blob: 693a148fa547aaefedc28fe920dacfd216833155 [file] [log] [blame]
Nadav Rotemc4efbb82012-12-19 07:22:24 +00001==========================
2Auto-Vectorization in LLVM
3==========================
4
Sean Silva99e12f92012-12-20 22:42:20 +00005.. contents::
6 :local:
7
8LLVM has two vectorizers: The :ref:`Loop Vectorizer <loop-vectorizer>`,
9which operates on Loops, and the :ref:`Basic Block Vectorizer
10<bb-vectorizer>`, which optimizes straight-line code. These vectorizers
11focus on different optimization opportunities and use different techniques.
12The BB vectorizer merges multiple scalars that are found in the code into
13vectors while the Loop Vectorizer widens instructions in the original loop
14to operate on multiple consecutive loop iterations.
15
16.. _loop-vectorizer:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000017
18The Loop Vectorizer
19===================
20
Nadav Rotem0328f5e2012-12-19 18:04:44 +000021Usage
Sean Silva08fd0882012-12-20 02:40:45 +000022-----
Nadav Rotem0328f5e2012-12-19 18:04:44 +000023
Nadav Rotemfe47d582013-04-08 21:34:49 +000024LLVM's Loop Vectorizer is now enabled by default for -O3.
25The vectorizer can be disabled using the command line:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000026
27.. code-block:: console
28
Nadav Rotemfe47d582013-04-08 21:34:49 +000029 $ clang ... -fno-vectorize file.c
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +000030
Nadav Rotem7daadf22013-01-04 17:49:45 +000031Command line flags
32^^^^^^^^^^^^^^^^^^
33
34The loop vectorizer uses a cost model to decide on the optimal vectorization factor
35and unroll factor. However, users of the vectorizer can force the vectorizer to use
36specific values. Both 'clang' and 'opt' support the flags below.
37
38Users can control the vectorization SIMD width using the command line flag "-force-vector-width".
39
40.. code-block:: console
41
42 $ clang -mllvm -force-vector-width=8 ...
43 $ opt -loop-vectorize -force-vector-width=8 ...
44
45Users can control the unroll factor using the command line flag "-force-vector-unroll"
46
47.. code-block:: console
48
49 $ clang -mllvm -force-vector-unroll=2 ...
50 $ opt -loop-vectorize -force-vector-unroll=2 ...
51
Nadav Rotemc4efbb82012-12-19 07:22:24 +000052Features
Sean Silva08fd0882012-12-20 02:40:45 +000053--------
Nadav Rotemc4efbb82012-12-19 07:22:24 +000054
55The LLVM Loop Vectorizer has a number of features that allow it to vectorize
56complex loops.
57
58Loops with unknown trip count
Sean Silva08fd0882012-12-20 02:40:45 +000059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +000060
61The Loop Vectorizer supports loops with an unknown trip count.
62In the loop below, the iteration ``start`` and ``finish`` points are unknown,
63and the Loop Vectorizer has a mechanism to vectorize loops that do not start
Sean Silva13ed79c2012-12-20 02:23:25 +000064at zero. In this example, 'n' may not be a multiple of the vector width, and
Nadav Rotemc4efbb82012-12-19 07:22:24 +000065the vectorizer has to execute the last few iterations as scalar code. Keeping
66a scalar copy of the loop increases the code size.
67
68.. code-block:: c++
69
70 void bar(float *A, float* B, float K, int start, int end) {
Sean Silva8c44a472012-12-20 22:47:41 +000071 for (int i = start; i < end; ++i)
72 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +000073 }
74
75Runtime Checks of Pointers
Sean Silva08fd0882012-12-20 02:40:45 +000076^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +000077
78In the example below, if the pointers A and B point to consecutive addresses,
79then it is illegal to vectorize the code because some elements of A will be
80written before they are read from array B.
81
82Some programmers use the 'restrict' keyword to notify the compiler that the
83pointers are disjointed, but in our example, the Loop Vectorizer has no way of
84knowing that the pointers A and B are unique. The Loop Vectorizer handles this
85loop by placing code that checks, at runtime, if the arrays A and B point to
86disjointed memory locations. If arrays A and B overlap, then the scalar version
Sean Silva287e7d22012-12-20 22:59:36 +000087of the loop is executed.
Nadav Rotemc4efbb82012-12-19 07:22:24 +000088
89.. code-block:: c++
90
91 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +000092 for (int i = 0; i < n; ++i)
93 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +000094 }
95
96
97Reductions
Sean Silva08fd0882012-12-20 02:40:45 +000098^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +000099
Sean Silva287e7d22012-12-20 22:59:36 +0000100In this example the ``sum`` variable is used by consecutive iterations of
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000101the loop. Normally, this would prevent vectorization, but the vectorizer can
Sean Silva13ed79c2012-12-20 02:23:25 +0000102detect that 'sum' is a reduction variable. The variable 'sum' becomes a vector
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000103of integers, and at the end of the loop the elements of the array are added
Sean Silva287e7d22012-12-20 22:59:36 +0000104together to create the correct result. We support a number of different
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000105reduction operations, such as addition, multiplication, XOR, AND and OR.
106
107.. code-block:: c++
108
109 int foo(int *A, int *B, int n) {
110 unsigned sum = 0;
111 for (int i = 0; i < n; ++i)
Sean Silva287e7d22012-12-20 22:59:36 +0000112 sum += A[i] + 5;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000113 return sum;
114 }
115
Nadav Rotem9f207812013-01-08 17:46:30 +0000116We support floating point reduction operations when `-ffast-math` is used.
117
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000118Inductions
Sean Silva08fd0882012-12-20 02:40:45 +0000119^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000120
121In this example the value of the induction variable ``i`` is saved into an
122array. The Loop Vectorizer knows to vectorize induction variables.
123
124.. code-block:: c++
125
126 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +0000127 for (int i = 0; i < n; ++i)
128 A[i] = i;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000129 }
130
131If Conversion
Sean Silva08fd0882012-12-20 02:40:45 +0000132^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000133
134The Loop Vectorizer is able to "flatten" the IF statement in the code and
135generate a single stream of instructions. The Loop Vectorizer supports any
136control flow in the innermost loop. The innermost loop may contain complex
137nesting of IFs, ELSEs and even GOTOs.
138
139.. code-block:: c++
140
141 int foo(int *A, int *B, int n) {
142 unsigned sum = 0;
143 for (int i = 0; i < n; ++i)
144 if (A[i] > B[i])
145 sum += A[i] + 5;
146 return sum;
147 }
148
149Pointer Induction Variables
Sean Silva08fd0882012-12-20 02:40:45 +0000150^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000151
152This example uses the "accumulate" function of the standard c++ library. This
153loop uses C++ iterators, which are pointers, and not integer indices.
154The Loop Vectorizer detects pointer induction variables and can vectorize
155this loop. This feature is important because many C++ programs use iterators.
156
157.. code-block:: c++
158
159 int baz(int *A, int n) {
160 return std::accumulate(A, A + n, 0);
161 }
162
163Reverse Iterators
Sean Silva08fd0882012-12-20 02:40:45 +0000164^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000165
166The Loop Vectorizer can vectorize loops that count backwards.
167
168.. code-block:: c++
169
170 int foo(int *A, int *B, int n) {
171 for (int i = n; i > 0; --i)
172 A[i] +=1;
173 }
174
175Scatter / Gather
Sean Silva08fd0882012-12-20 02:40:45 +0000176^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000177
Nadav Rotema616d682013-01-03 01:47:02 +0000178The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions
179that scatter/gathers memory.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000180
181.. code-block:: c++
182
183 int foo(int *A, int *B, int n, int k) {
Sean Silva8c44a472012-12-20 22:47:41 +0000184 for (int i = 0; i < n; ++i)
Sean Silvae140b2e2012-12-20 22:49:13 +0000185 A[i*7] += B[i*k];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000186 }
187
Nadav Rotemaf14a3f2012-12-19 07:36:35 +0000188Vectorization of Mixed Types
Sean Silva08fd0882012-12-20 02:40:45 +0000189^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000190
191The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
192cost model can estimate the cost of the type conversion and decide if
193vectorization is profitable.
194
195.. code-block:: c++
196
197 int foo(int *A, char *B, int n, int k) {
Sean Silva8c44a472012-12-20 22:47:41 +0000198 for (int i = 0; i < n; ++i)
Sean Silvae140b2e2012-12-20 22:49:13 +0000199 A[i] += 4 * B[i];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000200 }
201
Renato Golinf2ea19e2013-02-23 13:25:41 +0000202Global Structures Alias Analysis
203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
204
205Access to global structures can also be vectorized, with alias analysis being
206used to make sure accesses don't alias. Run-time checks can also be added on
207pointer access to structure members.
208
209Many variations are supported, but some that rely on undefined behaviour being
210ignored (as other compilers do) are still being left un-vectorized.
211
212.. code-block:: c++
213
214 struct { int A[100], K, B[100]; } Foo;
215
216 int foo() {
217 for (int i = 0; i < 100; ++i)
218 Foo.A[i] = Foo.B[i] + 100;
219 }
220
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000221Vectorization of function calls
Sean Silva08fd0882012-12-20 02:40:45 +0000222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000223
224The Loop Vectorize can vectorize intrinsic math functions.
225See the table below for a list of these functions.
226
227+-----+-----+---------+
228| pow | exp | exp2 |
229+-----+-----+---------+
230| sin | cos | sqrt |
231+-----+-----+---------+
232| log |log2 | log10 |
233+-----+-----+---------+
234|fabs |floor| ceil |
235+-----+-----+---------+
236|fma |trunc|nearbyint|
237+-----+-----+---------+
Nadav Rotem7375d352012-12-26 06:03:35 +0000238| | | fmuladd |
239+-----+-----+---------+
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000240
Benjamin Kramera87d5122013-02-28 19:33:46 +0000241The loop vectorizer knows about special instructions on the target and will
242vectorize a loop containing a function call that maps to the instructions. For
243example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
244instruction is available.
245
246.. code-block:: c++
247
248 void foo(float *f) {
249 for (int i = 0; i != 1024; ++i)
250 f[i] = floorf(f[i]);
251 }
Nadav Rotema616d682013-01-03 01:47:02 +0000252
253Partial unrolling during vectorization
254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
255
256Modern processors feature multiple execution units, and only programs that contain a
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000257high degree of parallelism can fully utilize the entire width of the machine.
Nadav Rotema616d682013-01-03 01:47:02 +0000258The Loop Vectorizer increases the instruction level parallelism (ILP) by
259performing partial-unrolling of loops.
260
261In the example below the entire array is accumulated into the variable 'sum'.
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000262This is inefficient because only a single execution port can be used by the processor.
Nadav Rotema616d682013-01-03 01:47:02 +0000263By unrolling the code the Loop Vectorizer allows two or more execution ports
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000264to be used simultaneously.
Nadav Rotema616d682013-01-03 01:47:02 +0000265
266.. code-block:: c++
267
268 int foo(int *A, int *B, int n) {
269 unsigned sum = 0;
270 for (int i = 0; i < n; ++i)
271 sum += A[i];
272 return sum;
273 }
274
Nadav Rotem7daadf22013-01-04 17:49:45 +0000275The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
276The decision to unroll the loop depends on the register pressure and the generated code size.
Nadav Rotema616d682013-01-03 01:47:02 +0000277
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000278Performance
Sean Silva08fd0882012-12-20 02:40:45 +0000279-----------
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000280
Sean Silva287e7d22012-12-20 22:59:36 +0000281This section shows the the execution time of Clang on a simple benchmark:
Nadav Rotem90c8b4b2012-12-19 08:43:05 +0000282`gcc-loops <http://llvm.org/viewvc/llvm-project/test-suite/trunk/SingleSource/UnitTests/Vectorizer/>`_.
Sean Silva287e7d22012-12-20 22:59:36 +0000283This benchmarks is a collection of loops from the GCC autovectorization
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +0000284`page <http://gcc.gnu.org/projects/tree-ssa/vectorization.html>`_ by Dorit Nuzman.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000285
Nadav Rotem12da3962012-12-20 00:03:36 +0000286The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for "corei7-avx", running on a Sandybridge iMac.
Sean Silva287e7d22012-12-20 22:59:36 +0000287The Y-axis shows the time in msec. Lower is better. The last column shows the geomean of all the kernels.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000288
289.. image:: gcc-loops.png
290
Nadav Rotem014e19c2013-01-04 19:00:42 +0000291And Linpack-pc with the same configuration. Result is Mflops, higher is better.
292
293.. image:: linpack-pc.png
294
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000295.. _slp-vectorizer:
Sean Silva99e12f92012-12-20 22:42:20 +0000296
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000297The SLP Vectorizer
298==================
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000299
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000300Details
Sean Silva08fd0882012-12-20 02:40:45 +0000301-------
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000302
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000303The goal of SLP vectorization (a.k.a. superword-level parallelism) is
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000304to combine similar independent instructions within simple control-flow regions
305into vector instructions. Memory accesses, arithemetic operations, comparison
306operations and some math functions can all be vectorized using this technique
Sean Silva287e7d22012-12-20 22:59:36 +0000307(subject to the capabilities of the target architecture).
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000308
309For example, the following function performs very similar operations on its
310inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
311into vector operations.
312
313.. code-block:: c++
314
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000315 void foo(int a1, int a2, int b1, int b2, int *A) {
316 A[0] = a1*(a1 + b1)/b1 + 50*b1/a1;
317 A[1] = a2*(a2 + b2)/b2 + 50*b2/a2;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000318 }
319
320
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000321Usage
322------
Nadav Rotemefa56e12013-04-14 07:42:25 +0000323
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000324The SLP Vectorizer is not enabled by default, but it can be enabled
325through clang using the command line flag:
Nadav Rotemefa56e12013-04-14 07:42:25 +0000326
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000327.. code-block:: console
328
329 $ clang -fslp-vectorize file.c
330
331LLVM has a second phase basic block vectorization phase
332which is more compile-time intensive (The BB vectorizer). This optimization
333can be enabled through clang using the command line flag:
334
335.. code-block:: console
336
337 $ clang -fslp-vectorize-aggressive file.c
338
Nadav Rotemefa56e12013-04-14 07:42:25 +0000339
340The SLP vectorizer is in early development stages but can already vectorize
341and accelerate many programs in the LLVM test suite.
342
343======================= ============
344Benchmark Name Gain
345======================= ============
346Misc/flops-7 -32.70%
347Misc/matmul_f64_4x4 -23.23%
348Olden/power -21.45%
349Misc/flops-4 -14.90%
350ASC_Sequoia/AMGmk -13.85%
351TSVC/LoopRerolling-flt -11.76%
352Misc/flops-6 -9.70%
353Misc/flops-5 -8.54%
354Misc/flops -8.12%
355TSVC/NodeSplitting-dbl -6.96%
356Misc-C++/sphereflake -6.74%
357Ptrdist/yacr2 -6.31%
358======================= ============
359