blob: 34510cb407321ddf376af3de6aca8987f93c67bb [file] [log] [blame]
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +00001///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Chandler Carruth6bda14b2017-06-06 11:49:48 +000010#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000011#include "llvm/ADT/DenseMap.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000012#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000013#include "llvm/ADT/Sequence.h"
14#include "llvm/ADT/SetVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000015#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000016#include "llvm/ADT/SmallVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000017#include "llvm/ADT/Statistic.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000018#include "llvm/ADT/Twine.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000019#include "llvm/Analysis/AssumptionCache.h"
Chandler Carruth32e62f92018-04-19 18:44:25 +000020#include "llvm/Analysis/CFG.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000021#include "llvm/Analysis/CodeMetrics.h"
Chandler Carruth4da33312018-06-20 18:57:07 +000022#include "llvm/Analysis/InstructionSimplify.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000023#include "llvm/Analysis/LoopAnalysisManager.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000024#include "llvm/Analysis/LoopInfo.h"
Chandler Carruth32e62f92018-04-19 18:44:25 +000025#include "llvm/Analysis/LoopIterator.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000026#include "llvm/Analysis/LoopPass.h"
Chandler Carruth4da33312018-06-20 18:57:07 +000027#include "llvm/Analysis/Utils/Local.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000028#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/Constant.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/Function.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000033#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000035#include "llvm/IR/Instructions.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000036#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000037#include "llvm/IR/Use.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/Casting.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000041#include "llvm/Support/Debug.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GenericDomTree.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000044#include "llvm/Support/raw_ostream.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000045#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000046#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000047#include "llvm/Transforms/Utils/Cloning.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000048#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000049#include "llvm/Transforms/Utils/ValueMapper.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000050#include <algorithm>
51#include <cassert>
52#include <iterator>
Chandler Carruth693eedb2017-11-17 19:58:36 +000053#include <numeric>
Eugene Zelenkoa369a452017-05-16 23:10:25 +000054#include <utility>
Chandler Carruth1353f9a2017-04-27 18:45:20 +000055
56#define DEBUG_TYPE "simple-loop-unswitch"
57
58using namespace llvm;
59
60STATISTIC(NumBranches, "Number of branches unswitched");
61STATISTIC(NumSwitches, "Number of switches unswitched");
62STATISTIC(NumTrivial, "Number of unswitches that are trivial");
63
Chandler Carruth693eedb2017-11-17 19:58:36 +000064static cl::opt<bool> EnableNonTrivialUnswitch(
65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
66 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
67 "following the configuration passed into the pass."));
68
69static cl::opt<int>
70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
71 cl::desc("The cost threshold for unswitching a loop."));
72
Chandler Carruth4da33312018-06-20 18:57:07 +000073/// Collect all of the loop invariant input values transitively used by the
74/// homogeneous instruction graph from a given root.
75///
76/// This essentially walks from a root recursively through loop variant operands
77/// which have the exact same opcode and finds all inputs which are loop
78/// invariant. For some operations these can be re-associated and unswitched out
79/// of the loop entirely.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +000080static TinyPtrVector<Value *>
Chandler Carruth4da33312018-06-20 18:57:07 +000081collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
82 LoopInfo &LI) {
Chandler Carruth4da33312018-06-20 18:57:07 +000083 assert(!L.isLoopInvariant(&Root) &&
84 "Only need to walk the graph if root itself is not invariant.");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +000085 TinyPtrVector<Value *> Invariants;
Chandler Carruth4da33312018-06-20 18:57:07 +000086
87 // Build a worklist and recurse through operators collecting invariants.
88 SmallVector<Instruction *, 4> Worklist;
89 SmallPtrSet<Instruction *, 8> Visited;
90 Worklist.push_back(&Root);
91 Visited.insert(&Root);
92 do {
93 Instruction &I = *Worklist.pop_back_val();
94 for (Value *OpV : I.operand_values()) {
95 // Skip constants as unswitching isn't interesting for them.
96 if (isa<Constant>(OpV))
97 continue;
98
99 // Add it to our result if loop invariant.
100 if (L.isLoopInvariant(OpV)) {
101 Invariants.push_back(OpV);
102 continue;
103 }
104
105 // If not an instruction with the same opcode, nothing we can do.
106 Instruction *OpI = dyn_cast<Instruction>(OpV);
107 if (!OpI || OpI->getOpcode() != Root.getOpcode())
108 continue;
109
110 // Visit this operand.
111 if (Visited.insert(OpI).second)
112 Worklist.push_back(OpI);
113 }
114 } while (!Worklist.empty());
115
116 return Invariants;
117}
118
119static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
120 Constant &Replacement) {
121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000122
123 // Replace uses of LIC in the loop with the given constant.
Chandler Carruth4da33312018-06-20 18:57:07 +0000124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000125 // Grab the use and walk past it so we can clobber it in the use list.
126 Use *U = &*UI++;
127 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000128
129 // Replace this use within the loop body.
Chandler Carruth4da33312018-06-20 18:57:07 +0000130 if (UserI && L.contains(UserI))
131 U->set(&Replacement);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000132 }
133}
134
Chandler Carruthd869b182017-05-12 02:19:59 +0000135/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
136/// incoming values along this edge.
137static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
138 BasicBlock &ExitBB) {
139 for (Instruction &I : ExitBB) {
140 auto *PN = dyn_cast<PHINode>(&I);
141 if (!PN)
142 // No more PHIs to check.
143 return true;
144
145 // If the incoming value for this edge isn't loop invariant the unswitch
146 // won't be trivial.
147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
148 return false;
149 }
150 llvm_unreachable("Basic blocks should never be empty!");
151}
152
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000153/// Insert code to test a set of loop invariant values, and conditionally branch
154/// on them.
155static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
156 ArrayRef<Value *> Invariants,
157 bool Direction,
158 BasicBlock &UnswitchedSucc,
159 BasicBlock &NormalSucc) {
160 IRBuilder<> IRB(&BB);
161 Value *Cond = Invariants.front();
162 for (Value *Invariant :
163 make_range(std::next(Invariants.begin()), Invariants.end()))
164 if (Direction)
165 Cond = IRB.CreateOr(Cond, Invariant);
166 else
167 Cond = IRB.CreateAnd(Cond, Invariant);
168
169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
170 Direction ? &NormalSucc : &UnswitchedSucc);
171}
172
Chandler Carruthd869b182017-05-12 02:19:59 +0000173/// Rewrite the PHI nodes in an unswitched loop exit basic block.
174///
175/// Requires that the loop exit and unswitched basic block are the same, and
176/// that the exiting block was a unique predecessor of that block. Rewrites the
177/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
178/// PHI nodes from the old preheader that now contains the unswitched
179/// terminator.
180static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
181 BasicBlock &OldExitingBB,
182 BasicBlock &OldPH) {
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000183 for (PHINode &PN : UnswitchedBB.phis()) {
Chandler Carruthd869b182017-05-12 02:19:59 +0000184 // When the loop exit is directly unswitched we just need to update the
185 // incoming basic block. We loop to handle weird cases with repeated
186 // incoming blocks, but expect to typically only have one operand here.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000187 for (auto i : seq<int>(0, PN.getNumOperands())) {
188 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000189 "Found incoming block different from unique predecessor!");
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000190 PN.setIncomingBlock(i, &OldPH);
Chandler Carruthd869b182017-05-12 02:19:59 +0000191 }
192 }
193}
194
195/// Rewrite the PHI nodes in the loop exit basic block and the split off
196/// unswitched block.
197///
198/// Because the exit block remains an exit from the loop, this rewrites the
199/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
200/// nodes into the unswitched basic block to select between the value in the
201/// old preheader and the loop exit.
202static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
203 BasicBlock &UnswitchedBB,
204 BasicBlock &OldExitingBB,
Chandler Carruth4da33312018-06-20 18:57:07 +0000205 BasicBlock &OldPH,
206 bool FullUnswitch) {
Chandler Carruthd869b182017-05-12 02:19:59 +0000207 assert(&ExitBB != &UnswitchedBB &&
208 "Must have different loop exit and unswitched blocks!");
209 Instruction *InsertPt = &*UnswitchedBB.begin();
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000210 for (PHINode &PN : ExitBB.phis()) {
211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
212 PN.getName() + ".split", InsertPt);
Chandler Carruthd869b182017-05-12 02:19:59 +0000213
214 // Walk backwards over the old PHI node's inputs to minimize the cost of
215 // removing each one. We have to do this weird loop manually so that we
216 // create the same number of new incoming edges in the new PHI as we expect
217 // each case-based edge to be included in the unswitched switch in some
218 // cases.
219 // FIXME: This is really, really gross. It would be much cleaner if LLVM
220 // allowed us to create a single entry for a predecessor block without
221 // having separate entries for each "edge" even though these edges are
222 // required to produce identical results.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
224 if (PN.getIncomingBlock(i) != &OldExitingBB)
Chandler Carruthd869b182017-05-12 02:19:59 +0000225 continue;
226
Chandler Carruth4da33312018-06-20 18:57:07 +0000227 Value *Incoming = PN.getIncomingValue(i);
228 if (FullUnswitch)
229 // No more edge from the old exiting block to the exit block.
230 PN.removeIncomingValue(i);
231
Chandler Carruthd869b182017-05-12 02:19:59 +0000232 NewPN->addIncoming(Incoming, &OldPH);
233 }
234
235 // Now replace the old PHI with the new one and wire the old one in as an
236 // input to the new one.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000237 PN.replaceAllUsesWith(NewPN);
238 NewPN->addIncoming(&PN, &ExitBB);
Chandler Carruthd869b182017-05-12 02:19:59 +0000239 }
240}
241
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +0000242/// Hoist the current loop up to the innermost loop containing a remaining exit.
243///
244/// Because we've removed an exit from the loop, we may have changed the set of
245/// loops reachable and need to move the current loop up the loop nest or even
246/// to an entirely separate nest.
247static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
248 DominatorTree &DT, LoopInfo &LI) {
249 // If the loop is already at the top level, we can't hoist it anywhere.
250 Loop *OldParentL = L.getParentLoop();
251 if (!OldParentL)
252 return;
253
254 SmallVector<BasicBlock *, 4> Exits;
255 L.getExitBlocks(Exits);
256 Loop *NewParentL = nullptr;
257 for (auto *ExitBB : Exits)
258 if (Loop *ExitL = LI.getLoopFor(ExitBB))
259 if (!NewParentL || NewParentL->contains(ExitL))
260 NewParentL = ExitL;
261
262 if (NewParentL == OldParentL)
263 return;
264
265 // The new parent loop (if different) should always contain the old one.
266 if (NewParentL)
267 assert(NewParentL->contains(OldParentL) &&
268 "Can only hoist this loop up the nest!");
269
270 // The preheader will need to move with the body of this loop. However,
271 // because it isn't in this loop we also need to update the primary loop map.
272 assert(OldParentL == LI.getLoopFor(&Preheader) &&
273 "Parent loop of this loop should contain this loop's preheader!");
274 LI.changeLoopFor(&Preheader, NewParentL);
275
276 // Remove this loop from its old parent.
277 OldParentL->removeChildLoop(&L);
278
279 // Add the loop either to the new parent or as a top-level loop.
280 if (NewParentL)
281 NewParentL->addChildLoop(&L);
282 else
283 LI.addTopLevelLoop(&L);
284
285 // Remove this loops blocks from the old parent and every other loop up the
286 // nest until reaching the new parent. Also update all of these
287 // no-longer-containing loops to reflect the nesting change.
288 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
289 OldContainingL = OldContainingL->getParentLoop()) {
290 llvm::erase_if(OldContainingL->getBlocksVector(),
291 [&](const BasicBlock *BB) {
292 return BB == &Preheader || L.contains(BB);
293 });
294
295 OldContainingL->getBlocksSet().erase(&Preheader);
296 for (BasicBlock *BB : L.blocks())
297 OldContainingL->getBlocksSet().erase(BB);
298
299 // Because we just hoisted a loop out of this one, we have essentially
300 // created new exit paths from it. That means we need to form LCSSA PHI
301 // nodes for values used in the no-longer-nested loop.
302 formLCSSA(*OldContainingL, DT, &LI, nullptr);
303
304 // We shouldn't need to form dedicated exits because the exit introduced
305 // here is the (just split by unswitching) preheader. As such, it is
306 // necessarily dedicated.
307 assert(OldContainingL->hasDedicatedExits() &&
308 "Unexpected predecessor of hoisted loop preheader!");
309 }
310}
311
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000312/// Unswitch a trivial branch if the condition is loop invariant.
313///
314/// This routine should only be called when loop code leading to the branch has
315/// been validated as trivial (no side effects). This routine checks if the
316/// condition is invariant and one of the successors is a loop exit. This
317/// allows us to unswitch without duplicating the loop, making it trivial.
318///
319/// If this routine fails to unswitch the branch it returns false.
320///
321/// If the branch can be unswitched, this routine splits the preheader and
322/// hoists the branch above that split. Preserves loop simplified form
323/// (splitting the exit block as necessary). It simplifies the branch within
324/// the loop to an unconditional branch but doesn't remove it entirely. Further
325/// cleanup can be done with some simplify-cfg like pass.
Chandler Carruth3897ded2018-07-03 09:13:27 +0000326///
327/// If `SE` is not null, it will be updated based on the potential loop SCEVs
328/// invalidated by this.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000329static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
Chandler Carruth3897ded2018-07-03 09:13:27 +0000330 LoopInfo &LI, ScalarEvolution *SE) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000331 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000332 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000333
Chandler Carruth4da33312018-06-20 18:57:07 +0000334 // The loop invariant values that we want to unswitch.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000335 TinyPtrVector<Value *> Invariants;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000336
Chandler Carruth4da33312018-06-20 18:57:07 +0000337 // When true, we're fully unswitching the branch rather than just unswitching
338 // some input conditions to the branch.
339 bool FullUnswitch = false;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000340
Chandler Carruth4da33312018-06-20 18:57:07 +0000341 if (L.isLoopInvariant(BI.getCondition())) {
342 Invariants.push_back(BI.getCondition());
343 FullUnswitch = true;
344 } else {
345 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
346 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
347 if (Invariants.empty())
348 // Couldn't find invariant inputs!
349 return false;
350 }
351
352 // Check that one of the branch's successors exits, and which one.
353 bool ExitDirection = true;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000354 int LoopExitSuccIdx = 0;
355 auto *LoopExitBB = BI.getSuccessor(0);
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000356 if (L.contains(LoopExitBB)) {
Chandler Carruth4da33312018-06-20 18:57:07 +0000357 ExitDirection = false;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000358 LoopExitSuccIdx = 1;
359 LoopExitBB = BI.getSuccessor(1);
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000360 if (L.contains(LoopExitBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000361 return false;
362 }
363 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
Chandler Carruthd869b182017-05-12 02:19:59 +0000364 auto *ParentBB = BI.getParent();
365 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000366 return false;
367
Chandler Carruth4da33312018-06-20 18:57:07 +0000368 // When unswitching only part of the branch's condition, we need the exit
369 // block to be reached directly from the partially unswitched input. This can
370 // be done when the exit block is along the true edge and the branch condition
371 // is a graph of `or` operations, or the exit block is along the false edge
372 // and the condition is a graph of `and` operations.
373 if (!FullUnswitch) {
374 if (ExitDirection) {
375 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
376 return false;
377 } else {
378 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
379 return false;
380 }
381 }
382
383 LLVM_DEBUG({
384 dbgs() << " unswitching trivial invariant conditions for: " << BI
385 << "\n";
386 for (Value *Invariant : Invariants) {
387 dbgs() << " " << *Invariant << " == true";
388 if (Invariant != Invariants.back())
389 dbgs() << " ||";
390 dbgs() << "\n";
391 }
392 });
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000393
Chandler Carruth3897ded2018-07-03 09:13:27 +0000394 // If we have scalar evolutions, we need to invalidate them including this
395 // loop and the loop containing the exit block.
396 if (SE) {
397 if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
398 SE->forgetLoop(ExitL);
399 else
400 // Forget the entire nest as this exits the entire nest.
401 SE->forgetTopmostLoop(&L);
402 }
403
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000404 // Split the preheader, so that we know that there is a safe place to insert
405 // the conditional branch. We will change the preheader to have a conditional
406 // branch on LoopCond.
407 BasicBlock *OldPH = L.getLoopPreheader();
408 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
409
410 // Now that we have a place to insert the conditional branch, create a place
411 // to branch to: this is the exit block out of the loop that we are
412 // unswitching. We need to split this if there are other loop predecessors.
413 // Because the loop is in simplified form, *any* other predecessor is enough.
414 BasicBlock *UnswitchedBB;
Chandler Carruth4da33312018-06-20 18:57:07 +0000415 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
416 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000417 "A branch's parent isn't a predecessor!");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000418 UnswitchedBB = LoopExitBB;
419 } else {
420 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
421 }
422
Chandler Carruth4da33312018-06-20 18:57:07 +0000423 // Actually move the invariant uses into the unswitched position. If possible,
424 // we do this by moving the instructions, but when doing partial unswitching
425 // we do it by building a new merge of the values in the unswitched position.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000426 OldPH->getTerminator()->eraseFromParent();
Chandler Carruth4da33312018-06-20 18:57:07 +0000427 if (FullUnswitch) {
428 // If fully unswitching, we can use the existing branch instruction.
429 // Splice it into the old PH to gate reaching the new preheader and re-point
430 // its successors.
431 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
432 BI);
433 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
434 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000435
Chandler Carruth4da33312018-06-20 18:57:07 +0000436 // Create a new unconditional branch that will continue the loop as a new
437 // terminator.
438 BranchInst::Create(ContinueBB, ParentBB);
439 } else {
440 // Only unswitching a subset of inputs to the condition, so we will need to
441 // build a new branch that merges the invariant inputs.
Chandler Carruth4da33312018-06-20 18:57:07 +0000442 if (ExitDirection)
443 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
444 Instruction::Or &&
445 "Must have an `or` of `i1`s for the condition!");
446 else
447 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
448 Instruction::And &&
449 "Must have an `and` of `i1`s for the condition!");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000450 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
451 *UnswitchedBB, *NewPH);
Chandler Carruth4da33312018-06-20 18:57:07 +0000452 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000453
Chandler Carruthd869b182017-05-12 02:19:59 +0000454 // Rewrite the relevant PHI nodes.
455 if (UnswitchedBB == LoopExitBB)
456 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
457 else
458 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
Chandler Carruth4da33312018-06-20 18:57:07 +0000459 *ParentBB, *OldPH, FullUnswitch);
Chandler Carruthd869b182017-05-12 02:19:59 +0000460
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000461 // Now we need to update the dominator tree.
Chandler Carruth4da33312018-06-20 18:57:07 +0000462 DT.insertEdge(OldPH, UnswitchedBB);
463 if (FullUnswitch)
464 DT.deleteEdge(ParentBB, UnswitchedBB);
465
466 // The constant we can replace all of our invariants with inside the loop
467 // body. If any of the invariants have a value other than this the loop won't
468 // be entered.
469 ConstantInt *Replacement = ExitDirection
470 ? ConstantInt::getFalse(BI.getContext())
471 : ConstantInt::getTrue(BI.getContext());
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000472
473 // Since this is an i1 condition we can also trivially replace uses of it
474 // within the loop with a constant.
Chandler Carruth4da33312018-06-20 18:57:07 +0000475 for (Value *Invariant : Invariants)
476 replaceLoopInvariantUses(L, Invariant, *Replacement);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000477
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +0000478 // If this was full unswitching, we may have changed the nesting relationship
479 // for this loop so hoist it to its correct parent if needed.
480 if (FullUnswitch)
481 hoistLoopToNewParent(L, *NewPH, DT, LI);
482
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000483 ++NumTrivial;
484 ++NumBranches;
485 return true;
486}
487
488/// Unswitch a trivial switch if the condition is loop invariant.
489///
490/// This routine should only be called when loop code leading to the switch has
491/// been validated as trivial (no side effects). This routine checks if the
492/// condition is invariant and that at least one of the successors is a loop
493/// exit. This allows us to unswitch without duplicating the loop, making it
494/// trivial.
495///
496/// If this routine fails to unswitch the switch it returns false.
497///
498/// If the switch can be unswitched, this routine splits the preheader and
499/// copies the switch above that split. If the default case is one of the
500/// exiting cases, it copies the non-exiting cases and points them at the new
501/// preheader. If the default case is not exiting, it copies the exiting cases
502/// and points the default at the preheader. It preserves loop simplified form
503/// (splitting the exit blocks as necessary). It simplifies the switch within
504/// the loop by removing now-dead cases. If the default case is one of those
505/// unswitched, it replaces its destination with a new basic block containing
506/// only unreachable. Such basic blocks, while technically loop exits, are not
507/// considered for unswitching so this is a stable transform and the same
508/// switch will not be revisited. If after unswitching there is only a single
509/// in-loop successor, the switch is further simplified to an unconditional
510/// branch. Still more cleanup can be done with some simplify-cfg like pass.
Chandler Carruth3897ded2018-07-03 09:13:27 +0000511///
512/// If `SE` is not null, it will be updated based on the potential loop SCEVs
513/// invalidated by this.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000514static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
Chandler Carruth3897ded2018-07-03 09:13:27 +0000515 LoopInfo &LI, ScalarEvolution *SE) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000516 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000517 Value *LoopCond = SI.getCondition();
518
519 // If this isn't switching on an invariant condition, we can't unswitch it.
520 if (!L.isLoopInvariant(LoopCond))
521 return false;
522
Chandler Carruthd869b182017-05-12 02:19:59 +0000523 auto *ParentBB = SI.getParent();
524
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000525 SmallVector<int, 4> ExitCaseIndices;
526 for (auto Case : SI.cases()) {
527 auto *SuccBB = Case.getCaseSuccessor();
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000528 if (!L.contains(SuccBB) &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000529 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000530 ExitCaseIndices.push_back(Case.getCaseIndex());
531 }
532 BasicBlock *DefaultExitBB = nullptr;
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000533 if (!L.contains(SI.getDefaultDest()) &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000534 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000535 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
536 DefaultExitBB = SI.getDefaultDest();
537 else if (ExitCaseIndices.empty())
538 return false;
539
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000540 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000541
Chandler Carruth3897ded2018-07-03 09:13:27 +0000542 // We may need to invalidate SCEVs for the outermost loop reached by any of
543 // the exits.
544 Loop *OuterL = &L;
545
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000546 if (DefaultExitBB) {
547 // Clear out the default destination temporarily to allow accurate
548 // predecessor lists to be examined below.
549 SI.setDefaultDest(nullptr);
550 // Check the loop containing this exit.
551 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
552 if (!ExitL || ExitL->contains(OuterL))
553 OuterL = ExitL;
554 }
555
556 // Store the exit cases into a separate data structure and remove them from
557 // the switch.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000558 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
559 ExitCases.reserve(ExitCaseIndices.size());
560 // We walk the case indices backwards so that we remove the last case first
561 // and don't disrupt the earlier indices.
562 for (unsigned Index : reverse(ExitCaseIndices)) {
563 auto CaseI = SI.case_begin() + Index;
Chandler Carruth3897ded2018-07-03 09:13:27 +0000564 // Compute the outer loop from this exit.
565 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
566 if (!ExitL || ExitL->contains(OuterL))
567 OuterL = ExitL;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000568 // Save the value of this case.
569 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
570 // Delete the unswitched cases.
571 SI.removeCase(CaseI);
572 }
573
Chandler Carruth3897ded2018-07-03 09:13:27 +0000574 if (SE) {
575 if (OuterL)
576 SE->forgetLoop(OuterL);
577 else
578 SE->forgetTopmostLoop(&L);
579 }
580
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000581 // Check if after this all of the remaining cases point at the same
582 // successor.
583 BasicBlock *CommonSuccBB = nullptr;
584 if (SI.getNumCases() > 0 &&
585 std::all_of(std::next(SI.case_begin()), SI.case_end(),
586 [&SI](const SwitchInst::CaseHandle &Case) {
587 return Case.getCaseSuccessor() ==
588 SI.case_begin()->getCaseSuccessor();
589 }))
590 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000591 if (!DefaultExitBB) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000592 // If we're not unswitching the default, we need it to match any cases to
593 // have a common successor or if we have no cases it is the common
594 // successor.
595 if (SI.getNumCases() == 0)
596 CommonSuccBB = SI.getDefaultDest();
597 else if (SI.getDefaultDest() != CommonSuccBB)
598 CommonSuccBB = nullptr;
599 }
600
601 // Split the preheader, so that we know that there is a safe place to insert
602 // the switch.
603 BasicBlock *OldPH = L.getLoopPreheader();
604 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
605 OldPH->getTerminator()->eraseFromParent();
606
607 // Now add the unswitched switch.
608 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
609
Chandler Carruthd869b182017-05-12 02:19:59 +0000610 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
611 // First, we split any exit blocks with remaining in-loop predecessors. Then
612 // we update the PHIs in one of two ways depending on if there was a split.
613 // We walk in reverse so that we split in the same order as the cases
614 // appeared. This is purely for convenience of reading the resulting IR, but
615 // it doesn't cost anything really.
616 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000617 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
618 // Handle the default exit if necessary.
619 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
620 // ranges aren't quite powerful enough yet.
Chandler Carruthd869b182017-05-12 02:19:59 +0000621 if (DefaultExitBB) {
622 if (pred_empty(DefaultExitBB)) {
623 UnswitchedExitBBs.insert(DefaultExitBB);
624 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
625 } else {
626 auto *SplitBB =
627 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
Chandler Carruth4da33312018-06-20 18:57:07 +0000628 rewritePHINodesForExitAndUnswitchedBlocks(
629 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
Chandler Carruthd869b182017-05-12 02:19:59 +0000630 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
631 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000632 }
633 // Note that we must use a reference in the for loop so that we update the
634 // container.
635 for (auto &CasePair : reverse(ExitCases)) {
636 // Grab a reference to the exit block in the pair so that we can update it.
Chandler Carruthd869b182017-05-12 02:19:59 +0000637 BasicBlock *ExitBB = CasePair.second;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000638
639 // If this case is the last edge into the exit block, we can simply reuse it
640 // as it will no longer be a loop exit. No mapping necessary.
Chandler Carruthd869b182017-05-12 02:19:59 +0000641 if (pred_empty(ExitBB)) {
642 // Only rewrite once.
643 if (UnswitchedExitBBs.insert(ExitBB).second)
644 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000645 continue;
Chandler Carruthd869b182017-05-12 02:19:59 +0000646 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000647
648 // Otherwise we need to split the exit block so that we retain an exit
649 // block from the loop and a target for the unswitched condition.
650 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
651 if (!SplitExitBB) {
652 // If this is the first time we see this, do the split and remember it.
653 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
Chandler Carruth4da33312018-06-20 18:57:07 +0000654 rewritePHINodesForExitAndUnswitchedBlocks(
655 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000656 }
Chandler Carruthd869b182017-05-12 02:19:59 +0000657 // Update the case pair to point to the split block.
658 CasePair.second = SplitExitBB;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000659 }
660
661 // Now add the unswitched cases. We do this in reverse order as we built them
662 // in reverse order.
663 for (auto CasePair : reverse(ExitCases)) {
664 ConstantInt *CaseVal = CasePair.first;
665 BasicBlock *UnswitchedBB = CasePair.second;
666
667 NewSI->addCase(CaseVal, UnswitchedBB);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000668 }
669
670 // If the default was unswitched, re-point it and add explicit cases for
671 // entering the loop.
672 if (DefaultExitBB) {
673 NewSI->setDefaultDest(DefaultExitBB);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000674
675 // We removed all the exit cases, so we just copy the cases to the
676 // unswitched switch.
677 for (auto Case : SI.cases())
678 NewSI->addCase(Case.getCaseValue(), NewPH);
679 }
680
681 // If we ended up with a common successor for every path through the switch
682 // after unswitching, rewrite it to an unconditional branch to make it easy
683 // to recognize. Otherwise we potentially have to recognize the default case
684 // pointing at unreachable and other complexity.
685 if (CommonSuccBB) {
686 BasicBlock *BB = SI.getParent();
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000687 // We may have had multiple edges to this common successor block, so remove
688 // them as predecessors. We skip the first one, either the default or the
689 // actual first case.
690 bool SkippedFirst = DefaultExitBB == nullptr;
691 for (auto Case : SI.cases()) {
692 assert(Case.getCaseSuccessor() == CommonSuccBB &&
693 "Non-common successor!");
Chandler Carruth148861f2018-07-10 08:57:04 +0000694 (void)Case;
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000695 if (!SkippedFirst) {
696 SkippedFirst = true;
697 continue;
698 }
699 CommonSuccBB->removePredecessor(BB,
700 /*DontDeleteUselessPHIs*/ true);
701 }
702 // Now nuke the switch and replace it with a direct branch.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000703 SI.eraseFromParent();
704 BranchInst::Create(CommonSuccBB, BB);
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000705 } else if (DefaultExitBB) {
706 assert(SI.getNumCases() > 0 &&
707 "If we had no cases we'd have a common successor!");
708 // Move the last case to the default successor. This is valid as if the
709 // default got unswitched it cannot be reached. This has the advantage of
710 // being simple and keeping the number of edges from this switch to
711 // successors the same, and avoiding any PHI update complexity.
712 auto LastCaseI = std::prev(SI.case_end());
713 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
714 SI.removeCase(LastCaseI);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000715 }
716
Chandler Carruth2c85a232018-05-01 09:54:39 +0000717 // Walk the unswitched exit blocks and the unswitched split blocks and update
718 // the dominator tree based on the CFG edits. While we are walking unordered
719 // containers here, the API for applyUpdates takes an unordered list of
720 // updates and requires them to not contain duplicates.
721 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
722 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
723 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
724 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
725 }
726 for (auto SplitUnswitchedPair : SplitExitBBMap) {
727 auto *UnswitchedBB = SplitUnswitchedPair.second;
728 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
729 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
730 }
731 DT.applyUpdates(DTUpdates);
David Green7c35de12018-02-28 11:00:08 +0000732 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +0000733
734 // We may have changed the nesting relationship for this loop so hoist it to
735 // its correct parent if needed.
736 hoistLoopToNewParent(L, *NewPH, DT, LI);
737
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000738 ++NumTrivial;
739 ++NumSwitches;
740 return true;
741}
742
743/// This routine scans the loop to find a branch or switch which occurs before
744/// any side effects occur. These can potentially be unswitched without
745/// duplicating the loop. If a branch or switch is successfully unswitched the
746/// scanning continues to see if subsequent branches or switches have become
747/// trivial. Once all trivial candidates have been unswitched, this routine
748/// returns.
749///
750/// The return value indicates whether anything was unswitched (and therefore
751/// changed).
Chandler Carruth3897ded2018-07-03 09:13:27 +0000752///
753/// If `SE` is not null, it will be updated based on the potential loop SCEVs
754/// invalidated by this.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000755static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
Chandler Carruth3897ded2018-07-03 09:13:27 +0000756 LoopInfo &LI, ScalarEvolution *SE) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000757 bool Changed = false;
758
759 // If loop header has only one reachable successor we should keep looking for
760 // trivial condition candidates in the successor as well. An alternative is
761 // to constant fold conditions and merge successors into loop header (then we
762 // only need to check header's terminator). The reason for not doing this in
763 // LoopUnswitch pass is that it could potentially break LoopPassManager's
764 // invariants. Folding dead branches could either eliminate the current loop
765 // or make other loops unreachable. LCSSA form might also not be preserved
766 // after deleting branches. The following code keeps traversing loop header's
767 // successors until it finds the trivial condition candidate (condition that
768 // is not a constant). Since unswitching generates branches with constant
769 // conditions, this scenario could be very common in practice.
770 BasicBlock *CurrentBB = L.getHeader();
771 SmallPtrSet<BasicBlock *, 8> Visited;
772 Visited.insert(CurrentBB);
773 do {
774 // Check if there are any side-effecting instructions (e.g. stores, calls,
775 // volatile loads) in the part of the loop that the code *would* execute
776 // without unswitching.
777 if (llvm::any_of(*CurrentBB,
778 [](Instruction &I) { return I.mayHaveSideEffects(); }))
779 return Changed;
780
781 TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
782
783 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
784 // Don't bother trying to unswitch past a switch with a constant
785 // condition. This should be removed prior to running this pass by
786 // simplify-cfg.
787 if (isa<Constant>(SI->getCondition()))
788 return Changed;
789
Chandler Carruth3897ded2018-07-03 09:13:27 +0000790 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
Hiroshi Inouef2096492018-06-14 05:41:49 +0000791 // Couldn't unswitch this one so we're done.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000792 return Changed;
793
794 // Mark that we managed to unswitch something.
795 Changed = true;
796
797 // If unswitching turned the terminator into an unconditional branch then
798 // we can continue. The unswitching logic specifically works to fold any
799 // cases it can into an unconditional branch to make it easier to
800 // recognize here.
801 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
802 if (!BI || BI->isConditional())
803 return Changed;
804
805 CurrentBB = BI->getSuccessor(0);
806 continue;
807 }
808
809 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
810 if (!BI)
811 // We do not understand other terminator instructions.
812 return Changed;
813
814 // Don't bother trying to unswitch past an unconditional branch or a branch
815 // with a constant value. These should be removed by simplify-cfg prior to
816 // running this pass.
817 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
818 return Changed;
819
820 // Found a trivial condition candidate: non-foldable conditional branch. If
821 // we fail to unswitch this, we can't do anything else that is trivial.
Chandler Carruth3897ded2018-07-03 09:13:27 +0000822 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000823 return Changed;
824
825 // Mark that we managed to unswitch something.
826 Changed = true;
827
Chandler Carruth4da33312018-06-20 18:57:07 +0000828 // If we only unswitched some of the conditions feeding the branch, we won't
829 // have collapsed it to a single successor.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000830 BI = cast<BranchInst>(CurrentBB->getTerminator());
Chandler Carruth4da33312018-06-20 18:57:07 +0000831 if (BI->isConditional())
832 return Changed;
833
834 // Follow the newly unconditional branch into its successor.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000835 CurrentBB = BI->getSuccessor(0);
836
837 // When continuing, if we exit the loop or reach a previous visited block,
838 // then we can not reach any trivial condition candidates (unfoldable
839 // branch instructions or switch instructions) and no unswitch can happen.
840 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
841
842 return Changed;
843}
844
Chandler Carruth693eedb2017-11-17 19:58:36 +0000845/// Build the cloned blocks for an unswitched copy of the given loop.
846///
847/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
848/// after the split block (`SplitBB`) that will be used to select between the
849/// cloned and original loop.
850///
851/// This routine handles cloning all of the necessary loop blocks and exit
852/// blocks including rewriting their instructions and the relevant PHI nodes.
Chandler Carruth16529962018-06-25 23:32:54 +0000853/// Any loop blocks or exit blocks which are dominated by a different successor
854/// than the one for this clone of the loop blocks can be trivially skipped. We
855/// use the `DominatingSucc` map to determine whether a block satisfies that
856/// property with a simple map lookup.
857///
858/// It also correctly creates the unconditional branch in the cloned
Chandler Carruth693eedb2017-11-17 19:58:36 +0000859/// unswitched parent block to only point at the unswitched successor.
860///
861/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
862/// block splitting is correctly reflected in `LoopInfo`, essentially all of
863/// the cloned blocks (and their loops) are left without full `LoopInfo`
864/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
865/// blocks to them but doesn't create the cloned `DominatorTree` structure and
866/// instead the caller must recompute an accurate DT. It *does* correctly
867/// update the `AssumptionCache` provided in `AC`.
868static BasicBlock *buildClonedLoopBlocks(
869 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
870 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
871 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
Chandler Carruth16529962018-06-25 23:32:54 +0000872 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
Chandler Carruth69e68f82018-04-25 00:18:07 +0000873 ValueToValueMapTy &VMap,
874 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
875 DominatorTree &DT, LoopInfo &LI) {
Chandler Carruth693eedb2017-11-17 19:58:36 +0000876 SmallVector<BasicBlock *, 4> NewBlocks;
877 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
878
879 // We will need to clone a bunch of blocks, wrap up the clone operation in
880 // a helper.
881 auto CloneBlock = [&](BasicBlock *OldBB) {
882 // Clone the basic block and insert it before the new preheader.
883 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
884 NewBB->moveBefore(LoopPH);
885
886 // Record this block and the mapping.
887 NewBlocks.push_back(NewBB);
888 VMap[OldBB] = NewBB;
889
Chandler Carruth693eedb2017-11-17 19:58:36 +0000890 return NewBB;
891 };
892
Chandler Carruth16529962018-06-25 23:32:54 +0000893 // We skip cloning blocks when they have a dominating succ that is not the
894 // succ we are cloning for.
895 auto SkipBlock = [&](BasicBlock *BB) {
896 auto It = DominatingSucc.find(BB);
897 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
898 };
899
Chandler Carruth693eedb2017-11-17 19:58:36 +0000900 // First, clone the preheader.
901 auto *ClonedPH = CloneBlock(LoopPH);
902
903 // Then clone all the loop blocks, skipping the ones that aren't necessary.
904 for (auto *LoopBB : L.blocks())
Chandler Carruth16529962018-06-25 23:32:54 +0000905 if (!SkipBlock(LoopBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000906 CloneBlock(LoopBB);
907
908 // Split all the loop exit edges so that when we clone the exit blocks, if
909 // any of the exit blocks are *also* a preheader for some other loop, we
910 // don't create multiple predecessors entering the loop header.
911 for (auto *ExitBB : ExitBlocks) {
Chandler Carruth16529962018-06-25 23:32:54 +0000912 if (SkipBlock(ExitBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000913 continue;
914
915 // When we are going to clone an exit, we don't need to clone all the
916 // instructions in the exit block and we want to ensure we have an easy
917 // place to merge the CFG, so split the exit first. This is always safe to
918 // do because there cannot be any non-loop predecessors of a loop exit in
919 // loop simplified form.
920 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
921
922 // Rearrange the names to make it easier to write test cases by having the
923 // exit block carry the suffix rather than the merge block carrying the
924 // suffix.
925 MergeBB->takeName(ExitBB);
926 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
927
928 // Now clone the original exit block.
929 auto *ClonedExitBB = CloneBlock(ExitBB);
930 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
931 "Exit block should have been split to have one successor!");
932 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
933 "Cloned exit block has the wrong successor!");
934
Chandler Carruth693eedb2017-11-17 19:58:36 +0000935 // Remap any cloned instructions and create a merge phi node for them.
936 for (auto ZippedInsts : llvm::zip_first(
937 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
938 llvm::make_range(ClonedExitBB->begin(),
939 std::prev(ClonedExitBB->end())))) {
940 Instruction &I = std::get<0>(ZippedInsts);
941 Instruction &ClonedI = std::get<1>(ZippedInsts);
942
943 // The only instructions in the exit block should be PHI nodes and
944 // potentially a landing pad.
945 assert(
946 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
947 "Bad instruction in exit block!");
948 // We should have a value map between the instruction and its clone.
949 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
950
951 auto *MergePN =
952 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
953 &*MergeBB->getFirstInsertionPt());
954 I.replaceAllUsesWith(MergePN);
955 MergePN->addIncoming(&I, ExitBB);
956 MergePN->addIncoming(&ClonedI, ClonedExitBB);
957 }
958 }
959
960 // Rewrite the instructions in the cloned blocks to refer to the instructions
961 // in the cloned blocks. We have to do this as a second pass so that we have
962 // everything available. Also, we have inserted new instructions which may
963 // include assume intrinsics, so we update the assumption cache while
964 // processing this.
965 for (auto *ClonedBB : NewBlocks)
966 for (Instruction &I : *ClonedBB) {
967 RemapInstruction(&I, VMap,
968 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
969 if (auto *II = dyn_cast<IntrinsicInst>(&I))
970 if (II->getIntrinsicID() == Intrinsic::assume)
971 AC.registerAssumption(II);
972 }
973
Chandler Carruth693eedb2017-11-17 19:58:36 +0000974 // Update any PHI nodes in the cloned successors of the skipped blocks to not
975 // have spurious incoming values.
976 for (auto *LoopBB : L.blocks())
Chandler Carruth16529962018-06-25 23:32:54 +0000977 if (SkipBlock(LoopBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000978 for (auto *SuccBB : successors(LoopBB))
979 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
980 for (PHINode &PN : ClonedSuccBB->phis())
981 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
982
Chandler Carruthed296542018-07-09 10:30:48 +0000983 // Remove the cloned parent as a predecessor of any successor we ended up
984 // cloning other than the unswitched one.
985 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
986 for (auto *SuccBB : successors(ParentBB)) {
987 if (SuccBB == UnswitchedSuccBB)
988 continue;
989
990 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
991 if (!ClonedSuccBB)
992 continue;
993
994 ClonedSuccBB->removePredecessor(ClonedParentBB,
995 /*DontDeleteUselessPHIs*/ true);
996 }
997
998 // Replace the cloned branch with an unconditional branch to the cloned
999 // unswitched successor.
1000 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1001 ClonedParentBB->getTerminator()->eraseFromParent();
1002 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1003
1004 // If there are duplicate entries in the PHI nodes because of multiple edges
1005 // to the unswitched successor, we need to nuke all but one as we replaced it
1006 // with a direct branch.
1007 for (PHINode &PN : ClonedSuccBB->phis()) {
1008 bool Found = false;
1009 // Loop over the incoming operands backwards so we can easily delete as we
1010 // go without invalidating the index.
1011 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1012 if (PN.getIncomingBlock(i) != ClonedParentBB)
1013 continue;
1014 if (!Found) {
1015 Found = true;
1016 continue;
1017 }
1018 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1019 }
1020 }
1021
Chandler Carruth69e68f82018-04-25 00:18:07 +00001022 // Record the domtree updates for the new blocks.
Chandler Carruth44aab922018-05-01 09:42:09 +00001023 SmallPtrSet<BasicBlock *, 4> SuccSet;
1024 for (auto *ClonedBB : NewBlocks) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001025 for (auto *SuccBB : successors(ClonedBB))
Chandler Carruth44aab922018-05-01 09:42:09 +00001026 if (SuccSet.insert(SuccBB).second)
1027 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1028 SuccSet.clear();
1029 }
Chandler Carruth69e68f82018-04-25 00:18:07 +00001030
Chandler Carruth693eedb2017-11-17 19:58:36 +00001031 return ClonedPH;
1032}
1033
1034/// Recursively clone the specified loop and all of its children.
1035///
1036/// The target parent loop for the clone should be provided, or can be null if
1037/// the clone is a top-level loop. While cloning, all the blocks are mapped
1038/// with the provided value map. The entire original loop must be present in
1039/// the value map. The cloned loop is returned.
1040static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1041 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1042 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1043 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1044 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1045 for (auto *BB : OrigL.blocks()) {
1046 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1047 ClonedL.addBlockEntry(ClonedBB);
Chandler Carruth0ace1482018-04-24 03:27:00 +00001048 if (LI.getLoopFor(BB) == &OrigL)
Chandler Carruth693eedb2017-11-17 19:58:36 +00001049 LI.changeLoopFor(ClonedBB, &ClonedL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001050 }
1051 };
1052
1053 // We specially handle the first loop because it may get cloned into
1054 // a different parent and because we most commonly are cloning leaf loops.
1055 Loop *ClonedRootL = LI.AllocateLoop();
1056 if (RootParentL)
1057 RootParentL->addChildLoop(ClonedRootL);
1058 else
1059 LI.addTopLevelLoop(ClonedRootL);
1060 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1061
1062 if (OrigRootL.empty())
1063 return ClonedRootL;
1064
1065 // If we have a nest, we can quickly clone the entire loop nest using an
1066 // iterative approach because it is a tree. We keep the cloned parent in the
1067 // data structure to avoid repeatedly querying through a map to find it.
1068 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1069 // Build up the loops to clone in reverse order as we'll clone them from the
1070 // back.
1071 for (Loop *ChildL : llvm::reverse(OrigRootL))
1072 LoopsToClone.push_back({ClonedRootL, ChildL});
1073 do {
1074 Loop *ClonedParentL, *L;
1075 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1076 Loop *ClonedL = LI.AllocateLoop();
1077 ClonedParentL->addChildLoop(ClonedL);
1078 AddClonedBlocksToLoop(*L, *ClonedL);
1079 for (Loop *ChildL : llvm::reverse(*L))
1080 LoopsToClone.push_back({ClonedL, ChildL});
1081 } while (!LoopsToClone.empty());
1082
1083 return ClonedRootL;
1084}
1085
1086/// Build the cloned loops of an original loop from unswitching.
1087///
1088/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1089/// operation. We need to re-verify that there even is a loop (as the backedge
1090/// may not have been cloned), and even if there are remaining backedges the
1091/// backedge set may be different. However, we know that each child loop is
1092/// undisturbed, we only need to find where to place each child loop within
1093/// either any parent loop or within a cloned version of the original loop.
1094///
1095/// Because child loops may end up cloned outside of any cloned version of the
1096/// original loop, multiple cloned sibling loops may be created. All of them
1097/// are returned so that the newly introduced loop nest roots can be
1098/// identified.
Chandler Carruth92815032018-06-02 01:29:01 +00001099static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1100 const ValueToValueMapTy &VMap, LoopInfo &LI,
1101 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00001102 Loop *ClonedL = nullptr;
1103
1104 auto *OrigPH = OrigL.getLoopPreheader();
1105 auto *OrigHeader = OrigL.getHeader();
1106
1107 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1108 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1109
1110 // We need to know the loops of the cloned exit blocks to even compute the
1111 // accurate parent loop. If we only clone exits to some parent of the
1112 // original parent, we want to clone into that outer loop. We also keep track
1113 // of the loops that our cloned exit blocks participate in.
1114 Loop *ParentL = nullptr;
1115 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1116 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1117 ClonedExitsInLoops.reserve(ExitBlocks.size());
1118 for (auto *ExitBB : ExitBlocks)
1119 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1120 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1121 ExitLoopMap[ClonedExitBB] = ExitL;
1122 ClonedExitsInLoops.push_back(ClonedExitBB);
1123 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1124 ParentL = ExitL;
1125 }
1126 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1127 ParentL->contains(OrigL.getParentLoop())) &&
1128 "The computed parent loop should always contain (or be) the parent of "
1129 "the original loop.");
1130
1131 // We build the set of blocks dominated by the cloned header from the set of
1132 // cloned blocks out of the original loop. While not all of these will
1133 // necessarily be in the cloned loop, it is enough to establish that they
1134 // aren't in unreachable cycles, etc.
1135 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1136 for (auto *BB : OrigL.blocks())
1137 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1138 ClonedLoopBlocks.insert(ClonedBB);
1139
1140 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1141 // skipped cloning some region of this loop which can in turn skip some of
1142 // the backedges so we have to rebuild the blocks in the loop based on the
1143 // backedges that remain after cloning.
1144 SmallVector<BasicBlock *, 16> Worklist;
1145 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1146 for (auto *Pred : predecessors(ClonedHeader)) {
1147 // The only possible non-loop header predecessor is the preheader because
1148 // we know we cloned the loop in simplified form.
1149 if (Pred == ClonedPH)
1150 continue;
1151
1152 // Because the loop was in simplified form, the only non-loop predecessor
1153 // should be the preheader.
1154 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1155 "header other than the preheader "
1156 "that is not part of the loop!");
1157
1158 // Insert this block into the loop set and on the first visit (and if it
1159 // isn't the header we're currently walking) put it into the worklist to
1160 // recurse through.
1161 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1162 Worklist.push_back(Pred);
1163 }
1164
1165 // If we had any backedges then there *is* a cloned loop. Put the header into
1166 // the loop set and then walk the worklist backwards to find all the blocks
1167 // that remain within the loop after cloning.
1168 if (!BlocksInClonedLoop.empty()) {
1169 BlocksInClonedLoop.insert(ClonedHeader);
1170
1171 while (!Worklist.empty()) {
1172 BasicBlock *BB = Worklist.pop_back_val();
1173 assert(BlocksInClonedLoop.count(BB) &&
1174 "Didn't put block into the loop set!");
1175
1176 // Insert any predecessors that are in the possible set into the cloned
1177 // set, and if the insert is successful, add them to the worklist. Note
1178 // that we filter on the blocks that are definitely reachable via the
1179 // backedge to the loop header so we may prune out dead code within the
1180 // cloned loop.
1181 for (auto *Pred : predecessors(BB))
1182 if (ClonedLoopBlocks.count(Pred) &&
1183 BlocksInClonedLoop.insert(Pred).second)
1184 Worklist.push_back(Pred);
1185 }
1186
1187 ClonedL = LI.AllocateLoop();
1188 if (ParentL) {
1189 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1190 ParentL->addChildLoop(ClonedL);
1191 } else {
1192 LI.addTopLevelLoop(ClonedL);
1193 }
Chandler Carruth92815032018-06-02 01:29:01 +00001194 NonChildClonedLoops.push_back(ClonedL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001195
1196 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1197 // We don't want to just add the cloned loop blocks based on how we
1198 // discovered them. The original order of blocks was carefully built in
1199 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1200 // that logic, we just re-walk the original blocks (and those of the child
1201 // loops) and filter them as we add them into the cloned loop.
1202 for (auto *BB : OrigL.blocks()) {
1203 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1204 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1205 continue;
1206
1207 // Directly add the blocks that are only in this loop.
1208 if (LI.getLoopFor(BB) == &OrigL) {
1209 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1210 continue;
1211 }
1212
1213 // We want to manually add it to this loop and parents.
1214 // Registering it with LoopInfo will happen when we clone the top
1215 // loop for this block.
1216 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1217 PL->addBlockEntry(ClonedBB);
1218 }
1219
1220 // Now add each child loop whose header remains within the cloned loop. All
1221 // of the blocks within the loop must satisfy the same constraints as the
1222 // header so once we pass the header checks we can just clone the entire
1223 // child loop nest.
1224 for (Loop *ChildL : OrigL) {
1225 auto *ClonedChildHeader =
1226 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1227 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1228 continue;
1229
1230#ifndef NDEBUG
1231 // We should never have a cloned child loop header but fail to have
1232 // all of the blocks for that child loop.
1233 for (auto *ChildLoopBB : ChildL->blocks())
1234 assert(BlocksInClonedLoop.count(
1235 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1236 "Child cloned loop has a header within the cloned outer "
1237 "loop but not all of its blocks!");
1238#endif
1239
1240 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1241 }
1242 }
1243
1244 // Now that we've handled all the components of the original loop that were
1245 // cloned into a new loop, we still need to handle anything from the original
1246 // loop that wasn't in a cloned loop.
1247
1248 // Figure out what blocks are left to place within any loop nest containing
1249 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1250 // them.
1251 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1252 if (BlocksInClonedLoop.empty())
1253 UnloopedBlockSet.insert(ClonedPH);
1254 for (auto *ClonedBB : ClonedLoopBlocks)
1255 if (!BlocksInClonedLoop.count(ClonedBB))
1256 UnloopedBlockSet.insert(ClonedBB);
1257
1258 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1259 // backwards across these to process them inside out. The order shouldn't
1260 // matter as we're just trying to build up the map from inside-out; we use
1261 // the map in a more stably ordered way below.
1262 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
Chandler Carruth4da33312018-06-20 18:57:07 +00001263 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
Mandeep Singh Grang636d94d2018-04-13 19:47:57 +00001264 [&](BasicBlock *LHS, BasicBlock *RHS) {
1265 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1266 ExitLoopMap.lookup(RHS)->getLoopDepth();
1267 });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001268
1269 // Populate the existing ExitLoopMap with everything reachable from each
1270 // exit, starting from the inner most exit.
1271 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1272 assert(Worklist.empty() && "Didn't clear worklist!");
1273
1274 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1275 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1276
1277 // Walk the CFG back until we hit the cloned PH adding everything reachable
1278 // and in the unlooped set to this exit block's loop.
1279 Worklist.push_back(ExitBB);
1280 do {
1281 BasicBlock *BB = Worklist.pop_back_val();
1282 // We can stop recursing at the cloned preheader (if we get there).
1283 if (BB == ClonedPH)
1284 continue;
1285
1286 for (BasicBlock *PredBB : predecessors(BB)) {
1287 // If this pred has already been moved to our set or is part of some
1288 // (inner) loop, no update needed.
1289 if (!UnloopedBlockSet.erase(PredBB)) {
1290 assert(
1291 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1292 "Predecessor not mapped to a loop!");
1293 continue;
1294 }
1295
1296 // We just insert into the loop set here. We'll add these blocks to the
1297 // exit loop after we build up the set in an order that doesn't rely on
1298 // predecessor order (which in turn relies on use list order).
1299 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1300 (void)Inserted;
1301 assert(Inserted && "Should only visit an unlooped block once!");
1302
1303 // And recurse through to its predecessors.
1304 Worklist.push_back(PredBB);
1305 }
1306 } while (!Worklist.empty());
1307 }
1308
1309 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1310 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1311 // in their original order adding them to the correct loop.
1312
1313 // We need a stable insertion order. We use the order of the original loop
1314 // order and map into the correct parent loop.
1315 for (auto *BB : llvm::concat<BasicBlock *const>(
1316 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1317 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1318 OuterL->addBasicBlockToLoop(BB, LI);
1319
1320#ifndef NDEBUG
1321 for (auto &BBAndL : ExitLoopMap) {
1322 auto *BB = BBAndL.first;
1323 auto *OuterL = BBAndL.second;
1324 assert(LI.getLoopFor(BB) == OuterL &&
1325 "Failed to put all blocks into outer loops!");
1326 }
1327#endif
1328
1329 // Now that all the blocks are placed into the correct containing loop in the
1330 // absence of child loops, find all the potentially cloned child loops and
1331 // clone them into whatever outer loop we placed their header into.
1332 for (Loop *ChildL : OrigL) {
1333 auto *ClonedChildHeader =
1334 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1335 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1336 continue;
1337
1338#ifndef NDEBUG
1339 for (auto *ChildLoopBB : ChildL->blocks())
1340 assert(VMap.count(ChildLoopBB) &&
1341 "Cloned a child loop header but not all of that loops blocks!");
1342#endif
1343
1344 NonChildClonedLoops.push_back(cloneLoopNest(
1345 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1346 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001347}
1348
Chandler Carruth69e68f82018-04-25 00:18:07 +00001349static void
Chandler Carruth16529962018-06-25 23:32:54 +00001350deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1351 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1352 DominatorTree &DT) {
1353 // Find all the dead clones, and remove them from their successors.
1354 SmallVector<BasicBlock *, 16> DeadBlocks;
1355 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1356 for (auto &VMap : VMaps)
1357 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1358 if (!DT.isReachableFromEntry(ClonedBB)) {
1359 for (BasicBlock *SuccBB : successors(ClonedBB))
1360 SuccBB->removePredecessor(ClonedBB);
1361 DeadBlocks.push_back(ClonedBB);
1362 }
1363
1364 // Drop any remaining references to break cycles.
1365 for (BasicBlock *BB : DeadBlocks)
1366 BB->dropAllReferences();
1367 // Erase them from the IR.
1368 for (BasicBlock *BB : DeadBlocks)
1369 BB->eraseFromParent();
1370}
1371
1372static void
Chandler Carruth69e68f82018-04-25 00:18:07 +00001373deleteDeadBlocksFromLoop(Loop &L,
Chandler Carruth69e68f82018-04-25 00:18:07 +00001374 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1375 DominatorTree &DT, LoopInfo &LI) {
Chandler Carruth16529962018-06-25 23:32:54 +00001376 // Find all the dead blocks, and remove them from their successors.
1377 SmallVector<BasicBlock *, 16> DeadBlocks;
1378 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1379 if (!DT.isReachableFromEntry(BB)) {
1380 for (BasicBlock *SuccBB : successors(BB))
1381 SuccBB->removePredecessor(BB);
1382 DeadBlocks.push_back(BB);
1383 }
1384
Chandler Carruth69e68f82018-04-25 00:18:07 +00001385 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
1386 DeadBlocks.end());
Chandler Carruth693eedb2017-11-17 19:58:36 +00001387
1388 // Filter out the dead blocks from the exit blocks list so that it can be
1389 // used in the caller.
1390 llvm::erase_if(ExitBlocks,
Chandler Carruth69e68f82018-04-25 00:18:07 +00001391 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001392
Chandler Carruth693eedb2017-11-17 19:58:36 +00001393 // Walk from this loop up through its parents removing all of the dead blocks.
1394 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1395 for (auto *BB : DeadBlocks)
1396 ParentL->getBlocksSet().erase(BB);
1397 llvm::erase_if(ParentL->getBlocksVector(),
Chandler Carruth69e68f82018-04-25 00:18:07 +00001398 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001399 }
1400
1401 // Now delete the dead child loops. This raw delete will clear them
1402 // recursively.
1403 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001404 if (!DeadBlockSet.count(ChildL->getHeader()))
Chandler Carruth693eedb2017-11-17 19:58:36 +00001405 return false;
1406
1407 assert(llvm::all_of(ChildL->blocks(),
1408 [&](BasicBlock *ChildBB) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001409 return DeadBlockSet.count(ChildBB);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001410 }) &&
1411 "If the child loop header is dead all blocks in the child loop must "
1412 "be dead as well!");
1413 LI.destroy(ChildL);
1414 return true;
1415 });
1416
Chandler Carruth69e68f82018-04-25 00:18:07 +00001417 // Remove the loop mappings for the dead blocks and drop all the references
1418 // from these blocks to others to handle cyclic references as we start
1419 // deleting the blocks themselves.
1420 for (auto *BB : DeadBlocks) {
1421 // Check that the dominator tree has already been updated.
1422 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
Chandler Carruth693eedb2017-11-17 19:58:36 +00001423 LI.changeLoopFor(BB, nullptr);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001424 BB->dropAllReferences();
Chandler Carruth693eedb2017-11-17 19:58:36 +00001425 }
Chandler Carruth69e68f82018-04-25 00:18:07 +00001426
1427 // Actually delete the blocks now that they've been fully unhooked from the
1428 // IR.
1429 for (auto *BB : DeadBlocks)
1430 BB->eraseFromParent();
Chandler Carruth693eedb2017-11-17 19:58:36 +00001431}
1432
1433/// Recompute the set of blocks in a loop after unswitching.
1434///
1435/// This walks from the original headers predecessors to rebuild the loop. We
1436/// take advantage of the fact that new blocks can't have been added, and so we
1437/// filter by the original loop's blocks. This also handles potentially
1438/// unreachable code that we don't want to explore but might be found examining
1439/// the predecessors of the header.
1440///
1441/// If the original loop is no longer a loop, this will return an empty set. If
1442/// it remains a loop, all the blocks within it will be added to the set
1443/// (including those blocks in inner loops).
1444static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1445 LoopInfo &LI) {
1446 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1447
1448 auto *PH = L.getLoopPreheader();
1449 auto *Header = L.getHeader();
1450
1451 // A worklist to use while walking backwards from the header.
1452 SmallVector<BasicBlock *, 16> Worklist;
1453
1454 // First walk the predecessors of the header to find the backedges. This will
1455 // form the basis of our walk.
1456 for (auto *Pred : predecessors(Header)) {
1457 // Skip the preheader.
1458 if (Pred == PH)
1459 continue;
1460
1461 // Because the loop was in simplified form, the only non-loop predecessor
1462 // is the preheader.
1463 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1464 "than the preheader that is not part of the "
1465 "loop!");
1466
1467 // Insert this block into the loop set and on the first visit and, if it
1468 // isn't the header we're currently walking, put it into the worklist to
1469 // recurse through.
1470 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1471 Worklist.push_back(Pred);
1472 }
1473
1474 // If no backedges were found, we're done.
1475 if (LoopBlockSet.empty())
1476 return LoopBlockSet;
1477
Chandler Carruth693eedb2017-11-17 19:58:36 +00001478 // We found backedges, recurse through them to identify the loop blocks.
1479 while (!Worklist.empty()) {
1480 BasicBlock *BB = Worklist.pop_back_val();
1481 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1482
Chandler Carruth43acdb32018-04-24 10:33:08 +00001483 // No need to walk past the header.
1484 if (BB == Header)
1485 continue;
1486
Chandler Carruth693eedb2017-11-17 19:58:36 +00001487 // Because we know the inner loop structure remains valid we can use the
1488 // loop structure to jump immediately across the entire nested loop.
1489 // Further, because it is in loop simplified form, we can directly jump
1490 // to its preheader afterward.
1491 if (Loop *InnerL = LI.getLoopFor(BB))
1492 if (InnerL != &L) {
1493 assert(L.contains(InnerL) &&
1494 "Should not reach a loop *outside* this loop!");
1495 // The preheader is the only possible predecessor of the loop so
1496 // insert it into the set and check whether it was already handled.
1497 auto *InnerPH = InnerL->getLoopPreheader();
1498 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1499 "but not contain the inner loop "
1500 "preheader!");
1501 if (!LoopBlockSet.insert(InnerPH).second)
1502 // The only way to reach the preheader is through the loop body
1503 // itself so if it has been visited the loop is already handled.
1504 continue;
1505
1506 // Insert all of the blocks (other than those already present) into
Chandler Carruthbf7190a2018-04-23 06:58:36 +00001507 // the loop set. We expect at least the block that led us to find the
1508 // inner loop to be in the block set, but we may also have other loop
1509 // blocks if they were already enqueued as predecessors of some other
1510 // outer loop block.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001511 for (auto *InnerBB : InnerL->blocks()) {
1512 if (InnerBB == BB) {
1513 assert(LoopBlockSet.count(InnerBB) &&
1514 "Block should already be in the set!");
1515 continue;
1516 }
1517
Chandler Carruthbf7190a2018-04-23 06:58:36 +00001518 LoopBlockSet.insert(InnerBB);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001519 }
1520
1521 // Add the preheader to the worklist so we will continue past the
1522 // loop body.
1523 Worklist.push_back(InnerPH);
1524 continue;
1525 }
1526
1527 // Insert any predecessors that were in the original loop into the new
1528 // set, and if the insert is successful, add them to the worklist.
1529 for (auto *Pred : predecessors(BB))
1530 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1531 Worklist.push_back(Pred);
1532 }
1533
Chandler Carruth43acdb32018-04-24 10:33:08 +00001534 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1535
Chandler Carruth693eedb2017-11-17 19:58:36 +00001536 // We've found all the blocks participating in the loop, return our completed
1537 // set.
1538 return LoopBlockSet;
1539}
1540
1541/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1542///
1543/// The removal may have removed some child loops entirely but cannot have
1544/// disturbed any remaining child loops. However, they may need to be hoisted
1545/// to the parent loop (or to be top-level loops). The original loop may be
1546/// completely removed.
1547///
1548/// The sibling loops resulting from this update are returned. If the original
1549/// loop remains a valid loop, it will be the first entry in this list with all
1550/// of the newly sibling loops following it.
1551///
1552/// Returns true if the loop remains a loop after unswitching, and false if it
1553/// is no longer a loop after unswitching (and should not continue to be
1554/// referenced).
1555static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1556 LoopInfo &LI,
1557 SmallVectorImpl<Loop *> &HoistedLoops) {
1558 auto *PH = L.getLoopPreheader();
1559
1560 // Compute the actual parent loop from the exit blocks. Because we may have
1561 // pruned some exits the loop may be different from the original parent.
1562 Loop *ParentL = nullptr;
1563 SmallVector<Loop *, 4> ExitLoops;
1564 SmallVector<BasicBlock *, 4> ExitsInLoops;
1565 ExitsInLoops.reserve(ExitBlocks.size());
1566 for (auto *ExitBB : ExitBlocks)
1567 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1568 ExitLoops.push_back(ExitL);
1569 ExitsInLoops.push_back(ExitBB);
1570 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1571 ParentL = ExitL;
1572 }
1573
1574 // Recompute the blocks participating in this loop. This may be empty if it
1575 // is no longer a loop.
1576 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1577
1578 // If we still have a loop, we need to re-set the loop's parent as the exit
1579 // block set changing may have moved it within the loop nest. Note that this
1580 // can only happen when this loop has a parent as it can only hoist the loop
1581 // *up* the nest.
1582 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1583 // Remove this loop's (original) blocks from all of the intervening loops.
1584 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1585 IL = IL->getParentLoop()) {
1586 IL->getBlocksSet().erase(PH);
1587 for (auto *BB : L.blocks())
1588 IL->getBlocksSet().erase(BB);
1589 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1590 return BB == PH || L.contains(BB);
1591 });
1592 }
1593
1594 LI.changeLoopFor(PH, ParentL);
1595 L.getParentLoop()->removeChildLoop(&L);
1596 if (ParentL)
1597 ParentL->addChildLoop(&L);
1598 else
1599 LI.addTopLevelLoop(&L);
1600 }
1601
1602 // Now we update all the blocks which are no longer within the loop.
1603 auto &Blocks = L.getBlocksVector();
1604 auto BlocksSplitI =
1605 LoopBlockSet.empty()
1606 ? Blocks.begin()
1607 : std::stable_partition(
1608 Blocks.begin(), Blocks.end(),
1609 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1610
1611 // Before we erase the list of unlooped blocks, build a set of them.
1612 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1613 if (LoopBlockSet.empty())
1614 UnloopedBlocks.insert(PH);
1615
1616 // Now erase these blocks from the loop.
1617 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1618 L.getBlocksSet().erase(BB);
1619 Blocks.erase(BlocksSplitI, Blocks.end());
1620
1621 // Sort the exits in ascending loop depth, we'll work backwards across these
1622 // to process them inside out.
1623 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1624 [&](BasicBlock *LHS, BasicBlock *RHS) {
1625 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1626 });
1627
1628 // We'll build up a set for each exit loop.
1629 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1630 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1631
1632 auto RemoveUnloopedBlocksFromLoop =
1633 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1634 for (auto *BB : UnloopedBlocks)
1635 L.getBlocksSet().erase(BB);
1636 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1637 return UnloopedBlocks.count(BB);
1638 });
1639 };
1640
1641 SmallVector<BasicBlock *, 16> Worklist;
1642 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1643 assert(Worklist.empty() && "Didn't clear worklist!");
1644 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1645
1646 // Grab the next exit block, in decreasing loop depth order.
1647 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1648 Loop &ExitL = *LI.getLoopFor(ExitBB);
1649 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1650
1651 // Erase all of the unlooped blocks from the loops between the previous
1652 // exit loop and this exit loop. This works because the ExitInLoops list is
1653 // sorted in increasing order of loop depth and thus we visit loops in
1654 // decreasing order of loop depth.
1655 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1656 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1657
1658 // Walk the CFG back until we hit the cloned PH adding everything reachable
1659 // and in the unlooped set to this exit block's loop.
1660 Worklist.push_back(ExitBB);
1661 do {
1662 BasicBlock *BB = Worklist.pop_back_val();
1663 // We can stop recursing at the cloned preheader (if we get there).
1664 if (BB == PH)
1665 continue;
1666
1667 for (BasicBlock *PredBB : predecessors(BB)) {
1668 // If this pred has already been moved to our set or is part of some
1669 // (inner) loop, no update needed.
1670 if (!UnloopedBlocks.erase(PredBB)) {
1671 assert((NewExitLoopBlocks.count(PredBB) ||
1672 ExitL.contains(LI.getLoopFor(PredBB))) &&
1673 "Predecessor not in a nested loop (or already visited)!");
1674 continue;
1675 }
1676
1677 // We just insert into the loop set here. We'll add these blocks to the
1678 // exit loop after we build up the set in a deterministic order rather
1679 // than the predecessor-influenced visit order.
1680 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1681 (void)Inserted;
1682 assert(Inserted && "Should only visit an unlooped block once!");
1683
1684 // And recurse through to its predecessors.
1685 Worklist.push_back(PredBB);
1686 }
1687 } while (!Worklist.empty());
1688
1689 // If blocks in this exit loop were directly part of the original loop (as
1690 // opposed to a child loop) update the map to point to this exit loop. This
1691 // just updates a map and so the fact that the order is unstable is fine.
1692 for (auto *BB : NewExitLoopBlocks)
1693 if (Loop *BBL = LI.getLoopFor(BB))
1694 if (BBL == &L || !L.contains(BBL))
1695 LI.changeLoopFor(BB, &ExitL);
1696
1697 // We will remove the remaining unlooped blocks from this loop in the next
1698 // iteration or below.
1699 NewExitLoopBlocks.clear();
1700 }
1701
1702 // Any remaining unlooped blocks are no longer part of any loop unless they
1703 // are part of some child loop.
1704 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1705 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1706 for (auto *BB : UnloopedBlocks)
1707 if (Loop *BBL = LI.getLoopFor(BB))
1708 if (BBL == &L || !L.contains(BBL))
1709 LI.changeLoopFor(BB, nullptr);
1710
1711 // Sink all the child loops whose headers are no longer in the loop set to
1712 // the parent (or to be top level loops). We reach into the loop and directly
1713 // update its subloop vector to make this batch update efficient.
1714 auto &SubLoops = L.getSubLoopsVector();
1715 auto SubLoopsSplitI =
1716 LoopBlockSet.empty()
1717 ? SubLoops.begin()
1718 : std::stable_partition(
1719 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1720 return LoopBlockSet.count(SubL->getHeader());
1721 });
1722 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1723 HoistedLoops.push_back(HoistedL);
1724 HoistedL->setParentLoop(nullptr);
1725
1726 // To compute the new parent of this hoisted loop we look at where we
1727 // placed the preheader above. We can't lookup the header itself because we
1728 // retained the mapping from the header to the hoisted loop. But the
1729 // preheader and header should have the exact same new parent computed
1730 // based on the set of exit blocks from the original loop as the preheader
1731 // is a predecessor of the header and so reached in the reverse walk. And
1732 // because the loops were all in simplified form the preheader of the
1733 // hoisted loop can't be part of some *other* loop.
1734 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1735 NewParentL->addChildLoop(HoistedL);
1736 else
1737 LI.addTopLevelLoop(HoistedL);
1738 }
1739 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1740
1741 // Actually delete the loop if nothing remained within it.
1742 if (Blocks.empty()) {
1743 assert(SubLoops.empty() &&
1744 "Failed to remove all subloops from the original loop!");
1745 if (Loop *ParentL = L.getParentLoop())
1746 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1747 else
1748 LI.removeLoop(llvm::find(LI, &L));
1749 LI.destroy(&L);
1750 return false;
1751 }
1752
1753 return true;
1754}
1755
1756/// Helper to visit a dominator subtree, invoking a callable on each node.
1757///
1758/// Returning false at any point will stop walking past that node of the tree.
1759template <typename CallableT>
1760void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1761 SmallVector<DomTreeNode *, 4> DomWorklist;
1762 DomWorklist.push_back(DT[BB]);
1763#ifndef NDEBUG
1764 SmallPtrSet<DomTreeNode *, 4> Visited;
1765 Visited.insert(DT[BB]);
1766#endif
1767 do {
1768 DomTreeNode *N = DomWorklist.pop_back_val();
1769
1770 // Visit this node.
1771 if (!Callable(N->getBlock()))
1772 continue;
1773
1774 // Accumulate the child nodes.
1775 for (DomTreeNode *ChildN : *N) {
1776 assert(Visited.insert(ChildN).second &&
1777 "Cannot visit a node twice when walking a tree!");
1778 DomWorklist.push_back(ChildN);
1779 }
1780 } while (!DomWorklist.empty());
1781}
1782
Chandler Carruth16529962018-06-25 23:32:54 +00001783static bool unswitchNontrivialInvariants(
1784 Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants,
1785 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
Chandler Carruth3897ded2018-07-03 09:13:27 +00001786 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1787 ScalarEvolution *SE) {
Chandler Carruth16529962018-06-25 23:32:54 +00001788 auto *ParentBB = TI.getParent();
1789 BranchInst *BI = dyn_cast<BranchInst>(&TI);
1790 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001791
Chandler Carruth16529962018-06-25 23:32:54 +00001792 // We can only unswitch switches, conditional branches with an invariant
1793 // condition, or combining invariant conditions with an instruction.
1794 assert((SI || BI->isConditional()) &&
1795 "Can only unswitch switches and conditional branch!");
1796 bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001797 if (FullUnswitch)
1798 assert(Invariants.size() == 1 &&
1799 "Cannot have other invariants with full unswitching!");
1800 else
Chandler Carruth16529962018-06-25 23:32:54 +00001801 assert(isa<Instruction>(BI->getCondition()) &&
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001802 "Partial unswitching requires an instruction as the condition!");
1803
1804 // Constant and BBs tracking the cloned and continuing successor. When we are
1805 // unswitching the entire condition, this can just be trivially chosen to
1806 // unswitch towards `true`. However, when we are unswitching a set of
1807 // invariants combined with `and` or `or`, the combining operation determines
1808 // the best direction to unswitch: we want to unswitch the direction that will
1809 // collapse the branch.
1810 bool Direction = true;
1811 int ClonedSucc = 0;
1812 if (!FullUnswitch) {
Chandler Carruth16529962018-06-25 23:32:54 +00001813 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1814 assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1815 Instruction::And &&
1816 "Only `or` and `and` instructions can combine invariants being "
1817 "unswitched.");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001818 Direction = false;
1819 ClonedSucc = 1;
1820 }
1821 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001822
Chandler Carruth16529962018-06-25 23:32:54 +00001823 BasicBlock *RetainedSuccBB =
1824 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1825 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1826 if (BI)
1827 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1828 else
1829 for (auto Case : SI->cases())
Chandler Carruthed296542018-07-09 10:30:48 +00001830 if (Case.getCaseSuccessor() != RetainedSuccBB)
1831 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
Chandler Carruth16529962018-06-25 23:32:54 +00001832
1833 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1834 "Should not unswitch the same successor we are retaining!");
Chandler Carruth693eedb2017-11-17 19:58:36 +00001835
1836 // The branch should be in this exact loop. Any inner loop's invariant branch
1837 // should be handled by unswitching that inner loop. The caller of this
1838 // routine should filter out any candidates that remain (but were skipped for
1839 // whatever reason).
1840 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1841
1842 SmallVector<BasicBlock *, 4> ExitBlocks;
1843 L.getUniqueExitBlocks(ExitBlocks);
1844
1845 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1846 // don't know how to split those exit blocks.
1847 // FIXME: We should teach SplitBlock to handle this and remove this
1848 // restriction.
1849 for (auto *ExitBB : ExitBlocks)
1850 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1851 return false;
1852
Chandler Carruth693eedb2017-11-17 19:58:36 +00001853 // Compute the parent loop now before we start hacking on things.
1854 Loop *ParentL = L.getParentLoop();
1855
1856 // Compute the outer-most loop containing one of our exit blocks. This is the
1857 // furthest up our loopnest which can be mutated, which we will use below to
1858 // update things.
1859 Loop *OuterExitL = &L;
1860 for (auto *ExitBB : ExitBlocks) {
1861 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1862 if (!NewOuterExitL) {
1863 // We exited the entire nest with this block, so we're done.
1864 OuterExitL = nullptr;
1865 break;
1866 }
1867 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1868 OuterExitL = NewOuterExitL;
1869 }
1870
Chandler Carruth3897ded2018-07-03 09:13:27 +00001871 // At this point, we're definitely going to unswitch something so invalidate
1872 // any cached information in ScalarEvolution for the outer most loop
1873 // containing an exit block and all nested loops.
1874 if (SE) {
1875 if (OuterExitL)
1876 SE->forgetLoop(OuterExitL);
1877 else
1878 SE->forgetTopmostLoop(&L);
1879 }
1880
Chandler Carruth16529962018-06-25 23:32:54 +00001881 // If the edge from this terminator to a successor dominates that successor,
1882 // store a map from each block in its dominator subtree to it. This lets us
1883 // tell when cloning for a particular successor if a block is dominated by
1884 // some *other* successor with a single data structure. We use this to
1885 // significantly reduce cloning.
1886 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
1887 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
1888 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
1889 if (SuccBB->getUniquePredecessor() ||
1890 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1891 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
1892 }))
1893 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
1894 DominatingSucc[BB] = SuccBB;
1895 return true;
1896 });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001897
1898 // Split the preheader, so that we know that there is a safe place to insert
1899 // the conditional branch. We will change the preheader to have a conditional
1900 // branch on LoopCond. The original preheader will become the split point
1901 // between the unswitched versions, and we will have a new preheader for the
1902 // original loop.
1903 BasicBlock *SplitBB = L.getLoopPreheader();
1904 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1905
Chandler Carruth69e68f82018-04-25 00:18:07 +00001906 // Keep track of the dominator tree updates needed.
1907 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1908
Chandler Carruth16529962018-06-25 23:32:54 +00001909 // Clone the loop for each unswitched successor.
1910 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
1911 VMaps.reserve(UnswitchedSuccBBs.size());
1912 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
1913 for (auto *SuccBB : UnswitchedSuccBBs) {
1914 VMaps.emplace_back(new ValueToValueMapTy());
1915 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
1916 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
1917 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
1918 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001919
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001920 // The stitching of the branched code back together depends on whether we're
1921 // doing full unswitching or not with the exception that we always want to
1922 // nuke the initial terminator placed in the split block.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001923 SplitBB->getTerminator()->eraseFromParent();
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001924 if (FullUnswitch) {
Chandler Carruthed296542018-07-09 10:30:48 +00001925 // First we need to unhook the successor relationship as we'll be replacing
1926 // the terminator with a direct branch. This is much simpler for branches
1927 // than switches so we handle those first.
Chandler Carruth16529962018-06-25 23:32:54 +00001928 if (BI) {
Chandler Carruthed296542018-07-09 10:30:48 +00001929 // Remove the parent as a predecessor of the unswitched successor.
Chandler Carruth16529962018-06-25 23:32:54 +00001930 assert(UnswitchedSuccBBs.size() == 1 &&
1931 "Only one possible unswitched block for a branch!");
Chandler Carruthed296542018-07-09 10:30:48 +00001932 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
1933 UnswitchedSuccBB->removePredecessor(ParentBB,
1934 /*DontDeleteUselessPHIs*/ true);
1935 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
1936 } else {
1937 // Note that we actually want to remove the parent block as a predecessor
1938 // of *every* case successor. The case successor is either unswitched,
1939 // completely eliminating an edge from the parent to that successor, or it
1940 // is a duplicate edge to the retained successor as the retained successor
1941 // is always the default successor and as we'll replace this with a direct
1942 // branch we no longer need the duplicate entries in the PHI nodes.
1943 assert(SI->getDefaultDest() == RetainedSuccBB &&
1944 "Not retaining default successor!");
1945 for (auto &Case : SI->cases())
1946 Case.getCaseSuccessor()->removePredecessor(
1947 ParentBB,
1948 /*DontDeleteUselessPHIs*/ true);
1949
1950 // We need to use the set to populate domtree updates as even when there
1951 // are multiple cases pointing at the same successor we only want to
1952 // remove and insert one edge in the domtree.
1953 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1954 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
1955 }
1956
1957 // Now that we've unhooked the successor relationship, splice the terminator
1958 // from the original loop to the split.
1959 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
1960
1961 // Now wire up the terminator to the preheaders.
1962 if (BI) {
Chandler Carruth16529962018-06-25 23:32:54 +00001963 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1964 BI->setSuccessor(ClonedSucc, ClonedPH);
1965 BI->setSuccessor(1 - ClonedSucc, LoopPH);
1966 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
1967 } else {
1968 assert(SI && "Must either be a branch or switch!");
1969
1970 // Walk the cases and directly update their successors.
Chandler Carruthed296542018-07-09 10:30:48 +00001971 SI->setDefaultDest(LoopPH);
Chandler Carruth16529962018-06-25 23:32:54 +00001972 for (auto &Case : SI->cases())
Chandler Carruthed296542018-07-09 10:30:48 +00001973 if (Case.getCaseSuccessor() == RetainedSuccBB)
1974 Case.setSuccessor(LoopPH);
1975 else
1976 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
1977
Chandler Carruth16529962018-06-25 23:32:54 +00001978 // We need to use the set to populate domtree updates as even when there
1979 // are multiple cases pointing at the same successor we only want to
Chandler Carruthed296542018-07-09 10:30:48 +00001980 // remove and insert one edge in the domtree.
Chandler Carruth16529962018-06-25 23:32:54 +00001981 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1982 DTUpdates.push_back(
1983 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
Chandler Carruth16529962018-06-25 23:32:54 +00001984 }
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001985
1986 // Create a new unconditional branch to the continuing block (as opposed to
1987 // the one cloned).
Chandler Carruth16529962018-06-25 23:32:54 +00001988 BranchInst::Create(RetainedSuccBB, ParentBB);
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001989 } else {
Chandler Carruth16529962018-06-25 23:32:54 +00001990 assert(BI && "Only branches have partial unswitching.");
1991 assert(UnswitchedSuccBBs.size() == 1 &&
1992 "Only one possible unswitched block for a branch!");
1993 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001994 // When doing a partial unswitch, we have to do a bit more work to build up
1995 // the branch in the split block.
1996 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
1997 *ClonedPH, *LoopPH);
Chandler Carruth16529962018-06-25 23:32:54 +00001998 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001999 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00002000
Chandler Carruth16529962018-06-25 23:32:54 +00002001 // Apply the updates accumulated above to get an up-to-date dominator tree.
Chandler Carruth69e68f82018-04-25 00:18:07 +00002002 DT.applyUpdates(DTUpdates);
2003
Chandler Carruth16529962018-06-25 23:32:54 +00002004 // Now that we have an accurate dominator tree, first delete the dead cloned
2005 // blocks so that we can accurately build any cloned loops. It is important to
2006 // not delete the blocks from the original loop yet because we still want to
2007 // reference the original loop to understand the cloned loop's structure.
2008 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
2009
Chandler Carruth69e68f82018-04-25 00:18:07 +00002010 // Build the cloned loop structure itself. This may be substantially
2011 // different from the original structure due to the simplified CFG. This also
2012 // handles inserting all the cloned blocks into the correct loops.
2013 SmallVector<Loop *, 4> NonChildClonedLoops;
Chandler Carruth16529962018-06-25 23:32:54 +00002014 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2015 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
Chandler Carruth69e68f82018-04-25 00:18:07 +00002016
Chandler Carruth16529962018-06-25 23:32:54 +00002017 // Now that our cloned loops have been built, we can update the original loop.
2018 // First we delete the dead blocks from it and then we rebuild the loop
2019 // structure taking these deletions into account.
2020 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002021 SmallVector<Loop *, 4> HoistedLoops;
2022 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2023
Chandler Carruth69e68f82018-04-25 00:18:07 +00002024 // This transformation has a high risk of corrupting the dominator tree, and
2025 // the below steps to rebuild loop structures will result in hard to debug
2026 // errors in that case so verify that the dominator tree is sane first.
2027 // FIXME: Remove this when the bugs stop showing up and rely on existing
2028 // verification steps.
2029 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruth693eedb2017-11-17 19:58:36 +00002030
Chandler Carruth16529962018-06-25 23:32:54 +00002031 if (BI) {
2032 // If we unswitched a branch which collapses the condition to a known
2033 // constant we want to replace all the uses of the invariants within both
2034 // the original and cloned blocks. We do this here so that we can use the
2035 // now updated dominator tree to identify which side the users are on.
2036 assert(UnswitchedSuccBBs.size() == 1 &&
2037 "Only one possible unswitched block for a branch!");
2038 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2039 ConstantInt *UnswitchedReplacement =
2040 Direction ? ConstantInt::getTrue(BI->getContext())
2041 : ConstantInt::getFalse(BI->getContext());
2042 ConstantInt *ContinueReplacement =
2043 Direction ? ConstantInt::getFalse(BI->getContext())
2044 : ConstantInt::getTrue(BI->getContext());
2045 for (Value *Invariant : Invariants)
2046 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2047 UI != UE;) {
2048 // Grab the use and walk past it so we can clobber it in the use list.
2049 Use *U = &*UI++;
2050 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2051 if (!UserI)
2052 continue;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002053
Chandler Carruth16529962018-06-25 23:32:54 +00002054 // Replace it with the 'continue' side if in the main loop body, and the
2055 // unswitched if in the cloned blocks.
2056 if (DT.dominates(LoopPH, UserI->getParent()))
2057 U->set(ContinueReplacement);
2058 else if (DT.dominates(ClonedPH, UserI->getParent()))
2059 U->set(UnswitchedReplacement);
2060 }
2061 }
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002062
Chandler Carruth693eedb2017-11-17 19:58:36 +00002063 // We can change which blocks are exit blocks of all the cloned sibling
2064 // loops, the current loop, and any parent loops which shared exit blocks
2065 // with the current loop. As a consequence, we need to re-form LCSSA for
2066 // them. But we shouldn't need to re-form LCSSA for any child loops.
2067 // FIXME: This could be made more efficient by tracking which exit blocks are
2068 // new, and focusing on them, but that isn't likely to be necessary.
2069 //
2070 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2071 // loop nest and update every loop that could have had its exits changed. We
2072 // also need to cover any intervening loops. We add all of these loops to
2073 // a list and sort them by loop depth to achieve this without updating
2074 // unnecessary loops.
Chandler Carruth92815032018-06-02 01:29:01 +00002075 auto UpdateLoop = [&](Loop &UpdateL) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002076#ifndef NDEBUG
Chandler Carruth43acdb32018-04-24 10:33:08 +00002077 UpdateL.verifyLoop();
2078 for (Loop *ChildL : UpdateL) {
2079 ChildL->verifyLoop();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002080 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2081 "Perturbed a child loop's LCSSA form!");
Chandler Carruth43acdb32018-04-24 10:33:08 +00002082 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00002083#endif
Chandler Carruth92815032018-06-02 01:29:01 +00002084 // First build LCSSA for this loop so that we can preserve it when
2085 // forming dedicated exits. We don't want to perturb some other loop's
2086 // LCSSA while doing that CFG edit.
Chandler Carruth693eedb2017-11-17 19:58:36 +00002087 formLCSSA(UpdateL, DT, &LI, nullptr);
Chandler Carruth92815032018-06-02 01:29:01 +00002088
2089 // For loops reached by this loop's original exit blocks we may
2090 // introduced new, non-dedicated exits. At least try to re-form dedicated
2091 // exits for these loops. This may fail if they couldn't have dedicated
2092 // exits to start with.
2093 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002094 };
2095
2096 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2097 // and we can do it in any order as they don't nest relative to each other.
Chandler Carruth92815032018-06-02 01:29:01 +00002098 //
2099 // Also check if any of the loops we have updated have become top-level loops
2100 // as that will necessitate widening the outer loop scope.
2101 for (Loop *UpdatedL :
2102 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2103 UpdateLoop(*UpdatedL);
2104 if (!UpdatedL->getParentLoop())
2105 OuterExitL = nullptr;
2106 }
2107 if (IsStillLoop) {
2108 UpdateLoop(L);
2109 if (!L.getParentLoop())
2110 OuterExitL = nullptr;
2111 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00002112
2113 // If the original loop had exit blocks, walk up through the outer most loop
2114 // of those exit blocks to update LCSSA and form updated dedicated exits.
Chandler Carruth92815032018-06-02 01:29:01 +00002115 if (OuterExitL != &L)
Chandler Carruth693eedb2017-11-17 19:58:36 +00002116 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2117 OuterL = OuterL->getParentLoop())
Chandler Carruth92815032018-06-02 01:29:01 +00002118 UpdateLoop(*OuterL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002119
2120#ifndef NDEBUG
2121 // Verify the entire loop structure to catch any incorrect updates before we
2122 // progress in the pass pipeline.
2123 LI.verify(DT);
2124#endif
2125
2126 // Now that we've unswitched something, make callbacks to report the changes.
2127 // For that we need to merge together the updated loops and the cloned loops
2128 // and check whether the original loop survived.
2129 SmallVector<Loop *, 4> SibLoops;
2130 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2131 if (UpdatedL->getParentLoop() == ParentL)
2132 SibLoops.push_back(UpdatedL);
Chandler Carruth71fd2702018-05-30 02:46:45 +00002133 UnswitchCB(IsStillLoop, SibLoops);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002134
2135 ++NumBranches;
2136 return true;
2137}
2138
2139/// Recursively compute the cost of a dominator subtree based on the per-block
2140/// cost map provided.
2141///
2142/// The recursive computation is memozied into the provided DT-indexed cost map
2143/// to allow querying it for most nodes in the domtree without it becoming
2144/// quadratic.
2145static int
2146computeDomSubtreeCost(DomTreeNode &N,
2147 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2148 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2149 // Don't accumulate cost (or recurse through) blocks not in our block cost
2150 // map and thus not part of the duplication cost being considered.
2151 auto BBCostIt = BBCostMap.find(N.getBlock());
2152 if (BBCostIt == BBCostMap.end())
2153 return 0;
2154
2155 // Lookup this node to see if we already computed its cost.
2156 auto DTCostIt = DTCostMap.find(&N);
2157 if (DTCostIt != DTCostMap.end())
2158 return DTCostIt->second;
2159
2160 // If not, we have to compute it. We can't use insert above and update
2161 // because computing the cost may insert more things into the map.
2162 int Cost = std::accumulate(
2163 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2164 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2165 });
2166 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2167 (void)Inserted;
2168 assert(Inserted && "Should not insert a node while visiting children!");
2169 return Cost;
2170}
2171
Chandler Carruth3897ded2018-07-03 09:13:27 +00002172static bool
2173unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2174 AssumptionCache &AC, TargetTransformInfo &TTI,
2175 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2176 ScalarEvolution *SE) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002177 // Collect all invariant conditions within this loop (as opposed to an inner
2178 // loop which would be handled when visiting that inner loop).
2179 SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4>
2180 UnswitchCandidates;
2181 for (auto *BB : L.blocks()) {
2182 if (LI.getLoopFor(BB) != &L)
2183 continue;
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002184
Chandler Carruth16529962018-06-25 23:32:54 +00002185 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2186 // We can only consider fully loop-invariant switch conditions as we need
2187 // to completely eliminate the switch after unswitching.
2188 if (!isa<Constant>(SI->getCondition()) &&
2189 L.isLoopInvariant(SI->getCondition()))
2190 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2191 continue;
2192 }
2193
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002194 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002195 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2196 BI->getSuccessor(0) == BI->getSuccessor(1))
2197 continue;
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002198
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002199 if (L.isLoopInvariant(BI->getCondition())) {
2200 UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2201 continue;
2202 }
2203
2204 Instruction &CondI = *cast<Instruction>(BI->getCondition());
2205 if (CondI.getOpcode() != Instruction::And &&
2206 CondI.getOpcode() != Instruction::Or)
2207 continue;
2208
2209 TinyPtrVector<Value *> Invariants =
2210 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2211 if (Invariants.empty())
2212 continue;
2213
2214 UnswitchCandidates.push_back({BI, std::move(Invariants)});
Chandler Carruth71fd2702018-05-30 02:46:45 +00002215 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002216
Chandler Carruth693eedb2017-11-17 19:58:36 +00002217 // If we didn't find any candidates, we're done.
2218 if (UnswitchCandidates.empty())
Chandler Carruth71fd2702018-05-30 02:46:45 +00002219 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002220
Chandler Carruth32e62f92018-04-19 18:44:25 +00002221 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2222 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2223 // irreducible control flow into reducible control flow and introduce new
2224 // loops "out of thin air". If we ever discover important use cases for doing
2225 // this, we can add support to loop unswitch, but it is a lot of complexity
Hiroshi Inouef2096492018-06-14 05:41:49 +00002226 // for what seems little or no real world benefit.
Chandler Carruth32e62f92018-04-19 18:44:25 +00002227 LoopBlocksRPO RPOT(&L);
2228 RPOT.perform(&LI);
2229 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
Chandler Carruth71fd2702018-05-30 02:46:45 +00002230 return false;
Chandler Carruth32e62f92018-04-19 18:44:25 +00002231
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002232 LLVM_DEBUG(
2233 dbgs() << "Considering " << UnswitchCandidates.size()
2234 << " non-trivial loop invariant conditions for unswitching.\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002235
2236 // Given that unswitching these terminators will require duplicating parts of
2237 // the loop, so we need to be able to model that cost. Compute the ephemeral
2238 // values and set up a data structure to hold per-BB costs. We cache each
2239 // block's cost so that we don't recompute this when considering different
2240 // subsets of the loop for duplication during unswitching.
2241 SmallPtrSet<const Value *, 4> EphValues;
2242 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2243 SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2244
2245 // Compute the cost of each block, as well as the total loop cost. Also, bail
2246 // out if we see instructions which are incompatible with loop unswitching
2247 // (convergent, noduplicate, or cross-basic-block tokens).
2248 // FIXME: We might be able to safely handle some of these in non-duplicated
2249 // regions.
2250 int LoopCost = 0;
2251 for (auto *BB : L.blocks()) {
2252 int Cost = 0;
2253 for (auto &I : *BB) {
2254 if (EphValues.count(&I))
2255 continue;
2256
2257 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
Chandler Carruth71fd2702018-05-30 02:46:45 +00002258 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002259 if (auto CS = CallSite(&I))
2260 if (CS.isConvergent() || CS.cannotDuplicate())
Chandler Carruth71fd2702018-05-30 02:46:45 +00002261 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002262
2263 Cost += TTI.getUserCost(&I);
2264 }
2265 assert(Cost >= 0 && "Must not have negative costs!");
2266 LoopCost += Cost;
2267 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2268 BBCostMap[BB] = Cost;
2269 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002270 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002271
2272 // Now we find the best candidate by searching for the one with the following
2273 // properties in order:
2274 //
2275 // 1) An unswitching cost below the threshold
2276 // 2) The smallest number of duplicated unswitch candidates (to avoid
2277 // creating redundant subsequent unswitching)
2278 // 3) The smallest cost after unswitching.
2279 //
2280 // We prioritize reducing fanout of unswitch candidates provided the cost
2281 // remains below the threshold because this has a multiplicative effect.
2282 //
2283 // This requires memoizing each dominator subtree to avoid redundant work.
2284 //
2285 // FIXME: Need to actually do the number of candidates part above.
2286 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2287 // Given a terminator which might be unswitched, computes the non-duplicated
2288 // cost for that terminator.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002289 auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) {
2290 BasicBlock &BB = *TI.getParent();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002291 SmallPtrSet<BasicBlock *, 4> Visited;
2292
2293 int Cost = LoopCost;
2294 for (BasicBlock *SuccBB : successors(&BB)) {
2295 // Don't count successors more than once.
2296 if (!Visited.insert(SuccBB).second)
2297 continue;
2298
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002299 // If this is a partial unswitch candidate, then it must be a conditional
2300 // branch with a condition of either `or` or `and`. In that case, one of
2301 // the successors is necessarily duplicated, so don't even try to remove
2302 // its cost.
2303 if (!FullUnswitch) {
2304 auto &BI = cast<BranchInst>(TI);
2305 if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2306 Instruction::And) {
2307 if (SuccBB == BI.getSuccessor(1))
2308 continue;
2309 } else {
2310 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2311 Instruction::Or &&
2312 "Only `and` and `or` conditions can result in a partial "
2313 "unswitch!");
2314 if (SuccBB == BI.getSuccessor(0))
2315 continue;
2316 }
2317 }
2318
Chandler Carruth693eedb2017-11-17 19:58:36 +00002319 // This successor's domtree will not need to be duplicated after
2320 // unswitching if the edge to the successor dominates it (and thus the
2321 // entire tree). This essentially means there is no other path into this
2322 // subtree and so it will end up live in only one clone of the loop.
2323 if (SuccBB->getUniquePredecessor() ||
2324 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2325 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2326 })) {
2327 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2328 assert(Cost >= 0 &&
2329 "Non-duplicated cost should never exceed total loop cost!");
2330 }
2331 }
2332
2333 // Now scale the cost by the number of unique successors minus one. We
2334 // subtract one because there is already at least one copy of the entire
2335 // loop. This is computing the new cost of unswitching a condition.
2336 assert(Visited.size() > 1 &&
2337 "Cannot unswitch a condition without multiple distinct successors!");
2338 return Cost * (Visited.size() - 1);
2339 };
2340 TerminatorInst *BestUnswitchTI = nullptr;
2341 int BestUnswitchCost;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002342 ArrayRef<Value *> BestUnswitchInvariants;
2343 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2344 TerminatorInst &TI = *TerminatorAndInvariants.first;
2345 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2346 BranchInst *BI = dyn_cast<BranchInst>(&TI);
Chandler Carruth16529962018-06-25 23:32:54 +00002347 int CandidateCost = ComputeUnswitchedCost(
2348 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2349 Invariants[0] == BI->getCondition()));
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002350 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002351 << " for unswitch candidate: " << TI << "\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002352 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002353 BestUnswitchTI = &TI;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002354 BestUnswitchCost = CandidateCost;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002355 BestUnswitchInvariants = Invariants;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002356 }
2357 }
2358
Chandler Carruth71fd2702018-05-30 02:46:45 +00002359 if (BestUnswitchCost >= UnswitchThreshold) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002360 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2361 << BestUnswitchCost << "\n");
Chandler Carruth71fd2702018-05-30 02:46:45 +00002362 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002363 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002364
Chandler Carruth71fd2702018-05-30 02:46:45 +00002365 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = "
Chandler Carruth16529962018-06-25 23:32:54 +00002366 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2367 << "\n");
2368 return unswitchNontrivialInvariants(
Chandler Carruth3897ded2018-07-03 09:13:27 +00002369 L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002370}
2371
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002372/// Unswitch control flow predicated on loop invariant conditions.
2373///
2374/// This first hoists all branches or switches which are trivial (IE, do not
2375/// require duplicating any part of the loop) out of the loop body. It then
2376/// looks at other loop invariant control flows and tries to unswitch those as
2377/// well by cloning the loop if the result is small enough.
Chandler Carruth3897ded2018-07-03 09:13:27 +00002378///
2379/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2380/// updated based on the unswitch.
2381///
2382/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2383/// true, we will attempt to do non-trivial unswitching as well as trivial
2384/// unswitching.
2385///
2386/// The `UnswitchCB` callback provided will be run after unswitching is
2387/// complete, with the first parameter set to `true` if the provided loop
2388/// remains a loop, and a list of new sibling loops created.
2389///
2390/// If `SE` is non-null, we will update that analysis based on the unswitching
2391/// done.
2392static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2393 AssumptionCache &AC, TargetTransformInfo &TTI,
2394 bool NonTrivial,
2395 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2396 ScalarEvolution *SE) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002397 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2398 "Loops must be in LCSSA form before unswitching.");
2399 bool Changed = false;
2400
2401 // Must be in loop simplified form: we need a preheader and dedicated exits.
2402 if (!L.isLoopSimplifyForm())
2403 return false;
2404
2405 // Try trivial unswitch first before loop over other basic blocks in the loop.
Chandler Carruth3897ded2018-07-03 09:13:27 +00002406 if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002407 // If we unswitched successfully we will want to clean up the loop before
2408 // processing it further so just mark it as unswitched and return.
2409 UnswitchCB(/*CurrentLoopValid*/ true, {});
2410 return true;
2411 }
2412
2413 // If we're not doing non-trivial unswitching, we're done. We both accept
2414 // a parameter but also check a local flag that can be used for testing
2415 // a debugging.
2416 if (!NonTrivial && !EnableNonTrivialUnswitch)
2417 return false;
2418
2419 // For non-trivial unswitching, because it often creates new loops, we rely on
2420 // the pass manager to iterate on the loops rather than trying to immediately
2421 // reach a fixed point. There is no substantial advantage to iterating
2422 // internally, and if any of the new loops are simplified enough to contain
2423 // trivial unswitching we want to prefer those.
2424
2425 // Try to unswitch the best invariant condition. We prefer this full unswitch to
2426 // a partial unswitch when possible below the threshold.
Chandler Carruth3897ded2018-07-03 09:13:27 +00002427 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002428 return true;
2429
2430 // No other opportunities to unswitch.
2431 return Changed;
2432}
2433
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002434PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2435 LoopStandardAnalysisResults &AR,
2436 LPMUpdater &U) {
2437 Function &F = *L.getHeader()->getParent();
2438 (void)F;
2439
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002440 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2441 << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002442
Chandler Carruth693eedb2017-11-17 19:58:36 +00002443 // Save the current loop name in a variable so that we can report it even
2444 // after it has been deleted.
2445 std::string LoopName = L.getName();
2446
Chandler Carruth71fd2702018-05-30 02:46:45 +00002447 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2448 ArrayRef<Loop *> NewLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002449 // If we did a non-trivial unswitch, we have added new (cloned) loops.
Chandler Carruth71fd2702018-05-30 02:46:45 +00002450 if (!NewLoops.empty())
2451 U.addSiblingLoops(NewLoops);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002452
2453 // If the current loop remains valid, we should revisit it to catch any
2454 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2455 if (CurrentLoopValid)
2456 U.revisitCurrentLoop();
2457 else
2458 U.markLoopAsDeleted(L, LoopName);
2459 };
2460
Chandler Carruth3897ded2018-07-03 09:13:27 +00002461 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2462 &AR.SE))
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002463 return PreservedAnalyses::all();
2464
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002465 // Historically this pass has had issues with the dominator tree so verify it
2466 // in asserts builds.
David Green7c35de12018-02-28 11:00:08 +00002467 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002468 return getLoopPassPreservedAnalyses();
2469}
2470
2471namespace {
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002472
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002473class SimpleLoopUnswitchLegacyPass : public LoopPass {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002474 bool NonTrivial;
2475
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002476public:
2477 static char ID; // Pass ID, replacement for typeid
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002478
Chandler Carruth693eedb2017-11-17 19:58:36 +00002479 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2480 : LoopPass(ID), NonTrivial(NonTrivial) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002481 initializeSimpleLoopUnswitchLegacyPassPass(
2482 *PassRegistry::getPassRegistry());
2483 }
2484
2485 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2486
2487 void getAnalysisUsage(AnalysisUsage &AU) const override {
2488 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002489 AU.addRequired<TargetTransformInfoWrapperPass>();
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002490 getLoopAnalysisUsage(AU);
2491 }
2492};
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002493
2494} // end anonymous namespace
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002495
2496bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2497 if (skipLoop(L))
2498 return false;
2499
2500 Function &F = *L->getHeader()->getParent();
2501
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002502 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2503 << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002504
2505 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2506 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2507 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002508 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002509
Chandler Carruth3897ded2018-07-03 09:13:27 +00002510 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2511 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2512
Chandler Carruth71fd2702018-05-30 02:46:45 +00002513 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2514 ArrayRef<Loop *> NewLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002515 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2516 for (auto *NewL : NewLoops)
2517 LPM.addLoop(*NewL);
2518
2519 // If the current loop remains valid, re-add it to the queue. This is
2520 // a little wasteful as we'll finish processing the current loop as well,
2521 // but it is the best we can do in the old PM.
2522 if (CurrentLoopValid)
2523 LPM.addLoop(*L);
2524 else
2525 LPM.markLoopAsDeleted(*L);
2526 };
2527
Chandler Carruth3897ded2018-07-03 09:13:27 +00002528 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002529
2530 // If anything was unswitched, also clear any cached information about this
2531 // loop.
2532 LPM.deleteSimpleAnalysisLoop(L);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002533
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002534 // Historically this pass has had issues with the dominator tree so verify it
2535 // in asserts builds.
David Green7c35de12018-02-28 11:00:08 +00002536 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2537
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002538 return Changed;
2539}
2540
2541char SimpleLoopUnswitchLegacyPass::ID = 0;
2542INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2543 "Simple unswitch loops", false, false)
2544INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth693eedb2017-11-17 19:58:36 +00002545INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2546INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002547INITIALIZE_PASS_DEPENDENCY(LoopPass)
2548INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2549INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2550 "Simple unswitch loops", false, false)
2551
Chandler Carruth693eedb2017-11-17 19:58:36 +00002552Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2553 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002554}