.
754 assert(P > 0 && P <= Stack.size());
755 bool IsDelim = isDelimiter(Stack[P-1]);
756 do {
757 if (--P == 0)
758 break;
759 IsDelim = isDelimiter(Stack[P-1]);
760 } while (P > 0 && IsDelim);
761 assert(!IsDelim);
762 return P;
763}
764
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000765// Register information.
766
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000767RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
768 RegisterSet LR;
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000769 const Function &F = *MF.getFunction();
770 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
771 : nullptr;
772 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000773 if (RegisterId R = TLI.getExceptionPointerRegister(PF))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000774 LR.insert(RegisterRef(R));
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000775 if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000776 LR.insert(RegisterRef(R));
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000777 return LR;
778}
779
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000780// Node management functions.
781
782// Get the pointer to the node with the id N.
783NodeBase *DataFlowGraph::ptr(NodeId N) const {
784 if (N == 0)
785 return nullptr;
786 return Memory.ptr(N);
787}
788
789// Get the id of the node at the address P.
790NodeId DataFlowGraph::id(const NodeBase *P) const {
791 if (P == nullptr)
792 return 0;
793 return Memory.id(P);
794}
795
796// Allocate a new node and set the attributes to Attrs.
797NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
798 NodeAddr<NodeBase*> P = Memory.New();
799 P.Addr->init();
800 P.Addr->setAttrs(Attrs);
801 return P;
802}
803
804// Make a copy of the given node B, except for the data-flow links, which
805// are set to 0.
806NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
807 NodeAddr<NodeBase*> NA = newNode(0);
808 memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
809 // Ref nodes need to have the data-flow links reset.
810 if (NA.Addr->getType() == NodeAttrs::Ref) {
811 NodeAddr<RefNode*> RA = NA;
812 RA.Addr->setReachingDef(0);
813 RA.Addr->setSibling(0);
814 if (NA.Addr->getKind() == NodeAttrs::Def) {
815 NodeAddr<DefNode*> DA = NA;
816 DA.Addr->setReachedDef(0);
817 DA.Addr->setReachedUse(0);
818 }
819 }
820 return NA;
821}
822
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000823// Allocation routines for specific node types/kinds.
824
825NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
826 MachineOperand &Op, uint16_t Flags) {
827 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000828 UA.Addr->setRegRef(&Op, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000829 return UA;
830}
831
832NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
833 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
834 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
835 assert(Flags & NodeAttrs::PhiRef);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000836 PUA.Addr->setRegRef(RR, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000837 PUA.Addr->setPredecessor(PredB.Id);
838 return PUA;
839}
840
841NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
842 MachineOperand &Op, uint16_t Flags) {
843 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000844 DA.Addr->setRegRef(&Op, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000845 return DA;
846}
847
848NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
849 RegisterRef RR, uint16_t Flags) {
850 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
851 assert(Flags & NodeAttrs::PhiRef);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000852 DA.Addr->setRegRef(RR, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000853 return DA;
854}
855
856NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
857 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
858 Owner.Addr->addPhi(PA, *this);
859 return PA;
860}
861
862NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
863 MachineInstr *MI) {
864 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
865 SA.Addr->setCode(MI);
866 Owner.Addr->addMember(SA, *this);
867 return SA;
868}
869
870NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
871 MachineBasicBlock *BB) {
872 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
873 BA.Addr->setCode(BB);
874 Owner.Addr->addMember(BA, *this);
875 return BA;
876}
877
878NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
879 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
880 FA.Addr->setCode(MF);
881 return FA;
882}
883
884// Build the data flow graph.
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000885void DataFlowGraph::build(unsigned Options) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000886 reset();
887 Func = newFunc(&MF);
888
889 if (MF.empty())
890 return;
891
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000892 for (MachineBasicBlock &B : MF) {
893 NodeAddr<BlockNode*> BA = newBlock(Func, &B);
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000894 BlockNodes.insert(std::make_pair(&B, BA));
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000895 for (MachineInstr &I : B) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000896 if (I.isDebugValue())
897 continue;
898 buildStmt(BA, I);
899 }
900 }
901
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000902 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000903 NodeList Blocks = Func.Addr->members(*this);
904
905 // Collect information about block references.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000906 BlockRefsMap RefM;
907 buildBlockRefs(EA, RefM);
908
Krzysztof Parzyszekb561cf92017-01-30 16:20:30 +0000909 // Collect function live-ins and entry block live-ins.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000910 MachineRegisterInfo &MRI = MF.getRegInfo();
Krzysztof Parzyszekb561cf92017-01-30 16:20:30 +0000911 MachineBasicBlock &EntryB = *EA.Addr->getCode();
912 assert(EntryB.pred_empty() && "Function entry block has predecessors");
913 for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I)
914 LiveIns.insert(RegisterRef(I->first));
Krzysztof Parzyszekba36b922017-02-22 18:27:36 +0000915 if (MRI.tracksLiveness()) {
916 for (auto I : EntryB.liveins())
917 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
918 }
Krzysztof Parzyszekb561cf92017-01-30 16:20:30 +0000919
920 // Add function-entry phi nodes for the live-in registers.
Krzysztof Parzyszek74b1f252017-04-14 17:25:13 +0000921 //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
922 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
923 RegisterRef RR = *I;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000924 NodeAddr<PhiNode*> PA = newPhi(EA);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000925 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
926 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
927 PA.Addr->addMember(DA, *this);
928 }
929
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000930 // Add phis for landing pads.
931 // Landing pads, unlike usual backs blocks, are not entered through
932 // branches in the program, or fall-throughs from other blocks. They
933 // are entered from the exception handling runtime and target's ABI
934 // may define certain registers as defined on entry to such a block.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000935 RegisterSet EHRegs = getLandingPadLiveIns();
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000936 if (!EHRegs.empty()) {
937 for (NodeAddr<BlockNode*> BA : Blocks) {
938 const MachineBasicBlock &B = *BA.Addr->getCode();
939 if (!B.isEHPad())
940 continue;
941
942 // Prepare a list of NodeIds of the block's predecessors.
943 NodeList Preds;
944 for (MachineBasicBlock *PB : B.predecessors())
945 Preds.push_back(findBlock(PB));
946
947 // Build phi nodes for each live-in.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000948 for (RegisterRef RR : EHRegs) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000949 NodeAddr<PhiNode*> PA = newPhi(BA);
950 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
951 // Add def:
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000952 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000953 PA.Addr->addMember(DA, *this);
954 // Add uses (no reaching defs for phi uses):
955 for (NodeAddr<BlockNode*> PBA : Preds) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000956 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000957 PA.Addr->addMember(PUA, *this);
958 }
959 }
960 }
961 }
962
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000963 // Build a map "PhiM" which will contain, for each block, the set
964 // of references that will require phi definitions in that block.
965 BlockRefsMap PhiM;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000966 for (NodeAddr<BlockNode*> BA : Blocks)
967 recordDefsForDF(PhiM, RefM, BA);
968 for (NodeAddr<BlockNode*> BA : Blocks)
969 buildPhis(PhiM, RefM, BA);
970
971 // Link all the refs. This will recursively traverse the dominator tree.
972 DefStackMap DM;
973 linkBlockRefs(DM, EA);
974
975 // Finally, remove all unused phi nodes.
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000976 if (!(Options & BuildOptions::KeepDeadPhis))
977 removeUnusedPhis();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000978}
979
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000980RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +0000981 assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
982 TargetRegisterInfo::isPhysicalRegister(Reg));
983 assert(Reg != 0);
Krzysztof Parzyszek775a2092016-10-14 19:06:25 +0000984 if (Sub != 0)
985 Reg = TRI.getSubReg(Reg, Sub);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000986 return RegisterRef(Reg);
987}
988
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +0000989RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
990 assert(Op.isReg() || Op.isRegMask());
991 if (Op.isReg())
992 return makeRegRef(Op.getReg(), Op.getSubReg());
993 return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
994}
995
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000996RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
997 if (AR.Reg == BR.Reg) {
998 LaneBitmask M = AR.Mask & BR.Mask;
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +0000999 return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +00001000 }
1001#ifndef NDEBUG
Krzysztof Parzyszek74b1f252017-04-14 17:25:13 +00001002// RegisterRef NAR = PRI.normalize(AR);
1003// RegisterRef NBR = PRI.normalize(BR);
1004// assert(NAR.Reg != NBR.Reg);
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +00001005#endif
1006 // This isn't strictly correct, because the overlap may happen in the
1007 // part masked out.
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001008 if (PRI.alias(AR, BR))
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +00001009 return AR;
1010 return RegisterRef();
1011}
1012
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001013// For each stack in the map DefM, push the delimiter for block B on it.
1014void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1015 // Push block delimiters.
1016 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1017 I->second.start_block(B);
1018}
1019
1020// Remove all definitions coming from block B from each stack in DefM.
1021void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1022 // Pop all defs from this block from the definition stack. Defs that were
1023 // added to the map during the traversal of instructions will not have a
1024 // delimiter, but for those, the whole stack will be emptied.
1025 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1026 I->second.clear_block(B);
1027
1028 // Finally, remove empty stacks from the map.
1029 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1030 NextI = std::next(I);
1031 // This preserves the validity of iterators other than I.
1032 if (I->second.empty())
1033 DefM.erase(I);
1034 }
1035}
1036
1037// Push all definitions from the instruction node IA to an appropriate
1038// stack in DefM.
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001039void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1040 pushClobbers(IA, DefM);
1041 pushDefs(IA, DefM);
1042}
1043
1044// Push all definitions from the instruction node IA to an appropriate
1045// stack in DefM.
1046void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1047 NodeSet Visited;
1048 std::set<RegisterId> Defined;
1049
1050 // The important objectives of this function are:
1051 // - to be able to handle instructions both while the graph is being
1052 // constructed, and after the graph has been constructed, and
1053 // - maintain proper ordering of definitions on the stack for each
1054 // register reference:
1055 // - if there are two or more related defs in IA (i.e. coming from
1056 // the same machine operand), then only push one def on the stack,
1057 // - if there are multiple unrelated defs of non-overlapping
1058 // subregisters of S, then the stack for S will have both (in an
1059 // unspecified order), but the order does not matter from the data-
1060 // -flow perspective.
1061
1062 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1063 if (Visited.count(DA.Id))
1064 continue;
1065 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1066 continue;
1067
1068 NodeList Rel = getRelatedRefs(IA, DA);
1069 NodeAddr<DefNode*> PDA = Rel.front();
1070 RegisterRef RR = PDA.Addr->getRegRef(*this);
1071
1072 // Push the definition on the stack for the register and all aliases.
1073 // The def stack traversal in linkNodeUp will check the exact aliasing.
1074 DefM[RR.Reg].push(DA);
1075 Defined.insert(RR.Reg);
1076 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1077 // Check that we don't push the same def twice.
1078 assert(A != RR.Reg);
1079 if (!Defined.count(A))
1080 DefM[A].push(DA);
1081 }
1082 // Mark all the related defs as visited.
1083 for (NodeAddr<NodeBase*> T : Rel)
1084 Visited.insert(T.Id);
1085 }
1086}
1087
1088// Push all definitions from the instruction node IA to an appropriate
1089// stack in DefM.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001090void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001091 NodeSet Visited;
1092#ifndef NDEBUG
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001093 std::set<RegisterId> Defined;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001094#endif
1095
1096 // The important objectives of this function are:
1097 // - to be able to handle instructions both while the graph is being
1098 // constructed, and after the graph has been constructed, and
1099 // - maintain proper ordering of definitions on the stack for each
1100 // register reference:
1101 // - if there are two or more related defs in IA (i.e. coming from
1102 // the same machine operand), then only push one def on the stack,
1103 // - if there are multiple unrelated defs of non-overlapping
1104 // subregisters of S, then the stack for S will have both (in an
1105 // unspecified order), but the order does not matter from the data-
1106 // -flow perspective.
1107
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001108 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001109 if (Visited.count(DA.Id))
1110 continue;
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001111 if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1112 continue;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001113
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001114 NodeList Rel = getRelatedRefs(IA, DA);
1115 NodeAddr<DefNode*> PDA = Rel.front();
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001116 RegisterRef RR = PDA.Addr->getRegRef(*this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001117#ifndef NDEBUG
1118 // Assert if the register is defined in two or more unrelated defs.
1119 // This could happen if there are two or more def operands defining it.
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001120 if (!Defined.insert(RR.Reg).second) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001121 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001122 dbgs() << "Multiple definitions of register: "
1123 << Print<RegisterRef>(RR, *this) << " in\n " << *MI
1124 << "in BB#" << MI->getParent()->getNumber() << '\n';
1125 llvm_unreachable(nullptr);
1126 }
1127#endif
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001128 // Push the definition on the stack for the register and all aliases.
1129 // The def stack traversal in linkNodeUp will check the exact aliasing.
1130 DefM[RR.Reg].push(DA);
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001131 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001132 // Check that we don't push the same def twice.
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001133 assert(A != RR.Reg);
1134 DefM[A].push(DA);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001135 }
1136 // Mark all the related defs as visited.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001137 for (NodeAddr<NodeBase*> T : Rel)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001138 Visited.insert(T.Id);
1139 }
1140}
1141
1142// Return the list of all reference nodes related to RA, including RA itself.
1143// See "getNextRelated" for the meaning of a "related reference".
1144NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1145 NodeAddr<RefNode*> RA) const {
1146 assert(IA.Id != 0 && RA.Id != 0);
1147
1148 NodeList Refs;
1149 NodeId Start = RA.Id;
1150 do {
1151 Refs.push_back(RA);
1152 RA = getNextRelated(IA, RA);
1153 } while (RA.Id != 0 && RA.Id != Start);
1154 return Refs;
1155}
1156
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001157// Clear all information in the graph.
1158void DataFlowGraph::reset() {
1159 Memory.clear();
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +00001160 BlockNodes.clear();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001161 Func = NodeAddr<FuncNode*>();
1162}
1163
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001164// Return the next reference node in the instruction node IA that is related
1165// to RA. Conceptually, two reference nodes are related if they refer to the
1166// same instance of a register access, but differ in flags or other minor
1167// characteristics. Specific examples of related nodes are shadow reference
1168// nodes.
1169// Return the equivalent of nullptr if there are no more related references.
1170NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1171 NodeAddr<RefNode*> RA) const {
1172 assert(IA.Id != 0 && RA.Id != 0);
1173
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001174 auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001175 if (TA.Addr->getKind() != RA.Addr->getKind())
1176 return false;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001177 if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001178 return false;
1179 return true;
1180 };
1181 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1182 return Related(TA) &&
1183 &RA.Addr->getOp() == &TA.Addr->getOp();
1184 };
1185 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1186 if (!Related(TA))
1187 return false;
1188 if (TA.Addr->getKind() != NodeAttrs::Use)
1189 return true;
1190 // For phi uses, compare predecessor blocks.
1191 const NodeAddr<const PhiUseNode*> TUA = TA;
1192 const NodeAddr<const PhiUseNode*> RUA = RA;
1193 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1194 };
1195
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001196 RegisterRef RR = RA.Addr->getRegRef(*this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001197 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1198 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1199 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1200}
1201
1202// Find the next node related to RA in IA that satisfies condition P.
1203// If such a node was found, return a pair where the second element is the
1204// located node. If such a node does not exist, return a pair where the
1205// first element is the element after which such a node should be inserted,
1206// and the second element is a null-address.
1207template <typename Predicate>
1208std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1209DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1210 Predicate P) const {
1211 assert(IA.Id != 0 && RA.Id != 0);
1212
1213 NodeAddr<RefNode*> NA;
1214 NodeId Start = RA.Id;
1215 while (true) {
1216 NA = getNextRelated(IA, RA);
1217 if (NA.Id == 0 || NA.Id == Start)
1218 break;
1219 if (P(NA))
1220 break;
1221 RA = NA;
1222 }
1223
1224 if (NA.Id != 0 && NA.Id != Start)
1225 return std::make_pair(RA, NA);
1226 return std::make_pair(RA, NodeAddr<RefNode*>());
1227}
1228
1229// Get the next shadow node in IA corresponding to RA, and optionally create
1230// such a node if it does not exist.
1231NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1232 NodeAddr<RefNode*> RA, bool Create) {
1233 assert(IA.Id != 0 && RA.Id != 0);
1234
1235 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1236 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1237 return TA.Addr->getFlags() == Flags;
1238 };
1239 auto Loc = locateNextRef(IA, RA, IsShadow);
1240 if (Loc.second.Id != 0 || !Create)
1241 return Loc.second;
1242
1243 // Create a copy of RA and mark is as shadow.
1244 NodeAddr<RefNode*> NA = cloneNode(RA);
1245 NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1246 IA.Addr->addMemberAfter(Loc.first, NA, *this);
1247 return NA;
1248}
1249
1250// Get the next shadow node in IA corresponding to RA. Return null-address
1251// if such a node does not exist.
1252NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1253 NodeAddr<RefNode*> RA) const {
1254 assert(IA.Id != 0 && RA.Id != 0);
1255 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1256 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1257 return TA.Addr->getFlags() == Flags;
1258 };
1259 return locateNextRef(IA, RA, IsShadow).second;
1260}
1261
1262// Create a new statement node in the block node BA that corresponds to
1263// the machine instruction MI.
1264void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001265 NodeAddr<StmtNode*> SA = newStmt(BA, &In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001266
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001267 auto isCall = [] (const MachineInstr &In) -> bool {
1268 if (In.isCall())
1269 return true;
1270 // Is tail call?
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001271 if (In.isBranch()) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001272 for (const MachineOperand &Op : In.operands())
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001273 if (Op.isGlobal() || Op.isSymbol())
1274 return true;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001275 // Assume indirect branches are calls. This is for the purpose of
1276 // keeping implicit operands, and so it won't hurt on intra-function
1277 // indirect branches.
1278 if (In.isIndirectBranch())
1279 return true;
1280 }
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001281 return false;
1282 };
1283
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001284 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1285 // This instruction defines DR. Check if there is a use operand that
1286 // would make DR live on entry to the instruction.
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001287 for (const MachineOperand &Op : In.operands()) {
1288 if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001289 continue;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001290 RegisterRef UR = makeRegRef(Op);
Krzysztof Parzyszek49ffff12017-01-30 17:46:56 +00001291 if (PRI.alias(DR, UR))
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001292 return false;
1293 }
1294 return true;
1295 };
1296
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001297 bool IsCall = isCall(In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001298 unsigned NumOps = In.getNumOperands();
1299
1300 // Avoid duplicate implicit defs. This will not detect cases of implicit
1301 // defs that define registers that overlap, but it is not clear how to
1302 // interpret that in the absence of explicit defs. Overlapping explicit
1303 // defs are likely illegal already.
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001304 BitVector DoneDefs(TRI.getNumRegs());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001305 // Process explicit defs first.
1306 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1307 MachineOperand &Op = In.getOperand(OpN);
1308 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1309 continue;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001310 unsigned R = Op.getReg();
1311 if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
1312 continue;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001313 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001314 if (TOI.isPreserving(In, OpN)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001315 Flags |= NodeAttrs::Preserving;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001316 // If the def is preserving, check if it is also undefined.
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001317 if (isDefUndef(In, makeRegRef(Op)))
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001318 Flags |= NodeAttrs::Undef;
1319 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001320 if (TOI.isClobbering(In, OpN))
1321 Flags |= NodeAttrs::Clobbering;
1322 if (TOI.isFixedReg(In, OpN))
1323 Flags |= NodeAttrs::Fixed;
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001324 if (IsCall && Op.isDead())
1325 Flags |= NodeAttrs::Dead;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001326 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1327 SA.Addr->addMember(DA, *this);
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001328 assert(!DoneDefs.test(R));
1329 DoneDefs.set(R);
1330 }
1331
1332 // Process reg-masks (as clobbers).
1333 BitVector DoneClobbers(TRI.getNumRegs());
1334 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1335 MachineOperand &Op = In.getOperand(OpN);
1336 if (!Op.isRegMask())
1337 continue;
1338 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1339 NodeAttrs::Dead;
1340 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1341 SA.Addr->addMember(DA, *this);
1342 // Record all clobbered registers in DoneDefs.
1343 const uint32_t *RM = Op.getRegMask();
1344 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1345 if (!(RM[i/32] & (1u << (i%32))))
1346 DoneClobbers.set(i);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001347 }
1348
1349 // Process implicit defs, skipping those that have already been added
1350 // as explicit.
1351 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1352 MachineOperand &Op = In.getOperand(OpN);
1353 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1354 continue;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001355 unsigned R = Op.getReg();
1356 if (!R || !TargetRegisterInfo::isPhysicalRegister(R) || DoneDefs.test(R))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001357 continue;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001358 RegisterRef RR = makeRegRef(Op);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001359 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001360 if (TOI.isPreserving(In, OpN)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001361 Flags |= NodeAttrs::Preserving;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001362 // If the def is preserving, check if it is also undefined.
1363 if (isDefUndef(In, RR))
1364 Flags |= NodeAttrs::Undef;
1365 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001366 if (TOI.isClobbering(In, OpN))
1367 Flags |= NodeAttrs::Clobbering;
1368 if (TOI.isFixedReg(In, OpN))
1369 Flags |= NodeAttrs::Fixed;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001370 if (IsCall && Op.isDead()) {
1371 if (DoneClobbers.test(R))
1372 continue;
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001373 Flags |= NodeAttrs::Dead;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001374 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001375 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1376 SA.Addr->addMember(DA, *this);
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001377 DoneDefs.set(R);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001378 }
1379
1380 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1381 MachineOperand &Op = In.getOperand(OpN);
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001382 if (!Op.isReg() || !Op.isUse())
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001383 continue;
Krzysztof Parzyszek3695d062017-01-30 19:16:30 +00001384 unsigned R = Op.getReg();
1385 if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
1386 continue;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001387 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001388 if (Op.isUndef())
1389 Flags |= NodeAttrs::Undef;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001390 if (TOI.isFixedReg(In, OpN))
1391 Flags |= NodeAttrs::Fixed;
1392 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1393 SA.Addr->addMember(UA, *this);
1394 }
1395}
1396
1397// Build a map that for each block will have the set of all references from
1398// that block, and from all blocks dominated by it.
1399void DataFlowGraph::buildBlockRefs(NodeAddr<BlockNode*> BA,
1400 BlockRefsMap &RefM) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001401 RegisterSet &Refs = RefM[BA.Id];
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001402 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1403 assert(N);
1404 for (auto I : *N) {
1405 MachineBasicBlock *SB = I->getBlock();
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001406 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001407 buildBlockRefs(SBA, RefM);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001408 const RegisterSet &RefsS = RefM[SBA.Id];
1409 Refs.insert(RefsS.begin(), RefsS.end());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001410 }
1411
1412 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1413 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001414 Refs.insert(RA.Addr->getRegRef(*this));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001415}
1416
1417// Scan all defs in the block node BA and record in PhiM the locations of
1418// phi nodes corresponding to these defs.
1419void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
1420 NodeAddr<BlockNode*> BA) {
1421 // Check all defs from block BA and record them in each block in BA's
1422 // iterated dominance frontier. This information will later be used to
1423 // create phi nodes.
1424 MachineBasicBlock *BB = BA.Addr->getCode();
1425 assert(BB);
1426 auto DFLoc = MDF.find(BB);
1427 if (DFLoc == MDF.end() || DFLoc->second.empty())
1428 return;
1429
1430 // Traverse all instructions in the block and collect the set of all
1431 // defined references. For each reference there will be a phi created
1432 // in the block's iterated dominance frontier.
1433 // This is done to make sure that each defined reference gets only one
1434 // phi node, even if it is defined multiple times.
1435 RegisterSet Defs;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001436 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001437 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001438 Defs.insert(RA.Addr->getRegRef(*this));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001439
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001440 // Calculate the iterated dominance frontier of BB.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001441 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1442 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1443 for (unsigned i = 0; i < IDF.size(); ++i) {
1444 auto F = MDF.find(IDF[i]);
1445 if (F != MDF.end())
1446 IDF.insert(F->second.begin(), F->second.end());
1447 }
1448
1449 // Get the register references that are reachable from this block.
1450 RegisterSet &Refs = RefM[BA.Id];
1451 for (auto DB : IDF) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001452 NodeAddr<BlockNode*> DBA = findBlock(DB);
1453 const RegisterSet &RefsD = RefM[DBA.Id];
1454 Refs.insert(RefsD.begin(), RefsD.end());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001455 }
1456
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001457 // Finally, add the set of defs to each block in the iterated dominance
1458 // frontier.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001459 for (auto DB : IDF) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001460 NodeAddr<BlockNode*> DBA = findBlock(DB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001461 PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1462 }
1463}
1464
1465// Given the locations of phi nodes in the map PhiM, create the phi nodes
1466// that are located in the block node BA.
1467void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
1468 NodeAddr<BlockNode*> BA) {
1469 // Check if this blocks has any DF defs, i.e. if there are any defs
1470 // that this block is in the iterated dominance frontier of.
1471 auto HasDF = PhiM.find(BA.Id);
1472 if (HasDF == PhiM.end() || HasDF->second.empty())
1473 return;
1474
1475 // First, remove all R in Refs in such that there exists T in Refs
1476 // such that T covers R. In other words, only leave those refs that
1477 // are not covered by another ref (i.e. maximal with respect to covering).
1478
1479 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001480 for (RegisterRef I : RRs)
Krzysztof Parzyszek49ffff12017-01-30 17:46:56 +00001481 if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001482 RR = I;
1483 return RR;
1484 };
1485
1486 RegisterSet MaxDF;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001487 for (RegisterRef I : HasDF->second)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001488 MaxDF.insert(MaxCoverIn(I, HasDF->second));
1489
1490 std::vector<RegisterRef> MaxRefs;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001491 RegisterSet &RefB = RefM[BA.Id];
1492 for (RegisterRef I : MaxDF)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001493 MaxRefs.push_back(MaxCoverIn(I, RefB));
1494
1495 // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1496 // only has R in it, create a phi a def for R. Otherwise, create a phi,
1497 // and add a def for each S in the closure.
1498
1499 // Sort the refs so that the phis will be created in a deterministic order.
1500 std::sort(MaxRefs.begin(), MaxRefs.end());
1501 // Remove duplicates.
1502 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1503 MaxRefs.erase(NewEnd, MaxRefs.end());
1504
1505 auto Aliased = [this,&MaxRefs](RegisterRef RR,
1506 std::vector<unsigned> &Closure) -> bool {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001507 for (unsigned I : Closure)
Krzysztof Parzyszek49ffff12017-01-30 17:46:56 +00001508 if (PRI.alias(RR, MaxRefs[I]))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001509 return true;
1510 return false;
1511 };
1512
1513 // Prepare a list of NodeIds of the block's predecessors.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001514 NodeList Preds;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001515 const MachineBasicBlock *MBB = BA.Addr->getCode();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001516 for (MachineBasicBlock *PB : MBB->predecessors())
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001517 Preds.push_back(findBlock(PB));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001518
1519 while (!MaxRefs.empty()) {
1520 // Put the first element in the closure, and then add all subsequent
1521 // elements from MaxRefs to it, if they alias at least one element
1522 // already in the closure.
1523 // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1524 std::vector<unsigned> ClosureIdx = { 0 };
1525 for (unsigned i = 1; i != MaxRefs.size(); ++i)
1526 if (Aliased(MaxRefs[i], ClosureIdx))
1527 ClosureIdx.push_back(i);
1528
1529 // Build a phi for the closure.
1530 unsigned CS = ClosureIdx.size();
1531 NodeAddr<PhiNode*> PA = newPhi(BA);
1532
1533 // Add defs.
1534 for (unsigned X = 0; X != CS; ++X) {
1535 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1536 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1537 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1538 PA.Addr->addMember(DA, *this);
1539 }
1540 // Add phi uses.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001541 for (NodeAddr<BlockNode*> PBA : Preds) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001542 for (unsigned X = 0; X != CS; ++X) {
1543 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1544 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1545 PA.Addr->addMember(PUA, *this);
1546 }
1547 }
1548
1549 // Erase from MaxRefs all elements in the closure.
1550 auto Begin = MaxRefs.begin();
1551 for (unsigned i = ClosureIdx.size(); i != 0; --i)
1552 MaxRefs.erase(Begin + ClosureIdx[i-1]);
1553 }
1554}
1555
1556// Remove any unneeded phi nodes that were created during the build process.
1557void DataFlowGraph::removeUnusedPhis() {
1558 // This will remove unused phis, i.e. phis where each def does not reach
1559 // any uses or other defs. This will not detect or remove circular phi
1560 // chains that are otherwise dead. Unused/dead phis are created during
1561 // the build process and this function is intended to remove these cases
1562 // that are easily determinable to be unnecessary.
1563
1564 SetVector<NodeId> PhiQ;
1565 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1566 for (auto P : BA.Addr->members_if(IsPhi, *this))
1567 PhiQ.insert(P.Id);
1568 }
1569
1570 static auto HasUsedDef = [](NodeList &Ms) -> bool {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001571 for (NodeAddr<NodeBase*> M : Ms) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001572 if (M.Addr->getKind() != NodeAttrs::Def)
1573 continue;
1574 NodeAddr<DefNode*> DA = M;
1575 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1576 return true;
1577 }
1578 return false;
1579 };
1580
1581 // Any phi, if it is removed, may affect other phis (make them dead).
1582 // For each removed phi, collect the potentially affected phis and add
1583 // them back to the queue.
1584 while (!PhiQ.empty()) {
1585 auto PA = addr<PhiNode*>(PhiQ[0]);
1586 PhiQ.remove(PA.Id);
1587 NodeList Refs = PA.Addr->members(*this);
1588 if (HasUsedDef(Refs))
1589 continue;
1590 for (NodeAddr<RefNode*> RA : Refs) {
1591 if (NodeId RD = RA.Addr->getReachingDef()) {
1592 auto RDA = addr<DefNode*>(RD);
1593 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1594 if (IsPhi(OA))
1595 PhiQ.insert(OA.Id);
1596 }
1597 if (RA.Addr->isDef())
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001598 unlinkDef(RA, true);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001599 else
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001600 unlinkUse(RA, true);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001601 }
1602 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1603 BA.Addr->removeMember(PA, *this);
1604 }
1605}
1606
1607// For a given reference node TA in an instruction node IA, connect the
1608// reaching def of TA to the appropriate def node. Create any shadow nodes
1609// as appropriate.
1610template <typename T>
1611void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1612 DefStack &DS) {
1613 if (DS.empty())
1614 return;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001615 RegisterRef RR = TA.Addr->getRegRef(*this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001616 NodeAddr<T> TAP;
1617
1618 // References from the def stack that have been examined so far.
Krzysztof Parzyszek49ffff12017-01-30 17:46:56 +00001619 RegisterAggr Defs(PRI);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001620
1621 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001622 RegisterRef QR = I->Addr->getRegRef(*this);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001623
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001624 // Skip all defs that are aliased to any of the defs that we have already
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001625 // seen. If this completes a cover of RR, stop the stack traversal.
1626 bool Alias = Defs.hasAliasOf(QR);
1627 bool Cover = Defs.insert(QR).hasCoverOf(RR);
1628 if (Alias) {
1629 if (Cover)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001630 break;
1631 continue;
1632 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001633
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001634 // The reaching def.
1635 NodeAddr<DefNode*> RDA = *I;
1636
1637 // Pick the reached node.
1638 if (TAP.Id == 0) {
1639 TAP = TA;
1640 } else {
1641 // Mark the existing ref as "shadow" and create a new shadow.
1642 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1643 TAP = getNextShadow(IA, TAP, true);
1644 }
1645
1646 // Create the link.
1647 TAP.Addr->linkToDef(TAP.Id, RDA);
1648
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001649 if (Cover)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001650 break;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001651 }
1652}
1653
1654// Create data-flow links for all reference nodes in the statement node SA.
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001655template <typename Predicate>
1656void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1657 Predicate P) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001658#ifndef NDEBUG
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001659 RegisterSet Defs;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001660#endif
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001661
1662 // Link all nodes (upwards in the data-flow) with their reaching defs.
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001663 for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001664 uint16_t Kind = RA.Addr->getKind();
1665 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001666 RegisterRef RR = RA.Addr->getRegRef(*this);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001667#ifndef NDEBUG
1668 // Do not expect multiple defs of the same reference.
1669 assert(Kind != NodeAttrs::Def || !Defs.count(RR));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001670 Defs.insert(RR);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001671#endif
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001672
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001673 auto F = DefM.find(RR.Reg);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001674 if (F == DefM.end())
1675 continue;
1676 DefStack &DS = F->second;
1677 if (Kind == NodeAttrs::Use)
1678 linkRefUp<UseNode*>(SA, RA, DS);
1679 else if (Kind == NodeAttrs::Def)
1680 linkRefUp<DefNode*>(SA, RA, DS);
1681 else
1682 llvm_unreachable("Unexpected node in instruction");
1683 }
1684}
1685
1686// Create data-flow links for all instructions in the block node BA. This
1687// will include updating any phi nodes in BA.
1688void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1689 // Push block delimiters.
1690 markBlock(BA.Id, DefM);
1691
David Blaikiefc4857f2017-02-16 20:55:48 +00001692 auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001693 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1694 };
David Blaikiefc4857f2017-02-16 20:55:48 +00001695 auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001696 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1697 };
1698
Krzysztof Parzyszek89757432016-05-05 22:00:44 +00001699 assert(BA.Addr && "block node address is needed to create a data-flow link");
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001700 // For each non-phi instruction in the block, link all the defs and uses
1701 // to their reaching defs. For any member of the block (including phis),
1702 // push the defs on the corresponding stacks.
1703 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1704 // Ignore phi nodes here. They will be linked part by part from the
1705 // predecessors.
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001706 if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1707 linkStmtRefs(DefM, IA, IsUse);
1708 linkStmtRefs(DefM, IA, IsClobber);
1709 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001710
1711 // Push the definitions on the stack.
Krzysztof Parzyszek84cd4ea2017-02-16 18:53:04 +00001712 pushClobbers(IA, DefM);
1713
1714 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1715 linkStmtRefs(DefM, IA, IsNoClobber);
1716
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001717 pushDefs(IA, DefM);
1718 }
1719
1720 // Recursively process all children in the dominator tree.
1721 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1722 for (auto I : *N) {
1723 MachineBasicBlock *SB = I->getBlock();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001724 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001725 linkBlockRefs(DefM, SBA);
1726 }
1727
1728 // Link the phi uses from the successor blocks.
1729 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1730 if (NA.Addr->getKind() != NodeAttrs::Use)
1731 return false;
1732 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1733 NodeAddr<PhiUseNode*> PUA = NA;
1734 return PUA.Addr->getPredecessor() == BA.Id;
1735 };
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001736
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001737 RegisterSet EHLiveIns = getLandingPadLiveIns();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001738 MachineBasicBlock *MBB = BA.Addr->getCode();
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001739
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001740 for (MachineBasicBlock *SB : MBB->successors()) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001741 bool IsEHPad = SB->isEHPad();
1742 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001743 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001744 // Do not link phi uses for landing pad live-ins.
1745 if (IsEHPad) {
1746 // Find what register this phi is for.
1747 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1748 assert(RA.Id != 0);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001749 if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001750 continue;
1751 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001752 // Go over each phi use associated with MBB, and link it.
1753 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1754 NodeAddr<PhiUseNode*> PUA = U;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001755 RegisterRef RR = PUA.Addr->getRegRef(*this);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001756 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001757 }
1758 }
1759 }
1760
1761 // Pop all defs from this block from the definition stacks.
1762 releaseBlock(BA.Id, DefM);
1763}
1764
1765// Remove the use node UA from any data-flow and structural links.
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001766void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001767 NodeId RD = UA.Addr->getReachingDef();
1768 NodeId Sib = UA.Addr->getSibling();
1769
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001770 if (RD == 0) {
1771 assert(Sib == 0);
1772 return;
1773 }
1774
1775 auto RDA = addr<DefNode*>(RD);
1776 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1777 if (TA.Id == UA.Id) {
1778 RDA.Addr->setReachedUse(Sib);
1779 return;
1780 }
1781
1782 while (TA.Id != 0) {
1783 NodeId S = TA.Addr->getSibling();
1784 if (S == UA.Id) {
1785 TA.Addr->setSibling(UA.Addr->getSibling());
1786 return;
1787 }
1788 TA = addr<UseNode*>(S);
1789 }
1790}
1791
1792// Remove the def node DA from any data-flow and structural links.
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001793void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001794 //
1795 // RD
1796 // | reached
1797 // | def
1798 // :
1799 // .
1800 // +----+
1801 // ... -- | DA | -- ... -- 0 : sibling chain of DA
1802 // +----+
1803 // | | reached
1804 // | : def
1805 // | .
1806 // | ... : Siblings (defs)
1807 // |
1808 // : reached
1809 // . use
1810 // ... : sibling chain of reached uses
1811
1812 NodeId RD = DA.Addr->getReachingDef();
1813
1814 // Visit all siblings of the reached def and reset their reaching defs.
1815 // Also, defs reached by DA are now "promoted" to being reached by RD,
1816 // so all of them will need to be spliced into the sibling chain where
1817 // DA belongs.
1818 auto getAllNodes = [this] (NodeId N) -> NodeList {
1819 NodeList Res;
1820 while (N) {
1821 auto RA = addr<RefNode*>(N);
1822 // Keep the nodes in the exact sibling order.
1823 Res.push_back(RA);
1824 N = RA.Addr->getSibling();
1825 }
1826 return Res;
1827 };
1828 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1829 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1830
1831 if (RD == 0) {
1832 for (NodeAddr<RefNode*> I : ReachedDefs)
1833 I.Addr->setSibling(0);
1834 for (NodeAddr<RefNode*> I : ReachedUses)
1835 I.Addr->setSibling(0);
1836 }
1837 for (NodeAddr<DefNode*> I : ReachedDefs)
1838 I.Addr->setReachingDef(RD);
1839 for (NodeAddr<UseNode*> I : ReachedUses)
1840 I.Addr->setReachingDef(RD);
1841
1842 NodeId Sib = DA.Addr->getSibling();
1843 if (RD == 0) {
1844 assert(Sib == 0);
1845 return;
1846 }
1847
1848 // Update the reaching def node and remove DA from the sibling list.
1849 auto RDA = addr<DefNode*>(RD);
1850 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1851 if (TA.Id == DA.Id) {
1852 // If DA is the first reached def, just update the RD's reached def
1853 // to the DA's sibling.
1854 RDA.Addr->setReachedDef(Sib);
1855 } else {
1856 // Otherwise, traverse the sibling list of the reached defs and remove
1857 // DA from it.
1858 while (TA.Id != 0) {
1859 NodeId S = TA.Addr->getSibling();
1860 if (S == DA.Id) {
1861 TA.Addr->setSibling(Sib);
1862 break;
1863 }
1864 TA = addr<DefNode*>(S);
1865 }
1866 }
1867
1868 // Splice the DA's reached defs into the RDA's reached def chain.
1869 if (!ReachedDefs.empty()) {
1870 auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1871 Last.Addr->setSibling(RDA.Addr->getReachedDef());
1872 RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1873 }
1874 // Splice the DA's reached uses into the RDA's reached use chain.
1875 if (!ReachedUses.empty()) {
1876 auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1877 Last.Addr->setSibling(RDA.Addr->getReachedUse());
1878 RDA.Addr->setReachedUse(ReachedUses.front().Id);
1879 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001880}