Chandler Carruth | d8b0c8c | 2018-07-07 01:12:56 +0000 | [diff] [blame] | 1 | ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 10 | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 11 | #include "llvm/ADT/DenseMap.h" |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 12 | #include "llvm/ADT/STLExtras.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 13 | #include "llvm/ADT/Sequence.h" |
| 14 | #include "llvm/ADT/SetVector.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 15 | #include "llvm/ADT/SmallPtrSet.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 16 | #include "llvm/ADT/SmallVector.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 17 | #include "llvm/ADT/Statistic.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 18 | #include "llvm/ADT/Twine.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 19 | #include "llvm/Analysis/AssumptionCache.h" |
Chandler Carruth | 32e62f9 | 2018-04-19 18:44:25 +0000 | [diff] [blame] | 20 | #include "llvm/Analysis/CFG.h" |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 21 | #include "llvm/Analysis/CodeMetrics.h" |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 22 | #include "llvm/Analysis/InstructionSimplify.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 23 | #include "llvm/Analysis/LoopAnalysisManager.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 24 | #include "llvm/Analysis/LoopInfo.h" |
Chandler Carruth | 32e62f9 | 2018-04-19 18:44:25 +0000 | [diff] [blame] | 25 | #include "llvm/Analysis/LoopIterator.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 26 | #include "llvm/Analysis/LoopPass.h" |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 27 | #include "llvm/Analysis/Utils/Local.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 28 | #include "llvm/IR/BasicBlock.h" |
| 29 | #include "llvm/IR/Constant.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 30 | #include "llvm/IR/Constants.h" |
| 31 | #include "llvm/IR/Dominators.h" |
| 32 | #include "llvm/IR/Function.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 33 | #include "llvm/IR/InstrTypes.h" |
| 34 | #include "llvm/IR/Instruction.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 35 | #include "llvm/IR/Instructions.h" |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 36 | #include "llvm/IR/IntrinsicInst.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 37 | #include "llvm/IR/Use.h" |
| 38 | #include "llvm/IR/Value.h" |
| 39 | #include "llvm/Pass.h" |
| 40 | #include "llvm/Support/Casting.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 41 | #include "llvm/Support/Debug.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 42 | #include "llvm/Support/ErrorHandling.h" |
| 43 | #include "llvm/Support/GenericDomTree.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 44 | #include "llvm/Support/raw_ostream.h" |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 45 | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 46 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 47 | #include "llvm/Transforms/Utils/Cloning.h" |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 48 | #include "llvm/Transforms/Utils/LoopUtils.h" |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 49 | #include "llvm/Transforms/Utils/ValueMapper.h" |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 50 | #include <algorithm> |
| 51 | #include <cassert> |
| 52 | #include <iterator> |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 53 | #include <numeric> |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 54 | #include <utility> |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 55 | |
| 56 | #define DEBUG_TYPE "simple-loop-unswitch" |
| 57 | |
| 58 | using namespace llvm; |
| 59 | |
| 60 | STATISTIC(NumBranches, "Number of branches unswitched"); |
| 61 | STATISTIC(NumSwitches, "Number of switches unswitched"); |
| 62 | STATISTIC(NumTrivial, "Number of unswitches that are trivial"); |
| 63 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 64 | static cl::opt<bool> EnableNonTrivialUnswitch( |
| 65 | "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, |
| 66 | cl::desc("Forcibly enables non-trivial loop unswitching rather than " |
| 67 | "following the configuration passed into the pass.")); |
| 68 | |
| 69 | static cl::opt<int> |
| 70 | UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, |
| 71 | cl::desc("The cost threshold for unswitching a loop.")); |
| 72 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 73 | /// Collect all of the loop invariant input values transitively used by the |
| 74 | /// homogeneous instruction graph from a given root. |
| 75 | /// |
| 76 | /// This essentially walks from a root recursively through loop variant operands |
| 77 | /// which have the exact same opcode and finds all inputs which are loop |
| 78 | /// invariant. For some operations these can be re-associated and unswitched out |
| 79 | /// of the loop entirely. |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 80 | static TinyPtrVector<Value *> |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 81 | collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, |
| 82 | LoopInfo &LI) { |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 83 | assert(!L.isLoopInvariant(&Root) && |
| 84 | "Only need to walk the graph if root itself is not invariant."); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 85 | TinyPtrVector<Value *> Invariants; |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 86 | |
| 87 | // Build a worklist and recurse through operators collecting invariants. |
| 88 | SmallVector<Instruction *, 4> Worklist; |
| 89 | SmallPtrSet<Instruction *, 8> Visited; |
| 90 | Worklist.push_back(&Root); |
| 91 | Visited.insert(&Root); |
| 92 | do { |
| 93 | Instruction &I = *Worklist.pop_back_val(); |
| 94 | for (Value *OpV : I.operand_values()) { |
| 95 | // Skip constants as unswitching isn't interesting for them. |
| 96 | if (isa<Constant>(OpV)) |
| 97 | continue; |
| 98 | |
| 99 | // Add it to our result if loop invariant. |
| 100 | if (L.isLoopInvariant(OpV)) { |
| 101 | Invariants.push_back(OpV); |
| 102 | continue; |
| 103 | } |
| 104 | |
| 105 | // If not an instruction with the same opcode, nothing we can do. |
| 106 | Instruction *OpI = dyn_cast<Instruction>(OpV); |
| 107 | if (!OpI || OpI->getOpcode() != Root.getOpcode()) |
| 108 | continue; |
| 109 | |
| 110 | // Visit this operand. |
| 111 | if (Visited.insert(OpI).second) |
| 112 | Worklist.push_back(OpI); |
| 113 | } |
| 114 | } while (!Worklist.empty()); |
| 115 | |
| 116 | return Invariants; |
| 117 | } |
| 118 | |
| 119 | static void replaceLoopInvariantUses(Loop &L, Value *Invariant, |
| 120 | Constant &Replacement) { |
| 121 | assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 122 | |
| 123 | // Replace uses of LIC in the loop with the given constant. |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 124 | for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 125 | // Grab the use and walk past it so we can clobber it in the use list. |
| 126 | Use *U = &*UI++; |
| 127 | Instruction *UserI = dyn_cast<Instruction>(U->getUser()); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 128 | |
| 129 | // Replace this use within the loop body. |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 130 | if (UserI && L.contains(UserI)) |
| 131 | U->set(&Replacement); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 132 | } |
| 133 | } |
| 134 | |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 135 | /// Check that all the LCSSA PHI nodes in the loop exit block have trivial |
| 136 | /// incoming values along this edge. |
| 137 | static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, |
| 138 | BasicBlock &ExitBB) { |
| 139 | for (Instruction &I : ExitBB) { |
| 140 | auto *PN = dyn_cast<PHINode>(&I); |
| 141 | if (!PN) |
| 142 | // No more PHIs to check. |
| 143 | return true; |
| 144 | |
| 145 | // If the incoming value for this edge isn't loop invariant the unswitch |
| 146 | // won't be trivial. |
| 147 | if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) |
| 148 | return false; |
| 149 | } |
| 150 | llvm_unreachable("Basic blocks should never be empty!"); |
| 151 | } |
| 152 | |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 153 | /// Insert code to test a set of loop invariant values, and conditionally branch |
| 154 | /// on them. |
| 155 | static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, |
| 156 | ArrayRef<Value *> Invariants, |
| 157 | bool Direction, |
| 158 | BasicBlock &UnswitchedSucc, |
| 159 | BasicBlock &NormalSucc) { |
| 160 | IRBuilder<> IRB(&BB); |
| 161 | Value *Cond = Invariants.front(); |
| 162 | for (Value *Invariant : |
| 163 | make_range(std::next(Invariants.begin()), Invariants.end())) |
| 164 | if (Direction) |
| 165 | Cond = IRB.CreateOr(Cond, Invariant); |
| 166 | else |
| 167 | Cond = IRB.CreateAnd(Cond, Invariant); |
| 168 | |
| 169 | IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, |
| 170 | Direction ? &NormalSucc : &UnswitchedSucc); |
| 171 | } |
| 172 | |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 173 | /// Rewrite the PHI nodes in an unswitched loop exit basic block. |
| 174 | /// |
| 175 | /// Requires that the loop exit and unswitched basic block are the same, and |
| 176 | /// that the exiting block was a unique predecessor of that block. Rewrites the |
| 177 | /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial |
| 178 | /// PHI nodes from the old preheader that now contains the unswitched |
| 179 | /// terminator. |
| 180 | static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, |
| 181 | BasicBlock &OldExitingBB, |
| 182 | BasicBlock &OldPH) { |
Benjamin Kramer | c7fc81e | 2017-12-30 15:27:33 +0000 | [diff] [blame] | 183 | for (PHINode &PN : UnswitchedBB.phis()) { |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 184 | // When the loop exit is directly unswitched we just need to update the |
| 185 | // incoming basic block. We loop to handle weird cases with repeated |
| 186 | // incoming blocks, but expect to typically only have one operand here. |
Benjamin Kramer | c7fc81e | 2017-12-30 15:27:33 +0000 | [diff] [blame] | 187 | for (auto i : seq<int>(0, PN.getNumOperands())) { |
| 188 | assert(PN.getIncomingBlock(i) == &OldExitingBB && |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 189 | "Found incoming block different from unique predecessor!"); |
Benjamin Kramer | c7fc81e | 2017-12-30 15:27:33 +0000 | [diff] [blame] | 190 | PN.setIncomingBlock(i, &OldPH); |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 191 | } |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | /// Rewrite the PHI nodes in the loop exit basic block and the split off |
| 196 | /// unswitched block. |
| 197 | /// |
| 198 | /// Because the exit block remains an exit from the loop, this rewrites the |
| 199 | /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI |
| 200 | /// nodes into the unswitched basic block to select between the value in the |
| 201 | /// old preheader and the loop exit. |
| 202 | static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, |
| 203 | BasicBlock &UnswitchedBB, |
| 204 | BasicBlock &OldExitingBB, |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 205 | BasicBlock &OldPH, |
| 206 | bool FullUnswitch) { |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 207 | assert(&ExitBB != &UnswitchedBB && |
| 208 | "Must have different loop exit and unswitched blocks!"); |
| 209 | Instruction *InsertPt = &*UnswitchedBB.begin(); |
Benjamin Kramer | c7fc81e | 2017-12-30 15:27:33 +0000 | [diff] [blame] | 210 | for (PHINode &PN : ExitBB.phis()) { |
| 211 | auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, |
| 212 | PN.getName() + ".split", InsertPt); |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 213 | |
| 214 | // Walk backwards over the old PHI node's inputs to minimize the cost of |
| 215 | // removing each one. We have to do this weird loop manually so that we |
| 216 | // create the same number of new incoming edges in the new PHI as we expect |
| 217 | // each case-based edge to be included in the unswitched switch in some |
| 218 | // cases. |
| 219 | // FIXME: This is really, really gross. It would be much cleaner if LLVM |
| 220 | // allowed us to create a single entry for a predecessor block without |
| 221 | // having separate entries for each "edge" even though these edges are |
| 222 | // required to produce identical results. |
Benjamin Kramer | c7fc81e | 2017-12-30 15:27:33 +0000 | [diff] [blame] | 223 | for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { |
| 224 | if (PN.getIncomingBlock(i) != &OldExitingBB) |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 225 | continue; |
| 226 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 227 | Value *Incoming = PN.getIncomingValue(i); |
| 228 | if (FullUnswitch) |
| 229 | // No more edge from the old exiting block to the exit block. |
| 230 | PN.removeIncomingValue(i); |
| 231 | |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 232 | NewPN->addIncoming(Incoming, &OldPH); |
| 233 | } |
| 234 | |
| 235 | // Now replace the old PHI with the new one and wire the old one in as an |
| 236 | // input to the new one. |
Benjamin Kramer | c7fc81e | 2017-12-30 15:27:33 +0000 | [diff] [blame] | 237 | PN.replaceAllUsesWith(NewPN); |
| 238 | NewPN->addIncoming(&PN, &ExitBB); |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 239 | } |
| 240 | } |
| 241 | |
Chandler Carruth | d8b0c8c | 2018-07-07 01:12:56 +0000 | [diff] [blame] | 242 | /// Hoist the current loop up to the innermost loop containing a remaining exit. |
| 243 | /// |
| 244 | /// Because we've removed an exit from the loop, we may have changed the set of |
| 245 | /// loops reachable and need to move the current loop up the loop nest or even |
| 246 | /// to an entirely separate nest. |
| 247 | static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, |
| 248 | DominatorTree &DT, LoopInfo &LI) { |
| 249 | // If the loop is already at the top level, we can't hoist it anywhere. |
| 250 | Loop *OldParentL = L.getParentLoop(); |
| 251 | if (!OldParentL) |
| 252 | return; |
| 253 | |
| 254 | SmallVector<BasicBlock *, 4> Exits; |
| 255 | L.getExitBlocks(Exits); |
| 256 | Loop *NewParentL = nullptr; |
| 257 | for (auto *ExitBB : Exits) |
| 258 | if (Loop *ExitL = LI.getLoopFor(ExitBB)) |
| 259 | if (!NewParentL || NewParentL->contains(ExitL)) |
| 260 | NewParentL = ExitL; |
| 261 | |
| 262 | if (NewParentL == OldParentL) |
| 263 | return; |
| 264 | |
| 265 | // The new parent loop (if different) should always contain the old one. |
| 266 | if (NewParentL) |
| 267 | assert(NewParentL->contains(OldParentL) && |
| 268 | "Can only hoist this loop up the nest!"); |
| 269 | |
| 270 | // The preheader will need to move with the body of this loop. However, |
| 271 | // because it isn't in this loop we also need to update the primary loop map. |
| 272 | assert(OldParentL == LI.getLoopFor(&Preheader) && |
| 273 | "Parent loop of this loop should contain this loop's preheader!"); |
| 274 | LI.changeLoopFor(&Preheader, NewParentL); |
| 275 | |
| 276 | // Remove this loop from its old parent. |
| 277 | OldParentL->removeChildLoop(&L); |
| 278 | |
| 279 | // Add the loop either to the new parent or as a top-level loop. |
| 280 | if (NewParentL) |
| 281 | NewParentL->addChildLoop(&L); |
| 282 | else |
| 283 | LI.addTopLevelLoop(&L); |
| 284 | |
| 285 | // Remove this loops blocks from the old parent and every other loop up the |
| 286 | // nest until reaching the new parent. Also update all of these |
| 287 | // no-longer-containing loops to reflect the nesting change. |
| 288 | for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; |
| 289 | OldContainingL = OldContainingL->getParentLoop()) { |
| 290 | llvm::erase_if(OldContainingL->getBlocksVector(), |
| 291 | [&](const BasicBlock *BB) { |
| 292 | return BB == &Preheader || L.contains(BB); |
| 293 | }); |
| 294 | |
| 295 | OldContainingL->getBlocksSet().erase(&Preheader); |
| 296 | for (BasicBlock *BB : L.blocks()) |
| 297 | OldContainingL->getBlocksSet().erase(BB); |
| 298 | |
| 299 | // Because we just hoisted a loop out of this one, we have essentially |
| 300 | // created new exit paths from it. That means we need to form LCSSA PHI |
| 301 | // nodes for values used in the no-longer-nested loop. |
| 302 | formLCSSA(*OldContainingL, DT, &LI, nullptr); |
| 303 | |
| 304 | // We shouldn't need to form dedicated exits because the exit introduced |
| 305 | // here is the (just split by unswitching) preheader. As such, it is |
| 306 | // necessarily dedicated. |
| 307 | assert(OldContainingL->hasDedicatedExits() && |
| 308 | "Unexpected predecessor of hoisted loop preheader!"); |
| 309 | } |
| 310 | } |
| 311 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 312 | /// Unswitch a trivial branch if the condition is loop invariant. |
| 313 | /// |
| 314 | /// This routine should only be called when loop code leading to the branch has |
| 315 | /// been validated as trivial (no side effects). This routine checks if the |
| 316 | /// condition is invariant and one of the successors is a loop exit. This |
| 317 | /// allows us to unswitch without duplicating the loop, making it trivial. |
| 318 | /// |
| 319 | /// If this routine fails to unswitch the branch it returns false. |
| 320 | /// |
| 321 | /// If the branch can be unswitched, this routine splits the preheader and |
| 322 | /// hoists the branch above that split. Preserves loop simplified form |
| 323 | /// (splitting the exit block as necessary). It simplifies the branch within |
| 324 | /// the loop to an unconditional branch but doesn't remove it entirely. Further |
| 325 | /// cleanup can be done with some simplify-cfg like pass. |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 326 | /// |
| 327 | /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| 328 | /// invalidated by this. |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 329 | static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 330 | LoopInfo &LI, ScalarEvolution *SE) { |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 331 | assert(BI.isConditional() && "Can only unswitch a conditional branch!"); |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 332 | LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 333 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 334 | // The loop invariant values that we want to unswitch. |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 335 | TinyPtrVector<Value *> Invariants; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 336 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 337 | // When true, we're fully unswitching the branch rather than just unswitching |
| 338 | // some input conditions to the branch. |
| 339 | bool FullUnswitch = false; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 340 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 341 | if (L.isLoopInvariant(BI.getCondition())) { |
| 342 | Invariants.push_back(BI.getCondition()); |
| 343 | FullUnswitch = true; |
| 344 | } else { |
| 345 | if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) |
| 346 | Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); |
| 347 | if (Invariants.empty()) |
| 348 | // Couldn't find invariant inputs! |
| 349 | return false; |
| 350 | } |
| 351 | |
| 352 | // Check that one of the branch's successors exits, and which one. |
| 353 | bool ExitDirection = true; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 354 | int LoopExitSuccIdx = 0; |
| 355 | auto *LoopExitBB = BI.getSuccessor(0); |
Chandler Carruth | baf045f | 2018-05-10 17:33:20 +0000 | [diff] [blame] | 356 | if (L.contains(LoopExitBB)) { |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 357 | ExitDirection = false; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 358 | LoopExitSuccIdx = 1; |
| 359 | LoopExitBB = BI.getSuccessor(1); |
Chandler Carruth | baf045f | 2018-05-10 17:33:20 +0000 | [diff] [blame] | 360 | if (L.contains(LoopExitBB)) |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 361 | return false; |
| 362 | } |
| 363 | auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 364 | auto *ParentBB = BI.getParent(); |
| 365 | if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 366 | return false; |
| 367 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 368 | // When unswitching only part of the branch's condition, we need the exit |
| 369 | // block to be reached directly from the partially unswitched input. This can |
| 370 | // be done when the exit block is along the true edge and the branch condition |
| 371 | // is a graph of `or` operations, or the exit block is along the false edge |
| 372 | // and the condition is a graph of `and` operations. |
| 373 | if (!FullUnswitch) { |
| 374 | if (ExitDirection) { |
| 375 | if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) |
| 376 | return false; |
| 377 | } else { |
| 378 | if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) |
| 379 | return false; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | LLVM_DEBUG({ |
| 384 | dbgs() << " unswitching trivial invariant conditions for: " << BI |
| 385 | << "\n"; |
| 386 | for (Value *Invariant : Invariants) { |
| 387 | dbgs() << " " << *Invariant << " == true"; |
| 388 | if (Invariant != Invariants.back()) |
| 389 | dbgs() << " ||"; |
| 390 | dbgs() << "\n"; |
| 391 | } |
| 392 | }); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 393 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 394 | // If we have scalar evolutions, we need to invalidate them including this |
| 395 | // loop and the loop containing the exit block. |
| 396 | if (SE) { |
| 397 | if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) |
| 398 | SE->forgetLoop(ExitL); |
| 399 | else |
| 400 | // Forget the entire nest as this exits the entire nest. |
| 401 | SE->forgetTopmostLoop(&L); |
| 402 | } |
| 403 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 404 | // Split the preheader, so that we know that there is a safe place to insert |
| 405 | // the conditional branch. We will change the preheader to have a conditional |
| 406 | // branch on LoopCond. |
| 407 | BasicBlock *OldPH = L.getLoopPreheader(); |
| 408 | BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); |
| 409 | |
| 410 | // Now that we have a place to insert the conditional branch, create a place |
| 411 | // to branch to: this is the exit block out of the loop that we are |
| 412 | // unswitching. We need to split this if there are other loop predecessors. |
| 413 | // Because the loop is in simplified form, *any* other predecessor is enough. |
| 414 | BasicBlock *UnswitchedBB; |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 415 | if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { |
| 416 | assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 417 | "A branch's parent isn't a predecessor!"); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 418 | UnswitchedBB = LoopExitBB; |
| 419 | } else { |
| 420 | UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); |
| 421 | } |
| 422 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 423 | // Actually move the invariant uses into the unswitched position. If possible, |
| 424 | // we do this by moving the instructions, but when doing partial unswitching |
| 425 | // we do it by building a new merge of the values in the unswitched position. |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 426 | OldPH->getTerminator()->eraseFromParent(); |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 427 | if (FullUnswitch) { |
| 428 | // If fully unswitching, we can use the existing branch instruction. |
| 429 | // Splice it into the old PH to gate reaching the new preheader and re-point |
| 430 | // its successors. |
| 431 | OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), |
| 432 | BI); |
| 433 | BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); |
| 434 | BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 435 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 436 | // Create a new unconditional branch that will continue the loop as a new |
| 437 | // terminator. |
| 438 | BranchInst::Create(ContinueBB, ParentBB); |
| 439 | } else { |
| 440 | // Only unswitching a subset of inputs to the condition, so we will need to |
| 441 | // build a new branch that merges the invariant inputs. |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 442 | if (ExitDirection) |
| 443 | assert(cast<Instruction>(BI.getCondition())->getOpcode() == |
| 444 | Instruction::Or && |
| 445 | "Must have an `or` of `i1`s for the condition!"); |
| 446 | else |
| 447 | assert(cast<Instruction>(BI.getCondition())->getOpcode() == |
| 448 | Instruction::And && |
| 449 | "Must have an `and` of `i1`s for the condition!"); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 450 | buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, |
| 451 | *UnswitchedBB, *NewPH); |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 452 | } |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 453 | |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 454 | // Rewrite the relevant PHI nodes. |
| 455 | if (UnswitchedBB == LoopExitBB) |
| 456 | rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); |
| 457 | else |
| 458 | rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 459 | *ParentBB, *OldPH, FullUnswitch); |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 460 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 461 | // Now we need to update the dominator tree. |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 462 | DT.insertEdge(OldPH, UnswitchedBB); |
| 463 | if (FullUnswitch) |
| 464 | DT.deleteEdge(ParentBB, UnswitchedBB); |
| 465 | |
| 466 | // The constant we can replace all of our invariants with inside the loop |
| 467 | // body. If any of the invariants have a value other than this the loop won't |
| 468 | // be entered. |
| 469 | ConstantInt *Replacement = ExitDirection |
| 470 | ? ConstantInt::getFalse(BI.getContext()) |
| 471 | : ConstantInt::getTrue(BI.getContext()); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 472 | |
| 473 | // Since this is an i1 condition we can also trivially replace uses of it |
| 474 | // within the loop with a constant. |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 475 | for (Value *Invariant : Invariants) |
| 476 | replaceLoopInvariantUses(L, Invariant, *Replacement); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 477 | |
Chandler Carruth | d8b0c8c | 2018-07-07 01:12:56 +0000 | [diff] [blame] | 478 | // If this was full unswitching, we may have changed the nesting relationship |
| 479 | // for this loop so hoist it to its correct parent if needed. |
| 480 | if (FullUnswitch) |
| 481 | hoistLoopToNewParent(L, *NewPH, DT, LI); |
| 482 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 483 | ++NumTrivial; |
| 484 | ++NumBranches; |
| 485 | return true; |
| 486 | } |
| 487 | |
| 488 | /// Unswitch a trivial switch if the condition is loop invariant. |
| 489 | /// |
| 490 | /// This routine should only be called when loop code leading to the switch has |
| 491 | /// been validated as trivial (no side effects). This routine checks if the |
| 492 | /// condition is invariant and that at least one of the successors is a loop |
| 493 | /// exit. This allows us to unswitch without duplicating the loop, making it |
| 494 | /// trivial. |
| 495 | /// |
| 496 | /// If this routine fails to unswitch the switch it returns false. |
| 497 | /// |
| 498 | /// If the switch can be unswitched, this routine splits the preheader and |
| 499 | /// copies the switch above that split. If the default case is one of the |
| 500 | /// exiting cases, it copies the non-exiting cases and points them at the new |
| 501 | /// preheader. If the default case is not exiting, it copies the exiting cases |
| 502 | /// and points the default at the preheader. It preserves loop simplified form |
| 503 | /// (splitting the exit blocks as necessary). It simplifies the switch within |
| 504 | /// the loop by removing now-dead cases. If the default case is one of those |
| 505 | /// unswitched, it replaces its destination with a new basic block containing |
| 506 | /// only unreachable. Such basic blocks, while technically loop exits, are not |
| 507 | /// considered for unswitching so this is a stable transform and the same |
| 508 | /// switch will not be revisited. If after unswitching there is only a single |
| 509 | /// in-loop successor, the switch is further simplified to an unconditional |
| 510 | /// branch. Still more cleanup can be done with some simplify-cfg like pass. |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 511 | /// |
| 512 | /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| 513 | /// invalidated by this. |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 514 | static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 515 | LoopInfo &LI, ScalarEvolution *SE) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 516 | LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 517 | Value *LoopCond = SI.getCondition(); |
| 518 | |
| 519 | // If this isn't switching on an invariant condition, we can't unswitch it. |
| 520 | if (!L.isLoopInvariant(LoopCond)) |
| 521 | return false; |
| 522 | |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 523 | auto *ParentBB = SI.getParent(); |
| 524 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 525 | SmallVector<int, 4> ExitCaseIndices; |
| 526 | for (auto Case : SI.cases()) { |
| 527 | auto *SuccBB = Case.getCaseSuccessor(); |
Chandler Carruth | baf045f | 2018-05-10 17:33:20 +0000 | [diff] [blame] | 528 | if (!L.contains(SuccBB) && |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 529 | areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 530 | ExitCaseIndices.push_back(Case.getCaseIndex()); |
| 531 | } |
| 532 | BasicBlock *DefaultExitBB = nullptr; |
Chandler Carruth | baf045f | 2018-05-10 17:33:20 +0000 | [diff] [blame] | 533 | if (!L.contains(SI.getDefaultDest()) && |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 534 | areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 535 | !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) |
| 536 | DefaultExitBB = SI.getDefaultDest(); |
| 537 | else if (ExitCaseIndices.empty()) |
| 538 | return false; |
| 539 | |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 540 | LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 541 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 542 | // We may need to invalidate SCEVs for the outermost loop reached by any of |
| 543 | // the exits. |
| 544 | Loop *OuterL = &L; |
| 545 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 546 | SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; |
| 547 | ExitCases.reserve(ExitCaseIndices.size()); |
| 548 | // We walk the case indices backwards so that we remove the last case first |
| 549 | // and don't disrupt the earlier indices. |
| 550 | for (unsigned Index : reverse(ExitCaseIndices)) { |
| 551 | auto CaseI = SI.case_begin() + Index; |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 552 | // Compute the outer loop from this exit. |
| 553 | Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); |
| 554 | if (!ExitL || ExitL->contains(OuterL)) |
| 555 | OuterL = ExitL; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 556 | // Save the value of this case. |
| 557 | ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); |
| 558 | // Delete the unswitched cases. |
| 559 | SI.removeCase(CaseI); |
| 560 | } |
| 561 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 562 | if (SE) { |
| 563 | if (OuterL) |
| 564 | SE->forgetLoop(OuterL); |
| 565 | else |
| 566 | SE->forgetTopmostLoop(&L); |
| 567 | } |
| 568 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 569 | // Check if after this all of the remaining cases point at the same |
| 570 | // successor. |
| 571 | BasicBlock *CommonSuccBB = nullptr; |
| 572 | if (SI.getNumCases() > 0 && |
| 573 | std::all_of(std::next(SI.case_begin()), SI.case_end(), |
| 574 | [&SI](const SwitchInst::CaseHandle &Case) { |
| 575 | return Case.getCaseSuccessor() == |
| 576 | SI.case_begin()->getCaseSuccessor(); |
| 577 | })) |
| 578 | CommonSuccBB = SI.case_begin()->getCaseSuccessor(); |
| 579 | |
| 580 | if (DefaultExitBB) { |
| 581 | // We can't remove the default edge so replace it with an edge to either |
| 582 | // the single common remaining successor (if we have one) or an unreachable |
| 583 | // block. |
| 584 | if (CommonSuccBB) { |
| 585 | SI.setDefaultDest(CommonSuccBB); |
| 586 | } else { |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 587 | BasicBlock *UnreachableBB = BasicBlock::Create( |
| 588 | ParentBB->getContext(), |
| 589 | Twine(ParentBB->getName()) + ".unreachable_default", |
| 590 | ParentBB->getParent()); |
| 591 | new UnreachableInst(ParentBB->getContext(), UnreachableBB); |
| 592 | SI.setDefaultDest(UnreachableBB); |
| 593 | DT.addNewBlock(UnreachableBB, ParentBB); |
| 594 | } |
| 595 | } else { |
| 596 | // If we're not unswitching the default, we need it to match any cases to |
| 597 | // have a common successor or if we have no cases it is the common |
| 598 | // successor. |
| 599 | if (SI.getNumCases() == 0) |
| 600 | CommonSuccBB = SI.getDefaultDest(); |
| 601 | else if (SI.getDefaultDest() != CommonSuccBB) |
| 602 | CommonSuccBB = nullptr; |
| 603 | } |
| 604 | |
| 605 | // Split the preheader, so that we know that there is a safe place to insert |
| 606 | // the switch. |
| 607 | BasicBlock *OldPH = L.getLoopPreheader(); |
| 608 | BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); |
| 609 | OldPH->getTerminator()->eraseFromParent(); |
| 610 | |
| 611 | // Now add the unswitched switch. |
| 612 | auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); |
| 613 | |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 614 | // Rewrite the IR for the unswitched basic blocks. This requires two steps. |
| 615 | // First, we split any exit blocks with remaining in-loop predecessors. Then |
| 616 | // we update the PHIs in one of two ways depending on if there was a split. |
| 617 | // We walk in reverse so that we split in the same order as the cases |
| 618 | // appeared. This is purely for convenience of reading the resulting IR, but |
| 619 | // it doesn't cost anything really. |
| 620 | SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 621 | SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; |
| 622 | // Handle the default exit if necessary. |
| 623 | // FIXME: It'd be great if we could merge this with the loop below but LLVM's |
| 624 | // ranges aren't quite powerful enough yet. |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 625 | if (DefaultExitBB) { |
| 626 | if (pred_empty(DefaultExitBB)) { |
| 627 | UnswitchedExitBBs.insert(DefaultExitBB); |
| 628 | rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); |
| 629 | } else { |
| 630 | auto *SplitBB = |
| 631 | SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 632 | rewritePHINodesForExitAndUnswitchedBlocks( |
| 633 | *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 634 | DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; |
| 635 | } |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 636 | } |
| 637 | // Note that we must use a reference in the for loop so that we update the |
| 638 | // container. |
| 639 | for (auto &CasePair : reverse(ExitCases)) { |
| 640 | // Grab a reference to the exit block in the pair so that we can update it. |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 641 | BasicBlock *ExitBB = CasePair.second; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 642 | |
| 643 | // If this case is the last edge into the exit block, we can simply reuse it |
| 644 | // as it will no longer be a loop exit. No mapping necessary. |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 645 | if (pred_empty(ExitBB)) { |
| 646 | // Only rewrite once. |
| 647 | if (UnswitchedExitBBs.insert(ExitBB).second) |
| 648 | rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 649 | continue; |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 650 | } |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 651 | |
| 652 | // Otherwise we need to split the exit block so that we retain an exit |
| 653 | // block from the loop and a target for the unswitched condition. |
| 654 | BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; |
| 655 | if (!SplitExitBB) { |
| 656 | // If this is the first time we see this, do the split and remember it. |
| 657 | SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 658 | rewritePHINodesForExitAndUnswitchedBlocks( |
| 659 | *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 660 | } |
Chandler Carruth | d869b18 | 2017-05-12 02:19:59 +0000 | [diff] [blame] | 661 | // Update the case pair to point to the split block. |
| 662 | CasePair.second = SplitExitBB; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 663 | } |
| 664 | |
| 665 | // Now add the unswitched cases. We do this in reverse order as we built them |
| 666 | // in reverse order. |
| 667 | for (auto CasePair : reverse(ExitCases)) { |
| 668 | ConstantInt *CaseVal = CasePair.first; |
| 669 | BasicBlock *UnswitchedBB = CasePair.second; |
| 670 | |
| 671 | NewSI->addCase(CaseVal, UnswitchedBB); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 672 | } |
| 673 | |
| 674 | // If the default was unswitched, re-point it and add explicit cases for |
| 675 | // entering the loop. |
| 676 | if (DefaultExitBB) { |
| 677 | NewSI->setDefaultDest(DefaultExitBB); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 678 | |
| 679 | // We removed all the exit cases, so we just copy the cases to the |
| 680 | // unswitched switch. |
| 681 | for (auto Case : SI.cases()) |
| 682 | NewSI->addCase(Case.getCaseValue(), NewPH); |
| 683 | } |
| 684 | |
| 685 | // If we ended up with a common successor for every path through the switch |
| 686 | // after unswitching, rewrite it to an unconditional branch to make it easy |
| 687 | // to recognize. Otherwise we potentially have to recognize the default case |
| 688 | // pointing at unreachable and other complexity. |
| 689 | if (CommonSuccBB) { |
| 690 | BasicBlock *BB = SI.getParent(); |
| 691 | SI.eraseFromParent(); |
| 692 | BranchInst::Create(CommonSuccBB, BB); |
| 693 | } |
| 694 | |
Chandler Carruth | 2c85a23 | 2018-05-01 09:54:39 +0000 | [diff] [blame] | 695 | // Walk the unswitched exit blocks and the unswitched split blocks and update |
| 696 | // the dominator tree based on the CFG edits. While we are walking unordered |
| 697 | // containers here, the API for applyUpdates takes an unordered list of |
| 698 | // updates and requires them to not contain duplicates. |
| 699 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| 700 | for (auto *UnswitchedExitBB : UnswitchedExitBBs) { |
| 701 | DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); |
| 702 | DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); |
| 703 | } |
| 704 | for (auto SplitUnswitchedPair : SplitExitBBMap) { |
| 705 | auto *UnswitchedBB = SplitUnswitchedPair.second; |
| 706 | DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); |
| 707 | DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); |
| 708 | } |
| 709 | DT.applyUpdates(DTUpdates); |
David Green | 7c35de1 | 2018-02-28 11:00:08 +0000 | [diff] [blame] | 710 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
Chandler Carruth | d8b0c8c | 2018-07-07 01:12:56 +0000 | [diff] [blame] | 711 | |
| 712 | // We may have changed the nesting relationship for this loop so hoist it to |
| 713 | // its correct parent if needed. |
| 714 | hoistLoopToNewParent(L, *NewPH, DT, LI); |
| 715 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 716 | ++NumTrivial; |
| 717 | ++NumSwitches; |
| 718 | return true; |
| 719 | } |
| 720 | |
| 721 | /// This routine scans the loop to find a branch or switch which occurs before |
| 722 | /// any side effects occur. These can potentially be unswitched without |
| 723 | /// duplicating the loop. If a branch or switch is successfully unswitched the |
| 724 | /// scanning continues to see if subsequent branches or switches have become |
| 725 | /// trivial. Once all trivial candidates have been unswitched, this routine |
| 726 | /// returns. |
| 727 | /// |
| 728 | /// The return value indicates whether anything was unswitched (and therefore |
| 729 | /// changed). |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 730 | /// |
| 731 | /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| 732 | /// invalidated by this. |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 733 | static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 734 | LoopInfo &LI, ScalarEvolution *SE) { |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 735 | bool Changed = false; |
| 736 | |
| 737 | // If loop header has only one reachable successor we should keep looking for |
| 738 | // trivial condition candidates in the successor as well. An alternative is |
| 739 | // to constant fold conditions and merge successors into loop header (then we |
| 740 | // only need to check header's terminator). The reason for not doing this in |
| 741 | // LoopUnswitch pass is that it could potentially break LoopPassManager's |
| 742 | // invariants. Folding dead branches could either eliminate the current loop |
| 743 | // or make other loops unreachable. LCSSA form might also not be preserved |
| 744 | // after deleting branches. The following code keeps traversing loop header's |
| 745 | // successors until it finds the trivial condition candidate (condition that |
| 746 | // is not a constant). Since unswitching generates branches with constant |
| 747 | // conditions, this scenario could be very common in practice. |
| 748 | BasicBlock *CurrentBB = L.getHeader(); |
| 749 | SmallPtrSet<BasicBlock *, 8> Visited; |
| 750 | Visited.insert(CurrentBB); |
| 751 | do { |
| 752 | // Check if there are any side-effecting instructions (e.g. stores, calls, |
| 753 | // volatile loads) in the part of the loop that the code *would* execute |
| 754 | // without unswitching. |
| 755 | if (llvm::any_of(*CurrentBB, |
| 756 | [](Instruction &I) { return I.mayHaveSideEffects(); })) |
| 757 | return Changed; |
| 758 | |
| 759 | TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); |
| 760 | |
| 761 | if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { |
| 762 | // Don't bother trying to unswitch past a switch with a constant |
| 763 | // condition. This should be removed prior to running this pass by |
| 764 | // simplify-cfg. |
| 765 | if (isa<Constant>(SI->getCondition())) |
| 766 | return Changed; |
| 767 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 768 | if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE)) |
Hiroshi Inoue | f209649 | 2018-06-14 05:41:49 +0000 | [diff] [blame] | 769 | // Couldn't unswitch this one so we're done. |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 770 | return Changed; |
| 771 | |
| 772 | // Mark that we managed to unswitch something. |
| 773 | Changed = true; |
| 774 | |
| 775 | // If unswitching turned the terminator into an unconditional branch then |
| 776 | // we can continue. The unswitching logic specifically works to fold any |
| 777 | // cases it can into an unconditional branch to make it easier to |
| 778 | // recognize here. |
| 779 | auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); |
| 780 | if (!BI || BI->isConditional()) |
| 781 | return Changed; |
| 782 | |
| 783 | CurrentBB = BI->getSuccessor(0); |
| 784 | continue; |
| 785 | } |
| 786 | |
| 787 | auto *BI = dyn_cast<BranchInst>(CurrentTerm); |
| 788 | if (!BI) |
| 789 | // We do not understand other terminator instructions. |
| 790 | return Changed; |
| 791 | |
| 792 | // Don't bother trying to unswitch past an unconditional branch or a branch |
| 793 | // with a constant value. These should be removed by simplify-cfg prior to |
| 794 | // running this pass. |
| 795 | if (!BI->isConditional() || isa<Constant>(BI->getCondition())) |
| 796 | return Changed; |
| 797 | |
| 798 | // Found a trivial condition candidate: non-foldable conditional branch. If |
| 799 | // we fail to unswitch this, we can't do anything else that is trivial. |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 800 | if (!unswitchTrivialBranch(L, *BI, DT, LI, SE)) |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 801 | return Changed; |
| 802 | |
| 803 | // Mark that we managed to unswitch something. |
| 804 | Changed = true; |
| 805 | |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 806 | // If we only unswitched some of the conditions feeding the branch, we won't |
| 807 | // have collapsed it to a single successor. |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 808 | BI = cast<BranchInst>(CurrentBB->getTerminator()); |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 809 | if (BI->isConditional()) |
| 810 | return Changed; |
| 811 | |
| 812 | // Follow the newly unconditional branch into its successor. |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 813 | CurrentBB = BI->getSuccessor(0); |
| 814 | |
| 815 | // When continuing, if we exit the loop or reach a previous visited block, |
| 816 | // then we can not reach any trivial condition candidates (unfoldable |
| 817 | // branch instructions or switch instructions) and no unswitch can happen. |
| 818 | } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); |
| 819 | |
| 820 | return Changed; |
| 821 | } |
| 822 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 823 | /// Build the cloned blocks for an unswitched copy of the given loop. |
| 824 | /// |
| 825 | /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and |
| 826 | /// after the split block (`SplitBB`) that will be used to select between the |
| 827 | /// cloned and original loop. |
| 828 | /// |
| 829 | /// This routine handles cloning all of the necessary loop blocks and exit |
| 830 | /// blocks including rewriting their instructions and the relevant PHI nodes. |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 831 | /// Any loop blocks or exit blocks which are dominated by a different successor |
| 832 | /// than the one for this clone of the loop blocks can be trivially skipped. We |
| 833 | /// use the `DominatingSucc` map to determine whether a block satisfies that |
| 834 | /// property with a simple map lookup. |
| 835 | /// |
| 836 | /// It also correctly creates the unconditional branch in the cloned |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 837 | /// unswitched parent block to only point at the unswitched successor. |
| 838 | /// |
| 839 | /// This does not handle most of the necessary updates to `LoopInfo`. Only exit |
| 840 | /// block splitting is correctly reflected in `LoopInfo`, essentially all of |
| 841 | /// the cloned blocks (and their loops) are left without full `LoopInfo` |
| 842 | /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned |
| 843 | /// blocks to them but doesn't create the cloned `DominatorTree` structure and |
| 844 | /// instead the caller must recompute an accurate DT. It *does* correctly |
| 845 | /// update the `AssumptionCache` provided in `AC`. |
| 846 | static BasicBlock *buildClonedLoopBlocks( |
| 847 | Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, |
| 848 | ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, |
| 849 | BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 850 | const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 851 | ValueToValueMapTy &VMap, |
| 852 | SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, |
| 853 | DominatorTree &DT, LoopInfo &LI) { |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 854 | SmallVector<BasicBlock *, 4> NewBlocks; |
| 855 | NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); |
| 856 | |
| 857 | // We will need to clone a bunch of blocks, wrap up the clone operation in |
| 858 | // a helper. |
| 859 | auto CloneBlock = [&](BasicBlock *OldBB) { |
| 860 | // Clone the basic block and insert it before the new preheader. |
| 861 | BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); |
| 862 | NewBB->moveBefore(LoopPH); |
| 863 | |
| 864 | // Record this block and the mapping. |
| 865 | NewBlocks.push_back(NewBB); |
| 866 | VMap[OldBB] = NewBB; |
| 867 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 868 | return NewBB; |
| 869 | }; |
| 870 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 871 | // We skip cloning blocks when they have a dominating succ that is not the |
| 872 | // succ we are cloning for. |
| 873 | auto SkipBlock = [&](BasicBlock *BB) { |
| 874 | auto It = DominatingSucc.find(BB); |
| 875 | return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; |
| 876 | }; |
| 877 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 878 | // First, clone the preheader. |
| 879 | auto *ClonedPH = CloneBlock(LoopPH); |
| 880 | |
| 881 | // Then clone all the loop blocks, skipping the ones that aren't necessary. |
| 882 | for (auto *LoopBB : L.blocks()) |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 883 | if (!SkipBlock(LoopBB)) |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 884 | CloneBlock(LoopBB); |
| 885 | |
| 886 | // Split all the loop exit edges so that when we clone the exit blocks, if |
| 887 | // any of the exit blocks are *also* a preheader for some other loop, we |
| 888 | // don't create multiple predecessors entering the loop header. |
| 889 | for (auto *ExitBB : ExitBlocks) { |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 890 | if (SkipBlock(ExitBB)) |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 891 | continue; |
| 892 | |
| 893 | // When we are going to clone an exit, we don't need to clone all the |
| 894 | // instructions in the exit block and we want to ensure we have an easy |
| 895 | // place to merge the CFG, so split the exit first. This is always safe to |
| 896 | // do because there cannot be any non-loop predecessors of a loop exit in |
| 897 | // loop simplified form. |
| 898 | auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); |
| 899 | |
| 900 | // Rearrange the names to make it easier to write test cases by having the |
| 901 | // exit block carry the suffix rather than the merge block carrying the |
| 902 | // suffix. |
| 903 | MergeBB->takeName(ExitBB); |
| 904 | ExitBB->setName(Twine(MergeBB->getName()) + ".split"); |
| 905 | |
| 906 | // Now clone the original exit block. |
| 907 | auto *ClonedExitBB = CloneBlock(ExitBB); |
| 908 | assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && |
| 909 | "Exit block should have been split to have one successor!"); |
| 910 | assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && |
| 911 | "Cloned exit block has the wrong successor!"); |
| 912 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 913 | // Remap any cloned instructions and create a merge phi node for them. |
| 914 | for (auto ZippedInsts : llvm::zip_first( |
| 915 | llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), |
| 916 | llvm::make_range(ClonedExitBB->begin(), |
| 917 | std::prev(ClonedExitBB->end())))) { |
| 918 | Instruction &I = std::get<0>(ZippedInsts); |
| 919 | Instruction &ClonedI = std::get<1>(ZippedInsts); |
| 920 | |
| 921 | // The only instructions in the exit block should be PHI nodes and |
| 922 | // potentially a landing pad. |
| 923 | assert( |
| 924 | (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && |
| 925 | "Bad instruction in exit block!"); |
| 926 | // We should have a value map between the instruction and its clone. |
| 927 | assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); |
| 928 | |
| 929 | auto *MergePN = |
| 930 | PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", |
| 931 | &*MergeBB->getFirstInsertionPt()); |
| 932 | I.replaceAllUsesWith(MergePN); |
| 933 | MergePN->addIncoming(&I, ExitBB); |
| 934 | MergePN->addIncoming(&ClonedI, ClonedExitBB); |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | // Rewrite the instructions in the cloned blocks to refer to the instructions |
| 939 | // in the cloned blocks. We have to do this as a second pass so that we have |
| 940 | // everything available. Also, we have inserted new instructions which may |
| 941 | // include assume intrinsics, so we update the assumption cache while |
| 942 | // processing this. |
| 943 | for (auto *ClonedBB : NewBlocks) |
| 944 | for (Instruction &I : *ClonedBB) { |
| 945 | RemapInstruction(&I, VMap, |
| 946 | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| 947 | if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| 948 | if (II->getIntrinsicID() == Intrinsic::assume) |
| 949 | AC.registerAssumption(II); |
| 950 | } |
| 951 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 952 | // Update any PHI nodes in the cloned successors of the skipped blocks to not |
| 953 | // have spurious incoming values. |
| 954 | for (auto *LoopBB : L.blocks()) |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 955 | if (SkipBlock(LoopBB)) |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 956 | for (auto *SuccBB : successors(LoopBB)) |
| 957 | if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) |
| 958 | for (PHINode &PN : ClonedSuccBB->phis()) |
| 959 | PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); |
| 960 | |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 961 | // Remove the cloned parent as a predecessor of any successor we ended up |
| 962 | // cloning other than the unswitched one. |
| 963 | auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); |
| 964 | for (auto *SuccBB : successors(ParentBB)) { |
| 965 | if (SuccBB == UnswitchedSuccBB) |
| 966 | continue; |
| 967 | |
| 968 | auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); |
| 969 | if (!ClonedSuccBB) |
| 970 | continue; |
| 971 | |
| 972 | ClonedSuccBB->removePredecessor(ClonedParentBB, |
| 973 | /*DontDeleteUselessPHIs*/ true); |
| 974 | } |
| 975 | |
| 976 | // Replace the cloned branch with an unconditional branch to the cloned |
| 977 | // unswitched successor. |
| 978 | auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); |
| 979 | ClonedParentBB->getTerminator()->eraseFromParent(); |
| 980 | BranchInst::Create(ClonedSuccBB, ClonedParentBB); |
| 981 | |
| 982 | // If there are duplicate entries in the PHI nodes because of multiple edges |
| 983 | // to the unswitched successor, we need to nuke all but one as we replaced it |
| 984 | // with a direct branch. |
| 985 | for (PHINode &PN : ClonedSuccBB->phis()) { |
| 986 | bool Found = false; |
| 987 | // Loop over the incoming operands backwards so we can easily delete as we |
| 988 | // go without invalidating the index. |
| 989 | for (int i = PN.getNumOperands() - 1; i >= 0; --i) { |
| 990 | if (PN.getIncomingBlock(i) != ClonedParentBB) |
| 991 | continue; |
| 992 | if (!Found) { |
| 993 | Found = true; |
| 994 | continue; |
| 995 | } |
| 996 | PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); |
| 997 | } |
| 998 | } |
| 999 | |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1000 | // Record the domtree updates for the new blocks. |
Chandler Carruth | 44aab92 | 2018-05-01 09:42:09 +0000 | [diff] [blame] | 1001 | SmallPtrSet<BasicBlock *, 4> SuccSet; |
| 1002 | for (auto *ClonedBB : NewBlocks) { |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1003 | for (auto *SuccBB : successors(ClonedBB)) |
Chandler Carruth | 44aab92 | 2018-05-01 09:42:09 +0000 | [diff] [blame] | 1004 | if (SuccSet.insert(SuccBB).second) |
| 1005 | DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); |
| 1006 | SuccSet.clear(); |
| 1007 | } |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1008 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1009 | return ClonedPH; |
| 1010 | } |
| 1011 | |
| 1012 | /// Recursively clone the specified loop and all of its children. |
| 1013 | /// |
| 1014 | /// The target parent loop for the clone should be provided, or can be null if |
| 1015 | /// the clone is a top-level loop. While cloning, all the blocks are mapped |
| 1016 | /// with the provided value map. The entire original loop must be present in |
| 1017 | /// the value map. The cloned loop is returned. |
| 1018 | static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, |
| 1019 | const ValueToValueMapTy &VMap, LoopInfo &LI) { |
| 1020 | auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { |
| 1021 | assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); |
| 1022 | ClonedL.reserveBlocks(OrigL.getNumBlocks()); |
| 1023 | for (auto *BB : OrigL.blocks()) { |
| 1024 | auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); |
| 1025 | ClonedL.addBlockEntry(ClonedBB); |
Chandler Carruth | 0ace148 | 2018-04-24 03:27:00 +0000 | [diff] [blame] | 1026 | if (LI.getLoopFor(BB) == &OrigL) |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1027 | LI.changeLoopFor(ClonedBB, &ClonedL); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1028 | } |
| 1029 | }; |
| 1030 | |
| 1031 | // We specially handle the first loop because it may get cloned into |
| 1032 | // a different parent and because we most commonly are cloning leaf loops. |
| 1033 | Loop *ClonedRootL = LI.AllocateLoop(); |
| 1034 | if (RootParentL) |
| 1035 | RootParentL->addChildLoop(ClonedRootL); |
| 1036 | else |
| 1037 | LI.addTopLevelLoop(ClonedRootL); |
| 1038 | AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); |
| 1039 | |
| 1040 | if (OrigRootL.empty()) |
| 1041 | return ClonedRootL; |
| 1042 | |
| 1043 | // If we have a nest, we can quickly clone the entire loop nest using an |
| 1044 | // iterative approach because it is a tree. We keep the cloned parent in the |
| 1045 | // data structure to avoid repeatedly querying through a map to find it. |
| 1046 | SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; |
| 1047 | // Build up the loops to clone in reverse order as we'll clone them from the |
| 1048 | // back. |
| 1049 | for (Loop *ChildL : llvm::reverse(OrigRootL)) |
| 1050 | LoopsToClone.push_back({ClonedRootL, ChildL}); |
| 1051 | do { |
| 1052 | Loop *ClonedParentL, *L; |
| 1053 | std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); |
| 1054 | Loop *ClonedL = LI.AllocateLoop(); |
| 1055 | ClonedParentL->addChildLoop(ClonedL); |
| 1056 | AddClonedBlocksToLoop(*L, *ClonedL); |
| 1057 | for (Loop *ChildL : llvm::reverse(*L)) |
| 1058 | LoopsToClone.push_back({ClonedL, ChildL}); |
| 1059 | } while (!LoopsToClone.empty()); |
| 1060 | |
| 1061 | return ClonedRootL; |
| 1062 | } |
| 1063 | |
| 1064 | /// Build the cloned loops of an original loop from unswitching. |
| 1065 | /// |
| 1066 | /// Because unswitching simplifies the CFG of the loop, this isn't a trivial |
| 1067 | /// operation. We need to re-verify that there even is a loop (as the backedge |
| 1068 | /// may not have been cloned), and even if there are remaining backedges the |
| 1069 | /// backedge set may be different. However, we know that each child loop is |
| 1070 | /// undisturbed, we only need to find where to place each child loop within |
| 1071 | /// either any parent loop or within a cloned version of the original loop. |
| 1072 | /// |
| 1073 | /// Because child loops may end up cloned outside of any cloned version of the |
| 1074 | /// original loop, multiple cloned sibling loops may be created. All of them |
| 1075 | /// are returned so that the newly introduced loop nest roots can be |
| 1076 | /// identified. |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 1077 | static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, |
| 1078 | const ValueToValueMapTy &VMap, LoopInfo &LI, |
| 1079 | SmallVectorImpl<Loop *> &NonChildClonedLoops) { |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1080 | Loop *ClonedL = nullptr; |
| 1081 | |
| 1082 | auto *OrigPH = OrigL.getLoopPreheader(); |
| 1083 | auto *OrigHeader = OrigL.getHeader(); |
| 1084 | |
| 1085 | auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); |
| 1086 | auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); |
| 1087 | |
| 1088 | // We need to know the loops of the cloned exit blocks to even compute the |
| 1089 | // accurate parent loop. If we only clone exits to some parent of the |
| 1090 | // original parent, we want to clone into that outer loop. We also keep track |
| 1091 | // of the loops that our cloned exit blocks participate in. |
| 1092 | Loop *ParentL = nullptr; |
| 1093 | SmallVector<BasicBlock *, 4> ClonedExitsInLoops; |
| 1094 | SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; |
| 1095 | ClonedExitsInLoops.reserve(ExitBlocks.size()); |
| 1096 | for (auto *ExitBB : ExitBlocks) |
| 1097 | if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) |
| 1098 | if (Loop *ExitL = LI.getLoopFor(ExitBB)) { |
| 1099 | ExitLoopMap[ClonedExitBB] = ExitL; |
| 1100 | ClonedExitsInLoops.push_back(ClonedExitBB); |
| 1101 | if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) |
| 1102 | ParentL = ExitL; |
| 1103 | } |
| 1104 | assert((!ParentL || ParentL == OrigL.getParentLoop() || |
| 1105 | ParentL->contains(OrigL.getParentLoop())) && |
| 1106 | "The computed parent loop should always contain (or be) the parent of " |
| 1107 | "the original loop."); |
| 1108 | |
| 1109 | // We build the set of blocks dominated by the cloned header from the set of |
| 1110 | // cloned blocks out of the original loop. While not all of these will |
| 1111 | // necessarily be in the cloned loop, it is enough to establish that they |
| 1112 | // aren't in unreachable cycles, etc. |
| 1113 | SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; |
| 1114 | for (auto *BB : OrigL.blocks()) |
| 1115 | if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) |
| 1116 | ClonedLoopBlocks.insert(ClonedBB); |
| 1117 | |
| 1118 | // Rebuild the set of blocks that will end up in the cloned loop. We may have |
| 1119 | // skipped cloning some region of this loop which can in turn skip some of |
| 1120 | // the backedges so we have to rebuild the blocks in the loop based on the |
| 1121 | // backedges that remain after cloning. |
| 1122 | SmallVector<BasicBlock *, 16> Worklist; |
| 1123 | SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; |
| 1124 | for (auto *Pred : predecessors(ClonedHeader)) { |
| 1125 | // The only possible non-loop header predecessor is the preheader because |
| 1126 | // we know we cloned the loop in simplified form. |
| 1127 | if (Pred == ClonedPH) |
| 1128 | continue; |
| 1129 | |
| 1130 | // Because the loop was in simplified form, the only non-loop predecessor |
| 1131 | // should be the preheader. |
| 1132 | assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " |
| 1133 | "header other than the preheader " |
| 1134 | "that is not part of the loop!"); |
| 1135 | |
| 1136 | // Insert this block into the loop set and on the first visit (and if it |
| 1137 | // isn't the header we're currently walking) put it into the worklist to |
| 1138 | // recurse through. |
| 1139 | if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) |
| 1140 | Worklist.push_back(Pred); |
| 1141 | } |
| 1142 | |
| 1143 | // If we had any backedges then there *is* a cloned loop. Put the header into |
| 1144 | // the loop set and then walk the worklist backwards to find all the blocks |
| 1145 | // that remain within the loop after cloning. |
| 1146 | if (!BlocksInClonedLoop.empty()) { |
| 1147 | BlocksInClonedLoop.insert(ClonedHeader); |
| 1148 | |
| 1149 | while (!Worklist.empty()) { |
| 1150 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1151 | assert(BlocksInClonedLoop.count(BB) && |
| 1152 | "Didn't put block into the loop set!"); |
| 1153 | |
| 1154 | // Insert any predecessors that are in the possible set into the cloned |
| 1155 | // set, and if the insert is successful, add them to the worklist. Note |
| 1156 | // that we filter on the blocks that are definitely reachable via the |
| 1157 | // backedge to the loop header so we may prune out dead code within the |
| 1158 | // cloned loop. |
| 1159 | for (auto *Pred : predecessors(BB)) |
| 1160 | if (ClonedLoopBlocks.count(Pred) && |
| 1161 | BlocksInClonedLoop.insert(Pred).second) |
| 1162 | Worklist.push_back(Pred); |
| 1163 | } |
| 1164 | |
| 1165 | ClonedL = LI.AllocateLoop(); |
| 1166 | if (ParentL) { |
| 1167 | ParentL->addBasicBlockToLoop(ClonedPH, LI); |
| 1168 | ParentL->addChildLoop(ClonedL); |
| 1169 | } else { |
| 1170 | LI.addTopLevelLoop(ClonedL); |
| 1171 | } |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 1172 | NonChildClonedLoops.push_back(ClonedL); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1173 | |
| 1174 | ClonedL->reserveBlocks(BlocksInClonedLoop.size()); |
| 1175 | // We don't want to just add the cloned loop blocks based on how we |
| 1176 | // discovered them. The original order of blocks was carefully built in |
| 1177 | // a way that doesn't rely on predecessor ordering. Rather than re-invent |
| 1178 | // that logic, we just re-walk the original blocks (and those of the child |
| 1179 | // loops) and filter them as we add them into the cloned loop. |
| 1180 | for (auto *BB : OrigL.blocks()) { |
| 1181 | auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); |
| 1182 | if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) |
| 1183 | continue; |
| 1184 | |
| 1185 | // Directly add the blocks that are only in this loop. |
| 1186 | if (LI.getLoopFor(BB) == &OrigL) { |
| 1187 | ClonedL->addBasicBlockToLoop(ClonedBB, LI); |
| 1188 | continue; |
| 1189 | } |
| 1190 | |
| 1191 | // We want to manually add it to this loop and parents. |
| 1192 | // Registering it with LoopInfo will happen when we clone the top |
| 1193 | // loop for this block. |
| 1194 | for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) |
| 1195 | PL->addBlockEntry(ClonedBB); |
| 1196 | } |
| 1197 | |
| 1198 | // Now add each child loop whose header remains within the cloned loop. All |
| 1199 | // of the blocks within the loop must satisfy the same constraints as the |
| 1200 | // header so once we pass the header checks we can just clone the entire |
| 1201 | // child loop nest. |
| 1202 | for (Loop *ChildL : OrigL) { |
| 1203 | auto *ClonedChildHeader = |
| 1204 | cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); |
| 1205 | if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) |
| 1206 | continue; |
| 1207 | |
| 1208 | #ifndef NDEBUG |
| 1209 | // We should never have a cloned child loop header but fail to have |
| 1210 | // all of the blocks for that child loop. |
| 1211 | for (auto *ChildLoopBB : ChildL->blocks()) |
| 1212 | assert(BlocksInClonedLoop.count( |
| 1213 | cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && |
| 1214 | "Child cloned loop has a header within the cloned outer " |
| 1215 | "loop but not all of its blocks!"); |
| 1216 | #endif |
| 1217 | |
| 1218 | cloneLoopNest(*ChildL, ClonedL, VMap, LI); |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | // Now that we've handled all the components of the original loop that were |
| 1223 | // cloned into a new loop, we still need to handle anything from the original |
| 1224 | // loop that wasn't in a cloned loop. |
| 1225 | |
| 1226 | // Figure out what blocks are left to place within any loop nest containing |
| 1227 | // the unswitched loop. If we never formed a loop, the cloned PH is one of |
| 1228 | // them. |
| 1229 | SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; |
| 1230 | if (BlocksInClonedLoop.empty()) |
| 1231 | UnloopedBlockSet.insert(ClonedPH); |
| 1232 | for (auto *ClonedBB : ClonedLoopBlocks) |
| 1233 | if (!BlocksInClonedLoop.count(ClonedBB)) |
| 1234 | UnloopedBlockSet.insert(ClonedBB); |
| 1235 | |
| 1236 | // Copy the cloned exits and sort them in ascending loop depth, we'll work |
| 1237 | // backwards across these to process them inside out. The order shouldn't |
| 1238 | // matter as we're just trying to build up the map from inside-out; we use |
| 1239 | // the map in a more stably ordered way below. |
| 1240 | auto OrderedClonedExitsInLoops = ClonedExitsInLoops; |
Chandler Carruth | 4da3331 | 2018-06-20 18:57:07 +0000 | [diff] [blame] | 1241 | llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), |
Mandeep Singh Grang | 636d94d | 2018-04-13 19:47:57 +0000 | [diff] [blame] | 1242 | [&](BasicBlock *LHS, BasicBlock *RHS) { |
| 1243 | return ExitLoopMap.lookup(LHS)->getLoopDepth() < |
| 1244 | ExitLoopMap.lookup(RHS)->getLoopDepth(); |
| 1245 | }); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1246 | |
| 1247 | // Populate the existing ExitLoopMap with everything reachable from each |
| 1248 | // exit, starting from the inner most exit. |
| 1249 | while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { |
| 1250 | assert(Worklist.empty() && "Didn't clear worklist!"); |
| 1251 | |
| 1252 | BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); |
| 1253 | Loop *ExitL = ExitLoopMap.lookup(ExitBB); |
| 1254 | |
| 1255 | // Walk the CFG back until we hit the cloned PH adding everything reachable |
| 1256 | // and in the unlooped set to this exit block's loop. |
| 1257 | Worklist.push_back(ExitBB); |
| 1258 | do { |
| 1259 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1260 | // We can stop recursing at the cloned preheader (if we get there). |
| 1261 | if (BB == ClonedPH) |
| 1262 | continue; |
| 1263 | |
| 1264 | for (BasicBlock *PredBB : predecessors(BB)) { |
| 1265 | // If this pred has already been moved to our set or is part of some |
| 1266 | // (inner) loop, no update needed. |
| 1267 | if (!UnloopedBlockSet.erase(PredBB)) { |
| 1268 | assert( |
| 1269 | (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && |
| 1270 | "Predecessor not mapped to a loop!"); |
| 1271 | continue; |
| 1272 | } |
| 1273 | |
| 1274 | // We just insert into the loop set here. We'll add these blocks to the |
| 1275 | // exit loop after we build up the set in an order that doesn't rely on |
| 1276 | // predecessor order (which in turn relies on use list order). |
| 1277 | bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; |
| 1278 | (void)Inserted; |
| 1279 | assert(Inserted && "Should only visit an unlooped block once!"); |
| 1280 | |
| 1281 | // And recurse through to its predecessors. |
| 1282 | Worklist.push_back(PredBB); |
| 1283 | } |
| 1284 | } while (!Worklist.empty()); |
| 1285 | } |
| 1286 | |
| 1287 | // Now that the ExitLoopMap gives as mapping for all the non-looping cloned |
| 1288 | // blocks to their outer loops, walk the cloned blocks and the cloned exits |
| 1289 | // in their original order adding them to the correct loop. |
| 1290 | |
| 1291 | // We need a stable insertion order. We use the order of the original loop |
| 1292 | // order and map into the correct parent loop. |
| 1293 | for (auto *BB : llvm::concat<BasicBlock *const>( |
| 1294 | makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) |
| 1295 | if (Loop *OuterL = ExitLoopMap.lookup(BB)) |
| 1296 | OuterL->addBasicBlockToLoop(BB, LI); |
| 1297 | |
| 1298 | #ifndef NDEBUG |
| 1299 | for (auto &BBAndL : ExitLoopMap) { |
| 1300 | auto *BB = BBAndL.first; |
| 1301 | auto *OuterL = BBAndL.second; |
| 1302 | assert(LI.getLoopFor(BB) == OuterL && |
| 1303 | "Failed to put all blocks into outer loops!"); |
| 1304 | } |
| 1305 | #endif |
| 1306 | |
| 1307 | // Now that all the blocks are placed into the correct containing loop in the |
| 1308 | // absence of child loops, find all the potentially cloned child loops and |
| 1309 | // clone them into whatever outer loop we placed their header into. |
| 1310 | for (Loop *ChildL : OrigL) { |
| 1311 | auto *ClonedChildHeader = |
| 1312 | cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); |
| 1313 | if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) |
| 1314 | continue; |
| 1315 | |
| 1316 | #ifndef NDEBUG |
| 1317 | for (auto *ChildLoopBB : ChildL->blocks()) |
| 1318 | assert(VMap.count(ChildLoopBB) && |
| 1319 | "Cloned a child loop header but not all of that loops blocks!"); |
| 1320 | #endif |
| 1321 | |
| 1322 | NonChildClonedLoops.push_back(cloneLoopNest( |
| 1323 | *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); |
| 1324 | } |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1325 | } |
| 1326 | |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1327 | static void |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1328 | deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, |
| 1329 | ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, |
| 1330 | DominatorTree &DT) { |
| 1331 | // Find all the dead clones, and remove them from their successors. |
| 1332 | SmallVector<BasicBlock *, 16> DeadBlocks; |
| 1333 | for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) |
| 1334 | for (auto &VMap : VMaps) |
| 1335 | if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) |
| 1336 | if (!DT.isReachableFromEntry(ClonedBB)) { |
| 1337 | for (BasicBlock *SuccBB : successors(ClonedBB)) |
| 1338 | SuccBB->removePredecessor(ClonedBB); |
| 1339 | DeadBlocks.push_back(ClonedBB); |
| 1340 | } |
| 1341 | |
| 1342 | // Drop any remaining references to break cycles. |
| 1343 | for (BasicBlock *BB : DeadBlocks) |
| 1344 | BB->dropAllReferences(); |
| 1345 | // Erase them from the IR. |
| 1346 | for (BasicBlock *BB : DeadBlocks) |
| 1347 | BB->eraseFromParent(); |
| 1348 | } |
| 1349 | |
| 1350 | static void |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1351 | deleteDeadBlocksFromLoop(Loop &L, |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1352 | SmallVectorImpl<BasicBlock *> &ExitBlocks, |
| 1353 | DominatorTree &DT, LoopInfo &LI) { |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1354 | // Find all the dead blocks, and remove them from their successors. |
| 1355 | SmallVector<BasicBlock *, 16> DeadBlocks; |
| 1356 | for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) |
| 1357 | if (!DT.isReachableFromEntry(BB)) { |
| 1358 | for (BasicBlock *SuccBB : successors(BB)) |
| 1359 | SuccBB->removePredecessor(BB); |
| 1360 | DeadBlocks.push_back(BB); |
| 1361 | } |
| 1362 | |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1363 | SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), |
| 1364 | DeadBlocks.end()); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1365 | |
| 1366 | // Filter out the dead blocks from the exit blocks list so that it can be |
| 1367 | // used in the caller. |
| 1368 | llvm::erase_if(ExitBlocks, |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1369 | [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1370 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1371 | // Walk from this loop up through its parents removing all of the dead blocks. |
| 1372 | for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { |
| 1373 | for (auto *BB : DeadBlocks) |
| 1374 | ParentL->getBlocksSet().erase(BB); |
| 1375 | llvm::erase_if(ParentL->getBlocksVector(), |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1376 | [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1377 | } |
| 1378 | |
| 1379 | // Now delete the dead child loops. This raw delete will clear them |
| 1380 | // recursively. |
| 1381 | llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1382 | if (!DeadBlockSet.count(ChildL->getHeader())) |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1383 | return false; |
| 1384 | |
| 1385 | assert(llvm::all_of(ChildL->blocks(), |
| 1386 | [&](BasicBlock *ChildBB) { |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1387 | return DeadBlockSet.count(ChildBB); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1388 | }) && |
| 1389 | "If the child loop header is dead all blocks in the child loop must " |
| 1390 | "be dead as well!"); |
| 1391 | LI.destroy(ChildL); |
| 1392 | return true; |
| 1393 | }); |
| 1394 | |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1395 | // Remove the loop mappings for the dead blocks and drop all the references |
| 1396 | // from these blocks to others to handle cyclic references as we start |
| 1397 | // deleting the blocks themselves. |
| 1398 | for (auto *BB : DeadBlocks) { |
| 1399 | // Check that the dominator tree has already been updated. |
| 1400 | assert(!DT.getNode(BB) && "Should already have cleared domtree!"); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1401 | LI.changeLoopFor(BB, nullptr); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1402 | BB->dropAllReferences(); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1403 | } |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1404 | |
| 1405 | // Actually delete the blocks now that they've been fully unhooked from the |
| 1406 | // IR. |
| 1407 | for (auto *BB : DeadBlocks) |
| 1408 | BB->eraseFromParent(); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1409 | } |
| 1410 | |
| 1411 | /// Recompute the set of blocks in a loop after unswitching. |
| 1412 | /// |
| 1413 | /// This walks from the original headers predecessors to rebuild the loop. We |
| 1414 | /// take advantage of the fact that new blocks can't have been added, and so we |
| 1415 | /// filter by the original loop's blocks. This also handles potentially |
| 1416 | /// unreachable code that we don't want to explore but might be found examining |
| 1417 | /// the predecessors of the header. |
| 1418 | /// |
| 1419 | /// If the original loop is no longer a loop, this will return an empty set. If |
| 1420 | /// it remains a loop, all the blocks within it will be added to the set |
| 1421 | /// (including those blocks in inner loops). |
| 1422 | static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, |
| 1423 | LoopInfo &LI) { |
| 1424 | SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; |
| 1425 | |
| 1426 | auto *PH = L.getLoopPreheader(); |
| 1427 | auto *Header = L.getHeader(); |
| 1428 | |
| 1429 | // A worklist to use while walking backwards from the header. |
| 1430 | SmallVector<BasicBlock *, 16> Worklist; |
| 1431 | |
| 1432 | // First walk the predecessors of the header to find the backedges. This will |
| 1433 | // form the basis of our walk. |
| 1434 | for (auto *Pred : predecessors(Header)) { |
| 1435 | // Skip the preheader. |
| 1436 | if (Pred == PH) |
| 1437 | continue; |
| 1438 | |
| 1439 | // Because the loop was in simplified form, the only non-loop predecessor |
| 1440 | // is the preheader. |
| 1441 | assert(L.contains(Pred) && "Found a predecessor of the loop header other " |
| 1442 | "than the preheader that is not part of the " |
| 1443 | "loop!"); |
| 1444 | |
| 1445 | // Insert this block into the loop set and on the first visit and, if it |
| 1446 | // isn't the header we're currently walking, put it into the worklist to |
| 1447 | // recurse through. |
| 1448 | if (LoopBlockSet.insert(Pred).second && Pred != Header) |
| 1449 | Worklist.push_back(Pred); |
| 1450 | } |
| 1451 | |
| 1452 | // If no backedges were found, we're done. |
| 1453 | if (LoopBlockSet.empty()) |
| 1454 | return LoopBlockSet; |
| 1455 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1456 | // We found backedges, recurse through them to identify the loop blocks. |
| 1457 | while (!Worklist.empty()) { |
| 1458 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1459 | assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); |
| 1460 | |
Chandler Carruth | 43acdb3 | 2018-04-24 10:33:08 +0000 | [diff] [blame] | 1461 | // No need to walk past the header. |
| 1462 | if (BB == Header) |
| 1463 | continue; |
| 1464 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1465 | // Because we know the inner loop structure remains valid we can use the |
| 1466 | // loop structure to jump immediately across the entire nested loop. |
| 1467 | // Further, because it is in loop simplified form, we can directly jump |
| 1468 | // to its preheader afterward. |
| 1469 | if (Loop *InnerL = LI.getLoopFor(BB)) |
| 1470 | if (InnerL != &L) { |
| 1471 | assert(L.contains(InnerL) && |
| 1472 | "Should not reach a loop *outside* this loop!"); |
| 1473 | // The preheader is the only possible predecessor of the loop so |
| 1474 | // insert it into the set and check whether it was already handled. |
| 1475 | auto *InnerPH = InnerL->getLoopPreheader(); |
| 1476 | assert(L.contains(InnerPH) && "Cannot contain an inner loop block " |
| 1477 | "but not contain the inner loop " |
| 1478 | "preheader!"); |
| 1479 | if (!LoopBlockSet.insert(InnerPH).second) |
| 1480 | // The only way to reach the preheader is through the loop body |
| 1481 | // itself so if it has been visited the loop is already handled. |
| 1482 | continue; |
| 1483 | |
| 1484 | // Insert all of the blocks (other than those already present) into |
Chandler Carruth | bf7190a | 2018-04-23 06:58:36 +0000 | [diff] [blame] | 1485 | // the loop set. We expect at least the block that led us to find the |
| 1486 | // inner loop to be in the block set, but we may also have other loop |
| 1487 | // blocks if they were already enqueued as predecessors of some other |
| 1488 | // outer loop block. |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1489 | for (auto *InnerBB : InnerL->blocks()) { |
| 1490 | if (InnerBB == BB) { |
| 1491 | assert(LoopBlockSet.count(InnerBB) && |
| 1492 | "Block should already be in the set!"); |
| 1493 | continue; |
| 1494 | } |
| 1495 | |
Chandler Carruth | bf7190a | 2018-04-23 06:58:36 +0000 | [diff] [blame] | 1496 | LoopBlockSet.insert(InnerBB); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1497 | } |
| 1498 | |
| 1499 | // Add the preheader to the worklist so we will continue past the |
| 1500 | // loop body. |
| 1501 | Worklist.push_back(InnerPH); |
| 1502 | continue; |
| 1503 | } |
| 1504 | |
| 1505 | // Insert any predecessors that were in the original loop into the new |
| 1506 | // set, and if the insert is successful, add them to the worklist. |
| 1507 | for (auto *Pred : predecessors(BB)) |
| 1508 | if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) |
| 1509 | Worklist.push_back(Pred); |
| 1510 | } |
| 1511 | |
Chandler Carruth | 43acdb3 | 2018-04-24 10:33:08 +0000 | [diff] [blame] | 1512 | assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); |
| 1513 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1514 | // We've found all the blocks participating in the loop, return our completed |
| 1515 | // set. |
| 1516 | return LoopBlockSet; |
| 1517 | } |
| 1518 | |
| 1519 | /// Rebuild a loop after unswitching removes some subset of blocks and edges. |
| 1520 | /// |
| 1521 | /// The removal may have removed some child loops entirely but cannot have |
| 1522 | /// disturbed any remaining child loops. However, they may need to be hoisted |
| 1523 | /// to the parent loop (or to be top-level loops). The original loop may be |
| 1524 | /// completely removed. |
| 1525 | /// |
| 1526 | /// The sibling loops resulting from this update are returned. If the original |
| 1527 | /// loop remains a valid loop, it will be the first entry in this list with all |
| 1528 | /// of the newly sibling loops following it. |
| 1529 | /// |
| 1530 | /// Returns true if the loop remains a loop after unswitching, and false if it |
| 1531 | /// is no longer a loop after unswitching (and should not continue to be |
| 1532 | /// referenced). |
| 1533 | static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, |
| 1534 | LoopInfo &LI, |
| 1535 | SmallVectorImpl<Loop *> &HoistedLoops) { |
| 1536 | auto *PH = L.getLoopPreheader(); |
| 1537 | |
| 1538 | // Compute the actual parent loop from the exit blocks. Because we may have |
| 1539 | // pruned some exits the loop may be different from the original parent. |
| 1540 | Loop *ParentL = nullptr; |
| 1541 | SmallVector<Loop *, 4> ExitLoops; |
| 1542 | SmallVector<BasicBlock *, 4> ExitsInLoops; |
| 1543 | ExitsInLoops.reserve(ExitBlocks.size()); |
| 1544 | for (auto *ExitBB : ExitBlocks) |
| 1545 | if (Loop *ExitL = LI.getLoopFor(ExitBB)) { |
| 1546 | ExitLoops.push_back(ExitL); |
| 1547 | ExitsInLoops.push_back(ExitBB); |
| 1548 | if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) |
| 1549 | ParentL = ExitL; |
| 1550 | } |
| 1551 | |
| 1552 | // Recompute the blocks participating in this loop. This may be empty if it |
| 1553 | // is no longer a loop. |
| 1554 | auto LoopBlockSet = recomputeLoopBlockSet(L, LI); |
| 1555 | |
| 1556 | // If we still have a loop, we need to re-set the loop's parent as the exit |
| 1557 | // block set changing may have moved it within the loop nest. Note that this |
| 1558 | // can only happen when this loop has a parent as it can only hoist the loop |
| 1559 | // *up* the nest. |
| 1560 | if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { |
| 1561 | // Remove this loop's (original) blocks from all of the intervening loops. |
| 1562 | for (Loop *IL = L.getParentLoop(); IL != ParentL; |
| 1563 | IL = IL->getParentLoop()) { |
| 1564 | IL->getBlocksSet().erase(PH); |
| 1565 | for (auto *BB : L.blocks()) |
| 1566 | IL->getBlocksSet().erase(BB); |
| 1567 | llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { |
| 1568 | return BB == PH || L.contains(BB); |
| 1569 | }); |
| 1570 | } |
| 1571 | |
| 1572 | LI.changeLoopFor(PH, ParentL); |
| 1573 | L.getParentLoop()->removeChildLoop(&L); |
| 1574 | if (ParentL) |
| 1575 | ParentL->addChildLoop(&L); |
| 1576 | else |
| 1577 | LI.addTopLevelLoop(&L); |
| 1578 | } |
| 1579 | |
| 1580 | // Now we update all the blocks which are no longer within the loop. |
| 1581 | auto &Blocks = L.getBlocksVector(); |
| 1582 | auto BlocksSplitI = |
| 1583 | LoopBlockSet.empty() |
| 1584 | ? Blocks.begin() |
| 1585 | : std::stable_partition( |
| 1586 | Blocks.begin(), Blocks.end(), |
| 1587 | [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); |
| 1588 | |
| 1589 | // Before we erase the list of unlooped blocks, build a set of them. |
| 1590 | SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); |
| 1591 | if (LoopBlockSet.empty()) |
| 1592 | UnloopedBlocks.insert(PH); |
| 1593 | |
| 1594 | // Now erase these blocks from the loop. |
| 1595 | for (auto *BB : make_range(BlocksSplitI, Blocks.end())) |
| 1596 | L.getBlocksSet().erase(BB); |
| 1597 | Blocks.erase(BlocksSplitI, Blocks.end()); |
| 1598 | |
| 1599 | // Sort the exits in ascending loop depth, we'll work backwards across these |
| 1600 | // to process them inside out. |
| 1601 | std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), |
| 1602 | [&](BasicBlock *LHS, BasicBlock *RHS) { |
| 1603 | return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); |
| 1604 | }); |
| 1605 | |
| 1606 | // We'll build up a set for each exit loop. |
| 1607 | SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; |
| 1608 | Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. |
| 1609 | |
| 1610 | auto RemoveUnloopedBlocksFromLoop = |
| 1611 | [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { |
| 1612 | for (auto *BB : UnloopedBlocks) |
| 1613 | L.getBlocksSet().erase(BB); |
| 1614 | llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { |
| 1615 | return UnloopedBlocks.count(BB); |
| 1616 | }); |
| 1617 | }; |
| 1618 | |
| 1619 | SmallVector<BasicBlock *, 16> Worklist; |
| 1620 | while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { |
| 1621 | assert(Worklist.empty() && "Didn't clear worklist!"); |
| 1622 | assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); |
| 1623 | |
| 1624 | // Grab the next exit block, in decreasing loop depth order. |
| 1625 | BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); |
| 1626 | Loop &ExitL = *LI.getLoopFor(ExitBB); |
| 1627 | assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); |
| 1628 | |
| 1629 | // Erase all of the unlooped blocks from the loops between the previous |
| 1630 | // exit loop and this exit loop. This works because the ExitInLoops list is |
| 1631 | // sorted in increasing order of loop depth and thus we visit loops in |
| 1632 | // decreasing order of loop depth. |
| 1633 | for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) |
| 1634 | RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); |
| 1635 | |
| 1636 | // Walk the CFG back until we hit the cloned PH adding everything reachable |
| 1637 | // and in the unlooped set to this exit block's loop. |
| 1638 | Worklist.push_back(ExitBB); |
| 1639 | do { |
| 1640 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1641 | // We can stop recursing at the cloned preheader (if we get there). |
| 1642 | if (BB == PH) |
| 1643 | continue; |
| 1644 | |
| 1645 | for (BasicBlock *PredBB : predecessors(BB)) { |
| 1646 | // If this pred has already been moved to our set or is part of some |
| 1647 | // (inner) loop, no update needed. |
| 1648 | if (!UnloopedBlocks.erase(PredBB)) { |
| 1649 | assert((NewExitLoopBlocks.count(PredBB) || |
| 1650 | ExitL.contains(LI.getLoopFor(PredBB))) && |
| 1651 | "Predecessor not in a nested loop (or already visited)!"); |
| 1652 | continue; |
| 1653 | } |
| 1654 | |
| 1655 | // We just insert into the loop set here. We'll add these blocks to the |
| 1656 | // exit loop after we build up the set in a deterministic order rather |
| 1657 | // than the predecessor-influenced visit order. |
| 1658 | bool Inserted = NewExitLoopBlocks.insert(PredBB).second; |
| 1659 | (void)Inserted; |
| 1660 | assert(Inserted && "Should only visit an unlooped block once!"); |
| 1661 | |
| 1662 | // And recurse through to its predecessors. |
| 1663 | Worklist.push_back(PredBB); |
| 1664 | } |
| 1665 | } while (!Worklist.empty()); |
| 1666 | |
| 1667 | // If blocks in this exit loop were directly part of the original loop (as |
| 1668 | // opposed to a child loop) update the map to point to this exit loop. This |
| 1669 | // just updates a map and so the fact that the order is unstable is fine. |
| 1670 | for (auto *BB : NewExitLoopBlocks) |
| 1671 | if (Loop *BBL = LI.getLoopFor(BB)) |
| 1672 | if (BBL == &L || !L.contains(BBL)) |
| 1673 | LI.changeLoopFor(BB, &ExitL); |
| 1674 | |
| 1675 | // We will remove the remaining unlooped blocks from this loop in the next |
| 1676 | // iteration or below. |
| 1677 | NewExitLoopBlocks.clear(); |
| 1678 | } |
| 1679 | |
| 1680 | // Any remaining unlooped blocks are no longer part of any loop unless they |
| 1681 | // are part of some child loop. |
| 1682 | for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) |
| 1683 | RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); |
| 1684 | for (auto *BB : UnloopedBlocks) |
| 1685 | if (Loop *BBL = LI.getLoopFor(BB)) |
| 1686 | if (BBL == &L || !L.contains(BBL)) |
| 1687 | LI.changeLoopFor(BB, nullptr); |
| 1688 | |
| 1689 | // Sink all the child loops whose headers are no longer in the loop set to |
| 1690 | // the parent (or to be top level loops). We reach into the loop and directly |
| 1691 | // update its subloop vector to make this batch update efficient. |
| 1692 | auto &SubLoops = L.getSubLoopsVector(); |
| 1693 | auto SubLoopsSplitI = |
| 1694 | LoopBlockSet.empty() |
| 1695 | ? SubLoops.begin() |
| 1696 | : std::stable_partition( |
| 1697 | SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { |
| 1698 | return LoopBlockSet.count(SubL->getHeader()); |
| 1699 | }); |
| 1700 | for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { |
| 1701 | HoistedLoops.push_back(HoistedL); |
| 1702 | HoistedL->setParentLoop(nullptr); |
| 1703 | |
| 1704 | // To compute the new parent of this hoisted loop we look at where we |
| 1705 | // placed the preheader above. We can't lookup the header itself because we |
| 1706 | // retained the mapping from the header to the hoisted loop. But the |
| 1707 | // preheader and header should have the exact same new parent computed |
| 1708 | // based on the set of exit blocks from the original loop as the preheader |
| 1709 | // is a predecessor of the header and so reached in the reverse walk. And |
| 1710 | // because the loops were all in simplified form the preheader of the |
| 1711 | // hoisted loop can't be part of some *other* loop. |
| 1712 | if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) |
| 1713 | NewParentL->addChildLoop(HoistedL); |
| 1714 | else |
| 1715 | LI.addTopLevelLoop(HoistedL); |
| 1716 | } |
| 1717 | SubLoops.erase(SubLoopsSplitI, SubLoops.end()); |
| 1718 | |
| 1719 | // Actually delete the loop if nothing remained within it. |
| 1720 | if (Blocks.empty()) { |
| 1721 | assert(SubLoops.empty() && |
| 1722 | "Failed to remove all subloops from the original loop!"); |
| 1723 | if (Loop *ParentL = L.getParentLoop()) |
| 1724 | ParentL->removeChildLoop(llvm::find(*ParentL, &L)); |
| 1725 | else |
| 1726 | LI.removeLoop(llvm::find(LI, &L)); |
| 1727 | LI.destroy(&L); |
| 1728 | return false; |
| 1729 | } |
| 1730 | |
| 1731 | return true; |
| 1732 | } |
| 1733 | |
| 1734 | /// Helper to visit a dominator subtree, invoking a callable on each node. |
| 1735 | /// |
| 1736 | /// Returning false at any point will stop walking past that node of the tree. |
| 1737 | template <typename CallableT> |
| 1738 | void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { |
| 1739 | SmallVector<DomTreeNode *, 4> DomWorklist; |
| 1740 | DomWorklist.push_back(DT[BB]); |
| 1741 | #ifndef NDEBUG |
| 1742 | SmallPtrSet<DomTreeNode *, 4> Visited; |
| 1743 | Visited.insert(DT[BB]); |
| 1744 | #endif |
| 1745 | do { |
| 1746 | DomTreeNode *N = DomWorklist.pop_back_val(); |
| 1747 | |
| 1748 | // Visit this node. |
| 1749 | if (!Callable(N->getBlock())) |
| 1750 | continue; |
| 1751 | |
| 1752 | // Accumulate the child nodes. |
| 1753 | for (DomTreeNode *ChildN : *N) { |
| 1754 | assert(Visited.insert(ChildN).second && |
| 1755 | "Cannot visit a node twice when walking a tree!"); |
| 1756 | DomWorklist.push_back(ChildN); |
| 1757 | } |
| 1758 | } while (!DomWorklist.empty()); |
| 1759 | } |
| 1760 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1761 | static bool unswitchNontrivialInvariants( |
| 1762 | Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants, |
| 1763 | DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 1764 | function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, |
| 1765 | ScalarEvolution *SE) { |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1766 | auto *ParentBB = TI.getParent(); |
| 1767 | BranchInst *BI = dyn_cast<BranchInst>(&TI); |
| 1768 | SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1769 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1770 | // We can only unswitch switches, conditional branches with an invariant |
| 1771 | // condition, or combining invariant conditions with an instruction. |
| 1772 | assert((SI || BI->isConditional()) && |
| 1773 | "Can only unswitch switches and conditional branch!"); |
| 1774 | bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1775 | if (FullUnswitch) |
| 1776 | assert(Invariants.size() == 1 && |
| 1777 | "Cannot have other invariants with full unswitching!"); |
| 1778 | else |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1779 | assert(isa<Instruction>(BI->getCondition()) && |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1780 | "Partial unswitching requires an instruction as the condition!"); |
| 1781 | |
| 1782 | // Constant and BBs tracking the cloned and continuing successor. When we are |
| 1783 | // unswitching the entire condition, this can just be trivially chosen to |
| 1784 | // unswitch towards `true`. However, when we are unswitching a set of |
| 1785 | // invariants combined with `and` or `or`, the combining operation determines |
| 1786 | // the best direction to unswitch: we want to unswitch the direction that will |
| 1787 | // collapse the branch. |
| 1788 | bool Direction = true; |
| 1789 | int ClonedSucc = 0; |
| 1790 | if (!FullUnswitch) { |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1791 | if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { |
| 1792 | assert(cast<Instruction>(BI->getCondition())->getOpcode() == |
| 1793 | Instruction::And && |
| 1794 | "Only `or` and `and` instructions can combine invariants being " |
| 1795 | "unswitched."); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1796 | Direction = false; |
| 1797 | ClonedSucc = 1; |
| 1798 | } |
| 1799 | } |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1800 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1801 | BasicBlock *RetainedSuccBB = |
| 1802 | BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); |
| 1803 | SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; |
| 1804 | if (BI) |
| 1805 | UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); |
| 1806 | else |
| 1807 | for (auto Case : SI->cases()) |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 1808 | if (Case.getCaseSuccessor() != RetainedSuccBB) |
| 1809 | UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1810 | |
| 1811 | assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && |
| 1812 | "Should not unswitch the same successor we are retaining!"); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1813 | |
| 1814 | // The branch should be in this exact loop. Any inner loop's invariant branch |
| 1815 | // should be handled by unswitching that inner loop. The caller of this |
| 1816 | // routine should filter out any candidates that remain (but were skipped for |
| 1817 | // whatever reason). |
| 1818 | assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); |
| 1819 | |
| 1820 | SmallVector<BasicBlock *, 4> ExitBlocks; |
| 1821 | L.getUniqueExitBlocks(ExitBlocks); |
| 1822 | |
| 1823 | // We cannot unswitch if exit blocks contain a cleanuppad instruction as we |
| 1824 | // don't know how to split those exit blocks. |
| 1825 | // FIXME: We should teach SplitBlock to handle this and remove this |
| 1826 | // restriction. |
| 1827 | for (auto *ExitBB : ExitBlocks) |
| 1828 | if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) |
| 1829 | return false; |
| 1830 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1831 | // Compute the parent loop now before we start hacking on things. |
| 1832 | Loop *ParentL = L.getParentLoop(); |
| 1833 | |
| 1834 | // Compute the outer-most loop containing one of our exit blocks. This is the |
| 1835 | // furthest up our loopnest which can be mutated, which we will use below to |
| 1836 | // update things. |
| 1837 | Loop *OuterExitL = &L; |
| 1838 | for (auto *ExitBB : ExitBlocks) { |
| 1839 | Loop *NewOuterExitL = LI.getLoopFor(ExitBB); |
| 1840 | if (!NewOuterExitL) { |
| 1841 | // We exited the entire nest with this block, so we're done. |
| 1842 | OuterExitL = nullptr; |
| 1843 | break; |
| 1844 | } |
| 1845 | if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) |
| 1846 | OuterExitL = NewOuterExitL; |
| 1847 | } |
| 1848 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 1849 | // At this point, we're definitely going to unswitch something so invalidate |
| 1850 | // any cached information in ScalarEvolution for the outer most loop |
| 1851 | // containing an exit block and all nested loops. |
| 1852 | if (SE) { |
| 1853 | if (OuterExitL) |
| 1854 | SE->forgetLoop(OuterExitL); |
| 1855 | else |
| 1856 | SE->forgetTopmostLoop(&L); |
| 1857 | } |
| 1858 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1859 | // If the edge from this terminator to a successor dominates that successor, |
| 1860 | // store a map from each block in its dominator subtree to it. This lets us |
| 1861 | // tell when cloning for a particular successor if a block is dominated by |
| 1862 | // some *other* successor with a single data structure. We use this to |
| 1863 | // significantly reduce cloning. |
| 1864 | SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; |
| 1865 | for (auto *SuccBB : llvm::concat<BasicBlock *const>( |
| 1866 | makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) |
| 1867 | if (SuccBB->getUniquePredecessor() || |
| 1868 | llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { |
| 1869 | return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); |
| 1870 | })) |
| 1871 | visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { |
| 1872 | DominatingSucc[BB] = SuccBB; |
| 1873 | return true; |
| 1874 | }); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1875 | |
| 1876 | // Split the preheader, so that we know that there is a safe place to insert |
| 1877 | // the conditional branch. We will change the preheader to have a conditional |
| 1878 | // branch on LoopCond. The original preheader will become the split point |
| 1879 | // between the unswitched versions, and we will have a new preheader for the |
| 1880 | // original loop. |
| 1881 | BasicBlock *SplitBB = L.getLoopPreheader(); |
| 1882 | BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); |
| 1883 | |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1884 | // Keep track of the dominator tree updates needed. |
| 1885 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| 1886 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1887 | // Clone the loop for each unswitched successor. |
| 1888 | SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; |
| 1889 | VMaps.reserve(UnswitchedSuccBBs.size()); |
| 1890 | SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; |
| 1891 | for (auto *SuccBB : UnswitchedSuccBBs) { |
| 1892 | VMaps.emplace_back(new ValueToValueMapTy()); |
| 1893 | ClonedPHs[SuccBB] = buildClonedLoopBlocks( |
| 1894 | L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, |
| 1895 | DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI); |
| 1896 | } |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1897 | |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1898 | // The stitching of the branched code back together depends on whether we're |
| 1899 | // doing full unswitching or not with the exception that we always want to |
| 1900 | // nuke the initial terminator placed in the split block. |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1901 | SplitBB->getTerminator()->eraseFromParent(); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1902 | if (FullUnswitch) { |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 1903 | // First we need to unhook the successor relationship as we'll be replacing |
| 1904 | // the terminator with a direct branch. This is much simpler for branches |
| 1905 | // than switches so we handle those first. |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1906 | if (BI) { |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 1907 | // Remove the parent as a predecessor of the unswitched successor. |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1908 | assert(UnswitchedSuccBBs.size() == 1 && |
| 1909 | "Only one possible unswitched block for a branch!"); |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 1910 | BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); |
| 1911 | UnswitchedSuccBB->removePredecessor(ParentBB, |
| 1912 | /*DontDeleteUselessPHIs*/ true); |
| 1913 | DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); |
| 1914 | } else { |
| 1915 | // Note that we actually want to remove the parent block as a predecessor |
| 1916 | // of *every* case successor. The case successor is either unswitched, |
| 1917 | // completely eliminating an edge from the parent to that successor, or it |
| 1918 | // is a duplicate edge to the retained successor as the retained successor |
| 1919 | // is always the default successor and as we'll replace this with a direct |
| 1920 | // branch we no longer need the duplicate entries in the PHI nodes. |
| 1921 | assert(SI->getDefaultDest() == RetainedSuccBB && |
| 1922 | "Not retaining default successor!"); |
| 1923 | for (auto &Case : SI->cases()) |
| 1924 | Case.getCaseSuccessor()->removePredecessor( |
| 1925 | ParentBB, |
| 1926 | /*DontDeleteUselessPHIs*/ true); |
| 1927 | |
| 1928 | // We need to use the set to populate domtree updates as even when there |
| 1929 | // are multiple cases pointing at the same successor we only want to |
| 1930 | // remove and insert one edge in the domtree. |
| 1931 | for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| 1932 | DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); |
| 1933 | } |
| 1934 | |
| 1935 | // Now that we've unhooked the successor relationship, splice the terminator |
| 1936 | // from the original loop to the split. |
| 1937 | SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); |
| 1938 | |
| 1939 | // Now wire up the terminator to the preheaders. |
| 1940 | if (BI) { |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1941 | BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| 1942 | BI->setSuccessor(ClonedSucc, ClonedPH); |
| 1943 | BI->setSuccessor(1 - ClonedSucc, LoopPH); |
| 1944 | DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); |
| 1945 | } else { |
| 1946 | assert(SI && "Must either be a branch or switch!"); |
| 1947 | |
| 1948 | // Walk the cases and directly update their successors. |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 1949 | SI->setDefaultDest(LoopPH); |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1950 | for (auto &Case : SI->cases()) |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 1951 | if (Case.getCaseSuccessor() == RetainedSuccBB) |
| 1952 | Case.setSuccessor(LoopPH); |
| 1953 | else |
| 1954 | Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); |
| 1955 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1956 | // We need to use the set to populate domtree updates as even when there |
| 1957 | // are multiple cases pointing at the same successor we only want to |
Chandler Carruth | ed29654 | 2018-07-09 10:30:48 +0000 | [diff] [blame^] | 1958 | // remove and insert one edge in the domtree. |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1959 | for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| 1960 | DTUpdates.push_back( |
| 1961 | {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1962 | } |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1963 | |
| 1964 | // Create a new unconditional branch to the continuing block (as opposed to |
| 1965 | // the one cloned). |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1966 | BranchInst::Create(RetainedSuccBB, ParentBB); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1967 | } else { |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1968 | assert(BI && "Only branches have partial unswitching."); |
| 1969 | assert(UnswitchedSuccBBs.size() == 1 && |
| 1970 | "Only one possible unswitched block for a branch!"); |
| 1971 | BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1972 | // When doing a partial unswitch, we have to do a bit more work to build up |
| 1973 | // the branch in the split block. |
| 1974 | buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, |
| 1975 | *ClonedPH, *LoopPH); |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1976 | DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 1977 | } |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1978 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1979 | // Apply the updates accumulated above to get an up-to-date dominator tree. |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1980 | DT.applyUpdates(DTUpdates); |
| 1981 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1982 | // Now that we have an accurate dominator tree, first delete the dead cloned |
| 1983 | // blocks so that we can accurately build any cloned loops. It is important to |
| 1984 | // not delete the blocks from the original loop yet because we still want to |
| 1985 | // reference the original loop to understand the cloned loop's structure. |
| 1986 | deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT); |
| 1987 | |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1988 | // Build the cloned loop structure itself. This may be substantially |
| 1989 | // different from the original structure due to the simplified CFG. This also |
| 1990 | // handles inserting all the cloned blocks into the correct loops. |
| 1991 | SmallVector<Loop *, 4> NonChildClonedLoops; |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1992 | for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) |
| 1993 | buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 1994 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 1995 | // Now that our cloned loops have been built, we can update the original loop. |
| 1996 | // First we delete the dead blocks from it and then we rebuild the loop |
| 1997 | // structure taking these deletions into account. |
| 1998 | deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 1999 | SmallVector<Loop *, 4> HoistedLoops; |
| 2000 | bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); |
| 2001 | |
Chandler Carruth | 69e68f8 | 2018-04-25 00:18:07 +0000 | [diff] [blame] | 2002 | // This transformation has a high risk of corrupting the dominator tree, and |
| 2003 | // the below steps to rebuild loop structures will result in hard to debug |
| 2004 | // errors in that case so verify that the dominator tree is sane first. |
| 2005 | // FIXME: Remove this when the bugs stop showing up and rely on existing |
| 2006 | // verification steps. |
| 2007 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2008 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 2009 | if (BI) { |
| 2010 | // If we unswitched a branch which collapses the condition to a known |
| 2011 | // constant we want to replace all the uses of the invariants within both |
| 2012 | // the original and cloned blocks. We do this here so that we can use the |
| 2013 | // now updated dominator tree to identify which side the users are on. |
| 2014 | assert(UnswitchedSuccBBs.size() == 1 && |
| 2015 | "Only one possible unswitched block for a branch!"); |
| 2016 | BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| 2017 | ConstantInt *UnswitchedReplacement = |
| 2018 | Direction ? ConstantInt::getTrue(BI->getContext()) |
| 2019 | : ConstantInt::getFalse(BI->getContext()); |
| 2020 | ConstantInt *ContinueReplacement = |
| 2021 | Direction ? ConstantInt::getFalse(BI->getContext()) |
| 2022 | : ConstantInt::getTrue(BI->getContext()); |
| 2023 | for (Value *Invariant : Invariants) |
| 2024 | for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); |
| 2025 | UI != UE;) { |
| 2026 | // Grab the use and walk past it so we can clobber it in the use list. |
| 2027 | Use *U = &*UI++; |
| 2028 | Instruction *UserI = dyn_cast<Instruction>(U->getUser()); |
| 2029 | if (!UserI) |
| 2030 | continue; |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2031 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 2032 | // Replace it with the 'continue' side if in the main loop body, and the |
| 2033 | // unswitched if in the cloned blocks. |
| 2034 | if (DT.dominates(LoopPH, UserI->getParent())) |
| 2035 | U->set(ContinueReplacement); |
| 2036 | else if (DT.dominates(ClonedPH, UserI->getParent())) |
| 2037 | U->set(UnswitchedReplacement); |
| 2038 | } |
| 2039 | } |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2040 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2041 | // We can change which blocks are exit blocks of all the cloned sibling |
| 2042 | // loops, the current loop, and any parent loops which shared exit blocks |
| 2043 | // with the current loop. As a consequence, we need to re-form LCSSA for |
| 2044 | // them. But we shouldn't need to re-form LCSSA for any child loops. |
| 2045 | // FIXME: This could be made more efficient by tracking which exit blocks are |
| 2046 | // new, and focusing on them, but that isn't likely to be necessary. |
| 2047 | // |
| 2048 | // In order to reasonably rebuild LCSSA we need to walk inside-out across the |
| 2049 | // loop nest and update every loop that could have had its exits changed. We |
| 2050 | // also need to cover any intervening loops. We add all of these loops to |
| 2051 | // a list and sort them by loop depth to achieve this without updating |
| 2052 | // unnecessary loops. |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 2053 | auto UpdateLoop = [&](Loop &UpdateL) { |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2054 | #ifndef NDEBUG |
Chandler Carruth | 43acdb3 | 2018-04-24 10:33:08 +0000 | [diff] [blame] | 2055 | UpdateL.verifyLoop(); |
| 2056 | for (Loop *ChildL : UpdateL) { |
| 2057 | ChildL->verifyLoop(); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2058 | assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && |
| 2059 | "Perturbed a child loop's LCSSA form!"); |
Chandler Carruth | 43acdb3 | 2018-04-24 10:33:08 +0000 | [diff] [blame] | 2060 | } |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2061 | #endif |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 2062 | // First build LCSSA for this loop so that we can preserve it when |
| 2063 | // forming dedicated exits. We don't want to perturb some other loop's |
| 2064 | // LCSSA while doing that CFG edit. |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2065 | formLCSSA(UpdateL, DT, &LI, nullptr); |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 2066 | |
| 2067 | // For loops reached by this loop's original exit blocks we may |
| 2068 | // introduced new, non-dedicated exits. At least try to re-form dedicated |
| 2069 | // exits for these loops. This may fail if they couldn't have dedicated |
| 2070 | // exits to start with. |
| 2071 | formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2072 | }; |
| 2073 | |
| 2074 | // For non-child cloned loops and hoisted loops, we just need to update LCSSA |
| 2075 | // and we can do it in any order as they don't nest relative to each other. |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 2076 | // |
| 2077 | // Also check if any of the loops we have updated have become top-level loops |
| 2078 | // as that will necessitate widening the outer loop scope. |
| 2079 | for (Loop *UpdatedL : |
| 2080 | llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { |
| 2081 | UpdateLoop(*UpdatedL); |
| 2082 | if (!UpdatedL->getParentLoop()) |
| 2083 | OuterExitL = nullptr; |
| 2084 | } |
| 2085 | if (IsStillLoop) { |
| 2086 | UpdateLoop(L); |
| 2087 | if (!L.getParentLoop()) |
| 2088 | OuterExitL = nullptr; |
| 2089 | } |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2090 | |
| 2091 | // If the original loop had exit blocks, walk up through the outer most loop |
| 2092 | // of those exit blocks to update LCSSA and form updated dedicated exits. |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 2093 | if (OuterExitL != &L) |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2094 | for (Loop *OuterL = ParentL; OuterL != OuterExitL; |
| 2095 | OuterL = OuterL->getParentLoop()) |
Chandler Carruth | 9281503 | 2018-06-02 01:29:01 +0000 | [diff] [blame] | 2096 | UpdateLoop(*OuterL); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2097 | |
| 2098 | #ifndef NDEBUG |
| 2099 | // Verify the entire loop structure to catch any incorrect updates before we |
| 2100 | // progress in the pass pipeline. |
| 2101 | LI.verify(DT); |
| 2102 | #endif |
| 2103 | |
| 2104 | // Now that we've unswitched something, make callbacks to report the changes. |
| 2105 | // For that we need to merge together the updated loops and the cloned loops |
| 2106 | // and check whether the original loop survived. |
| 2107 | SmallVector<Loop *, 4> SibLoops; |
| 2108 | for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) |
| 2109 | if (UpdatedL->getParentLoop() == ParentL) |
| 2110 | SibLoops.push_back(UpdatedL); |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2111 | UnswitchCB(IsStillLoop, SibLoops); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2112 | |
| 2113 | ++NumBranches; |
| 2114 | return true; |
| 2115 | } |
| 2116 | |
| 2117 | /// Recursively compute the cost of a dominator subtree based on the per-block |
| 2118 | /// cost map provided. |
| 2119 | /// |
| 2120 | /// The recursive computation is memozied into the provided DT-indexed cost map |
| 2121 | /// to allow querying it for most nodes in the domtree without it becoming |
| 2122 | /// quadratic. |
| 2123 | static int |
| 2124 | computeDomSubtreeCost(DomTreeNode &N, |
| 2125 | const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, |
| 2126 | SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { |
| 2127 | // Don't accumulate cost (or recurse through) blocks not in our block cost |
| 2128 | // map and thus not part of the duplication cost being considered. |
| 2129 | auto BBCostIt = BBCostMap.find(N.getBlock()); |
| 2130 | if (BBCostIt == BBCostMap.end()) |
| 2131 | return 0; |
| 2132 | |
| 2133 | // Lookup this node to see if we already computed its cost. |
| 2134 | auto DTCostIt = DTCostMap.find(&N); |
| 2135 | if (DTCostIt != DTCostMap.end()) |
| 2136 | return DTCostIt->second; |
| 2137 | |
| 2138 | // If not, we have to compute it. We can't use insert above and update |
| 2139 | // because computing the cost may insert more things into the map. |
| 2140 | int Cost = std::accumulate( |
| 2141 | N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { |
| 2142 | return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); |
| 2143 | }); |
| 2144 | bool Inserted = DTCostMap.insert({&N, Cost}).second; |
| 2145 | (void)Inserted; |
| 2146 | assert(Inserted && "Should not insert a node while visiting children!"); |
| 2147 | return Cost; |
| 2148 | } |
| 2149 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2150 | static bool |
| 2151 | unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, |
| 2152 | AssumptionCache &AC, TargetTransformInfo &TTI, |
| 2153 | function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, |
| 2154 | ScalarEvolution *SE) { |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2155 | // Collect all invariant conditions within this loop (as opposed to an inner |
| 2156 | // loop which would be handled when visiting that inner loop). |
| 2157 | SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4> |
| 2158 | UnswitchCandidates; |
| 2159 | for (auto *BB : L.blocks()) { |
| 2160 | if (LI.getLoopFor(BB) != &L) |
| 2161 | continue; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2162 | |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 2163 | if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { |
| 2164 | // We can only consider fully loop-invariant switch conditions as we need |
| 2165 | // to completely eliminate the switch after unswitching. |
| 2166 | if (!isa<Constant>(SI->getCondition()) && |
| 2167 | L.isLoopInvariant(SI->getCondition())) |
| 2168 | UnswitchCandidates.push_back({SI, {SI->getCondition()}}); |
| 2169 | continue; |
| 2170 | } |
| 2171 | |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2172 | auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2173 | if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || |
| 2174 | BI->getSuccessor(0) == BI->getSuccessor(1)) |
| 2175 | continue; |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2176 | |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2177 | if (L.isLoopInvariant(BI->getCondition())) { |
| 2178 | UnswitchCandidates.push_back({BI, {BI->getCondition()}}); |
| 2179 | continue; |
| 2180 | } |
| 2181 | |
| 2182 | Instruction &CondI = *cast<Instruction>(BI->getCondition()); |
| 2183 | if (CondI.getOpcode() != Instruction::And && |
| 2184 | CondI.getOpcode() != Instruction::Or) |
| 2185 | continue; |
| 2186 | |
| 2187 | TinyPtrVector<Value *> Invariants = |
| 2188 | collectHomogenousInstGraphLoopInvariants(L, CondI, LI); |
| 2189 | if (Invariants.empty()) |
| 2190 | continue; |
| 2191 | |
| 2192 | UnswitchCandidates.push_back({BI, std::move(Invariants)}); |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2193 | } |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2194 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2195 | // If we didn't find any candidates, we're done. |
| 2196 | if (UnswitchCandidates.empty()) |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2197 | return false; |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2198 | |
Chandler Carruth | 32e62f9 | 2018-04-19 18:44:25 +0000 | [diff] [blame] | 2199 | // Check if there are irreducible CFG cycles in this loop. If so, we cannot |
| 2200 | // easily unswitch non-trivial edges out of the loop. Doing so might turn the |
| 2201 | // irreducible control flow into reducible control flow and introduce new |
| 2202 | // loops "out of thin air". If we ever discover important use cases for doing |
| 2203 | // this, we can add support to loop unswitch, but it is a lot of complexity |
Hiroshi Inoue | f209649 | 2018-06-14 05:41:49 +0000 | [diff] [blame] | 2204 | // for what seems little or no real world benefit. |
Chandler Carruth | 32e62f9 | 2018-04-19 18:44:25 +0000 | [diff] [blame] | 2205 | LoopBlocksRPO RPOT(&L); |
| 2206 | RPOT.perform(&LI); |
| 2207 | if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2208 | return false; |
Chandler Carruth | 32e62f9 | 2018-04-19 18:44:25 +0000 | [diff] [blame] | 2209 | |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2210 | LLVM_DEBUG( |
| 2211 | dbgs() << "Considering " << UnswitchCandidates.size() |
| 2212 | << " non-trivial loop invariant conditions for unswitching.\n"); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2213 | |
| 2214 | // Given that unswitching these terminators will require duplicating parts of |
| 2215 | // the loop, so we need to be able to model that cost. Compute the ephemeral |
| 2216 | // values and set up a data structure to hold per-BB costs. We cache each |
| 2217 | // block's cost so that we don't recompute this when considering different |
| 2218 | // subsets of the loop for duplication during unswitching. |
| 2219 | SmallPtrSet<const Value *, 4> EphValues; |
| 2220 | CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); |
| 2221 | SmallDenseMap<BasicBlock *, int, 4> BBCostMap; |
| 2222 | |
| 2223 | // Compute the cost of each block, as well as the total loop cost. Also, bail |
| 2224 | // out if we see instructions which are incompatible with loop unswitching |
| 2225 | // (convergent, noduplicate, or cross-basic-block tokens). |
| 2226 | // FIXME: We might be able to safely handle some of these in non-duplicated |
| 2227 | // regions. |
| 2228 | int LoopCost = 0; |
| 2229 | for (auto *BB : L.blocks()) { |
| 2230 | int Cost = 0; |
| 2231 | for (auto &I : *BB) { |
| 2232 | if (EphValues.count(&I)) |
| 2233 | continue; |
| 2234 | |
| 2235 | if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2236 | return false; |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2237 | if (auto CS = CallSite(&I)) |
| 2238 | if (CS.isConvergent() || CS.cannotDuplicate()) |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2239 | return false; |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2240 | |
| 2241 | Cost += TTI.getUserCost(&I); |
| 2242 | } |
| 2243 | assert(Cost >= 0 && "Must not have negative costs!"); |
| 2244 | LoopCost += Cost; |
| 2245 | assert(LoopCost >= 0 && "Must not have negative loop costs!"); |
| 2246 | BBCostMap[BB] = Cost; |
| 2247 | } |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2248 | LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2249 | |
| 2250 | // Now we find the best candidate by searching for the one with the following |
| 2251 | // properties in order: |
| 2252 | // |
| 2253 | // 1) An unswitching cost below the threshold |
| 2254 | // 2) The smallest number of duplicated unswitch candidates (to avoid |
| 2255 | // creating redundant subsequent unswitching) |
| 2256 | // 3) The smallest cost after unswitching. |
| 2257 | // |
| 2258 | // We prioritize reducing fanout of unswitch candidates provided the cost |
| 2259 | // remains below the threshold because this has a multiplicative effect. |
| 2260 | // |
| 2261 | // This requires memoizing each dominator subtree to avoid redundant work. |
| 2262 | // |
| 2263 | // FIXME: Need to actually do the number of candidates part above. |
| 2264 | SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; |
| 2265 | // Given a terminator which might be unswitched, computes the non-duplicated |
| 2266 | // cost for that terminator. |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2267 | auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) { |
| 2268 | BasicBlock &BB = *TI.getParent(); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2269 | SmallPtrSet<BasicBlock *, 4> Visited; |
| 2270 | |
| 2271 | int Cost = LoopCost; |
| 2272 | for (BasicBlock *SuccBB : successors(&BB)) { |
| 2273 | // Don't count successors more than once. |
| 2274 | if (!Visited.insert(SuccBB).second) |
| 2275 | continue; |
| 2276 | |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2277 | // If this is a partial unswitch candidate, then it must be a conditional |
| 2278 | // branch with a condition of either `or` or `and`. In that case, one of |
| 2279 | // the successors is necessarily duplicated, so don't even try to remove |
| 2280 | // its cost. |
| 2281 | if (!FullUnswitch) { |
| 2282 | auto &BI = cast<BranchInst>(TI); |
| 2283 | if (cast<Instruction>(BI.getCondition())->getOpcode() == |
| 2284 | Instruction::And) { |
| 2285 | if (SuccBB == BI.getSuccessor(1)) |
| 2286 | continue; |
| 2287 | } else { |
| 2288 | assert(cast<Instruction>(BI.getCondition())->getOpcode() == |
| 2289 | Instruction::Or && |
| 2290 | "Only `and` and `or` conditions can result in a partial " |
| 2291 | "unswitch!"); |
| 2292 | if (SuccBB == BI.getSuccessor(0)) |
| 2293 | continue; |
| 2294 | } |
| 2295 | } |
| 2296 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2297 | // This successor's domtree will not need to be duplicated after |
| 2298 | // unswitching if the edge to the successor dominates it (and thus the |
| 2299 | // entire tree). This essentially means there is no other path into this |
| 2300 | // subtree and so it will end up live in only one clone of the loop. |
| 2301 | if (SuccBB->getUniquePredecessor() || |
| 2302 | llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { |
| 2303 | return PredBB == &BB || DT.dominates(SuccBB, PredBB); |
| 2304 | })) { |
| 2305 | Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); |
| 2306 | assert(Cost >= 0 && |
| 2307 | "Non-duplicated cost should never exceed total loop cost!"); |
| 2308 | } |
| 2309 | } |
| 2310 | |
| 2311 | // Now scale the cost by the number of unique successors minus one. We |
| 2312 | // subtract one because there is already at least one copy of the entire |
| 2313 | // loop. This is computing the new cost of unswitching a condition. |
| 2314 | assert(Visited.size() > 1 && |
| 2315 | "Cannot unswitch a condition without multiple distinct successors!"); |
| 2316 | return Cost * (Visited.size() - 1); |
| 2317 | }; |
| 2318 | TerminatorInst *BestUnswitchTI = nullptr; |
| 2319 | int BestUnswitchCost; |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2320 | ArrayRef<Value *> BestUnswitchInvariants; |
| 2321 | for (auto &TerminatorAndInvariants : UnswitchCandidates) { |
| 2322 | TerminatorInst &TI = *TerminatorAndInvariants.first; |
| 2323 | ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; |
| 2324 | BranchInst *BI = dyn_cast<BranchInst>(&TI); |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 2325 | int CandidateCost = ComputeUnswitchedCost( |
| 2326 | TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && |
| 2327 | Invariants[0] == BI->getCondition())); |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2328 | LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2329 | << " for unswitch candidate: " << TI << "\n"); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2330 | if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2331 | BestUnswitchTI = &TI; |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2332 | BestUnswitchCost = CandidateCost; |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2333 | BestUnswitchInvariants = Invariants; |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2334 | } |
| 2335 | } |
| 2336 | |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2337 | if (BestUnswitchCost >= UnswitchThreshold) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2338 | LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " |
| 2339 | << BestUnswitchCost << "\n"); |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2340 | return false; |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2341 | } |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2342 | |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2343 | LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " |
Chandler Carruth | 1652996 | 2018-06-25 23:32:54 +0000 | [diff] [blame] | 2344 | << BestUnswitchCost << ") terminator: " << *BestUnswitchTI |
| 2345 | << "\n"); |
| 2346 | return unswitchNontrivialInvariants( |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2347 | L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2348 | } |
| 2349 | |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2350 | /// Unswitch control flow predicated on loop invariant conditions. |
| 2351 | /// |
| 2352 | /// This first hoists all branches or switches which are trivial (IE, do not |
| 2353 | /// require duplicating any part of the loop) out of the loop body. It then |
| 2354 | /// looks at other loop invariant control flows and tries to unswitch those as |
| 2355 | /// well by cloning the loop if the result is small enough. |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2356 | /// |
| 2357 | /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also |
| 2358 | /// updated based on the unswitch. |
| 2359 | /// |
| 2360 | /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is |
| 2361 | /// true, we will attempt to do non-trivial unswitching as well as trivial |
| 2362 | /// unswitching. |
| 2363 | /// |
| 2364 | /// The `UnswitchCB` callback provided will be run after unswitching is |
| 2365 | /// complete, with the first parameter set to `true` if the provided loop |
| 2366 | /// remains a loop, and a list of new sibling loops created. |
| 2367 | /// |
| 2368 | /// If `SE` is non-null, we will update that analysis based on the unswitching |
| 2369 | /// done. |
| 2370 | static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, |
| 2371 | AssumptionCache &AC, TargetTransformInfo &TTI, |
| 2372 | bool NonTrivial, |
| 2373 | function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, |
| 2374 | ScalarEvolution *SE) { |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2375 | assert(L.isRecursivelyLCSSAForm(DT, LI) && |
| 2376 | "Loops must be in LCSSA form before unswitching."); |
| 2377 | bool Changed = false; |
| 2378 | |
| 2379 | // Must be in loop simplified form: we need a preheader and dedicated exits. |
| 2380 | if (!L.isLoopSimplifyForm()) |
| 2381 | return false; |
| 2382 | |
| 2383 | // Try trivial unswitch first before loop over other basic blocks in the loop. |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2384 | if (unswitchAllTrivialConditions(L, DT, LI, SE)) { |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2385 | // If we unswitched successfully we will want to clean up the loop before |
| 2386 | // processing it further so just mark it as unswitched and return. |
| 2387 | UnswitchCB(/*CurrentLoopValid*/ true, {}); |
| 2388 | return true; |
| 2389 | } |
| 2390 | |
| 2391 | // If we're not doing non-trivial unswitching, we're done. We both accept |
| 2392 | // a parameter but also check a local flag that can be used for testing |
| 2393 | // a debugging. |
| 2394 | if (!NonTrivial && !EnableNonTrivialUnswitch) |
| 2395 | return false; |
| 2396 | |
| 2397 | // For non-trivial unswitching, because it often creates new loops, we rely on |
| 2398 | // the pass manager to iterate on the loops rather than trying to immediately |
| 2399 | // reach a fixed point. There is no substantial advantage to iterating |
| 2400 | // internally, and if any of the new loops are simplified enough to contain |
| 2401 | // trivial unswitching we want to prefer those. |
| 2402 | |
| 2403 | // Try to unswitch the best invariant condition. We prefer this full unswitch to |
| 2404 | // a partial unswitch when possible below the threshold. |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2405 | if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE)) |
Chandler Carruth | d1dab0c | 2018-06-21 06:14:03 +0000 | [diff] [blame] | 2406 | return true; |
| 2407 | |
| 2408 | // No other opportunities to unswitch. |
| 2409 | return Changed; |
| 2410 | } |
| 2411 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2412 | PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, |
| 2413 | LoopStandardAnalysisResults &AR, |
| 2414 | LPMUpdater &U) { |
| 2415 | Function &F = *L.getHeader()->getParent(); |
| 2416 | (void)F; |
| 2417 | |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2418 | LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L |
| 2419 | << "\n"); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2420 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2421 | // Save the current loop name in a variable so that we can report it even |
| 2422 | // after it has been deleted. |
| 2423 | std::string LoopName = L.getName(); |
| 2424 | |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2425 | auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, |
| 2426 | ArrayRef<Loop *> NewLoops) { |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2427 | // If we did a non-trivial unswitch, we have added new (cloned) loops. |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2428 | if (!NewLoops.empty()) |
| 2429 | U.addSiblingLoops(NewLoops); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2430 | |
| 2431 | // If the current loop remains valid, we should revisit it to catch any |
| 2432 | // other unswitch opportunities. Otherwise, we need to mark it as deleted. |
| 2433 | if (CurrentLoopValid) |
| 2434 | U.revisitCurrentLoop(); |
| 2435 | else |
| 2436 | U.markLoopAsDeleted(L, LoopName); |
| 2437 | }; |
| 2438 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2439 | if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, |
| 2440 | &AR.SE)) |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2441 | return PreservedAnalyses::all(); |
| 2442 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2443 | // Historically this pass has had issues with the dominator tree so verify it |
| 2444 | // in asserts builds. |
David Green | 7c35de1 | 2018-02-28 11:00:08 +0000 | [diff] [blame] | 2445 | assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2446 | return getLoopPassPreservedAnalyses(); |
| 2447 | } |
| 2448 | |
| 2449 | namespace { |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 2450 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2451 | class SimpleLoopUnswitchLegacyPass : public LoopPass { |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2452 | bool NonTrivial; |
| 2453 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2454 | public: |
| 2455 | static char ID; // Pass ID, replacement for typeid |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 2456 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2457 | explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) |
| 2458 | : LoopPass(ID), NonTrivial(NonTrivial) { |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2459 | initializeSimpleLoopUnswitchLegacyPassPass( |
| 2460 | *PassRegistry::getPassRegistry()); |
| 2461 | } |
| 2462 | |
| 2463 | bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| 2464 | |
| 2465 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 2466 | AU.addRequired<AssumptionCacheTracker>(); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2467 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2468 | getLoopAnalysisUsage(AU); |
| 2469 | } |
| 2470 | }; |
Eugene Zelenko | a369a45 | 2017-05-16 23:10:25 +0000 | [diff] [blame] | 2471 | |
| 2472 | } // end anonymous namespace |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2473 | |
| 2474 | bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { |
| 2475 | if (skipLoop(L)) |
| 2476 | return false; |
| 2477 | |
| 2478 | Function &F = *L->getHeader()->getParent(); |
| 2479 | |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2480 | LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L |
| 2481 | << "\n"); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2482 | |
| 2483 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 2484 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 2485 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2486 | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2487 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2488 | auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); |
| 2489 | auto *SE = SEWP ? &SEWP->getSE() : nullptr; |
| 2490 | |
Chandler Carruth | 71fd270 | 2018-05-30 02:46:45 +0000 | [diff] [blame] | 2491 | auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, |
| 2492 | ArrayRef<Loop *> NewLoops) { |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2493 | // If we did a non-trivial unswitch, we have added new (cloned) loops. |
| 2494 | for (auto *NewL : NewLoops) |
| 2495 | LPM.addLoop(*NewL); |
| 2496 | |
| 2497 | // If the current loop remains valid, re-add it to the queue. This is |
| 2498 | // a little wasteful as we'll finish processing the current loop as well, |
| 2499 | // but it is the best we can do in the old PM. |
| 2500 | if (CurrentLoopValid) |
| 2501 | LPM.addLoop(*L); |
| 2502 | else |
| 2503 | LPM.markLoopAsDeleted(*L); |
| 2504 | }; |
| 2505 | |
Chandler Carruth | 3897ded | 2018-07-03 09:13:27 +0000 | [diff] [blame] | 2506 | bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE); |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2507 | |
| 2508 | // If anything was unswitched, also clear any cached information about this |
| 2509 | // loop. |
| 2510 | LPM.deleteSimpleAnalysisLoop(L); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2511 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2512 | // Historically this pass has had issues with the dominator tree so verify it |
| 2513 | // in asserts builds. |
David Green | 7c35de1 | 2018-02-28 11:00:08 +0000 | [diff] [blame] | 2514 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| 2515 | |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2516 | return Changed; |
| 2517 | } |
| 2518 | |
| 2519 | char SimpleLoopUnswitchLegacyPass::ID = 0; |
| 2520 | INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", |
| 2521 | "Simple unswitch loops", false, false) |
| 2522 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2523 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 2524 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2525 | INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| 2526 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 2527 | INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", |
| 2528 | "Simple unswitch loops", false, false) |
| 2529 | |
Chandler Carruth | 693eedb | 2017-11-17 19:58:36 +0000 | [diff] [blame] | 2530 | Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { |
| 2531 | return new SimpleLoopUnswitchLegacyPass(NonTrivial); |
Chandler Carruth | 1353f9a | 2017-04-27 18:45:20 +0000 | [diff] [blame] | 2532 | } |