blob: 000bad19427b3b6e51111be91549c8e7153ed7e7 [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohmand78c4002008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner07418422007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattner07418422007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencer266e42b2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chandler Carruth83ba2692015-01-24 04:19:17 +000036#include "llvm/Transforms/InstCombine/InstCombine.h"
Chandler Carrutha9174582015-01-22 05:25:13 +000037#include "InstCombineInternal.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000038#include "llvm-c/Initialization.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/StringSwitch.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000042#include "llvm/Analysis/AssumptionCache.h"
David Majnemer7e2b9882014-11-03 21:55:12 +000043#include "llvm/Analysis/CFG.h"
Chris Lattner024f4ab2007-01-30 23:46:24 +000044#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerc1f19072009-11-09 23:28:39 +000045#include "llvm/Analysis/InstructionSimplify.h"
Reid Kleckner4af64152015-01-28 01:17:38 +000046#include "llvm/Analysis/LibCallSemantics.h"
David Majnemer7e2b9882014-11-03 21:55:12 +000047#include "llvm/Analysis/LoopInfo.h"
Victor Hernandezf390e042009-10-27 20:05:49 +000048#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth83ba2692015-01-24 04:19:17 +000049#include "llvm/Analysis/TargetLibraryInfo.h"
Sanjay Patel58814442014-07-09 16:34:54 +000050#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000051#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000053#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000054#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000056#include "llvm/IR/PatternMatch.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000057#include "llvm/IR/ValueHandle.h"
Meador Inge193e0352012-11-13 04:16:17 +000058#include "llvm/Support/CommandLine.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000059#include "llvm/Support/Debug.h"
Chandler Carruth83ba2692015-01-24 04:19:17 +000060#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Transforms/Utils/Local.h"
Chris Lattner053c0932002-05-14 15:24:07 +000062#include <algorithm>
Torok Edwinab207842008-04-20 08:33:11 +000063#include <climits>
Chris Lattner8427bff2003-12-07 01:24:23 +000064using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000065using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000066
Chandler Carruth964daaa2014-04-22 02:55:47 +000067#define DEBUG_TYPE "instcombine"
68
Chris Lattner79a42ac2006-12-19 21:40:18 +000069STATISTIC(NumCombined , "Number of insts combined");
70STATISTIC(NumConstProp, "Number of constant folds");
71STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner79a42ac2006-12-19 21:40:18 +000072STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sandsfbb9ac32010-12-22 13:36:08 +000073STATISTIC(NumExpand, "Number of expansions");
Duncan Sands3547d2e2010-12-22 09:40:51 +000074STATISTIC(NumFactor , "Number of factorizations");
75STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000076
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000077Value *InstCombiner::EmitGEPOffset(User *GEP) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +000078 return llvm::EmitGEPOffset(Builder, DL, GEP);
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000079}
80
Chris Lattner1559bed2009-11-10 07:23:37 +000081/// ShouldChangeType - Return true if it is desirable to convert a computation
82/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
83/// type for example, or from a smaller to a larger illegal type.
Chris Lattner229907c2011-07-18 04:54:35 +000084bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands19d0b472010-02-16 11:11:14 +000085 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszakcfc46f82012-05-06 13:52:31 +000086
Chris Lattner1559bed2009-11-10 07:23:37 +000087 unsigned FromWidth = From->getPrimitiveSizeInBits();
88 unsigned ToWidth = To->getPrimitiveSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +000089 bool FromLegal = DL.isLegalInteger(FromWidth);
90 bool ToLegal = DL.isLegalInteger(ToWidth);
Jakub Staszakcfc46f82012-05-06 13:52:31 +000091
Chris Lattner1559bed2009-11-10 07:23:37 +000092 // If this is a legal integer from type, and the result would be an illegal
93 // type, don't do the transformation.
94 if (FromLegal && !ToLegal)
95 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +000096
Chris Lattner1559bed2009-11-10 07:23:37 +000097 // Otherwise, if both are illegal, do not increase the size of the result. We
98 // do allow things like i160 -> i64, but not i64 -> i160.
99 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
100 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000101
Chris Lattner1559bed2009-11-10 07:23:37 +0000102 return true;
103}
104
Nick Lewyckyde492782011-08-14 01:45:19 +0000105// Return true, if No Signed Wrap should be maintained for I.
106// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
107// where both B and C should be ConstantInts, results in a constant that does
108// not overflow. This function only handles the Add and Sub opcodes. For
109// all other opcodes, the function conservatively returns false.
110static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
111 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
112 if (!OBO || !OBO->hasNoSignedWrap()) {
113 return false;
114 }
115
116 // We reason about Add and Sub Only.
117 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000118 if (Opcode != Instruction::Add &&
Nick Lewyckyde492782011-08-14 01:45:19 +0000119 Opcode != Instruction::Sub) {
120 return false;
121 }
122
123 ConstantInt *CB = dyn_cast<ConstantInt>(B);
124 ConstantInt *CC = dyn_cast<ConstantInt>(C);
125
126 if (!CB || !CC) {
127 return false;
128 }
129
130 const APInt &BVal = CB->getValue();
131 const APInt &CVal = CC->getValue();
132 bool Overflow = false;
133
134 if (Opcode == Instruction::Add) {
135 BVal.sadd_ov(CVal, Overflow);
136 } else {
137 BVal.ssub_ov(CVal, Overflow);
138 }
139
140 return !Overflow;
141}
142
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000143/// Conservatively clears subclassOptionalData after a reassociation or
144/// commutation. We preserve fast-math flags when applicable as they can be
145/// preserved.
146static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
147 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
148 if (!FPMO) {
149 I.clearSubclassOptionalData();
150 return;
151 }
152
153 FastMathFlags FMF = I.getFastMathFlags();
154 I.clearSubclassOptionalData();
155 I.setFastMathFlags(FMF);
156}
157
Duncan Sands641baf12010-11-13 15:10:37 +0000158/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
159/// operators which are associative or commutative:
160//
161// Commutative operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000162//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000163// 1. Order operands such that they are listed from right (least complex) to
164// left (most complex). This puts constants before unary operators before
165// binary operators.
166//
Duncan Sands641baf12010-11-13 15:10:37 +0000167// Associative operators:
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000168//
Duncan Sands641baf12010-11-13 15:10:37 +0000169// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
170// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
171//
172// Associative and commutative operators:
173//
174// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
175// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
176// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
177// if C1 and C2 are constants.
178//
179bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000180 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands641baf12010-11-13 15:10:37 +0000181 bool Changed = false;
Chris Lattner7fb29e12003-03-11 00:12:48 +0000182
Duncan Sands641baf12010-11-13 15:10:37 +0000183 do {
184 // Order operands such that they are listed from right (least complex) to
185 // left (most complex). This puts constants before unary operators before
186 // binary operators.
187 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
188 getComplexity(I.getOperand(1)))
189 Changed = !I.swapOperands();
190
191 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
192 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
193
194 if (I.isAssociative()) {
195 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
196 if (Op0 && Op0->getOpcode() == Opcode) {
197 Value *A = Op0->getOperand(0);
198 Value *B = Op0->getOperand(1);
199 Value *C = I.getOperand(1);
200
201 // Does "B op C" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000202 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000203 // It simplifies to V. Form "A op V".
204 I.setOperand(0, A);
205 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000206 // Conservatively clear the optional flags, since they may not be
207 // preserved by the reassociation.
Nick Lewyckyae13df62011-08-14 03:41:33 +0000208 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendlingea6397f2012-07-19 00:11:40 +0000209 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewyckyae13df62011-08-14 03:41:33 +0000210 // Note: this is only valid because SimplifyBinOp doesn't look at
211 // the operands to Op0.
Nick Lewyckyde492782011-08-14 01:45:19 +0000212 I.clearSubclassOptionalData();
213 I.setHasNoSignedWrap(true);
214 } else {
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000215 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000216 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000217
Duncan Sands641baf12010-11-13 15:10:37 +0000218 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000219 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000220 continue;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000221 }
Duncan Sands641baf12010-11-13 15:10:37 +0000222 }
223
224 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
225 if (Op1 && Op1->getOpcode() == Opcode) {
226 Value *A = I.getOperand(0);
227 Value *B = Op1->getOperand(0);
228 Value *C = Op1->getOperand(1);
229
230 // Does "A op B" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000231 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000232 // It simplifies to V. Form "V op C".
233 I.setOperand(0, V);
234 I.setOperand(1, C);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000235 // Conservatively clear the optional flags, since they may not be
236 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000237 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000238 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000239 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000240 continue;
241 }
242 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000243 }
Duncan Sands641baf12010-11-13 15:10:37 +0000244
245 if (I.isAssociative() && I.isCommutative()) {
246 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
247 if (Op0 && Op0->getOpcode() == Opcode) {
248 Value *A = Op0->getOperand(0);
249 Value *B = Op0->getOperand(1);
250 Value *C = I.getOperand(1);
251
252 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000253 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000254 // It simplifies to V. Form "V op B".
255 I.setOperand(0, V);
256 I.setOperand(1, B);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000257 // Conservatively clear the optional flags, since they may not be
258 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000259 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000260 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000261 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000262 continue;
263 }
264 }
265
266 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
267 if (Op1 && Op1->getOpcode() == Opcode) {
268 Value *A = I.getOperand(0);
269 Value *B = Op1->getOperand(0);
270 Value *C = Op1->getOperand(1);
271
272 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000273 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000274 // It simplifies to V. Form "B op V".
275 I.setOperand(0, B);
276 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000277 // Conservatively clear the optional flags, since they may not be
278 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000279 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000280 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000281 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000282 continue;
283 }
284 }
285
286 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
287 // if C1 and C2 are constants.
288 if (Op0 && Op1 &&
289 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
290 isa<Constant>(Op0->getOperand(1)) &&
291 isa<Constant>(Op1->getOperand(1)) &&
292 Op0->hasOneUse() && Op1->hasOneUse()) {
293 Value *A = Op0->getOperand(0);
294 Constant *C1 = cast<Constant>(Op0->getOperand(1));
295 Value *B = Op1->getOperand(0);
296 Constant *C2 = cast<Constant>(Op1->getOperand(1));
297
298 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckyde492782011-08-14 01:45:19 +0000299 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Owen Anderson1664dc82014-01-20 07:44:53 +0000300 if (isa<FPMathOperator>(New)) {
301 FastMathFlags Flags = I.getFastMathFlags();
302 Flags &= Op0->getFastMathFlags();
303 Flags &= Op1->getFastMathFlags();
304 New->setFastMathFlags(Flags);
305 }
Eli Friedman35211c62011-05-27 00:19:40 +0000306 InsertNewInstWith(New, I);
Eli Friedman41e509a2011-05-18 23:58:37 +0000307 New->takeName(Op1);
Duncan Sands641baf12010-11-13 15:10:37 +0000308 I.setOperand(0, New);
309 I.setOperand(1, Folded);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000310 // Conservatively clear the optional flags, since they may not be
311 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000312 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000313
Duncan Sands641baf12010-11-13 15:10:37 +0000314 Changed = true;
315 continue;
316 }
317 }
318
319 // No further simplifications.
320 return Changed;
321 } while (1);
Chris Lattner260ab202002-04-18 17:39:14 +0000322}
Chris Lattnerca081252001-12-14 16:52:21 +0000323
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000324/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sands22df7412010-11-23 15:25:34 +0000325/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000326static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
327 Instruction::BinaryOps ROp) {
328 switch (LOp) {
329 default:
330 return false;
331
332 case Instruction::And:
333 // And distributes over Or and Xor.
334 switch (ROp) {
335 default:
336 return false;
337 case Instruction::Or:
338 case Instruction::Xor:
339 return true;
340 }
341
342 case Instruction::Mul:
343 // Multiplication distributes over addition and subtraction.
344 switch (ROp) {
345 default:
346 return false;
347 case Instruction::Add:
348 case Instruction::Sub:
349 return true;
350 }
351
352 case Instruction::Or:
353 // Or distributes over And.
354 switch (ROp) {
355 default:
356 return false;
357 case Instruction::And:
358 return true;
359 }
360 }
361}
362
363/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
364/// "(X ROp Z) LOp (Y ROp Z)".
365static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
366 Instruction::BinaryOps ROp) {
367 if (Instruction::isCommutative(ROp))
368 return LeftDistributesOverRight(ROp, LOp);
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000369
370 switch (LOp) {
371 default:
372 return false;
373 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
374 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
375 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
376 case Instruction::And:
377 case Instruction::Or:
378 case Instruction::Xor:
379 switch (ROp) {
380 default:
381 return false;
382 case Instruction::Shl:
383 case Instruction::LShr:
384 case Instruction::AShr:
385 return true;
386 }
387 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000388 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
389 // but this requires knowing that the addition does not overflow and other
390 // such subtleties.
391 return false;
392}
393
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000394/// This function returns identity value for given opcode, which can be used to
395/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
396static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
397 if (isa<Constant>(V))
398 return nullptr;
399
400 if (OpCode == Instruction::Mul)
401 return ConstantInt::get(V->getType(), 1);
402
403 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
404
405 return nullptr;
406}
407
408/// This function factors binary ops which can be combined using distributive
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000409/// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
410/// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
411/// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
412/// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
413/// RHS to 4.
Benjamin Kramer6cbe6702014-07-07 14:47:51 +0000414static Instruction::BinaryOps
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000415getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
416 BinaryOperator *Op, Value *&LHS, Value *&RHS) {
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000417 if (!Op)
418 return Instruction::BinaryOpsEnd;
419
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000420 LHS = Op->getOperand(0);
421 RHS = Op->getOperand(1);
422
423 switch (TopLevelOpcode) {
424 default:
425 return Op->getOpcode();
426
427 case Instruction::Add:
428 case Instruction::Sub:
429 if (Op->getOpcode() == Instruction::Shl) {
430 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
431 // The multiplier is really 1 << CST.
432 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
433 return Instruction::Mul;
434 }
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000435 }
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000436 return Op->getOpcode();
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000437 }
438
439 // TODO: We can add other conversions e.g. shr => div etc.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000440}
441
442/// This tries to simplify binary operations by factorizing out common terms
443/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
444static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000445 const DataLayout &DL, BinaryOperator &I,
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000446 Instruction::BinaryOps InnerOpcode, Value *A,
447 Value *B, Value *C, Value *D) {
448
449 // If any of A, B, C, D are null, we can not factor I, return early.
450 // Checking A and C should be enough.
451 if (!A || !C || !B || !D)
452 return nullptr;
453
454 Value *SimplifiedInst = nullptr;
455 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
456 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
457
458 // Does "X op' Y" always equal "Y op' X"?
459 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
460
461 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
462 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
463 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
464 // commutative case, "(A op' B) op (C op' A)"?
465 if (A == C || (InnerCommutative && A == D)) {
466 if (A != C)
467 std::swap(C, D);
468 // Consider forming "A op' (B op D)".
469 // If "B op D" simplifies then it can be formed with no cost.
470 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
471 // If "B op D" doesn't simplify then only go on if both of the existing
472 // operations "A op' B" and "C op' D" will be zapped as no longer used.
473 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
474 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
475 if (V) {
476 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
477 }
478 }
479
480 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
481 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
482 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
483 // commutative case, "(A op' B) op (B op' D)"?
484 if (B == D || (InnerCommutative && B == C)) {
485 if (B != D)
486 std::swap(C, D);
487 // Consider forming "(A op C) op' B".
488 // If "A op C" simplifies then it can be formed with no cost.
489 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
490
491 // If "A op C" doesn't simplify then only go on if both of the existing
492 // operations "A op' B" and "C op' D" will be zapped as no longer used.
493 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
494 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
495 if (V) {
496 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
497 }
498 }
499
500 if (SimplifiedInst) {
501 ++NumFactor;
502 SimplifiedInst->takeName(&I);
503
504 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
505 // TODO: Check for NUW.
506 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
507 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
508 bool HasNSW = false;
509 if (isa<OverflowingBinaryOperator>(&I))
510 HasNSW = I.hasNoSignedWrap();
511
512 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
513 if (isa<OverflowingBinaryOperator>(Op0))
514 HasNSW &= Op0->hasNoSignedWrap();
515
516 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
517 if (isa<OverflowingBinaryOperator>(Op1))
518 HasNSW &= Op1->hasNoSignedWrap();
519 BO->setHasNoSignedWrap(HasNSW);
520 }
521 }
522 }
523 return SimplifiedInst;
524}
525
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000526/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
527/// which some other binary operation distributes over either by factorizing
528/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
529/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
530/// a win). Returns the simplified value, or null if it didn't simplify.
531Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
532 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
533 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
534 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000535
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000536 // Factorization.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000537 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000538 auto TopLevelOpcode = I.getOpcode();
539 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
540 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000541
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000542 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
543 // a common term.
544 if (LHSOpcode == RHSOpcode) {
545 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
546 return V;
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000547 }
548
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000549 // The instruction has the form "(A op' B) op (C)". Try to factorize common
550 // term.
551 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
552 getIdentityValue(LHSOpcode, RHS)))
553 return V;
554
555 // The instruction has the form "(B) op (C op' D)". Try to factorize common
556 // term.
557 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
558 getIdentityValue(RHSOpcode, LHS), C, D))
559 return V;
560
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000561 // Expansion.
562 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
563 // The instruction has the form "(A op' B) op C". See if expanding it out
564 // to "(A op C) op' (B op C)" results in simplifications.
565 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
566 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
567
568 // Do "A op C" and "B op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000569 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
570 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000571 // They do! Return "L op' R".
572 ++NumExpand;
573 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
574 if ((L == A && R == B) ||
575 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
576 return Op0;
577 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000578 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000579 return V;
580 // Otherwise, create a new instruction.
581 C = Builder->CreateBinOp(InnerOpcode, L, R);
582 C->takeName(&I);
583 return C;
584 }
585 }
586
587 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
588 // The instruction has the form "A op (B op' C)". See if expanding it out
589 // to "(A op B) op' (A op C)" results in simplifications.
590 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
591 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
592
593 // Do "A op B" and "A op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000594 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
595 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000596 // They do! Return "L op' R".
597 ++NumExpand;
598 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
599 if ((L == B && R == C) ||
600 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
601 return Op1;
602 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000603 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000604 return V;
605 // Otherwise, create a new instruction.
606 A = Builder->CreateBinOp(InnerOpcode, L, R);
607 A->takeName(&I);
608 return A;
609 }
610 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000611
Craig Topperf40110f2014-04-25 05:29:35 +0000612 return nullptr;
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000613}
614
Chris Lattnerbb74e222003-03-10 23:06:50 +0000615// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
616// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000617//
Chris Lattner2188e402010-01-04 07:37:31 +0000618Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonbb2501b2009-07-13 22:18:28 +0000619 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000620 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000621
Chris Lattner9ad0d552004-12-14 20:08:06 +0000622 // Constants can be considered to be negated values if they can be folded.
623 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000624 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000625
Chris Lattner8213c8a2012-02-06 21:56:39 +0000626 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
627 if (C->getType()->getElementType()->isIntegerTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000628 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000629
Craig Topperf40110f2014-04-25 05:29:35 +0000630 return nullptr;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000631}
632
Dan Gohmana5b96452009-06-04 22:49:04 +0000633// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
634// instruction if the LHS is a constant negative zero (which is the 'negate'
635// form).
636//
Shuxin Yangf0537ab2013-01-09 00:13:41 +0000637Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
638 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmana5b96452009-06-04 22:49:04 +0000639 return BinaryOperator::getFNegArgument(V);
640
641 // Constants can be considered to be negated values if they can be folded.
642 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000643 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000644
Chris Lattner8213c8a2012-02-06 21:56:39 +0000645 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
646 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000647 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000648
Craig Topperf40110f2014-04-25 05:29:35 +0000649 return nullptr;
Dan Gohmana5b96452009-06-04 22:49:04 +0000650}
651
Chris Lattner86102b82005-01-01 16:22:27 +0000652static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +0000653 InstCombiner *IC) {
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000654 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattnerc8565392009-08-30 20:01:10 +0000655 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000656 }
Chris Lattner86102b82005-01-01 16:22:27 +0000657
Chris Lattner183b3362004-04-09 19:05:30 +0000658 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +0000659 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
660 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +0000661
Chris Lattner183b3362004-04-09 19:05:30 +0000662 if (Constant *SOC = dyn_cast<Constant>(SO)) {
663 if (ConstIsRHS)
Owen Anderson487375e2009-07-29 18:55:55 +0000664 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
665 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +0000666 }
667
668 Value *Op0 = SO, *Op1 = ConstOperand;
669 if (!ConstIsRHS)
670 std::swap(Op0, Op1);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000671
Owen Anderson1664dc82014-01-20 07:44:53 +0000672 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
673 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
Chris Lattner022a5822009-08-30 07:44:24 +0000674 SO->getName()+".op");
Owen Anderson1664dc82014-01-20 07:44:53 +0000675 Instruction *FPInst = dyn_cast<Instruction>(RI);
676 if (FPInst && isa<FPMathOperator>(FPInst))
677 FPInst->copyFastMathFlags(BO);
678 return RI;
679 }
Chris Lattner022a5822009-08-30 07:44:24 +0000680 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
681 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
682 SO->getName()+".cmp");
683 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
684 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
685 SO->getName()+".cmp");
686 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner86102b82005-01-01 16:22:27 +0000687}
688
689// FoldOpIntoSelect - Given an instruction with a select as one operand and a
690// constant as the other operand, try to fold the binary operator into the
691// select arguments. This also works for Cast instructions, which obviously do
692// not have a second operand.
Chris Lattner2b295a02010-01-04 07:53:58 +0000693Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner86102b82005-01-01 16:22:27 +0000694 // Don't modify shared select instructions
Craig Topperf40110f2014-04-25 05:29:35 +0000695 if (!SI->hasOneUse()) return nullptr;
Chris Lattner86102b82005-01-01 16:22:27 +0000696 Value *TV = SI->getOperand(1);
697 Value *FV = SI->getOperand(2);
698
699 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +0000700 // Bool selects with constant operands can be folded to logical ops.
Craig Topperf40110f2014-04-25 05:29:35 +0000701 if (SI->getType()->isIntegerTy(1)) return nullptr;
Chris Lattner374e6592005-04-21 05:43:13 +0000702
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000703 // If it's a bitcast involving vectors, make sure it has the same number of
704 // elements on both sides.
705 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000706 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
707 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000708
709 // Verify that either both or neither are vectors.
Craig Topperf40110f2014-04-25 05:29:35 +0000710 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000711 // If vectors, verify that they have the same number of elements.
712 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
Craig Topperf40110f2014-04-25 05:29:35 +0000713 return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000714 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000715
Chris Lattner2b295a02010-01-04 07:53:58 +0000716 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
717 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner86102b82005-01-01 16:22:27 +0000718
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000719 return SelectInst::Create(SI->getCondition(),
720 SelectTrueVal, SelectFalseVal);
Chris Lattner86102b82005-01-01 16:22:27 +0000721 }
Craig Topperf40110f2014-04-25 05:29:35 +0000722 return nullptr;
Chris Lattner183b3362004-04-09 19:05:30 +0000723}
724
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000725
Chris Lattnerfacb8672009-09-27 19:57:57 +0000726/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
727/// has a PHI node as operand #0, see if we can fold the instruction into the
728/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattnerb391e872009-09-27 20:46:36 +0000729///
Chris Lattnerea7131a2011-01-16 05:14:26 +0000730Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000731 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +0000732 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner25ce2802011-01-16 04:37:29 +0000733 if (NumPHIValues == 0)
Craig Topperf40110f2014-04-25 05:29:35 +0000734 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000735
Chris Lattnerf4ca47b2011-01-21 05:08:26 +0000736 // We normally only transform phis with a single use. However, if a PHI has
737 // multiple uses and they are all the same operation, we can fold *all* of the
738 // uses into the PHI.
Chris Lattnerd55581d2011-01-16 05:28:59 +0000739 if (!PN->hasOneUse()) {
740 // Walk the use list for the instruction, comparing them to I.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000741 for (User *U : PN->users()) {
742 Instruction *UI = cast<Instruction>(U);
743 if (UI != &I && !I.isIdenticalTo(UI))
Craig Topperf40110f2014-04-25 05:29:35 +0000744 return nullptr;
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000745 }
Chris Lattnerd55581d2011-01-16 05:28:59 +0000746 // Otherwise, we can replace *all* users with the new PHI we form.
747 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000748
Chris Lattnerfacb8672009-09-27 19:57:57 +0000749 // Check to see if all of the operands of the PHI are simple constants
750 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerae289632009-09-27 20:18:49 +0000751 // remember the BB it is in. If there is more than one or if *it* is a PHI,
752 // bail out. We don't do arbitrary constant expressions here because moving
753 // their computation can be expensive without a cost model.
Craig Topperf40110f2014-04-25 05:29:35 +0000754 BasicBlock *NonConstBB = nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000755 for (unsigned i = 0; i != NumPHIValues; ++i) {
756 Value *InVal = PN->getIncomingValue(i);
757 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
758 continue;
759
Craig Topperf40110f2014-04-25 05:29:35 +0000760 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
761 if (NonConstBB) return nullptr; // More than one non-const value.
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000762
Chris Lattner25ce2802011-01-16 04:37:29 +0000763 NonConstBB = PN->getIncomingBlock(i);
Chris Lattnerff2e7372011-01-16 05:08:00 +0000764
765 // If the InVal is an invoke at the end of the pred block, then we can't
766 // insert a computation after it without breaking the edge.
767 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
768 if (II->getParent() == NonConstBB)
Craig Topperf40110f2014-04-25 05:29:35 +0000769 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000770
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000771 // If the incoming non-constant value is in I's block, we will remove one
772 // instruction, but insert another equivalent one, leading to infinite
773 // instcombine.
Chandler Carruth5175b9a2015-01-20 08:35:24 +0000774 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
Craig Topperf40110f2014-04-25 05:29:35 +0000775 return nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000776 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000777
Chris Lattner04689872006-09-09 22:02:56 +0000778 // If there is exactly one non-constant value, we can insert a copy of the
779 // operation in that block. However, if this is a critical edge, we would be
David Majnemer7e2b9882014-11-03 21:55:12 +0000780 // inserting the computation on some other paths (e.g. inside a loop). Only
Chris Lattner04689872006-09-09 22:02:56 +0000781 // do this if the pred block is unconditionally branching into the phi block.
Craig Topperf40110f2014-04-25 05:29:35 +0000782 if (NonConstBB != nullptr) {
Chris Lattner04689872006-09-09 22:02:56 +0000783 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
Craig Topperf40110f2014-04-25 05:29:35 +0000784 if (!BI || !BI->isUnconditional()) return nullptr;
Chris Lattner04689872006-09-09 22:02:56 +0000785 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000786
787 // Okay, we can do the transformation: create the new PHI node.
Eli Friedman41e509a2011-05-18 23:58:37 +0000788 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner966526c2009-10-21 23:41:58 +0000789 InsertNewInstBefore(NewPN, *PN);
790 NewPN->takeName(PN);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000791
Chris Lattnerff2e7372011-01-16 05:08:00 +0000792 // If we are going to have to insert a new computation, do so right before the
793 // predecessors terminator.
794 if (NonConstBB)
795 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000796
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000797 // Next, add all of the operands to the PHI.
Chris Lattnerfacb8672009-09-27 19:57:57 +0000798 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
799 // We only currently try to fold the condition of a select when it is a phi,
800 // not the true/false values.
Chris Lattnerae289632009-09-27 20:18:49 +0000801 Value *TrueV = SI->getTrueValue();
802 Value *FalseV = SI->getFalseValue();
Chris Lattner0261b5d2009-09-28 06:49:44 +0000803 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattnerfacb8672009-09-27 19:57:57 +0000804 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerae289632009-09-27 20:18:49 +0000805 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner0261b5d2009-09-28 06:49:44 +0000806 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
807 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Craig Topperf40110f2014-04-25 05:29:35 +0000808 Value *InV = nullptr;
Duncan P. N. Exon Smithce5f93e2013-12-06 21:48:36 +0000809 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
810 // even if currently isNullValue gives false.
811 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
812 if (InC && !isa<ConstantExpr>(InC))
Chris Lattnerae289632009-09-27 20:18:49 +0000813 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000814 else
815 InV = Builder->CreateSelect(PN->getIncomingValue(i),
816 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerae289632009-09-27 20:18:49 +0000817 NewPN->addIncoming(InV, ThisBB);
Chris Lattnerfacb8672009-09-27 19:57:57 +0000818 }
Chris Lattnerff2e7372011-01-16 05:08:00 +0000819 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
820 Constant *C = cast<Constant>(I.getOperand(1));
821 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000822 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000823 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
824 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
825 else if (isa<ICmpInst>(CI))
826 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
827 C, "phitmp");
828 else
829 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
830 C, "phitmp");
831 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
832 }
Chris Lattnerfacb8672009-09-27 19:57:57 +0000833 } else if (I.getNumOperands() == 2) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000834 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +0000835 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000836 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000837 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
838 InV = ConstantExpr::get(I.getOpcode(), InC, C);
839 else
840 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
841 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000842 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000843 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000844 } else {
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000845 CastInst *CI = cast<CastInst>(&I);
Chris Lattner229907c2011-07-18 04:54:35 +0000846 Type *RetTy = CI->getType();
Chris Lattner7515cab2004-11-14 19:13:23 +0000847 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +0000848 Value *InV;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000849 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Anderson487375e2009-07-29 18:55:55 +0000850 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000851 else
Chris Lattnerff2e7372011-01-16 05:08:00 +0000852 InV = Builder->CreateCast(CI->getOpcode(),
853 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000854 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000855 }
856 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000857
Chandler Carruthcdf47882014-03-09 03:16:01 +0000858 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
Chris Lattnerd55581d2011-01-16 05:28:59 +0000859 Instruction *User = cast<Instruction>(*UI++);
860 if (User == &I) continue;
861 ReplaceInstUsesWith(*User, NewPN);
862 EraseInstFromFunction(*User);
863 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000864 return ReplaceInstUsesWith(I, NewPN);
865}
866
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000867/// FindElementAtOffset - Given a pointer type and a constant offset, determine
868/// whether or not there is a sequence of GEP indices into the pointed type that
869/// will land us at the specified offset. If so, fill them into NewIndices and
870/// return the resultant element type, otherwise return null.
871Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000872 SmallVectorImpl<Value *> &NewIndices) {
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000873 assert(PtrTy->isPtrOrPtrVectorTy());
874
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000875 Type *Ty = PtrTy->getPointerElementType();
876 if (!Ty->isSized())
Craig Topperf40110f2014-04-25 05:29:35 +0000877 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000878
Chris Lattnerfef138b2009-01-09 05:44:56 +0000879 // Start with the index over the outer type. Note that the type size
880 // might be zero (even if the offset isn't zero) if the indexed type
881 // is something like [0 x {int, int}]
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000882 Type *IntPtrTy = DL.getIntPtrType(PtrTy);
Chris Lattnerfef138b2009-01-09 05:44:56 +0000883 int64_t FirstIdx = 0;
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000884 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +0000885 FirstIdx = Offset/TySize;
Chris Lattnerbd3c7c82009-01-11 20:41:36 +0000886 Offset -= FirstIdx*TySize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000887
Benjamin Kramere4c46fe2013-01-23 17:52:29 +0000888 // Handle hosts where % returns negative instead of values [0..TySize).
889 if (Offset < 0) {
890 --FirstIdx;
891 Offset += TySize;
892 assert(Offset >= 0);
893 }
Chris Lattnerfef138b2009-01-09 05:44:56 +0000894 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
895 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000896
Owen Andersonedb4a702009-07-24 23:12:02 +0000897 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000898
Chris Lattnerfef138b2009-01-09 05:44:56 +0000899 // Index into the types. If we fail, set OrigBase to null.
900 while (Offset) {
Chris Lattner171d2d42009-01-11 20:15:20 +0000901 // Indexing into tail padding between struct/array elements.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000902 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
Craig Topperf40110f2014-04-25 05:29:35 +0000903 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000904
Chris Lattner229907c2011-07-18 04:54:35 +0000905 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000906 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner171d2d42009-01-11 20:15:20 +0000907 assert(Offset < (int64_t)SL->getSizeInBytes() &&
908 "Offset must stay within the indexed type");
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000909
Chris Lattnerfef138b2009-01-09 05:44:56 +0000910 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattnerb8906bd2010-01-04 07:02:48 +0000911 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
912 Elt));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000913
Chris Lattnerfef138b2009-01-09 05:44:56 +0000914 Offset -= SL->getElementOffset(Elt);
915 Ty = STy->getElementType(Elt);
Chris Lattner229907c2011-07-18 04:54:35 +0000916 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000917 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
Chris Lattner171d2d42009-01-11 20:15:20 +0000918 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersonedb4a702009-07-24 23:12:02 +0000919 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattner171d2d42009-01-11 20:15:20 +0000920 Offset %= EltSize;
Chris Lattnerb1915162009-01-11 20:23:52 +0000921 Ty = AT->getElementType();
Chris Lattnerfef138b2009-01-09 05:44:56 +0000922 } else {
Chris Lattner171d2d42009-01-11 20:15:20 +0000923 // Otherwise, we can't index into the middle of this atomic type, bail.
Craig Topperf40110f2014-04-25 05:29:35 +0000924 return nullptr;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000925 }
926 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000927
Chris Lattner72cd68f2009-01-24 01:00:13 +0000928 return Ty;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000929}
930
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +0000931static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
932 // If this GEP has only 0 indices, it is the same pointer as
933 // Src. If Src is not a trivial GEP too, don't combine
934 // the indices.
935 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
936 !Src.hasOneUse())
937 return false;
938 return true;
939}
Chris Lattnerbbbdd852002-05-06 18:06:38 +0000940
Duncan Sands533c8ae2012-10-23 08:28:26 +0000941/// Descale - Return a value X such that Val = X * Scale, or null if none. If
942/// the multiplication is known not to overflow then NoSignedWrap is set.
943Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
944 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
945 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
946 Scale.getBitWidth() && "Scale not compatible with value!");
947
948 // If Val is zero or Scale is one then Val = Val * Scale.
949 if (match(Val, m_Zero()) || Scale == 1) {
950 NoSignedWrap = true;
951 return Val;
952 }
953
954 // If Scale is zero then it does not divide Val.
955 if (Scale.isMinValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000956 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +0000957
958 // Look through chains of multiplications, searching for a constant that is
959 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
960 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
961 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
962 // down from Val:
963 //
964 // Val = M1 * X || Analysis starts here and works down
965 // M1 = M2 * Y || Doesn't descend into terms with more
966 // M2 = Z * 4 \/ than one use
967 //
968 // Then to modify a term at the bottom:
969 //
970 // Val = M1 * X
971 // M1 = Z * Y || Replaced M2 with Z
972 //
973 // Then to work back up correcting nsw flags.
974
975 // Op - the term we are currently analyzing. Starts at Val then drills down.
976 // Replaced with its descaled value before exiting from the drill down loop.
977 Value *Op = Val;
978
979 // Parent - initially null, but after drilling down notes where Op came from.
980 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
981 // 0'th operand of Val.
982 std::pair<Instruction*, unsigned> Parent;
983
984 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
985 // levels that doesn't overflow.
986 bool RequireNoSignedWrap = false;
987
988 // logScale - log base 2 of the scale. Negative if not a power of 2.
989 int32_t logScale = Scale.exactLogBase2();
990
991 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
992
993 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
994 // If Op is a constant divisible by Scale then descale to the quotient.
995 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
996 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
997 if (!Remainder.isMinValue())
998 // Not divisible by Scale.
Craig Topperf40110f2014-04-25 05:29:35 +0000999 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001000 // Replace with the quotient in the parent.
1001 Op = ConstantInt::get(CI->getType(), Quotient);
1002 NoSignedWrap = true;
1003 break;
1004 }
1005
1006 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1007
1008 if (BO->getOpcode() == Instruction::Mul) {
1009 // Multiplication.
1010 NoSignedWrap = BO->hasNoSignedWrap();
1011 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001012 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001013
1014 // There are three cases for multiplication: multiplication by exactly
1015 // the scale, multiplication by a constant different to the scale, and
1016 // multiplication by something else.
1017 Value *LHS = BO->getOperand(0);
1018 Value *RHS = BO->getOperand(1);
1019
1020 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1021 // Multiplication by a constant.
1022 if (CI->getValue() == Scale) {
1023 // Multiplication by exactly the scale, replace the multiplication
1024 // by its left-hand side in the parent.
1025 Op = LHS;
1026 break;
1027 }
1028
1029 // Otherwise drill down into the constant.
1030 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001031 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001032
1033 Parent = std::make_pair(BO, 1);
1034 continue;
1035 }
1036
1037 // Multiplication by something else. Drill down into the left-hand side
1038 // since that's where the reassociate pass puts the good stuff.
1039 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001040 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001041
1042 Parent = std::make_pair(BO, 0);
1043 continue;
1044 }
1045
1046 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1047 isa<ConstantInt>(BO->getOperand(1))) {
1048 // Multiplication by a power of 2.
1049 NoSignedWrap = BO->hasNoSignedWrap();
1050 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001051 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001052
1053 Value *LHS = BO->getOperand(0);
1054 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1055 getLimitedValue(Scale.getBitWidth());
1056 // Op = LHS << Amt.
1057
1058 if (Amt == logScale) {
1059 // Multiplication by exactly the scale, replace the multiplication
1060 // by its left-hand side in the parent.
1061 Op = LHS;
1062 break;
1063 }
1064 if (Amt < logScale || !Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001065 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001066
1067 // Multiplication by more than the scale. Reduce the multiplying amount
1068 // by the scale in the parent.
1069 Parent = std::make_pair(BO, 1);
1070 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1071 break;
1072 }
1073 }
1074
1075 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001076 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001077
1078 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1079 if (Cast->getOpcode() == Instruction::SExt) {
1080 // Op is sign-extended from a smaller type, descale in the smaller type.
1081 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1082 APInt SmallScale = Scale.trunc(SmallSize);
1083 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1084 // descale Op as (sext Y) * Scale. In order to have
1085 // sext (Y * SmallScale) = (sext Y) * Scale
1086 // some conditions need to hold however: SmallScale must sign-extend to
1087 // Scale and the multiplication Y * SmallScale should not overflow.
1088 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1089 // SmallScale does not sign-extend to Scale.
Craig Topperf40110f2014-04-25 05:29:35 +00001090 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001091 assert(SmallScale.exactLogBase2() == logScale);
1092 // Require that Y * SmallScale must not overflow.
1093 RequireNoSignedWrap = true;
1094
1095 // Drill down through the cast.
1096 Parent = std::make_pair(Cast, 0);
1097 Scale = SmallScale;
1098 continue;
1099 }
1100
Duncan Sands5ed39002012-10-23 09:07:02 +00001101 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001102 // Op is truncated from a larger type, descale in the larger type.
1103 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1104 // trunc (Y * sext Scale) = (trunc Y) * Scale
1105 // always holds. However (trunc Y) * Scale may overflow even if
1106 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1107 // from this point up in the expression (see later).
1108 if (RequireNoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001109 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001110
1111 // Drill down through the cast.
1112 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1113 Parent = std::make_pair(Cast, 0);
1114 Scale = Scale.sext(LargeSize);
1115 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1116 logScale = -1;
1117 assert(Scale.exactLogBase2() == logScale);
1118 continue;
1119 }
1120 }
1121
1122 // Unsupported expression, bail out.
Craig Topperf40110f2014-04-25 05:29:35 +00001123 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001124 }
1125
Duncan P. N. Exon Smith04934b02014-07-10 17:13:27 +00001126 // If Op is zero then Val = Op * Scale.
1127 if (match(Op, m_Zero())) {
1128 NoSignedWrap = true;
1129 return Op;
1130 }
1131
Duncan Sands533c8ae2012-10-23 08:28:26 +00001132 // We know that we can successfully descale, so from here on we can safely
1133 // modify the IR. Op holds the descaled version of the deepest term in the
1134 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1135 // not to overflow.
1136
1137 if (!Parent.first)
1138 // The expression only had one term.
1139 return Op;
1140
1141 // Rewrite the parent using the descaled version of its operand.
1142 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1143 assert(Op != Parent.first->getOperand(Parent.second) &&
1144 "Descaling was a no-op?");
1145 Parent.first->setOperand(Parent.second, Op);
1146 Worklist.Add(Parent.first);
1147
1148 // Now work back up the expression correcting nsw flags. The logic is based
1149 // on the following observation: if X * Y is known not to overflow as a signed
1150 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1151 // then X * Z will not overflow as a signed multiplication either. As we work
1152 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1153 // current level has strictly smaller absolute value than the original.
1154 Instruction *Ancestor = Parent.first;
1155 do {
1156 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1157 // If the multiplication wasn't nsw then we can't say anything about the
1158 // value of the descaled multiplication, and we have to clear nsw flags
1159 // from this point on up.
1160 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1161 NoSignedWrap &= OpNoSignedWrap;
1162 if (NoSignedWrap != OpNoSignedWrap) {
1163 BO->setHasNoSignedWrap(NoSignedWrap);
1164 Worklist.Add(Ancestor);
1165 }
1166 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1167 // The fact that the descaled input to the trunc has smaller absolute
1168 // value than the original input doesn't tell us anything useful about
1169 // the absolute values of the truncations.
1170 NoSignedWrap = false;
1171 }
1172 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1173 "Failed to keep proper track of nsw flags while drilling down?");
1174
1175 if (Ancestor == Val)
1176 // Got to the top, all done!
1177 return Val;
1178
1179 // Move up one level in the expression.
1180 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
Chandler Carruthcdf47882014-03-09 03:16:01 +00001181 Ancestor = Ancestor->user_back();
Duncan Sands533c8ae2012-10-23 08:28:26 +00001182 } while (1);
1183}
1184
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001185/// \brief Creates node of binary operation with the same attributes as the
1186/// specified one but with other operands.
Serge Pavlove6de9e32014-05-14 09:05:09 +00001187static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1188 InstCombiner::BuilderTy *B) {
1189 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1190 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1191 if (isa<OverflowingBinaryOperator>(NewBO)) {
1192 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1193 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1194 }
1195 if (isa<PossiblyExactOperator>(NewBO))
1196 NewBO->setIsExact(Inst.isExact());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001197 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001198 return BORes;
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001199}
1200
1201/// \brief Makes transformation of binary operation specific for vector types.
1202/// \param Inst Binary operator to transform.
1203/// \return Pointer to node that must replace the original binary operator, or
1204/// null pointer if no transformation was made.
1205Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1206 if (!Inst.getType()->isVectorTy()) return nullptr;
1207
Sanjay Patel58814442014-07-09 16:34:54 +00001208 // It may not be safe to reorder shuffles and things like div, urem, etc.
1209 // because we may trap when executing those ops on unknown vector elements.
1210 // See PR20059.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001211 if (!isSafeToSpeculativelyExecute(&Inst))
1212 return nullptr;
Sanjay Patel58814442014-07-09 16:34:54 +00001213
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001214 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1215 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1216 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1217 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1218
1219 // If both arguments of binary operation are shuffles, which use the same
1220 // mask and shuffle within a single vector, it is worthwhile to move the
1221 // shuffle after binary operation:
1222 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1223 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1224 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1225 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1226 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1227 isa<UndefValue>(RShuf->getOperand(1)) &&
Serge Pavlov05811092014-05-12 05:44:53 +00001228 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001229 LShuf->getMask() == RShuf->getMask()) {
Serge Pavlove6de9e32014-05-14 09:05:09 +00001230 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001231 RShuf->getOperand(0), Builder);
1232 Value *Res = Builder->CreateShuffleVector(NewBO,
Serge Pavlov02ff6202014-05-12 10:11:27 +00001233 UndefValue::get(NewBO->getType()), LShuf->getMask());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001234 return Res;
1235 }
1236 }
1237
1238 // If one argument is a shuffle within one vector, the other is a constant,
1239 // try moving the shuffle after the binary operation.
1240 ShuffleVectorInst *Shuffle = nullptr;
1241 Constant *C1 = nullptr;
1242 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1243 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1244 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1245 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
Benjamin Kramer6de78662014-06-24 10:38:10 +00001246 if (Shuffle && C1 &&
1247 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1248 isa<UndefValue>(Shuffle->getOperand(1)) &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001249 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1250 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1251 // Find constant C2 that has property:
1252 // shuffle(C2, ShMask) = C1
1253 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1254 // reorder is not possible.
1255 SmallVector<Constant*, 16> C2M(VWidth,
1256 UndefValue::get(C1->getType()->getScalarType()));
1257 bool MayChange = true;
1258 for (unsigned I = 0; I < VWidth; ++I) {
1259 if (ShMask[I] >= 0) {
1260 assert(ShMask[I] < (int)VWidth);
1261 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1262 MayChange = false;
1263 break;
1264 }
1265 C2M[ShMask[I]] = C1->getAggregateElement(I);
1266 }
1267 }
1268 if (MayChange) {
1269 Constant *C2 = ConstantVector::get(C2M);
1270 Value *NewLHS, *NewRHS;
1271 if (isa<Constant>(LHS)) {
1272 NewLHS = C2;
1273 NewRHS = Shuffle->getOperand(0);
1274 } else {
1275 NewLHS = Shuffle->getOperand(0);
1276 NewRHS = C2;
1277 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001278 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001279 Value *Res = Builder->CreateShuffleVector(NewBO,
1280 UndefValue::get(Inst.getType()), Shuffle->getMask());
1281 return Res;
1282 }
1283 }
1284
1285 return nullptr;
1286}
1287
Chris Lattner113f4f42002-06-25 16:13:24 +00001288Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001289 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1290
Chandler Carruth66b31302015-01-04 12:03:27 +00001291 if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
Chris Lattner8574aba2009-11-27 00:29:05 +00001292 return ReplaceInstUsesWith(GEP, V);
1293
Chris Lattner5f667a62004-05-07 22:09:22 +00001294 Value *PtrOp = GEP.getOperand(0);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001295
Duncan Sandsc133c542010-11-22 16:32:50 +00001296 // Eliminate unneeded casts for indices, and replace indices which displace
1297 // by multiples of a zero size type with zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001298 bool MadeChange = false;
1299 Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsc133c542010-11-22 16:32:50 +00001300
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001301 gep_type_iterator GTI = gep_type_begin(GEP);
1302 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1303 ++I, ++GTI) {
1304 // Skip indices into struct types.
1305 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1306 if (!SeqTy)
1307 continue;
Duncan Sandsc133c542010-11-22 16:32:50 +00001308
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001309 // If the element type has zero size then any index over it is equivalent
1310 // to an index of zero, so replace it with zero if it is not zero already.
1311 if (SeqTy->getElementType()->isSized() &&
1312 DL.getTypeAllocSize(SeqTy->getElementType()) == 0)
1313 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1314 *I = Constant::getNullValue(IntPtrTy);
Duncan Sandsc133c542010-11-22 16:32:50 +00001315 MadeChange = true;
1316 }
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001317
1318 Type *IndexTy = (*I)->getType();
1319 if (IndexTy != IntPtrTy) {
1320 // If we are using a wider index than needed for this platform, shrink
1321 // it to what we need. If narrower, sign-extend it to what we need.
1322 // This explicit cast can make subsequent optimizations more obvious.
1323 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1324 MadeChange = true;
Chris Lattner69193f92004-04-05 01:30:19 +00001325 }
Chris Lattner9bf53ff2007-03-25 20:43:09 +00001326 }
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001327 if (MadeChange)
1328 return &GEP;
Chris Lattner69193f92004-04-05 01:30:19 +00001329
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001330 // Check to see if the inputs to the PHI node are getelementptr instructions.
1331 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1332 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1333 if (!Op1)
1334 return nullptr;
1335
Daniel Jasper5add63f2015-03-19 11:05:08 +00001336 // Don't fold a GEP into itself through a PHI node. This can only happen
1337 // through the back-edge of a loop. Folding a GEP into itself means that
1338 // the value of the previous iteration needs to be stored in the meantime,
1339 // thus requiring an additional register variable to be live, but not
1340 // actually achieving anything (the GEP still needs to be executed once per
1341 // loop iteration).
1342 if (Op1 == &GEP)
1343 return nullptr;
1344
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001345 signed DI = -1;
1346
1347 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1348 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1349 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1350 return nullptr;
1351
Daniel Jasper5add63f2015-03-19 11:05:08 +00001352 // As for Op1 above, don't try to fold a GEP into itself.
1353 if (Op2 == &GEP)
1354 return nullptr;
1355
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001356 // Keep track of the type as we walk the GEP.
1357 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
1358
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001359 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1360 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1361 return nullptr;
1362
1363 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1364 if (DI == -1) {
1365 // We have not seen any differences yet in the GEPs feeding the
1366 // PHI yet, so we record this one if it is allowed to be a
1367 // variable.
1368
1369 // The first two arguments can vary for any GEP, the rest have to be
1370 // static for struct slots
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001371 if (J > 1 && CurTy->isStructTy())
1372 return nullptr;
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001373
1374 DI = J;
1375 } else {
1376 // The GEP is different by more than one input. While this could be
1377 // extended to support GEPs that vary by more than one variable it
1378 // doesn't make sense since it greatly increases the complexity and
1379 // would result in an R+R+R addressing mode which no backend
1380 // directly supports and would need to be broken into several
1381 // simpler instructions anyway.
1382 return nullptr;
1383 }
1384 }
Chandler Carruthfdc0e0b2014-05-29 23:21:12 +00001385
1386 // Sink down a layer of the type for the next iteration.
1387 if (J > 0) {
1388 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1389 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1390 } else {
1391 CurTy = nullptr;
1392 }
1393 }
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001394 }
1395 }
1396
1397 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1398
1399 if (DI == -1) {
1400 // All the GEPs feeding the PHI are identical. Clone one down into our
1401 // BB so that it can be merged with the current GEP.
Akira Hatanaka1defd5a2015-02-18 03:30:11 +00001402 GEP.getParent()->getInstList().insert(
1403 GEP.getParent()->getFirstInsertionPt(), NewGEP);
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001404 } else {
1405 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1406 // into the current block so it can be merged, and create a new PHI to
1407 // set that index.
1408 Instruction *InsertPt = Builder->GetInsertPoint();
1409 Builder->SetInsertPoint(PN);
1410 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1411 PN->getNumOperands());
1412 Builder->SetInsertPoint(InsertPt);
1413
1414 for (auto &I : PN->operands())
1415 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1416 PN->getIncomingBlock(I));
1417
1418 NewGEP->setOperand(DI, NewPN);
Akira Hatanaka1defd5a2015-02-18 03:30:11 +00001419 GEP.getParent()->getInstList().insert(
1420 GEP.getParent()->getFirstInsertionPt(), NewGEP);
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001421 NewGEP->setOperand(DI, NewPN);
1422 }
1423
1424 GEP.setOperand(0, NewGEP);
1425 PtrOp = NewGEP;
1426 }
1427
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001428 // Combine Indices - If the source pointer to this getelementptr instruction
1429 // is a getelementptr instruction, combine the indices of the two
1430 // getelementptr instructions into a single instruction.
1431 //
Dan Gohman31a9b982009-07-28 01:40:03 +00001432 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001433 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Craig Topperf40110f2014-04-25 05:29:35 +00001434 return nullptr;
Rafael Espindola40325672011-07-11 03:43:47 +00001435
Duncan Sands533c8ae2012-10-23 08:28:26 +00001436 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner5f667a62004-05-07 22:09:22 +00001437 // chain to be resolved before we perform this transformation. This
1438 // avoids us creating a TON of code in some cases.
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001439 if (GEPOperator *SrcGEP =
1440 dyn_cast<GEPOperator>(Src->getOperand(0)))
1441 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Craig Topperf40110f2014-04-25 05:29:35 +00001442 return nullptr; // Wait until our source is folded to completion.
Chris Lattner5f667a62004-05-07 22:09:22 +00001443
Chris Lattneraf6094f2007-02-15 22:48:32 +00001444 SmallVector<Value*, 8> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00001445
1446 // Find out whether the last index in the source GEP is a sequential idx.
1447 bool EndsWithSequential = false;
Chris Lattnerb2995e12009-08-30 05:30:55 +00001448 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1449 I != E; ++I)
Duncan Sands19d0b472010-02-16 11:11:14 +00001450 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001451
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001452 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00001453 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00001454 // Replace: gep (gep %P, long B), long A, ...
1455 // With: T = long A+B; gep %P, T, ...
1456 //
Chris Lattner06c687b2009-08-30 05:08:50 +00001457 Value *Sum;
1458 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1459 Value *GO1 = GEP.getOperand(1);
Owen Anderson5a1acd92009-07-31 20:28:14 +00001460 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001461 Sum = GO1;
Owen Anderson5a1acd92009-07-31 20:28:14 +00001462 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001463 Sum = SO1;
1464 } else {
Chris Lattnerb2995e12009-08-30 05:30:55 +00001465 // If they aren't the same type, then the input hasn't been processed
1466 // by the loop above yet (which canonicalizes sequential index types to
1467 // intptr_t). Just avoid transforming this until the input has been
1468 // normalized.
1469 if (SO1->getType() != GO1->getType())
Craig Topperf40110f2014-04-25 05:29:35 +00001470 return nullptr;
Chris Lattner59663412009-08-30 18:50:58 +00001471 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner69193f92004-04-05 01:30:19 +00001472 }
Chris Lattner5f667a62004-05-07 22:09:22 +00001473
Chris Lattnerb2995e12009-08-30 05:30:55 +00001474 // Update the GEP in place if possible.
Chris Lattner06c687b2009-08-30 05:08:50 +00001475 if (Src->getNumOperands() == 2) {
1476 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner5f667a62004-05-07 22:09:22 +00001477 GEP.setOperand(1, Sum);
1478 return &GEP;
Chris Lattner5f667a62004-05-07 22:09:22 +00001479 }
Chris Lattnerb2995e12009-08-30 05:30:55 +00001480 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001481 Indices.push_back(Sum);
Chris Lattnerb2995e12009-08-30 05:30:55 +00001482 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanb1c93172005-04-21 23:48:37 +00001483 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00001484 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattner06c687b2009-08-30 05:08:50 +00001485 Src->getNumOperands() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001486 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerb2995e12009-08-30 05:30:55 +00001487 Indices.append(Src->op_begin()+1, Src->op_end());
1488 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001489 }
1490
Dan Gohman1b849082009-09-07 23:54:19 +00001491 if (!Indices.empty())
David Blaikie096b1da2015-03-14 19:53:33 +00001492 return GEP.isInBounds() && Src->isInBounds()
1493 ? GetElementPtrInst::CreateInBounds(
1494 Src->getSourceElementType(), Src->getOperand(0), Indices,
1495 GEP.getName())
1496 : GetElementPtrInst::Create(Src->getSourceElementType(),
1497 Src->getOperand(0), Indices,
1498 GEP.getName());
Chris Lattnere26bf172009-08-30 05:00:50 +00001499 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001500
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001501 if (GEP.getNumIndices() == 1) {
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001502 unsigned AS = GEP.getPointerAddressSpace();
David Majnemerd2df5012014-09-01 21:10:02 +00001503 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001504 DL.getPointerSizeInBits(AS)) {
David Majnemerd2df5012014-09-01 21:10:02 +00001505 Type *PtrTy = GEP.getPointerOperandType();
1506 Type *Ty = PtrTy->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001507 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
David Majnemerd2df5012014-09-01 21:10:02 +00001508
1509 bool Matched = false;
1510 uint64_t C;
1511 Value *V = nullptr;
1512 if (TyAllocSize == 1) {
1513 V = GEP.getOperand(1);
1514 Matched = true;
1515 } else if (match(GEP.getOperand(1),
1516 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1517 if (TyAllocSize == 1ULL << C)
1518 Matched = true;
1519 } else if (match(GEP.getOperand(1),
1520 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1521 if (TyAllocSize == C)
1522 Matched = true;
1523 }
1524
1525 if (Matched) {
1526 // Canonicalize (gep i8* X, -(ptrtoint Y))
1527 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1528 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1529 // pointer arithmetic.
1530 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1531 Operator *Index = cast<Operator>(V);
1532 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1533 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1534 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1535 }
1536 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1537 // to (bitcast Y)
1538 Value *Y;
1539 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1540 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1541 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1542 GEP.getType());
1543 }
1544 }
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001545 }
Benjamin Kramere6461e32013-09-20 14:38:44 +00001546 }
1547
Chris Lattner06c687b2009-08-30 05:08:50 +00001548 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattnere903f382010-01-05 07:42:10 +00001549 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Roteme63e59c2012-03-26 20:39:18 +00001550 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1551
Nadav Rotema8f35622012-03-26 21:00:53 +00001552 // We do not handle pointer-vector geps here.
1553 if (!StrippedPtrTy)
Craig Topperf40110f2014-04-25 05:29:35 +00001554 return nullptr;
Nadav Rotema8f35622012-03-26 21:00:53 +00001555
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001556 if (StrippedPtr != PtrOp) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001557 bool HasZeroPointerIndex = false;
1558 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1559 HasZeroPointerIndex = C->isZero();
Nadav Rotema069c6c2011-04-05 14:29:52 +00001560
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001561 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1562 // into : GEP [10 x i8]* X, i32 0, ...
1563 //
1564 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1565 // into : GEP i8* X, ...
Nadav Rotema069c6c2011-04-05 14:29:52 +00001566 //
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001567 // This occurs when the program declares an array extern like "int X[];"
Chris Lattnere26bf172009-08-30 05:00:50 +00001568 if (HasZeroPointerIndex) {
Chris Lattner229907c2011-07-18 04:54:35 +00001569 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1570 if (ArrayType *CATy =
Duncan Sands5795a602009-03-02 09:18:21 +00001571 dyn_cast<ArrayType>(CPTy->getElementType())) {
1572 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattnere903f382010-01-05 07:42:10 +00001573 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001574 // -> GEP i8* X, ...
Chris Lattnere903f382010-01-05 07:42:10 +00001575 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
David Blaikie096b1da2015-03-14 19:53:33 +00001576 GetElementPtrInst *Res = GetElementPtrInst::Create(
1577 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
Chris Lattnere903f382010-01-05 07:42:10 +00001578 Res->setIsInBounds(GEP.isInBounds());
Eli Bendersky9966b262014-04-03 17:51:58 +00001579 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1580 return Res;
1581 // Insert Res, and create an addrspacecast.
1582 // e.g.,
1583 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1584 // ->
1585 // %0 = GEP i8 addrspace(1)* X, ...
1586 // addrspacecast i8 addrspace(1)* %0 to i8*
1587 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001588 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001589
Chris Lattner229907c2011-07-18 04:54:35 +00001590 if (ArrayType *XATy =
Chris Lattnere903f382010-01-05 07:42:10 +00001591 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5795a602009-03-02 09:18:21 +00001592 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattner567b81f2005-09-13 00:40:14 +00001593 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001594 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattner567b81f2005-09-13 00:40:14 +00001595 // At this point, we know that the cast source type is a pointer
1596 // to an array of the same type as the destination pointer
1597 // array. Because the array type is never stepped over (there
1598 // is a leading zero) we can fold the cast into this GEP.
Eli Bendersky9966b262014-04-03 17:51:58 +00001599 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1600 GEP.setOperand(0, StrippedPtr);
1601 return &GEP;
1602 }
1603 // Cannot replace the base pointer directly because StrippedPtr's
1604 // address space is different. Instead, create a new GEP followed by
1605 // an addrspacecast.
1606 // e.g.,
1607 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1608 // i32 0, ...
1609 // ->
1610 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1611 // addrspacecast i8 addrspace(1)* %0 to i8*
1612 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1613 Value *NewGEP = GEP.isInBounds() ?
1614 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1615 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1616 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner567b81f2005-09-13 00:40:14 +00001617 }
Duncan Sands5795a602009-03-02 09:18:21 +00001618 }
1619 }
Chris Lattner567b81f2005-09-13 00:40:14 +00001620 } else if (GEP.getNumOperands() == 2) {
1621 // Transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001622 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1623 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattner229907c2011-07-18 04:54:35 +00001624 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001625 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001626 if (SrcElTy->isArrayTy() &&
1627 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1628 DL.getTypeAllocSize(ResElTy)) {
1629 Type *IdxType = DL.getIntPtrType(GEP.getType());
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001630 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Chris Lattnere903f382010-01-05 07:42:10 +00001631 Value *NewGEP = GEP.isInBounds() ?
Jay Foad040dd822011-07-22 08:16:57 +00001632 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1633 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001634
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001635 // V and GEP are both pointer types --> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001636 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1637 GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001638 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001639
Chris Lattner2a893292005-09-13 18:36:04 +00001640 // Transform things like:
Duncan Sands533c8ae2012-10-23 08:28:26 +00001641 // %V = mul i64 %N, 4
1642 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1643 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001644 if (ResElTy->isSized() && SrcElTy->isSized()) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001645 // Check that changing the type amounts to dividing the index by a scale
1646 // factor.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001647 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1648 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
Duncan Sands533c8ae2012-10-23 08:28:26 +00001649 if (ResSize && SrcSize % ResSize == 0) {
1650 Value *Idx = GEP.getOperand(1);
1651 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1652 uint64_t Scale = SrcSize / ResSize;
1653
1654 // Earlier transforms ensure that the index has type IntPtrType, which
1655 // considerably simplifies the logic by eliminating implicit casts.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001656 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001657 "Index not cast to pointer width?");
1658
1659 bool NSW;
1660 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1661 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1662 // If the multiplication NewIdx * Scale may overflow then the new
1663 // GEP may not be "inbounds".
1664 Value *NewGEP = GEP.isInBounds() && NSW ?
1665 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1666 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001667
Duncan Sands533c8ae2012-10-23 08:28:26 +00001668 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001669 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1670 GEP.getType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001671 }
1672 }
1673 }
1674
1675 // Similarly, transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001676 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner2a893292005-09-13 18:36:04 +00001677 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001678 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001679 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001680 // Check that changing to the array element type amounts to dividing the
1681 // index by a scale factor.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001682 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1683 uint64_t ArrayEltSize =
1684 DL.getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001685 if (ResSize && ArrayEltSize % ResSize == 0) {
1686 Value *Idx = GEP.getOperand(1);
1687 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1688 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001689
Duncan Sands533c8ae2012-10-23 08:28:26 +00001690 // Earlier transforms ensure that the index has type IntPtrType, which
1691 // considerably simplifies the logic by eliminating implicit casts.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001692 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001693 "Index not cast to pointer width?");
1694
1695 bool NSW;
1696 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1697 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1698 // If the multiplication NewIdx * Scale may overflow then the new
1699 // GEP may not be "inbounds".
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001700 Value *Off[2] = {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001701 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1702 NewIdx};
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001703
Duncan Sands533c8ae2012-10-23 08:28:26 +00001704 Value *NewGEP = GEP.isInBounds() && NSW ?
1705 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1706 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1707 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001708 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1709 GEP.getType());
Chris Lattner2a893292005-09-13 18:36:04 +00001710 }
1711 }
Chris Lattner2a893292005-09-13 18:36:04 +00001712 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001713 }
Chris Lattnerca081252001-12-14 16:52:21 +00001714 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001715
Matt Arsenault4815f092014-08-12 19:46:13 +00001716 // addrspacecast between types is canonicalized as a bitcast, then an
1717 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1718 // through the addrspacecast.
1719 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1720 // X = bitcast A addrspace(1)* to B addrspace(1)*
1721 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1722 // Z = gep Y, <...constant indices...>
1723 // Into an addrspacecasted GEP of the struct.
1724 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1725 PtrOp = BC;
1726 }
1727
Chris Lattnerfef138b2009-01-09 05:44:56 +00001728 /// See if we can simplify:
Chris Lattner97fd3592009-08-30 05:55:36 +00001729 /// X = bitcast A* to B*
Chris Lattnerfef138b2009-01-09 05:44:56 +00001730 /// Y = gep X, <...constant indices...>
1731 /// into a gep of the original struct. This is important for SROA and alias
1732 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattnera784a2c2009-01-09 04:53:57 +00001733 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenault98f34e32013-08-19 22:17:34 +00001734 Value *Operand = BCI->getOperand(0);
1735 PointerType *OpType = cast<PointerType>(Operand->getType());
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001736 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
Matt Arsenault98f34e32013-08-19 22:17:34 +00001737 APInt Offset(OffsetBits, 0);
1738 if (!isa<BitCastInst>(Operand) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001739 GEP.accumulateConstantOffset(DL, Offset)) {
Nadav Rotema069c6c2011-04-05 14:29:52 +00001740
Chris Lattnerfef138b2009-01-09 05:44:56 +00001741 // If this GEP instruction doesn't move the pointer, just replace the GEP
1742 // with a bitcast of the real input to the dest type.
Nuno Lopesb6ad9822012-12-30 16:25:48 +00001743 if (!Offset) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001744 // If the bitcast is of an allocation, and the allocation will be
1745 // converted to match the type of the cast, don't touch this.
Matt Arsenault98f34e32013-08-19 22:17:34 +00001746 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001747 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1748 if (Instruction *I = visitBitCast(*BCI)) {
1749 if (I != BCI) {
1750 I->takeName(BCI);
1751 BCI->getParent()->getInstList().insert(BCI, I);
1752 ReplaceInstUsesWith(*BCI, I);
1753 }
1754 return &GEP;
Chris Lattnera784a2c2009-01-09 04:53:57 +00001755 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001756 }
Matt Arsenault4815f092014-08-12 19:46:13 +00001757
1758 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1759 return new AddrSpaceCastInst(Operand, GEP.getType());
Matt Arsenault98f34e32013-08-19 22:17:34 +00001760 return new BitCastInst(Operand, GEP.getType());
Chris Lattnera784a2c2009-01-09 04:53:57 +00001761 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001762
Chris Lattnerfef138b2009-01-09 05:44:56 +00001763 // Otherwise, if the offset is non-zero, we need to find out if there is a
1764 // field at Offset in 'A's type. If so, we can pull the cast through the
1765 // GEP.
1766 SmallVector<Value*, 8> NewIndices;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +00001767 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattnere903f382010-01-05 07:42:10 +00001768 Value *NGEP = GEP.isInBounds() ?
Matt Arsenault98f34e32013-08-19 22:17:34 +00001769 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1770 Builder->CreateGEP(Operand, NewIndices);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001771
Chris Lattner59663412009-08-30 18:50:58 +00001772 if (NGEP->getType() == GEP.getType())
1773 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattnerfef138b2009-01-09 05:44:56 +00001774 NGEP->takeName(&GEP);
Matt Arsenault4815f092014-08-12 19:46:13 +00001775
1776 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1777 return new AddrSpaceCastInst(NGEP, GEP.getType());
Chris Lattnerfef138b2009-01-09 05:44:56 +00001778 return new BitCastInst(NGEP, GEP.getType());
1779 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001780 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001781 }
1782
Craig Topperf40110f2014-04-25 05:29:35 +00001783 return nullptr;
Chris Lattnerca081252001-12-14 16:52:21 +00001784}
1785
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001786static bool
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001787isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1788 const TargetLibraryInfo *TLI) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001789 SmallVector<Instruction*, 4> Worklist;
1790 Worklist.push_back(AI);
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001791
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001792 do {
1793 Instruction *PI = Worklist.pop_back_val();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001794 for (User *U : PI->users()) {
1795 Instruction *I = cast<Instruction>(U);
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001796 switch (I->getOpcode()) {
1797 default:
1798 // Give up the moment we see something we can't handle.
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001799 return false;
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001800
1801 case Instruction::BitCast:
1802 case Instruction::GetElementPtr:
1803 Users.push_back(I);
1804 Worklist.push_back(I);
1805 continue;
1806
1807 case Instruction::ICmp: {
1808 ICmpInst *ICI = cast<ICmpInst>(I);
1809 // We can fold eq/ne comparisons with null to false/true, respectively.
1810 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1811 return false;
1812 Users.push_back(I);
1813 continue;
1814 }
1815
1816 case Instruction::Call:
1817 // Ignore no-op and store intrinsics.
1818 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1819 switch (II->getIntrinsicID()) {
1820 default:
1821 return false;
1822
1823 case Intrinsic::memmove:
1824 case Intrinsic::memcpy:
1825 case Intrinsic::memset: {
1826 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1827 if (MI->isVolatile() || MI->getRawDest() != PI)
1828 return false;
1829 }
1830 // fall through
1831 case Intrinsic::dbg_declare:
1832 case Intrinsic::dbg_value:
1833 case Intrinsic::invariant_start:
1834 case Intrinsic::invariant_end:
1835 case Intrinsic::lifetime_start:
1836 case Intrinsic::lifetime_end:
1837 case Intrinsic::objectsize:
1838 Users.push_back(I);
1839 continue;
1840 }
1841 }
1842
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001843 if (isFreeCall(I, TLI)) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001844 Users.push_back(I);
1845 continue;
1846 }
1847 return false;
1848
1849 case Instruction::Store: {
1850 StoreInst *SI = cast<StoreInst>(I);
1851 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1852 return false;
1853 Users.push_back(I);
1854 continue;
1855 }
1856 }
1857 llvm_unreachable("missing a return?");
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001858 }
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001859 } while (!Worklist.empty());
Duncan Sandsf162eac2010-05-27 19:09:06 +00001860 return true;
1861}
1862
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001863Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sandsf162eac2010-05-27 19:09:06 +00001864 // If we have a malloc call which is only used in any amount of comparisons
1865 // to null and free calls, delete the calls and replace the comparisons with
1866 // true or false as appropriate.
Nick Lewycky50f49662011-08-03 00:43:35 +00001867 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001868 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewycky50f49662011-08-03 00:43:35 +00001869 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1870 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1871 if (!I) continue;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001872
Nick Lewycky50f49662011-08-03 00:43:35 +00001873 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001874 ReplaceInstUsesWith(*C,
1875 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1876 C->isFalseWhenEqual()));
Nick Lewycky50f49662011-08-03 00:43:35 +00001877 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001878 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001879 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1880 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1881 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1882 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1883 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1884 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001885 }
Nick Lewycky50f49662011-08-03 00:43:35 +00001886 EraseInstFromFunction(*I);
Duncan Sandsf162eac2010-05-27 19:09:06 +00001887 }
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001888
1889 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopes9ac46612012-06-28 22:31:24 +00001890 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes07594cb2012-06-25 17:11:47 +00001891 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopes9ac46612012-06-28 22:31:24 +00001892 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1893 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko3238fb72013-05-05 00:40:33 +00001894 None, "", II->getParent());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001895 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001896 return EraseInstFromFunction(MI);
1897 }
Craig Topperf40110f2014-04-25 05:29:35 +00001898 return nullptr;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001899}
1900
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001901/// \brief Move the call to free before a NULL test.
1902///
1903/// Check if this free is accessed after its argument has been test
1904/// against NULL (property 0).
1905/// If yes, it is legal to move this call in its predecessor block.
1906///
1907/// The move is performed only if the block containing the call to free
1908/// will be removed, i.e.:
1909/// 1. it has only one predecessor P, and P has two successors
1910/// 2. it contains the call and an unconditional branch
1911/// 3. its successor is the same as its predecessor's successor
1912///
1913/// The profitability is out-of concern here and this function should
1914/// be called only if the caller knows this transformation would be
1915/// profitable (e.g., for code size).
1916static Instruction *
1917tryToMoveFreeBeforeNullTest(CallInst &FI) {
1918 Value *Op = FI.getArgOperand(0);
1919 BasicBlock *FreeInstrBB = FI.getParent();
1920 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1921
1922 // Validate part of constraint #1: Only one predecessor
1923 // FIXME: We can extend the number of predecessor, but in that case, we
1924 // would duplicate the call to free in each predecessor and it may
1925 // not be profitable even for code size.
1926 if (!PredBB)
Craig Topperf40110f2014-04-25 05:29:35 +00001927 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001928
1929 // Validate constraint #2: Does this block contains only the call to
1930 // free and an unconditional branch?
1931 // FIXME: We could check if we can speculate everything in the
1932 // predecessor block
1933 if (FreeInstrBB->size() != 2)
Craig Topperf40110f2014-04-25 05:29:35 +00001934 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001935 BasicBlock *SuccBB;
1936 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001937 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001938
1939 // Validate the rest of constraint #1 by matching on the pred branch.
1940 TerminatorInst *TI = PredBB->getTerminator();
1941 BasicBlock *TrueBB, *FalseBB;
1942 ICmpInst::Predicate Pred;
1943 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001944 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001945 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
Craig Topperf40110f2014-04-25 05:29:35 +00001946 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001947
1948 // Validate constraint #3: Ensure the null case just falls through.
1949 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
Craig Topperf40110f2014-04-25 05:29:35 +00001950 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001951 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1952 "Broken CFG: missing edge from predecessor to successor");
1953
1954 FI.moveBefore(TI);
1955 return &FI;
1956}
Duncan Sandsf162eac2010-05-27 19:09:06 +00001957
1958
Gabor Greif75f69432010-06-24 12:21:15 +00001959Instruction *InstCombiner::visitFree(CallInst &FI) {
1960 Value *Op = FI.getArgOperand(0);
Victor Hernandeze2971492009-10-24 04:23:03 +00001961
1962 // free undef -> unreachable.
1963 if (isa<UndefValue>(Op)) {
1964 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedman41e509a2011-05-18 23:58:37 +00001965 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1966 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandeze2971492009-10-24 04:23:03 +00001967 return EraseInstFromFunction(FI);
1968 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001969
Victor Hernandeze2971492009-10-24 04:23:03 +00001970 // If we have 'free null' delete the instruction. This can happen in stl code
1971 // when lots of inlining happens.
1972 if (isa<ConstantPointerNull>(Op))
1973 return EraseInstFromFunction(FI);
1974
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001975 // If we optimize for code size, try to move the call to free before the null
1976 // test so that simplify cfg can remove the empty block and dead code
1977 // elimination the branch. I.e., helps to turn something like:
1978 // if (foo) free(foo);
1979 // into
1980 // free(foo);
1981 if (MinimizeSize)
1982 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1983 return I;
1984
Craig Topperf40110f2014-04-25 05:29:35 +00001985 return nullptr;
Victor Hernandeze2971492009-10-24 04:23:03 +00001986}
Chris Lattner8427bff2003-12-07 01:24:23 +00001987
Hal Finkel93873cc12014-09-07 21:28:34 +00001988Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
1989 if (RI.getNumOperands() == 0) // ret void
1990 return nullptr;
Chris Lattner14a251b2007-04-15 00:07:55 +00001991
Hal Finkel93873cc12014-09-07 21:28:34 +00001992 Value *ResultOp = RI.getOperand(0);
1993 Type *VTy = ResultOp->getType();
1994 if (!VTy->isIntegerTy())
1995 return nullptr;
1996
1997 // There might be assume intrinsics dominating this return that completely
1998 // determine the value. If so, constant fold it.
1999 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2000 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2001 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2002 if ((KnownZero|KnownOne).isAllOnesValue())
2003 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2004
2005 return nullptr;
2006}
Chris Lattner31f486c2005-01-31 05:36:43 +00002007
Chris Lattner9eef8a72003-06-04 04:46:00 +00002008Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2009 // Change br (not X), label True, label False to: br X, label False, True
Craig Topperf40110f2014-04-25 05:29:35 +00002010 Value *X = nullptr;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002011 BasicBlock *TrueDest;
2012 BasicBlock *FalseDest;
Dan Gohman5476cfd2009-08-12 16:23:25 +00002013 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00002014 !isa<Constant>(X)) {
2015 // Swap Destinations and condition...
2016 BI.setCondition(X);
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002017 BI.swapSuccessors();
Chris Lattnerd4252a72004-07-30 07:50:03 +00002018 return &BI;
2019 }
2020
Philip Reames71c40352015-03-10 22:52:37 +00002021 // If the condition is irrelevant, remove the use so that other
2022 // transforms on the condition become more effective.
2023 if (BI.isConditional() &&
2024 BI.getSuccessor(0) == BI.getSuccessor(1) &&
2025 !isa<UndefValue>(BI.getCondition())) {
2026 BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2027 return &BI;
2028 }
2029
Alp Tokercb402912014-01-24 17:20:08 +00002030 // Canonicalize fcmp_one -> fcmp_oeq
Reid Spencer266e42b2006-12-23 06:05:41 +00002031 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002032 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00002033 TrueDest, FalseDest)) &&
2034 BI.getCondition()->hasOneUse())
2035 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2036 FPred == FCmpInst::FCMP_OGE) {
2037 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2038 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002039
Chris Lattner905976b2009-08-30 06:13:40 +00002040 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002041 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00002042 Worklist.Add(Cond);
Reid Spencer266e42b2006-12-23 06:05:41 +00002043 return &BI;
2044 }
2045
Alp Tokercb402912014-01-24 17:20:08 +00002046 // Canonicalize icmp_ne -> icmp_eq
Reid Spencer266e42b2006-12-23 06:05:41 +00002047 ICmpInst::Predicate IPred;
2048 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00002049 TrueDest, FalseDest)) &&
2050 BI.getCondition()->hasOneUse())
2051 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
2052 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2053 IPred == ICmpInst::ICMP_SGE) {
2054 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2055 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2056 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002057 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00002058 Worklist.Add(Cond);
Chris Lattnere967b342003-06-04 05:10:11 +00002059 return &BI;
2060 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002061
Craig Topperf40110f2014-04-25 05:29:35 +00002062 return nullptr;
Chris Lattner9eef8a72003-06-04 04:46:00 +00002063}
Chris Lattner1085bdf2002-11-04 16:18:53 +00002064
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002065Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2066 Value *Cond = SI.getCondition();
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002067 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2068 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002069 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002070 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2071 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2072
2073 // Compute the number of leading bits we can ignore.
2074 for (auto &C : SI.cases()) {
2075 LeadingKnownZeros = std::min(
2076 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2077 LeadingKnownOnes = std::min(
2078 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2079 }
2080
2081 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2082
2083 // Truncate the condition operand if the new type is equal to or larger than
2084 // the largest legal integer type. We need to be conservative here since
2085 // x86 generates redundant zero-extenstion instructions if the operand is
2086 // truncated to i8 or i16.
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002087 bool TruncCond = false;
Owen Anderson58364dc2015-03-10 06:51:39 +00002088 if (NewWidth > 0 && BitWidth > NewWidth &&
2089 NewWidth >= DL.getLargestLegalIntTypeSize()) {
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002090 TruncCond = true;
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002091 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2092 Builder->SetInsertPoint(&SI);
2093 Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
2094 SI.setCondition(NewCond);
2095
2096 for (auto &C : SI.cases())
2097 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2098 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2099 }
2100
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002101 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
2102 if (I->getOpcode() == Instruction::Add)
2103 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2104 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedman95031ed2011-09-29 20:21:17 +00002105 // Skip the first item since that's the default case.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00002106 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002107 i != e; ++i) {
2108 ConstantInt* CaseVal = i.getCaseValue();
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002109 Constant *LHS = CaseVal;
2110 if (TruncCond)
2111 LHS = LeadingKnownZeros
2112 ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2113 : ConstantExpr::getSExt(CaseVal, Cond->getType());
2114 Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
Eli Friedman95031ed2011-09-29 20:21:17 +00002115 assert(isa<ConstantInt>(NewCaseVal) &&
2116 "Result of expression should be constant");
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002117 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedman95031ed2011-09-29 20:21:17 +00002118 }
2119 SI.setCondition(I->getOperand(0));
Chris Lattner905976b2009-08-30 06:13:40 +00002120 Worklist.Add(I);
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002121 return &SI;
2122 }
2123 }
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002124
2125 return TruncCond ? &SI : nullptr;
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002126}
2127
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002128Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002129 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002130
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002131 if (!EV.hasIndices())
2132 return ReplaceInstUsesWith(EV, Agg);
2133
2134 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerfa775002012-01-26 02:32:04 +00002135 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
2136 if (EV.getNumIndices() == 0)
2137 return ReplaceInstUsesWith(EV, C2);
2138 // Extract the remaining indices out of the constant indexed by the
2139 // first index
2140 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002141 }
Craig Topperf40110f2014-04-25 05:29:35 +00002142 return nullptr; // Can't handle other constants
Chris Lattnerfa775002012-01-26 02:32:04 +00002143 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002144
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002145 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2146 // We're extracting from an insertvalue instruction, compare the indices
2147 const unsigned *exti, *exte, *insi, *inse;
2148 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2149 exte = EV.idx_end(), inse = IV->idx_end();
2150 exti != exte && insi != inse;
2151 ++exti, ++insi) {
2152 if (*insi != *exti)
2153 // The insert and extract both reference distinctly different elements.
2154 // This means the extract is not influenced by the insert, and we can
2155 // replace the aggregate operand of the extract with the aggregate
2156 // operand of the insert. i.e., replace
2157 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2158 // %E = extractvalue { i32, { i32 } } %I, 0
2159 // with
2160 // %E = extractvalue { i32, { i32 } } %A, 0
2161 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002162 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002163 }
2164 if (exti == exte && insi == inse)
2165 // Both iterators are at the end: Index lists are identical. Replace
2166 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2167 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2168 // with "i32 42"
2169 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
2170 if (exti == exte) {
2171 // The extract list is a prefix of the insert list. i.e. replace
2172 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2173 // %E = extractvalue { i32, { i32 } } %I, 1
2174 // with
2175 // %X = extractvalue { i32, { i32 } } %A, 1
2176 // %E = insertvalue { i32 } %X, i32 42, 0
2177 // by switching the order of the insert and extract (though the
2178 // insertvalue should be left in, since it may have other uses).
Chris Lattner59663412009-08-30 18:50:58 +00002179 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002180 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002181 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002182 makeArrayRef(insi, inse));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002183 }
2184 if (insi == inse)
2185 // The insert list is a prefix of the extract list
2186 // We can simply remove the common indices from the extract and make it
2187 // operate on the inserted value instead of the insertvalue result.
2188 // i.e., replace
2189 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2190 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2191 // with
2192 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002193 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002194 makeArrayRef(exti, exte));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002195 }
Chris Lattner39c07b22009-11-09 07:07:56 +00002196 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2197 // We're extracting from an intrinsic, see if we're the only user, which
2198 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif75f69432010-06-24 12:21:15 +00002199 // just get one value.
Chris Lattner39c07b22009-11-09 07:07:56 +00002200 if (II->hasOneUse()) {
2201 // Check if we're grabbing the overflow bit or the result of a 'with
2202 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2203 // and replace it with a traditional binary instruction.
2204 switch (II->getIntrinsicID()) {
2205 case Intrinsic::uadd_with_overflow:
2206 case Intrinsic::sadd_with_overflow:
2207 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002208 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002209 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002210 EraseInstFromFunction(*II);
2211 return BinaryOperator::CreateAdd(LHS, RHS);
2212 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002213
Chris Lattner3e635d22010-12-19 19:43:52 +00002214 // If the normal result of the add is dead, and the RHS is a constant,
2215 // we can transform this into a range comparison.
2216 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattner4fb9dd42010-12-19 23:24:04 +00002217 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2218 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2219 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2220 ConstantExpr::getNot(CI));
Chris Lattner39c07b22009-11-09 07:07:56 +00002221 break;
2222 case Intrinsic::usub_with_overflow:
2223 case Intrinsic::ssub_with_overflow:
2224 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002225 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002226 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002227 EraseInstFromFunction(*II);
2228 return BinaryOperator::CreateSub(LHS, RHS);
2229 }
2230 break;
2231 case Intrinsic::umul_with_overflow:
2232 case Intrinsic::smul_with_overflow:
2233 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002234 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002235 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002236 EraseInstFromFunction(*II);
2237 return BinaryOperator::CreateMul(LHS, RHS);
2238 }
2239 break;
2240 default:
2241 break;
2242 }
2243 }
2244 }
Frits van Bommel28218aa2010-11-29 21:56:20 +00002245 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2246 // If the (non-volatile) load only has one use, we can rewrite this to a
2247 // load from a GEP. This reduces the size of the load.
2248 // FIXME: If a load is used only by extractvalue instructions then this
2249 // could be done regardless of having multiple uses.
Eli Friedman8bc586e2011-08-15 22:09:40 +00002250 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel28218aa2010-11-29 21:56:20 +00002251 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2252 SmallVector<Value*, 4> Indices;
2253 // Prefix an i32 0 since we need the first element.
2254 Indices.push_back(Builder->getInt32(0));
2255 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2256 I != E; ++I)
2257 Indices.push_back(Builder->getInt32(*I));
2258
2259 // We need to insert these at the location of the old load, not at that of
2260 // the extractvalue.
2261 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad040dd822011-07-22 08:16:57 +00002262 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel28218aa2010-11-29 21:56:20 +00002263 // Returning the load directly will cause the main loop to insert it in
2264 // the wrong spot, so use ReplaceInstUsesWith().
2265 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2266 }
2267 // We could simplify extracts from other values. Note that nested extracts may
2268 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002269 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel28218aa2010-11-29 21:56:20 +00002270 // the value inserted, if appropriate. Similarly for extracts from single-use
2271 // loads: extract (extract (load)) will be translated to extract (load (gep))
2272 // and if again single-use then via load (gep (gep)) to load (gep).
2273 // However, double extracts from e.g. function arguments or return values
2274 // aren't handled yet.
Craig Topperf40110f2014-04-25 05:29:35 +00002275 return nullptr;
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002276}
2277
Duncan Sands5c055792011-09-30 13:12:16 +00002278/// isCatchAll - Return 'true' if the given typeinfo will match anything.
Reid Kleckner4af64152015-01-28 01:17:38 +00002279static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
Duncan Sands5c055792011-09-30 13:12:16 +00002280 switch (Personality) {
Reid Kleckner4af64152015-01-28 01:17:38 +00002281 case EHPersonality::GNU_C:
2282 // The GCC C EH personality only exists to support cleanups, so it's not
2283 // clear what the semantics of catch clauses are.
Duncan Sands5c055792011-09-30 13:12:16 +00002284 return false;
Reid Kleckner4af64152015-01-28 01:17:38 +00002285 case EHPersonality::Unknown:
2286 return false;
2287 case EHPersonality::GNU_Ada:
Duncan Sands5c055792011-09-30 13:12:16 +00002288 // While __gnat_all_others_value will match any Ada exception, it doesn't
2289 // match foreign exceptions (or didn't, before gcc-4.7).
2290 return false;
Reid Kleckner4af64152015-01-28 01:17:38 +00002291 case EHPersonality::GNU_CXX:
2292 case EHPersonality::GNU_ObjC:
Reid Kleckner96d01132015-02-11 01:23:16 +00002293 case EHPersonality::MSVC_X86SEH:
Reid Kleckner4af64152015-01-28 01:17:38 +00002294 case EHPersonality::MSVC_Win64SEH:
2295 case EHPersonality::MSVC_CXX:
Duncan Sands5c055792011-09-30 13:12:16 +00002296 return TypeInfo->isNullValue();
2297 }
Reid Kleckner4af64152015-01-28 01:17:38 +00002298 llvm_unreachable("invalid enum");
Duncan Sands5c055792011-09-30 13:12:16 +00002299}
2300
2301static bool shorter_filter(const Value *LHS, const Value *RHS) {
2302 return
2303 cast<ArrayType>(LHS->getType())->getNumElements()
2304 <
2305 cast<ArrayType>(RHS->getType())->getNumElements();
2306}
2307
2308Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2309 // The logic here should be correct for any real-world personality function.
2310 // However if that turns out not to be true, the offending logic can always
2311 // be conditioned on the personality function, like the catch-all logic is.
Reid Kleckner96d01132015-02-11 01:23:16 +00002312 EHPersonality Personality = classifyEHPersonality(LI.getPersonalityFn());
Duncan Sands5c055792011-09-30 13:12:16 +00002313
2314 // Simplify the list of clauses, eg by removing repeated catch clauses
2315 // (these are often created by inlining).
2316 bool MakeNewInstruction = false; // If true, recreate using the following:
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002317 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
Duncan Sands5c055792011-09-30 13:12:16 +00002318 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2319
2320 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2321 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2322 bool isLastClause = i + 1 == e;
2323 if (LI.isCatch(i)) {
2324 // A catch clause.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002325 Constant *CatchClause = LI.getClause(i);
Rafael Espindola78598d92014-06-04 19:01:48 +00002326 Constant *TypeInfo = CatchClause->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002327
2328 // If we already saw this clause, there is no point in having a second
2329 // copy of it.
David Blaikie70573dc2014-11-19 07:49:26 +00002330 if (AlreadyCaught.insert(TypeInfo).second) {
Duncan Sands5c055792011-09-30 13:12:16 +00002331 // This catch clause was not already seen.
2332 NewClauses.push_back(CatchClause);
2333 } else {
2334 // Repeated catch clause - drop the redundant copy.
2335 MakeNewInstruction = true;
2336 }
2337
2338 // If this is a catch-all then there is no point in keeping any following
2339 // clauses or marking the landingpad as having a cleanup.
2340 if (isCatchAll(Personality, TypeInfo)) {
2341 if (!isLastClause)
2342 MakeNewInstruction = true;
2343 CleanupFlag = false;
2344 break;
2345 }
2346 } else {
2347 // A filter clause. If any of the filter elements were already caught
2348 // then they can be dropped from the filter. It is tempting to try to
2349 // exploit the filter further by saying that any typeinfo that does not
2350 // occur in the filter can't be caught later (and thus can be dropped).
2351 // However this would be wrong, since typeinfos can match without being
2352 // equal (for example if one represents a C++ class, and the other some
2353 // class derived from it).
2354 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002355 Constant *FilterClause = LI.getClause(i);
Duncan Sands5c055792011-09-30 13:12:16 +00002356 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2357 unsigned NumTypeInfos = FilterType->getNumElements();
2358
2359 // An empty filter catches everything, so there is no point in keeping any
2360 // following clauses or marking the landingpad as having a cleanup. By
2361 // dealing with this case here the following code is made a bit simpler.
2362 if (!NumTypeInfos) {
2363 NewClauses.push_back(FilterClause);
2364 if (!isLastClause)
2365 MakeNewInstruction = true;
2366 CleanupFlag = false;
2367 break;
2368 }
2369
2370 bool MakeNewFilter = false; // If true, make a new filter.
2371 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2372 if (isa<ConstantAggregateZero>(FilterClause)) {
2373 // Not an empty filter - it contains at least one null typeinfo.
2374 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2375 Constant *TypeInfo =
2376 Constant::getNullValue(FilterType->getElementType());
2377 // If this typeinfo is a catch-all then the filter can never match.
2378 if (isCatchAll(Personality, TypeInfo)) {
2379 // Throw the filter away.
2380 MakeNewInstruction = true;
2381 continue;
2382 }
2383
2384 // There is no point in having multiple copies of this typeinfo, so
2385 // discard all but the first copy if there is more than one.
2386 NewFilterElts.push_back(TypeInfo);
2387 if (NumTypeInfos > 1)
2388 MakeNewFilter = true;
2389 } else {
2390 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2391 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2392 NewFilterElts.reserve(NumTypeInfos);
2393
2394 // Remove any filter elements that were already caught or that already
2395 // occurred in the filter. While there, see if any of the elements are
2396 // catch-alls. If so, the filter can be discarded.
2397 bool SawCatchAll = false;
2398 for (unsigned j = 0; j != NumTypeInfos; ++j) {
Rafael Espindola78598d92014-06-04 19:01:48 +00002399 Constant *Elt = Filter->getOperand(j);
2400 Constant *TypeInfo = Elt->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002401 if (isCatchAll(Personality, TypeInfo)) {
2402 // This element is a catch-all. Bail out, noting this fact.
2403 SawCatchAll = true;
2404 break;
2405 }
2406 if (AlreadyCaught.count(TypeInfo))
2407 // Already caught by an earlier clause, so having it in the filter
2408 // is pointless.
2409 continue;
2410 // There is no point in having multiple copies of the same typeinfo in
2411 // a filter, so only add it if we didn't already.
David Blaikie70573dc2014-11-19 07:49:26 +00002412 if (SeenInFilter.insert(TypeInfo).second)
Duncan Sands5c055792011-09-30 13:12:16 +00002413 NewFilterElts.push_back(cast<Constant>(Elt));
2414 }
2415 // A filter containing a catch-all cannot match anything by definition.
2416 if (SawCatchAll) {
2417 // Throw the filter away.
2418 MakeNewInstruction = true;
2419 continue;
2420 }
2421
2422 // If we dropped something from the filter, make a new one.
2423 if (NewFilterElts.size() < NumTypeInfos)
2424 MakeNewFilter = true;
2425 }
2426 if (MakeNewFilter) {
2427 FilterType = ArrayType::get(FilterType->getElementType(),
2428 NewFilterElts.size());
2429 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2430 MakeNewInstruction = true;
2431 }
2432
2433 NewClauses.push_back(FilterClause);
2434
2435 // If the new filter is empty then it will catch everything so there is
2436 // no point in keeping any following clauses or marking the landingpad
2437 // as having a cleanup. The case of the original filter being empty was
2438 // already handled above.
2439 if (MakeNewFilter && !NewFilterElts.size()) {
2440 assert(MakeNewInstruction && "New filter but not a new instruction!");
2441 CleanupFlag = false;
2442 break;
2443 }
2444 }
2445 }
2446
2447 // If several filters occur in a row then reorder them so that the shortest
2448 // filters come first (those with the smallest number of elements). This is
2449 // advantageous because shorter filters are more likely to match, speeding up
2450 // unwinding, but mostly because it increases the effectiveness of the other
2451 // filter optimizations below.
2452 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2453 unsigned j;
2454 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2455 for (j = i; j != e; ++j)
2456 if (!isa<ArrayType>(NewClauses[j]->getType()))
2457 break;
2458
2459 // Check whether the filters are already sorted by length. We need to know
2460 // if sorting them is actually going to do anything so that we only make a
2461 // new landingpad instruction if it does.
2462 for (unsigned k = i; k + 1 < j; ++k)
2463 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2464 // Not sorted, so sort the filters now. Doing an unstable sort would be
2465 // correct too but reordering filters pointlessly might confuse users.
2466 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2467 shorter_filter);
2468 MakeNewInstruction = true;
2469 break;
2470 }
2471
2472 // Look for the next batch of filters.
2473 i = j + 1;
2474 }
2475
2476 // If typeinfos matched if and only if equal, then the elements of a filter L
2477 // that occurs later than a filter F could be replaced by the intersection of
2478 // the elements of F and L. In reality two typeinfos can match without being
2479 // equal (for example if one represents a C++ class, and the other some class
2480 // derived from it) so it would be wrong to perform this transform in general.
2481 // However the transform is correct and useful if F is a subset of L. In that
2482 // case L can be replaced by F, and thus removed altogether since repeating a
2483 // filter is pointless. So here we look at all pairs of filters F and L where
2484 // L follows F in the list of clauses, and remove L if every element of F is
2485 // an element of L. This can occur when inlining C++ functions with exception
2486 // specifications.
2487 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2488 // Examine each filter in turn.
2489 Value *Filter = NewClauses[i];
2490 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2491 if (!FTy)
2492 // Not a filter - skip it.
2493 continue;
2494 unsigned FElts = FTy->getNumElements();
2495 // Examine each filter following this one. Doing this backwards means that
2496 // we don't have to worry about filters disappearing under us when removed.
2497 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2498 Value *LFilter = NewClauses[j];
2499 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2500 if (!LTy)
2501 // Not a filter - skip it.
2502 continue;
2503 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2504 // an element of LFilter, then discard LFilter.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002505 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
Duncan Sands5c055792011-09-30 13:12:16 +00002506 // If Filter is empty then it is a subset of LFilter.
2507 if (!FElts) {
2508 // Discard LFilter.
2509 NewClauses.erase(J);
2510 MakeNewInstruction = true;
2511 // Move on to the next filter.
2512 continue;
2513 }
2514 unsigned LElts = LTy->getNumElements();
2515 // If Filter is longer than LFilter then it cannot be a subset of it.
2516 if (FElts > LElts)
2517 // Move on to the next filter.
2518 continue;
2519 // At this point we know that LFilter has at least one element.
2520 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002521 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands5c055792011-09-30 13:12:16 +00002522 // already know that Filter is not longer than LFilter).
2523 if (isa<ConstantAggregateZero>(Filter)) {
2524 assert(FElts <= LElts && "Should have handled this case earlier!");
2525 // Discard LFilter.
2526 NewClauses.erase(J);
2527 MakeNewInstruction = true;
2528 }
2529 // Move on to the next filter.
2530 continue;
2531 }
2532 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2533 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2534 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002535 // LFilter iff LFilter contains a zero.
Duncan Sands5c055792011-09-30 13:12:16 +00002536 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2537 for (unsigned l = 0; l != LElts; ++l)
2538 if (LArray->getOperand(l)->isNullValue()) {
2539 // LFilter contains a zero - discard it.
2540 NewClauses.erase(J);
2541 MakeNewInstruction = true;
2542 break;
2543 }
2544 // Move on to the next filter.
2545 continue;
2546 }
2547 // At this point we know that both filters are ConstantArrays. Loop over
2548 // operands to see whether every element of Filter is also an element of
2549 // LFilter. Since filters tend to be short this is probably faster than
2550 // using a method that scales nicely.
2551 ConstantArray *FArray = cast<ConstantArray>(Filter);
2552 bool AllFound = true;
2553 for (unsigned f = 0; f != FElts; ++f) {
2554 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2555 AllFound = false;
2556 for (unsigned l = 0; l != LElts; ++l) {
2557 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2558 if (LTypeInfo == FTypeInfo) {
2559 AllFound = true;
2560 break;
2561 }
2562 }
2563 if (!AllFound)
2564 break;
2565 }
2566 if (AllFound) {
2567 // Discard LFilter.
2568 NewClauses.erase(J);
2569 MakeNewInstruction = true;
2570 }
2571 // Move on to the next filter.
2572 }
2573 }
2574
2575 // If we changed any of the clauses, replace the old landingpad instruction
2576 // with a new one.
2577 if (MakeNewInstruction) {
2578 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2579 LI.getPersonalityFn(),
2580 NewClauses.size());
2581 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2582 NLI->addClause(NewClauses[i]);
2583 // A landing pad with no clauses must have the cleanup flag set. It is
2584 // theoretically possible, though highly unlikely, that we eliminated all
2585 // clauses. If so, force the cleanup flag to true.
2586 if (NewClauses.empty())
2587 CleanupFlag = true;
2588 NLI->setCleanup(CleanupFlag);
2589 return NLI;
2590 }
2591
2592 // Even if none of the clauses changed, we may nonetheless have understood
2593 // that the cleanup flag is pointless. Clear it if so.
2594 if (LI.isCleanup() != CleanupFlag) {
2595 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2596 LI.setCleanup(CleanupFlag);
2597 return &LI;
2598 }
2599
Craig Topperf40110f2014-04-25 05:29:35 +00002600 return nullptr;
Duncan Sands5c055792011-09-30 13:12:16 +00002601}
2602
Chris Lattner39c98bb2004-12-08 23:43:58 +00002603/// TryToSinkInstruction - Try to move the specified instruction from its
2604/// current block into the beginning of DestBlock, which can only happen if it's
2605/// safe to move the instruction past all of the instructions between it and the
2606/// end of its block.
2607static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2608 assert(I->hasOneUse() && "Invariants didn't hold!");
2609
Bill Wendlinge86965e2011-08-15 21:14:31 +00002610 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlinga9ee09f2011-08-17 20:36:44 +00002611 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2612 isa<TerminatorInst>(I))
Chris Lattnera4ee1f52008-05-09 15:07:33 +00002613 return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002614
Chris Lattner39c98bb2004-12-08 23:43:58 +00002615 // Do not sink alloca instructions out of the entry block.
Dan Gohmandcb291f2007-03-22 16:38:57 +00002616 if (isa<AllocaInst>(I) && I->getParent() ==
2617 &DestBlock->getParent()->getEntryBlock())
Chris Lattner39c98bb2004-12-08 23:43:58 +00002618 return false;
2619
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002620 // We can only sink load instructions if there is nothing between the load and
2621 // the end of block that could change the value.
Chris Lattner49a594e2008-05-08 17:37:37 +00002622 if (I->mayReadFromMemory()) {
2623 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002624 Scan != E; ++Scan)
2625 if (Scan->mayWriteToMemory())
2626 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002627 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002628
Bill Wendling8ddfc092011-08-16 20:45:24 +00002629 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner9f269e42005-08-08 19:11:57 +00002630 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00002631 ++NumSunkInst;
2632 return true;
2633}
2634
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002635bool InstCombiner::run() {
Chris Lattner97fd3592009-08-30 05:55:36 +00002636 while (!Worklist.isEmpty()) {
2637 Instruction *I = Worklist.RemoveOne();
Craig Topperf40110f2014-04-25 05:29:35 +00002638 if (I == nullptr) continue; // skip null values.
Chris Lattnerca081252001-12-14 16:52:21 +00002639
Chris Lattner1443bc52006-05-11 17:11:52 +00002640 // Check to see if we can DCE the instruction.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002641 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002642 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner905976b2009-08-30 06:13:40 +00002643 EraseInstFromFunction(*I);
2644 ++NumDeadInst;
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002645 MadeIRChange = true;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002646 continue;
2647 }
Chris Lattner99f48c62002-09-02 04:59:56 +00002648
Chris Lattner1443bc52006-05-11 17:11:52 +00002649 // Instruction isn't dead, see if we can constant propagate it.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002650 if (!I->use_empty() && isa<Constant>(I->getOperand(0))) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002651 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002652 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnercd517ff2005-01-28 19:32:01 +00002653
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002654 // Add operands to the worklist.
2655 ReplaceInstUsesWith(*I, C);
2656 ++NumConstProp;
2657 EraseInstFromFunction(*I);
2658 MadeIRChange = true;
2659 continue;
2660 }
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002661 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002662
Chris Lattner39c98bb2004-12-08 23:43:58 +00002663 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfa1211f2008-07-23 00:34:11 +00002664 if (I->hasOneUse()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002665 BasicBlock *BB = I->getParent();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002666 Instruction *UserInst = cast<Instruction>(*I->user_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002667 BasicBlock *UserParent;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002668
Chris Lattner6b9044d2009-10-14 15:21:58 +00002669 // Get the block the use occurs in.
2670 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
Chandler Carruthcdf47882014-03-09 03:16:01 +00002671 UserParent = PN->getIncomingBlock(*I->use_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002672 else
2673 UserParent = UserInst->getParent();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002674
Chris Lattner39c98bb2004-12-08 23:43:58 +00002675 if (UserParent != BB) {
2676 bool UserIsSuccessor = false;
2677 // See if the user is one of our successors.
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00002678 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2679 if (*SI == UserParent) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002680 UserIsSuccessor = true;
2681 break;
2682 }
2683
2684 // If the user is one of our immediate successors, and if that successor
2685 // only has us as a predecessors (we'd have to split the critical edge
2686 // otherwise), we can keep going.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002687 if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002688 // Okay, the CFG is simple enough, try to sink this instruction.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002689 if (TryToSinkInstruction(I, UserParent)) {
2690 MadeIRChange = true;
2691 // We'll add uses of the sunk instruction below, but since sinking
2692 // can expose opportunities for it's *operands* add them to the
2693 // worklist
2694 for (Use &U : I->operands())
2695 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2696 Worklist.Add(OpI);
2697 }
2698 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002699 }
2700 }
2701
Chris Lattner022a5822009-08-30 07:44:24 +00002702 // Now that we have an instruction, try combining it to simplify it.
2703 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedman96254a02011-05-18 01:28:27 +00002704 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002705
Reid Spencer755d0e72007-03-26 17:44:01 +00002706#ifndef NDEBUG
2707 std::string OrigI;
2708#endif
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002709 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002710 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskindafd08e2009-10-08 00:12:24 +00002711
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002712 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00002713 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00002714 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00002715 if (Result != I) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002716 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002717 << " New = " << *Result << '\n');
2718
Eli Friedman35211c62011-05-27 00:19:40 +00002719 if (!I->getDebugLoc().isUnknown())
2720 Result->setDebugLoc(I->getDebugLoc());
Chris Lattner396dbfe2004-06-09 05:08:07 +00002721 // Everything uses the new instruction now.
2722 I->replaceAllUsesWith(Result);
2723
Jim Grosbache7abae02011-10-05 20:53:43 +00002724 // Move the name to the new instruction first.
2725 Result->takeName(I);
2726
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002727 // Push the new instruction and any users onto the worklist.
2728 Worklist.Add(Result);
2729 Worklist.AddUsersToWorkList(*Result);
2730
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002731 // Insert the new instruction into the basic block...
2732 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +00002733 BasicBlock::iterator InsertPos = I;
2734
Eli Friedmana49b8282011-11-01 04:49:29 +00002735 // If we replace a PHI with something that isn't a PHI, fix up the
2736 // insertion point.
2737 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2738 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattner7515cab2004-11-14 19:13:23 +00002739
2740 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002741
Chris Lattner905976b2009-08-30 06:13:40 +00002742 EraseInstFromFunction(*I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002743 } else {
Evan Chenga4ed8a52007-03-27 16:44:48 +00002744#ifndef NDEBUG
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002745 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002746 << " New = " << *I << '\n');
Evan Chenga4ed8a52007-03-27 16:44:48 +00002747#endif
Chris Lattner7d2a5392004-03-13 23:54:27 +00002748
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002749 // If the instruction was modified, it's possible that it is now dead.
2750 // if so, remove it.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002751 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner905976b2009-08-30 06:13:40 +00002752 EraseInstFromFunction(*I);
Chris Lattner396dbfe2004-06-09 05:08:07 +00002753 } else {
Chris Lattner905976b2009-08-30 06:13:40 +00002754 Worklist.Add(I);
Chris Lattnerbacd05c2009-08-30 06:22:51 +00002755 Worklist.AddUsersToWorkList(*I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002756 }
Chris Lattner053c0932002-05-14 15:24:07 +00002757 }
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002758 MadeIRChange = true;
Chris Lattnerca081252001-12-14 16:52:21 +00002759 }
2760 }
2761
Chris Lattner97fd3592009-08-30 05:55:36 +00002762 Worklist.Zap();
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002763 return MadeIRChange;
Chris Lattner04805fa2002-02-26 21:46:54 +00002764}
2765
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002766/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2767/// all reachable code to the worklist.
2768///
2769/// This has a couple of tricks to make the code faster and more powerful. In
2770/// particular, we constant fold and DCE instructions as we go, to avoid adding
2771/// them to the worklist (this significantly speeds up instcombine on code where
2772/// many instructions are dead or constant). Additionally, if we find a branch
2773/// whose condition is a known constant, we only visit the reachable successors.
2774///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002775static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2776 SmallPtrSetImpl<BasicBlock *> &Visited,
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002777 InstCombineWorklist &ICWorklist,
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002778 const TargetLibraryInfo *TLI) {
2779 bool MadeIRChange = false;
2780 SmallVector<BasicBlock*, 256> Worklist;
2781 Worklist.push_back(BB);
Hal Finkel60db0582014-09-07 18:57:58 +00002782
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002783 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2784 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002785
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002786 do {
2787 BB = Worklist.pop_back_val();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002788
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002789 // We have now visited this block! If we've already been here, ignore it.
2790 if (!Visited.insert(BB).second)
2791 continue;
Chris Lattner960a5432007-03-03 02:04:50 +00002792
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002793 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2794 Instruction *Inst = BBI++;
Devang Patelaad34d82011-03-17 22:18:16 +00002795
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002796 // DCE instruction if trivially dead.
2797 if (isInstructionTriviallyDead(Inst, TLI)) {
2798 ++NumDeadInst;
2799 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2800 Inst->eraseFromParent();
2801 continue;
2802 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002803
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002804 // ConstantProp instruction if trivially constant.
2805 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2806 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2807 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2808 << *Inst << '\n');
2809 Inst->replaceAllUsesWith(C);
2810 ++NumConstProp;
2811 Inst->eraseFromParent();
2812 continue;
2813 }
2814
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002815 // See if we can constant fold its operands.
2816 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
2817 ++i) {
2818 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2819 if (CE == nullptr)
2820 continue;
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002821
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002822 Constant *&FoldRes = FoldedConstants[CE];
2823 if (!FoldRes)
2824 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2825 if (!FoldRes)
2826 FoldRes = CE;
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002827
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002828 if (FoldRes != CE) {
2829 *i = FoldRes;
2830 MadeIRChange = true;
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002831 }
2832 }
2833
2834 InstrsForInstCombineWorklist.push_back(Inst);
2835 }
2836
2837 // Recursively visit successors. If this is a branch or switch on a
2838 // constant, only visit the reachable successor.
2839 TerminatorInst *TI = BB->getTerminator();
2840 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2841 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2842 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2843 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2844 Worklist.push_back(ReachableBB);
2845 continue;
2846 }
2847 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2848 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2849 // See if this is an explicit destination.
2850 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2851 i != e; ++i)
2852 if (i.getCaseValue() == Cond) {
2853 BasicBlock *ReachableBB = i.getCaseSuccessor();
2854 Worklist.push_back(ReachableBB);
2855 continue;
2856 }
2857
2858 // Otherwise it is the default destination.
2859 Worklist.push_back(SI->getDefaultDest());
2860 continue;
2861 }
2862 }
2863
2864 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2865 Worklist.push_back(TI->getSuccessor(i));
2866 } while (!Worklist.empty());
2867
2868 // Once we've found all of the instructions to add to instcombine's worklist,
2869 // add them in reverse order. This way instcombine will visit from the top
2870 // of the function down. This jives well with the way that it adds all uses
2871 // of instructions to the worklist after doing a transformation, thus avoiding
2872 // some N^2 behavior in pathological cases.
2873 ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2874 InstrsForInstCombineWorklist.size());
2875
2876 return MadeIRChange;
2877}
2878
2879/// \brief Populate the IC worklist from a function, and prune any dead basic
2880/// blocks discovered in the process.
2881///
2882/// This also does basic constant propagation and other forward fixing to make
2883/// the combiner itself run much faster.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002884static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002885 TargetLibraryInfo *TLI,
2886 InstCombineWorklist &ICWorklist) {
2887 bool MadeIRChange = false;
2888
2889 // Do a depth-first traversal of the function, populate the worklist with
2890 // the reachable instructions. Ignore blocks that are not reachable. Keep
2891 // track of which blocks we visit.
2892 SmallPtrSet<BasicBlock *, 64> Visited;
2893 MadeIRChange |=
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002894 AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI);
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002895
2896 // Do a quick scan over the function. If we find any blocks that are
2897 // unreachable, remove any instructions inside of them. This prevents
2898 // the instcombine code from having to deal with some bad special cases.
2899 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2900 if (Visited.count(BB))
2901 continue;
2902
2903 // Delete the instructions backwards, as it has a reduced likelihood of
2904 // having to update as many def-use and use-def chains.
2905 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2906 while (EndInst != BB->begin()) {
2907 // Delete the next to last instruction.
2908 BasicBlock::iterator I = EndInst;
2909 Instruction *Inst = --I;
2910 if (!Inst->use_empty())
2911 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2912 if (isa<LandingPadInst>(Inst)) {
2913 EndInst = Inst;
2914 continue;
2915 }
2916 if (!isa<DbgInfoIntrinsic>(Inst)) {
2917 ++NumDeadInst;
2918 MadeIRChange = true;
2919 }
2920 Inst->eraseFromParent();
2921 }
2922 }
2923
2924 return MadeIRChange;
Chris Lattner960a5432007-03-03 02:04:50 +00002925}
2926
Mehdi Amini46a43552015-03-04 18:43:29 +00002927static bool
2928combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
2929 AssumptionCache &AC, TargetLibraryInfo &TLI,
2930 DominatorTree &DT, LoopInfo *LI = nullptr) {
Chandler Carruth83ba2692015-01-24 04:19:17 +00002931 // Minimizing size?
Duncan P. N. Exon Smith2c79ad92015-02-14 01:11:29 +00002932 bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002933 auto &DL = F.getParent()->getDataLayout();
Chandler Carruth83ba2692015-01-24 04:19:17 +00002934
2935 /// Builder - This is an IRBuilder that automatically inserts new
2936 /// instructions into the worklist when they are created.
2937 IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002938 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
Chandler Carruth83ba2692015-01-24 04:19:17 +00002939
2940 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2941 // by instcombiner.
2942 bool DbgDeclaresChanged = LowerDbgDeclare(F);
2943
2944 // Iterate while there is work to do.
2945 int Iteration = 0;
2946 for (;;) {
2947 ++Iteration;
2948 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2949 << F.getName() << "\n");
2950
2951 bool Changed = false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002952 if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist))
Chandler Carruth83ba2692015-01-24 04:19:17 +00002953 Changed = true;
2954
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002955 InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI);
Chandler Carruth83ba2692015-01-24 04:19:17 +00002956 if (IC.run())
2957 Changed = true;
2958
2959 if (!Changed)
2960 break;
2961 }
2962
2963 return DbgDeclaresChanged || Iteration > 1;
2964}
2965
2966PreservedAnalyses InstCombinePass::run(Function &F,
2967 AnalysisManager<Function> *AM) {
Chandler Carruth83ba2692015-01-24 04:19:17 +00002968 auto &AC = AM->getResult<AssumptionAnalysis>(F);
2969 auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
2970 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
2971
2972 auto *LI = AM->getCachedResult<LoopAnalysis>(F);
2973
Mehdi Amini46a43552015-03-04 18:43:29 +00002974 if (!combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI))
Chandler Carruth83ba2692015-01-24 04:19:17 +00002975 // No changes, all analyses are preserved.
2976 return PreservedAnalyses::all();
2977
2978 // Mark all the analyses that instcombine updates as preserved.
2979 // FIXME: Need a way to preserve CFG analyses here!
2980 PreservedAnalyses PA;
2981 PA.preserve<DominatorTreeAnalysis>();
2982 return PA;
2983}
2984
Chandler Carruth1edb9d62015-01-20 22:44:35 +00002985namespace {
2986/// \brief The legacy pass manager's instcombine pass.
2987///
2988/// This is a basic whole-function wrapper around the instcombine utility. It
2989/// will try to combine all instructions in the function.
2990class InstructionCombiningPass : public FunctionPass {
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002991 InstCombineWorklist Worklist;
Chandler Carruth1edb9d62015-01-20 22:44:35 +00002992
2993public:
2994 static char ID; // Pass identification, replacement for typeid
2995
2996 InstructionCombiningPass() : FunctionPass(ID) {
2997 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
2998 }
2999
3000 void getAnalysisUsage(AnalysisUsage &AU) const override;
3001 bool runOnFunction(Function &F) override;
3002};
3003}
3004
3005void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3006 AU.setPreservesCFG();
3007 AU.addRequired<AssumptionCacheTracker>();
3008 AU.addRequired<TargetLibraryInfoWrapperPass>();
3009 AU.addRequired<DominatorTreeWrapperPass>();
3010 AU.addPreserved<DominatorTreeWrapperPass>();
3011}
3012
3013bool InstructionCombiningPass::runOnFunction(Function &F) {
3014 if (skipOptnoneFunction(F))
3015 return false;
3016
Chandler Carruthdf5747a2015-01-21 11:38:17 +00003017 // Required analyses.
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003018 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003019 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3020 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chandler Carruthdf5747a2015-01-21 11:38:17 +00003021
3022 // Optional analyses.
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003023 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3024 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3025
Mehdi Amini46a43552015-03-04 18:43:29 +00003026 return combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI);
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003027}
3028
3029char InstructionCombiningPass::ID = 0;
3030INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3031 "Combine redundant instructions", false, false)
3032INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3033INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3034INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3035INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3036 "Combine redundant instructions", false, false)
3037
3038// Initialization Routines
3039void llvm::initializeInstCombine(PassRegistry &Registry) {
3040 initializeInstructionCombiningPassPass(Registry);
3041}
3042
3043void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3044 initializeInstructionCombiningPassPass(*unwrap(R));
3045}
3046
Brian Gaeke38b79e82004-07-27 17:43:21 +00003047FunctionPass *llvm::createInstructionCombiningPass() {
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003048 return new InstructionCombiningPass();
Chris Lattner04805fa2002-02-26 21:46:54 +00003049}