blob: 9cb512a8e229e637055cd0de61d64f18dae966f2 [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Hexagon implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
Tony Linthicum1213a7a2011-12-12 21:14:40 +000014#include "HexagonInstrInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000015#include "Hexagon.h"
Craig Topperb25fda92012-03-17 18:46:09 +000016#include "HexagonRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000017#include "HexagonSubtarget.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000018#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000020#include "llvm/CodeGen/DFAPacketizer.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000021#include "llvm/CodeGen/MachineFrameInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/CodeGen/MachineInstrBuilder.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000023#include "llvm/CodeGen/MachineMemOperand.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000025#include "llvm/CodeGen/PseudoSourceValue.h"
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000026#include "llvm/MC/MCAsmInfo.h"
Jyotsna Verma5ed51812013-05-01 21:37:34 +000027#include "llvm/Support/Debug.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000028#include "llvm/Support/MathExtras.h"
Reid Kleckner1c76f1552013-05-03 00:54:56 +000029#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekaa935752015-11-24 15:11:13 +000030#include <cctype>
Tony Linthicum1213a7a2011-12-12 21:14:40 +000031
Tony Linthicum1213a7a2011-12-12 21:14:40 +000032using namespace llvm;
33
Chandler Carruthe96dd892014-04-21 22:55:11 +000034#define DEBUG_TYPE "hexagon-instrinfo"
35
Chandler Carruthd174b722014-04-22 02:03:14 +000036#define GET_INSTRINFO_CTOR_DTOR
37#define GET_INSTRMAP_INFO
38#include "HexagonGenInstrInfo.inc"
39#include "HexagonGenDFAPacketizer.inc"
40
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000041using namespace llvm;
42
43static cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
44 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
45 "packetization boundary."));
46
47static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
48 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
49
50static cl::opt<bool> EnableTimingClassLatency(
51 "enable-timing-class-latency", cl::Hidden, cl::init(false),
52 cl::desc("Enable timing class latency"));
53
54static cl::opt<bool> EnableALUForwarding(
55 "enable-alu-forwarding", cl::Hidden, cl::init(true),
56 cl::desc("Enable vec alu forwarding"));
57
58static cl::opt<bool> EnableACCForwarding(
59 "enable-acc-forwarding", cl::Hidden, cl::init(true),
60 cl::desc("Enable vec acc forwarding"));
61
62static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
63 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
64
Tony Linthicum1213a7a2011-12-12 21:14:40 +000065///
66/// Constants for Hexagon instructions.
67///
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000068const int Hexagon_MEMV_OFFSET_MAX_128B = 2047; // #s7
69const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
70const int Hexagon_MEMV_OFFSET_MAX = 1023; // #s6
71const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
Tony Linthicum1213a7a2011-12-12 21:14:40 +000072const int Hexagon_MEMW_OFFSET_MAX = 4095;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000073const int Hexagon_MEMW_OFFSET_MIN = -4096;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000074const int Hexagon_MEMD_OFFSET_MAX = 8191;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000075const int Hexagon_MEMD_OFFSET_MIN = -8192;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000076const int Hexagon_MEMH_OFFSET_MAX = 2047;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000077const int Hexagon_MEMH_OFFSET_MIN = -2048;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000078const int Hexagon_MEMB_OFFSET_MAX = 1023;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000079const int Hexagon_MEMB_OFFSET_MIN = -1024;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000080const int Hexagon_ADDI_OFFSET_MAX = 32767;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000081const int Hexagon_ADDI_OFFSET_MIN = -32768;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000082const int Hexagon_MEMD_AUTOINC_MAX = 56;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000083const int Hexagon_MEMD_AUTOINC_MIN = -64;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000084const int Hexagon_MEMW_AUTOINC_MAX = 28;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000085const int Hexagon_MEMW_AUTOINC_MIN = -32;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000086const int Hexagon_MEMH_AUTOINC_MAX = 14;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000087const int Hexagon_MEMH_AUTOINC_MIN = -16;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000088const int Hexagon_MEMB_AUTOINC_MAX = 7;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000089const int Hexagon_MEMB_AUTOINC_MIN = -8;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000090const int Hexagon_MEMV_AUTOINC_MAX = 192;
91const int Hexagon_MEMV_AUTOINC_MIN = -256;
92const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
93const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000094
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +000095// Pin the vtable to this file.
96void HexagonInstrInfo::anchor() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +000097
98HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
Eric Christopherc4d31402015-03-10 23:45:55 +000099 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000100 RI() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000101
102
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000103static bool isIntRegForSubInst(unsigned Reg) {
104 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
105 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000106}
107
108
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000109static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
110 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
111 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000112}
113
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000114
115/// Calculate number of instructions excluding the debug instructions.
116static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
117 MachineBasicBlock::const_instr_iterator MIE) {
118 unsigned Count = 0;
119 for (; MIB != MIE; ++MIB) {
120 if (!MIB->isDebugValue())
121 ++Count;
122 }
123 return Count;
124}
125
126
127/// Find the hardware loop instruction used to set-up the specified loop.
128/// On Hexagon, we have two instructions used to set-up the hardware loop
129/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
130/// to indicate the end of a loop.
131static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
132 SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000133 int LOOPi;
134 int LOOPr;
135 if (EndLoopOp == Hexagon::ENDLOOP0) {
136 LOOPi = Hexagon::J2_loop0i;
137 LOOPr = Hexagon::J2_loop0r;
138 } else { // EndLoopOp == Hexagon::EndLOOP1
139 LOOPi = Hexagon::J2_loop1i;
140 LOOPr = Hexagon::J2_loop1r;
141 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000142
Brendon Cahoondf43e682015-05-08 16:16:29 +0000143 // The loop set-up instruction will be in a predecessor block
144 for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
145 PE = BB->pred_end(); PB != PE; ++PB) {
146 // If this has been visited, already skip it.
147 if (!Visited.insert(*PB).second)
148 continue;
149 if (*PB == BB)
150 continue;
151 for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
152 E = (*PB)->instr_rend(); I != E; ++I) {
153 int Opc = I->getOpcode();
154 if (Opc == LOOPi || Opc == LOOPr)
155 return &*I;
156 // We've reached a different loop, which means the loop0 has been removed.
157 if (Opc == EndLoopOp)
158 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000159 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000160 // Check the predecessors for the LOOP instruction.
161 MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
162 if (loop)
163 return loop;
164 }
165 return 0;
166}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000167
Brendon Cahoondf43e682015-05-08 16:16:29 +0000168
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000169/// Gather register def/uses from MI.
170/// This treats possible (predicated) defs as actually happening ones
171/// (conservatively).
172static inline void parseOperands(const MachineInstr *MI,
173 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
174 Defs.clear();
175 Uses.clear();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000176
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000177 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178 const MachineOperand &MO = MI->getOperand(i);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000179
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000180 if (!MO.isReg())
181 continue;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000182
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000183 unsigned Reg = MO.getReg();
184 if (!Reg)
185 continue;
186
187 if (MO.isUse())
188 Uses.push_back(MO.getReg());
189
190 if (MO.isDef())
191 Defs.push_back(MO.getReg());
192 }
193}
194
195
196// Position dependent, so check twice for swap.
197static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
198 switch (Ga) {
199 case HexagonII::HSIG_None:
200 default:
201 return false;
202 case HexagonII::HSIG_L1:
203 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
204 case HexagonII::HSIG_L2:
205 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
206 Gb == HexagonII::HSIG_A);
207 case HexagonII::HSIG_S1:
208 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
209 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
210 case HexagonII::HSIG_S2:
211 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
212 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
213 Gb == HexagonII::HSIG_A);
214 case HexagonII::HSIG_A:
215 return (Gb == HexagonII::HSIG_A);
216 case HexagonII::HSIG_Compound:
217 return (Gb == HexagonII::HSIG_Compound);
218 }
219 return false;
220}
221
222
223
224/// isLoadFromStackSlot - If the specified machine instruction is a direct
225/// load from a stack slot, return the virtual or physical register number of
226/// the destination along with the FrameIndex of the loaded stack slot. If
227/// not, return 0. This predicate must return 0 if the instruction has
228/// any side effects other than loading from the stack slot.
229unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
230 int &FrameIndex) const {
231 switch (MI->getOpcode()) {
232 default: break;
233 case Hexagon::L2_loadri_io:
234 case Hexagon::L2_loadrd_io:
235 case Hexagon::L2_loadrh_io:
236 case Hexagon::L2_loadrb_io:
237 case Hexagon::L2_loadrub_io:
238 if (MI->getOperand(2).isFI() &&
239 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
240 FrameIndex = MI->getOperand(2).getIndex();
241 return MI->getOperand(0).getReg();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000242 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000243 break;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000244 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000245 return 0;
246}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000247
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000248
249/// isStoreToStackSlot - If the specified machine instruction is a direct
250/// store to a stack slot, return the virtual or physical register number of
251/// the source reg along with the FrameIndex of the loaded stack slot. If
252/// not, return 0. This predicate must return 0 if the instruction has
253/// any side effects other than storing to the stack slot.
254unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
255 int &FrameIndex) const {
256 switch (MI->getOpcode()) {
257 default: break;
258 case Hexagon::S2_storeri_io:
259 case Hexagon::S2_storerd_io:
260 case Hexagon::S2_storerh_io:
261 case Hexagon::S2_storerb_io:
262 if (MI->getOperand(2).isFI() &&
263 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
264 FrameIndex = MI->getOperand(0).getIndex();
265 return MI->getOperand(2).getReg();
266 }
267 break;
268 }
269 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000270}
271
272
Brendon Cahoondf43e682015-05-08 16:16:29 +0000273/// This function can analyze one/two way branching only and should (mostly) be
274/// called by target independent side.
275/// First entry is always the opcode of the branching instruction, except when
276/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
277/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
278/// e.g. Jump_c p will have
279/// Cond[0] = Jump_c
280/// Cond[1] = p
281/// HW-loop ENDLOOP:
282/// Cond[0] = ENDLOOP
283/// Cond[1] = MBB
284/// New value jump:
285/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
286/// Cond[1] = R
287/// Cond[2] = Imm
Brendon Cahoondf43e682015-05-08 16:16:29 +0000288///
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000289bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
290 MachineBasicBlock *&TBB,
Brendon Cahoondf43e682015-05-08 16:16:29 +0000291 MachineBasicBlock *&FBB,
292 SmallVectorImpl<MachineOperand> &Cond,
293 bool AllowModify) const {
Craig Topper062a2ba2014-04-25 05:30:21 +0000294 TBB = nullptr;
295 FBB = nullptr;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000296 Cond.clear();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000297
298 // If the block has no terminators, it just falls into the block after it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000299 MachineBasicBlock::instr_iterator I = MBB.instr_end();
300 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000301 return false;
302
303 // A basic block may looks like this:
304 //
305 // [ insn
306 // EH_LABEL
307 // insn
308 // insn
309 // insn
310 // EH_LABEL
311 // insn ]
312 //
313 // It has two succs but does not have a terminator
314 // Don't know how to handle it.
315 do {
316 --I;
317 if (I->isEHLabel())
Brendon Cahoondf43e682015-05-08 16:16:29 +0000318 // Don't analyze EH branches.
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000319 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000320 } while (I != MBB.instr_begin());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000321
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000322 I = MBB.instr_end();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000323 --I;
324
325 while (I->isDebugValue()) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000326 if (I == MBB.instr_begin())
327 return false;
328 --I;
329 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000330
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000331 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
332 I->getOperand(0).isMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000333 // Delete the J2_jump if it's equivalent to a fall-through.
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000334 if (AllowModify && JumpToBlock &&
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000335 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
336 DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
337 I->eraseFromParent();
338 I = MBB.instr_end();
339 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000340 return false;
341 --I;
342 }
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000343 if (!isUnpredicatedTerminator(&*I))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000344 return false;
345
346 // Get the last instruction in the block.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000347 MachineInstr *LastInst = &*I;
Craig Topper062a2ba2014-04-25 05:30:21 +0000348 MachineInstr *SecondLastInst = nullptr;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000349 // Find one more terminator if present.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000350 for (;;) {
351 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000352 if (!SecondLastInst)
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000353 SecondLastInst = &*I;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000354 else
355 // This is a third branch.
356 return true;
357 }
358 if (I == MBB.instr_begin())
359 break;
360 --I;
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000361 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000362
363 int LastOpcode = LastInst->getOpcode();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000364 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
365 // If the branch target is not a basic block, it could be a tail call.
366 // (It is, if the target is a function.)
367 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
368 return true;
369 if (SecLastOpcode == Hexagon::J2_jump &&
370 !SecondLastInst->getOperand(0).isMBB())
371 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000372
373 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000374 bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000375
376 // If there is only one terminator instruction, process it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000377 if (LastInst && !SecondLastInst) {
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000378 if (LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000379 TBB = LastInst->getOperand(0).getMBB();
380 return false;
381 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000382 if (isEndLoopN(LastOpcode)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000383 TBB = LastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000384 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000385 Cond.push_back(LastInst->getOperand(0));
386 return false;
387 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000388 if (LastOpcodeHasJMP_c) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000389 TBB = LastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000390 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000391 Cond.push_back(LastInst->getOperand(0));
392 return false;
393 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000394 // Only supporting rr/ri versions of new-value jumps.
395 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
396 TBB = LastInst->getOperand(2).getMBB();
397 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
398 Cond.push_back(LastInst->getOperand(0));
399 Cond.push_back(LastInst->getOperand(1));
400 return false;
401 }
402 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
403 << " with one jump\n";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000404 // Otherwise, don't know what this is.
405 return true;
406 }
407
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000408 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000409 bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000410 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000411 TBB = SecondLastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000412 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000413 Cond.push_back(SecondLastInst->getOperand(0));
414 FBB = LastInst->getOperand(0).getMBB();
415 return false;
416 }
417
Brendon Cahoondf43e682015-05-08 16:16:29 +0000418 // Only supporting rr/ri versions of new-value jumps.
419 if (SecLastOpcodeHasNVJump &&
420 (SecondLastInst->getNumExplicitOperands() == 3) &&
421 (LastOpcode == Hexagon::J2_jump)) {
422 TBB = SecondLastInst->getOperand(2).getMBB();
423 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
424 Cond.push_back(SecondLastInst->getOperand(0));
425 Cond.push_back(SecondLastInst->getOperand(1));
426 FBB = LastInst->getOperand(0).getMBB();
427 return false;
428 }
429
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000430 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
431 // executed, so remove it.
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000432 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000433 TBB = SecondLastInst->getOperand(0).getMBB();
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000434 I = LastInst->getIterator();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000435 if (AllowModify)
436 I->eraseFromParent();
437 return false;
438 }
439
Brendon Cahoondf43e682015-05-08 16:16:29 +0000440 // If the block ends with an ENDLOOP, and J2_jump, handle it.
441 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000442 TBB = SecondLastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000443 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000444 Cond.push_back(SecondLastInst->getOperand(0));
445 FBB = LastInst->getOperand(0).getMBB();
446 return false;
447 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000448 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
449 << " with two jumps";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000450 // Otherwise, can't handle this.
451 return true;
452}
453
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000454
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000455unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000456 DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000457 MachineBasicBlock::iterator I = MBB.end();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000458 unsigned Count = 0;
459 while (I != MBB.begin()) {
460 --I;
461 if (I->isDebugValue())
462 continue;
463 // Only removing branches from end of MBB.
464 if (!I->isBranch())
465 return Count;
466 if (Count && (I->getOpcode() == Hexagon::J2_jump))
467 llvm_unreachable("Malformed basic block: unconditional branch not last");
468 MBB.erase(&MBB.back());
469 I = MBB.end();
470 ++Count;
Krzysztof Parzyszek78cc36f2015-03-18 15:56:43 +0000471 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000472 return Count;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000473}
474
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000475
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000476unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
477 MachineBasicBlock *TBB, MachineBasicBlock *FBB,
478 ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
479 unsigned BOpc = Hexagon::J2_jump;
480 unsigned BccOpc = Hexagon::J2_jumpt;
481 assert(validateBranchCond(Cond) && "Invalid branching condition");
482 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
483
484 // Check if ReverseBranchCondition has asked to reverse this branch
485 // If we want to reverse the branch an odd number of times, we want
486 // J2_jumpf.
487 if (!Cond.empty() && Cond[0].isImm())
488 BccOpc = Cond[0].getImm();
489
490 if (!FBB) {
491 if (Cond.empty()) {
492 // Due to a bug in TailMerging/CFG Optimization, we need to add a
493 // special case handling of a predicated jump followed by an
494 // unconditional jump. If not, Tail Merging and CFG Optimization go
495 // into an infinite loop.
496 MachineBasicBlock *NewTBB, *NewFBB;
497 SmallVector<MachineOperand, 4> Cond;
498 MachineInstr *Term = MBB.getFirstTerminator();
499 if (Term != MBB.end() && isPredicated(Term) &&
500 !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
501 MachineBasicBlock *NextBB = &*++MBB.getIterator();
502 if (NewTBB == NextBB) {
503 ReverseBranchCondition(Cond);
504 RemoveBranch(MBB);
505 return InsertBranch(MBB, TBB, nullptr, Cond, DL);
506 }
507 }
508 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
509 } else if (isEndLoopN(Cond[0].getImm())) {
510 int EndLoopOp = Cond[0].getImm();
511 assert(Cond[1].isMBB());
512 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
513 // Check for it, and change the BB target if needed.
514 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
515 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
516 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
517 Loop->getOperand(0).setMBB(TBB);
518 // Add the ENDLOOP after the finding the LOOP0.
519 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
520 } else if (isNewValueJump(Cond[0].getImm())) {
521 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
522 // New value jump
523 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
524 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
525 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
526 DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
527 if (Cond[2].isReg()) {
528 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
529 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
530 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
531 } else if(Cond[2].isImm()) {
532 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
533 addImm(Cond[2].getImm()).addMBB(TBB);
534 } else
535 llvm_unreachable("Invalid condition for branching");
536 } else {
537 assert((Cond.size() == 2) && "Malformed cond vector");
538 const MachineOperand &RO = Cond[1];
539 unsigned Flags = getUndefRegState(RO.isUndef());
540 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
541 }
542 return 1;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000543 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000544 assert((!Cond.empty()) &&
545 "Cond. cannot be empty when multiple branchings are required");
546 assert((!isNewValueJump(Cond[0].getImm())) &&
547 "NV-jump cannot be inserted with another branch");
548 // Special case for hardware loops. The condition is a basic block.
549 if (isEndLoopN(Cond[0].getImm())) {
550 int EndLoopOp = Cond[0].getImm();
551 assert(Cond[1].isMBB());
552 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
553 // Check for it, and change the BB target if needed.
554 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
555 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
556 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
557 Loop->getOperand(0).setMBB(TBB);
558 // Add the ENDLOOP after the finding the LOOP0.
559 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
560 } else {
561 const MachineOperand &RO = Cond[1];
562 unsigned Flags = getUndefRegState(RO.isUndef());
563 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000564 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000565 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000566
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000567 return 2;
568}
569
570
571bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
572 unsigned NumCycles, unsigned ExtraPredCycles,
573 BranchProbability Probability) const {
574 return nonDbgBBSize(&MBB) <= 3;
575}
576
577
578bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
579 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
580 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
581 const {
582 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
583}
584
585
586bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
587 unsigned NumInstrs, BranchProbability Probability) const {
588 return NumInstrs <= 4;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000589}
590
591
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000592void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000593 MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
594 unsigned SrcReg, bool KillSrc) const {
595 auto &HRI = getRegisterInfo();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000596 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000597 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000598 return;
599 }
600 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000601 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000602 return;
603 }
604 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
605 // Map Pd = Ps to Pd = or(Ps, Ps).
Colin LeMahieu5cf56322014-12-08 23:55:43 +0000606 BuildMI(MBB, I, DL, get(Hexagon::C2_or),
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000607 DestReg).addReg(SrcReg).addReg(SrcReg);
608 return;
609 }
Sirish Pande8bb97452012-05-12 05:54:15 +0000610 if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
611 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000612 // We can have an overlap between single and double reg: r1:0 = r0.
613 if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
614 // r1:0 = r0
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000615 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000616 Hexagon::subreg_hireg))).addImm(0);
617 } else {
618 // r1:0 = r1 or no overlap.
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000619 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000620 Hexagon::subreg_loreg))).addReg(SrcReg);
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000621 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000622 Hexagon::subreg_hireg))).addImm(0);
623 }
624 return;
625 }
Colin LeMahieu402f7722014-12-19 18:56:10 +0000626 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
Sirish Pande8bb97452012-05-12 05:54:15 +0000627 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Colin LeMahieu0f850bd2014-12-19 20:29:29 +0000628 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000629 return;
Sirish Pande30804c22012-02-15 18:52:27 +0000630 }
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000631 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
632 Hexagon::IntRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000633 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000634 addReg(SrcReg, getKillRegState(KillSrc));
635 return;
636 }
637 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
638 Hexagon::PredRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000639 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000640 addReg(SrcReg, getKillRegState(KillSrc));
641 return;
642 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000643 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
644 Hexagon::IntRegsRegClass.contains(DestReg)) {
645 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
646 addReg(SrcReg, getKillRegState(KillSrc));
647 return;
648 }
649 if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
650 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
651 addReg(SrcReg, getKillRegState(KillSrc));
652 return;
653 }
654 if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
655 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
656 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
657 getKillRegState(KillSrc)).
658 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
659 getKillRegState(KillSrc));
660 return;
661 }
662 if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
663 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
664 addReg(SrcReg).
665 addReg(SrcReg, getKillRegState(KillSrc));
666 return;
667 }
668 if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
669 Hexagon::VectorRegsRegClass.contains(DestReg)) {
670 llvm_unreachable("Unimplemented pred to vec");
671 return;
672 }
673 if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
674 Hexagon::VectorRegsRegClass.contains(SrcReg)) {
675 llvm_unreachable("Unimplemented vec to pred");
676 return;
677 }
678 if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
679 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
680 HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
681 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
682 getKillRegState(KillSrc));
683 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
684 HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
685 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
686 getKillRegState(KillSrc));
687 return;
688 }
Sirish Pande30804c22012-02-15 18:52:27 +0000689
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000690#ifndef NDEBUG
691 // Show the invalid registers to ease debugging.
692 dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
693 << ": " << PrintReg(DestReg, &HRI)
694 << " = " << PrintReg(SrcReg, &HRI) << '\n';
695#endif
Sirish Pande30804c22012-02-15 18:52:27 +0000696 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000697}
698
699
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000700void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
701 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
702 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000703 DebugLoc DL = MBB.findDebugLoc(I);
704 MachineFunction &MF = *MBB.getParent();
705 MachineFrameInfo &MFI = *MF.getFrameInfo();
706 unsigned Align = MFI.getObjectAlignment(FI);
707
Alex Lorenze40c8a22015-08-11 23:09:45 +0000708 MachineMemOperand *MMO = MF.getMachineMemOperand(
709 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
710 MFI.getObjectSize(FI), Align);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000711
Craig Topperc7242e02012-04-20 07:30:17 +0000712 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000713 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000714 .addFrameIndex(FI).addImm(0)
715 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000716 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000717 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000718 .addFrameIndex(FI).addImm(0)
719 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000720 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000721 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
722 .addFrameIndex(FI).addImm(0)
723 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
724 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000725 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000726 }
727}
728
729
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000730void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
731 MachineBasicBlock::iterator I, unsigned DestReg, int FI,
732 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000733 DebugLoc DL = MBB.findDebugLoc(I);
734 MachineFunction &MF = *MBB.getParent();
735 MachineFrameInfo &MFI = *MF.getFrameInfo();
736 unsigned Align = MFI.getObjectAlignment(FI);
737
Alex Lorenze40c8a22015-08-11 23:09:45 +0000738 MachineMemOperand *MMO = MF.getMachineMemOperand(
739 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
740 MFI.getObjectSize(FI), Align);
Craig Topperc7242e02012-04-20 07:30:17 +0000741 if (RC == &Hexagon::IntRegsRegClass) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +0000742 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000743 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000744 } else if (RC == &Hexagon::DoubleRegsRegClass) {
Colin LeMahieu947cd702014-12-23 20:44:59 +0000745 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000746 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000747 } else if (RC == &Hexagon::PredRegsRegClass) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000748 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
749 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
750 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000751 llvm_unreachable("Can't store this register to stack slot");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000752 }
753}
754
755
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000756/// expandPostRAPseudo - This function is called for all pseudo instructions
757/// that remain after register allocation. Many pseudo instructions are
758/// created to help register allocation. This is the place to convert them
759/// into real instructions. The target can edit MI in place, or it can insert
760/// new instructions and erase MI. The function should return true if
761/// anything was changed.
762bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
763 const {
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000764 const HexagonRegisterInfo &HRI = getRegisterInfo();
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000765 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000766 MachineBasicBlock &MBB = *MI->getParent();
767 DebugLoc DL = MI->getDebugLoc();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000768 unsigned Opc = MI->getOpcode();
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +0000769 const unsigned VecOffset = 1;
770 bool Is128B = false;
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000771
772 switch (Opc) {
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000773 case Hexagon::ALIGNA:
774 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000775 .addReg(HRI.getFrameRegister())
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000776 .addImm(-MI->getOperand(1).getImm());
777 MBB.erase(MI);
778 return true;
Krzysztof Parzyszek4eb6d4d2015-11-26 16:54:33 +0000779 case Hexagon::HEXAGON_V6_vassignp_128B:
780 case Hexagon::HEXAGON_V6_vassignp: {
781 unsigned SrcReg = MI->getOperand(1).getReg();
782 unsigned DstReg = MI->getOperand(0).getReg();
783 if (SrcReg != DstReg)
784 copyPhysReg(MBB, MI, DL, DstReg, SrcReg, MI->getOperand(1).isKill());
785 MBB.erase(MI);
786 return true;
787 }
788 case Hexagon::HEXAGON_V6_lo_128B:
789 case Hexagon::HEXAGON_V6_lo: {
790 unsigned SrcReg = MI->getOperand(1).getReg();
791 unsigned DstReg = MI->getOperand(0).getReg();
792 unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
793 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI->getOperand(1).isKill());
794 MBB.erase(MI);
795 MRI.clearKillFlags(SrcSubLo);
796 return true;
797 }
798 case Hexagon::HEXAGON_V6_hi_128B:
799 case Hexagon::HEXAGON_V6_hi: {
800 unsigned SrcReg = MI->getOperand(1).getReg();
801 unsigned DstReg = MI->getOperand(0).getReg();
802 unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
803 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI->getOperand(1).isKill());
804 MBB.erase(MI);
805 MRI.clearKillFlags(SrcSubHi);
806 return true;
807 }
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +0000808 case Hexagon::STrivv_indexed_128B:
809 Is128B = true;
810 case Hexagon::STrivv_indexed: {
811 unsigned SrcReg = MI->getOperand(2).getReg();
812 unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
813 unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
814 unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
815 : Hexagon::V6_vS32b_ai;
816 unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
817 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpcd))
818 .addOperand(MI->getOperand(0))
819 .addImm(MI->getOperand(1).getImm())
820 .addReg(SrcSubLo)
821 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
822 MI1New->getOperand(0).setIsKill(false);
823 BuildMI(MBB, MI, DL, get(NewOpcd))
824 .addOperand(MI->getOperand(0))
825 // The Vectors are indexed in multiples of vector size.
826 .addImm(MI->getOperand(1).getImm()+Offset)
827 .addReg(SrcSubHi)
828 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
829 MBB.erase(MI);
830 return true;
831 }
832 case Hexagon::LDrivv_pseudo_V6_128B:
833 case Hexagon::LDrivv_indexed_128B:
834 Is128B = true;
835 case Hexagon::LDrivv_pseudo_V6:
836 case Hexagon::LDrivv_indexed: {
837 unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
838 : Hexagon::V6_vL32b_ai;
839 unsigned DstReg = MI->getOperand(0).getReg();
840 unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
841 MachineInstr *MI1New =
842 BuildMI(MBB, MI, DL, get(NewOpcd),
843 HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
844 .addOperand(MI->getOperand(1))
845 .addImm(MI->getOperand(2).getImm());
846 MI1New->getOperand(1).setIsKill(false);
847 BuildMI(MBB, MI, DL, get(NewOpcd),
848 HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
849 .addOperand(MI->getOperand(1))
850 // The Vectors are indexed in multiples of vector size.
851 .addImm(MI->getOperand(2).getImm() + Offset)
852 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
853 MBB.erase(MI);
854 return true;
855 }
856 case Hexagon::LDriv_pseudo_V6_128B:
857 Is128B = true;
858 case Hexagon::LDriv_pseudo_V6: {
859 unsigned DstReg = MI->getOperand(0).getReg();
860 unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
861 : Hexagon::V6_vL32b_ai;
862 int32_t Off = MI->getOperand(2).getImm();
863 int32_t Idx = Off;
864 BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
865 .addOperand(MI->getOperand(1))
866 .addImm(Idx)
867 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
868 MBB.erase(MI);
869 return true;
870 }
871 case Hexagon::STriv_pseudo_V6_128B:
872 Is128B = true;
873 case Hexagon::STriv_pseudo_V6: {
874 unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
875 : Hexagon::V6_vS32b_ai;
876 int32_t Off = MI->getOperand(1).getImm();
877 int32_t Idx = Is128B ? (Off >> 7) : (Off >> 6);
878 BuildMI(MBB, MI, DL, get(NewOpc))
879 .addOperand(MI->getOperand(0))
880 .addImm(Idx)
881 .addOperand(MI->getOperand(2))
882 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
883 MBB.erase(MI);
884 return true;
885 }
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000886 case Hexagon::TFR_PdTrue: {
887 unsigned Reg = MI->getOperand(0).getReg();
888 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
889 .addReg(Reg, RegState::Undef)
890 .addReg(Reg, RegState::Undef);
891 MBB.erase(MI);
892 return true;
893 }
894 case Hexagon::TFR_PdFalse: {
895 unsigned Reg = MI->getOperand(0).getReg();
896 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
897 .addReg(Reg, RegState::Undef)
898 .addReg(Reg, RegState::Undef);
899 MBB.erase(MI);
900 return true;
901 }
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000902 case Hexagon::VMULW: {
903 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
904 unsigned DstReg = MI->getOperand(0).getReg();
905 unsigned Src1Reg = MI->getOperand(1).getReg();
906 unsigned Src2Reg = MI->getOperand(2).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000907 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
908 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
909 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
910 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000911 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000912 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000913 .addReg(Src2SubHi);
914 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000915 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000916 .addReg(Src2SubLo);
917 MBB.erase(MI);
918 MRI.clearKillFlags(Src1SubHi);
919 MRI.clearKillFlags(Src1SubLo);
920 MRI.clearKillFlags(Src2SubHi);
921 MRI.clearKillFlags(Src2SubLo);
922 return true;
923 }
924 case Hexagon::VMULW_ACC: {
925 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
926 unsigned DstReg = MI->getOperand(0).getReg();
927 unsigned Src1Reg = MI->getOperand(1).getReg();
928 unsigned Src2Reg = MI->getOperand(2).getReg();
929 unsigned Src3Reg = MI->getOperand(3).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000930 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
931 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
932 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
933 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
934 unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
935 unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000936 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000937 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000938 .addReg(Src2SubHi).addReg(Src3SubHi);
939 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000940 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000941 .addReg(Src2SubLo).addReg(Src3SubLo);
942 MBB.erase(MI);
943 MRI.clearKillFlags(Src1SubHi);
944 MRI.clearKillFlags(Src1SubLo);
945 MRI.clearKillFlags(Src2SubHi);
946 MRI.clearKillFlags(Src2SubLo);
947 MRI.clearKillFlags(Src3SubHi);
948 MRI.clearKillFlags(Src3SubLo);
949 return true;
950 }
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000951 case Hexagon::MUX64_rr: {
952 const MachineOperand &Op0 = MI->getOperand(0);
953 const MachineOperand &Op1 = MI->getOperand(1);
954 const MachineOperand &Op2 = MI->getOperand(2);
955 const MachineOperand &Op3 = MI->getOperand(3);
956 unsigned Rd = Op0.getReg();
957 unsigned Pu = Op1.getReg();
958 unsigned Rs = Op2.getReg();
959 unsigned Rt = Op3.getReg();
960 DebugLoc DL = MI->getDebugLoc();
961 unsigned K1 = getKillRegState(Op1.isKill());
962 unsigned K2 = getKillRegState(Op2.isKill());
963 unsigned K3 = getKillRegState(Op3.isKill());
964 if (Rd != Rs)
965 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
966 .addReg(Pu, (Rd == Rt) ? K1 : 0)
967 .addReg(Rs, K2);
968 if (Rd != Rt)
969 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
970 .addReg(Pu, K1)
971 .addReg(Rt, K3);
972 MBB.erase(MI);
973 return true;
974 }
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000975 case Hexagon::TCRETURNi:
976 MI->setDesc(get(Hexagon::J2_jump));
977 return true;
978 case Hexagon::TCRETURNr:
979 MI->setDesc(get(Hexagon::J2_jumpr));
980 return true;
Krzysztof Parzyszek70a134d2015-11-25 21:40:03 +0000981 case Hexagon::TFRI_f:
982 case Hexagon::TFRI_cPt_f:
983 case Hexagon::TFRI_cNotPt_f: {
984 unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
985 APFloat FVal = MI->getOperand(Opx).getFPImm()->getValueAPF();
986 APInt IVal = FVal.bitcastToAPInt();
987 MI->RemoveOperand(Opx);
988 unsigned NewOpc = (Opc == Hexagon::TFRI_f) ? Hexagon::A2_tfrsi :
989 (Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
990 Hexagon::C2_cmoveif;
991 MI->setDesc(get(NewOpc));
992 MI->addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
993 return true;
994 }
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000995 }
996
997 return false;
998}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000999
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001000
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001001// We indicate that we want to reverse the branch by
1002// inserting the reversed branching opcode.
1003bool HexagonInstrInfo::ReverseBranchCondition(
1004 SmallVectorImpl<MachineOperand> &Cond) const {
1005 if (Cond.empty())
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001006 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001007 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1008 unsigned opcode = Cond[0].getImm();
1009 //unsigned temp;
1010 assert(get(opcode).isBranch() && "Should be a branching condition.");
1011 if (isEndLoopN(opcode))
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001012 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001013 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1014 Cond[0].setImm(NewOpcode);
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001015 return false;
1016}
1017
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001018
1019void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1020 MachineBasicBlock::iterator MI) const {
1021 DebugLoc DL;
1022 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1023}
1024
1025
1026// Returns true if an instruction is predicated irrespective of the predicate
1027// sense. For example, all of the following will return true.
1028// if (p0) R1 = add(R2, R3)
1029// if (!p0) R1 = add(R2, R3)
1030// if (p0.new) R1 = add(R2, R3)
1031// if (!p0.new) R1 = add(R2, R3)
1032// Note: New-value stores are not included here as in the current
1033// implementation, we don't need to check their predicate sense.
1034bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +00001035 const uint64_t F = MI->getDesc().TSFlags;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001036 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
Brendon Cahoondf43e682015-05-08 16:16:29 +00001037}
1038
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001039
1040bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
1041 ArrayRef<MachineOperand> Cond) const {
1042 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1043 isEndLoopN(Cond[0].getImm())) {
1044 DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
1045 return false;
1046 }
1047 int Opc = MI->getOpcode();
1048 assert (isPredicable(MI) && "Expected predicable instruction");
1049 bool invertJump = predOpcodeHasNot(Cond);
1050
1051 // We have to predicate MI "in place", i.e. after this function returns,
1052 // MI will need to be transformed into a predicated form. To avoid com-
1053 // plicated manipulations with the operands (handling tied operands,
1054 // etc.), build a new temporary instruction, then overwrite MI with it.
1055
1056 MachineBasicBlock &B = *MI->getParent();
1057 DebugLoc DL = MI->getDebugLoc();
1058 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1059 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1060 unsigned NOp = 0, NumOps = MI->getNumOperands();
1061 while (NOp < NumOps) {
1062 MachineOperand &Op = MI->getOperand(NOp);
1063 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1064 break;
1065 T.addOperand(Op);
1066 NOp++;
1067 }
1068
1069 unsigned PredReg, PredRegPos, PredRegFlags;
1070 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1071 (void)GotPredReg;
1072 assert(GotPredReg);
1073 T.addReg(PredReg, PredRegFlags);
1074 while (NOp < NumOps)
1075 T.addOperand(MI->getOperand(NOp++));
1076
1077 MI->setDesc(get(PredOpc));
1078 while (unsigned n = MI->getNumOperands())
1079 MI->RemoveOperand(n-1);
1080 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1081 MI->addOperand(T->getOperand(i));
1082
1083 MachineBasicBlock::instr_iterator TI = T->getIterator();
1084 B.erase(TI);
1085
1086 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1087 MRI.clearKillFlags(PredReg);
1088 return true;
Brendon Cahoondf43e682015-05-08 16:16:29 +00001089}
1090
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001091
1092bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1093 ArrayRef<MachineOperand> Pred2) const {
1094 // TODO: Fix this
1095 return false;
1096}
1097
1098
1099bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1100 std::vector<MachineOperand> &Pred) const {
1101 auto &HRI = getRegisterInfo();
1102 for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1103 MachineOperand MO = MI->getOperand(oper);
1104 if (MO.isReg() && MO.isDef()) {
1105 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1106 if (RC == &Hexagon::PredRegsRegClass) {
1107 Pred.push_back(MO);
1108 return true;
1109 }
1110 }
1111 }
1112 return false;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001113}
Andrew Trickd06df962012-02-01 22:13:57 +00001114
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001115bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
1116 bool isPred = MI->getDesc().isPredicable();
1117
1118 if (!isPred)
1119 return false;
1120
1121 const int Opc = MI->getOpcode();
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001122 int NumOperands = MI->getNumOperands();
1123
1124 // Keep a flag for upto 4 operands in the instructions, to indicate if
1125 // that operand has been constant extended.
1126 bool OpCExtended[4];
1127 if (NumOperands > 4)
1128 NumOperands = 4;
1129
1130 for (int i = 0; i < NumOperands; i++)
1131 OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001132
1133 switch(Opc) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +00001134 case Hexagon::A2_tfrsi:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001135 return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
1136 isInt<12>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001137
Colin LeMahieubda31b42014-12-29 20:44:51 +00001138 case Hexagon::S2_storerd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001139 return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001140
Colin LeMahieubda31b42014-12-29 20:44:51 +00001141 case Hexagon::S2_storeri_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001142 case Hexagon::S2_storerinew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001143 return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001144
Colin LeMahieubda31b42014-12-29 20:44:51 +00001145 case Hexagon::S2_storerh_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001146 case Hexagon::S2_storerhnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001147 return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001148
Colin LeMahieubda31b42014-12-29 20:44:51 +00001149 case Hexagon::S2_storerb_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001150 case Hexagon::S2_storerbnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001151 return isUInt<6>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001152
Colin LeMahieu947cd702014-12-23 20:44:59 +00001153 case Hexagon::L2_loadrd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001154 return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001155
Colin LeMahieu026e88d2014-12-23 20:02:16 +00001156 case Hexagon::L2_loadri_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001157 return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001158
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00001159 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00001160 case Hexagon::L2_loadruh_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001161 return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001162
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00001163 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00001164 case Hexagon::L2_loadrub_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001165 return isUInt<6>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001166
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001167 case Hexagon::L2_loadrd_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001168 return isShiftedInt<4,3>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001169
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001170 case Hexagon::L2_loadri_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001171 return isShiftedInt<4,2>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001172
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001173 case Hexagon::L2_loadrh_pi:
1174 case Hexagon::L2_loadruh_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001175 return isShiftedInt<4,1>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001176
Colin LeMahieu96976a12014-12-26 18:57:13 +00001177 case Hexagon::L2_loadrb_pi:
Colin LeMahieufe9612e2014-12-26 19:12:11 +00001178 case Hexagon::L2_loadrub_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001179 return isInt<4>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001180
Colin LeMahieu2bad4a72014-12-30 21:01:38 +00001181 case Hexagon::S4_storeirb_io:
1182 case Hexagon::S4_storeirh_io:
1183 case Hexagon::S4_storeiri_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001184 return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
1185 (OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001186
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00001187 case Hexagon::A2_addi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001188 return isInt<8>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001189
Colin LeMahieu3b3197e2014-11-24 17:44:19 +00001190 case Hexagon::A2_aslh:
Colin LeMahieu397a25e2014-11-24 18:04:42 +00001191 case Hexagon::A2_asrh:
Colin LeMahieu91ffec92014-11-21 21:35:52 +00001192 case Hexagon::A2_sxtb:
Colin LeMahieu310991c2014-11-21 21:54:59 +00001193 case Hexagon::A2_sxth:
Colin LeMahieubb7d6f52014-11-24 16:48:43 +00001194 case Hexagon::A2_zxtb:
Colin LeMahieu098256c2014-11-24 17:11:34 +00001195 case Hexagon::A2_zxth:
Colin LeMahieu4fd203d2015-02-09 21:56:37 +00001196 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001197 }
1198
1199 return true;
1200}
1201
Jyotsna Verma84c47102013-05-06 18:49:23 +00001202
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001203bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1204 const MachineBasicBlock *MBB, const MachineFunction &MF) const {
1205 // Debug info is never a scheduling boundary. It's necessary to be explicit
1206 // due to the special treatment of IT instructions below, otherwise a
1207 // dbg_value followed by an IT will result in the IT instruction being
1208 // considered a scheduling hazard, which is wrong. It should be the actual
1209 // instruction preceding the dbg_value instruction(s), just like it is
1210 // when debug info is not present.
1211 if (MI->isDebugValue())
Brendon Cahoondf43e682015-05-08 16:16:29 +00001212 return false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001213
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001214 // Throwing call is a boundary.
1215 if (MI->isCall()) {
1216 // If any of the block's successors is a landing pad, this could be a
1217 // throwing call.
1218 for (auto I : MBB->successors())
1219 if (I->isEHPad())
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001220 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001221 }
1222
1223 // Don't mess around with no return calls.
1224 if (MI->getOpcode() == Hexagon::CALLv3nr)
1225 return true;
1226
1227 // Terminators and labels can't be scheduled around.
1228 if (MI->getDesc().isTerminator() || MI->isPosition())
1229 return true;
1230
1231 if (MI->isInlineAsm() && !ScheduleInlineAsm)
1232 return true;
1233
1234 return false;
1235}
1236
1237
1238/// Measure the specified inline asm to determine an approximation of its
1239/// length.
1240/// Comments (which run till the next SeparatorString or newline) do not
1241/// count as an instruction.
1242/// Any other non-whitespace text is considered an instruction, with
1243/// multiple instructions separated by SeparatorString or newlines.
1244/// Variable-length instructions are not handled here; this function
1245/// may be overloaded in the target code to do that.
1246/// Hexagon counts the number of ##'s and adjust for that many
1247/// constant exenders.
1248unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1249 const MCAsmInfo &MAI) const {
1250 StringRef AStr(Str);
1251 // Count the number of instructions in the asm.
1252 bool atInsnStart = true;
1253 unsigned Length = 0;
1254 for (; *Str; ++Str) {
1255 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1256 strlen(MAI.getSeparatorString())) == 0)
1257 atInsnStart = true;
1258 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1259 Length += MAI.getMaxInstLength();
1260 atInsnStart = false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001261 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001262 if (atInsnStart && strncmp(Str, MAI.getCommentString(),
1263 strlen(MAI.getCommentString())) == 0)
1264 atInsnStart = false;
1265 }
1266
1267 // Add to size number of constant extenders seen * 4.
1268 StringRef Occ("##");
1269 Length += AStr.count(Occ)*4;
1270 return Length;
1271}
1272
1273
1274ScheduleHazardRecognizer*
1275HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1276 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1277 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1278}
1279
1280
1281/// \brief For a comparison instruction, return the source registers in
1282/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1283/// compares against in CmpValue. Return true if the comparison instruction
1284/// can be analyzed.
1285bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
1286 unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
1287 unsigned Opc = MI->getOpcode();
1288
1289 // Set mask and the first source register.
1290 switch (Opc) {
1291 case Hexagon::C2_cmpeq:
1292 case Hexagon::C2_cmpeqp:
1293 case Hexagon::C2_cmpgt:
1294 case Hexagon::C2_cmpgtp:
1295 case Hexagon::C2_cmpgtu:
1296 case Hexagon::C2_cmpgtup:
1297 case Hexagon::C4_cmpneq:
1298 case Hexagon::C4_cmplte:
1299 case Hexagon::C4_cmplteu:
1300 case Hexagon::C2_cmpeqi:
1301 case Hexagon::C2_cmpgti:
1302 case Hexagon::C2_cmpgtui:
1303 case Hexagon::C4_cmpneqi:
1304 case Hexagon::C4_cmplteui:
1305 case Hexagon::C4_cmpltei:
1306 SrcReg = MI->getOperand(1).getReg();
1307 Mask = ~0;
1308 break;
1309 case Hexagon::A4_cmpbeq:
1310 case Hexagon::A4_cmpbgt:
1311 case Hexagon::A4_cmpbgtu:
1312 case Hexagon::A4_cmpbeqi:
1313 case Hexagon::A4_cmpbgti:
1314 case Hexagon::A4_cmpbgtui:
1315 SrcReg = MI->getOperand(1).getReg();
1316 Mask = 0xFF;
1317 break;
1318 case Hexagon::A4_cmpheq:
1319 case Hexagon::A4_cmphgt:
1320 case Hexagon::A4_cmphgtu:
1321 case Hexagon::A4_cmpheqi:
1322 case Hexagon::A4_cmphgti:
1323 case Hexagon::A4_cmphgtui:
1324 SrcReg = MI->getOperand(1).getReg();
1325 Mask = 0xFFFF;
1326 break;
1327 }
1328
1329 // Set the value/second source register.
1330 switch (Opc) {
1331 case Hexagon::C2_cmpeq:
1332 case Hexagon::C2_cmpeqp:
1333 case Hexagon::C2_cmpgt:
1334 case Hexagon::C2_cmpgtp:
1335 case Hexagon::C2_cmpgtu:
1336 case Hexagon::C2_cmpgtup:
1337 case Hexagon::A4_cmpbeq:
1338 case Hexagon::A4_cmpbgt:
1339 case Hexagon::A4_cmpbgtu:
1340 case Hexagon::A4_cmpheq:
1341 case Hexagon::A4_cmphgt:
1342 case Hexagon::A4_cmphgtu:
1343 case Hexagon::C4_cmpneq:
1344 case Hexagon::C4_cmplte:
1345 case Hexagon::C4_cmplteu:
1346 SrcReg2 = MI->getOperand(2).getReg();
1347 return true;
1348
1349 case Hexagon::C2_cmpeqi:
1350 case Hexagon::C2_cmpgtui:
1351 case Hexagon::C2_cmpgti:
1352 case Hexagon::C4_cmpneqi:
1353 case Hexagon::C4_cmplteui:
1354 case Hexagon::C4_cmpltei:
1355 case Hexagon::A4_cmpbeqi:
1356 case Hexagon::A4_cmpbgti:
1357 case Hexagon::A4_cmpbgtui:
1358 case Hexagon::A4_cmpheqi:
1359 case Hexagon::A4_cmphgti:
1360 case Hexagon::A4_cmphgtui:
1361 SrcReg2 = 0;
1362 Value = MI->getOperand(2).getImm();
1363 return true;
1364 }
1365
1366 return false;
1367}
1368
1369
1370unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1371 const MachineInstr *MI, unsigned *PredCost) const {
1372 return getInstrTimingClassLatency(ItinData, MI);
1373}
1374
1375
1376DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1377 const TargetSubtargetInfo &STI) const {
1378 const InstrItineraryData *II = STI.getInstrItineraryData();
1379 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1380}
1381
1382
1383// Inspired by this pair:
1384// %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
1385// S2_storeri_io %R29, 132, %R1<kill>; flags: mem:ST4[FixedStack1]
1386// Currently AA considers the addresses in these instructions to be aliasing.
1387bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
1388 MachineInstr *MIb, AliasAnalysis *AA) const {
1389 int OffsetA = 0, OffsetB = 0;
1390 unsigned SizeA = 0, SizeB = 0;
1391
1392 if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
1393 MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
1394 return false;
1395
1396 // Instructions that are pure loads, not loads and stores like memops are not
1397 // dependent.
1398 if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
1399 return true;
1400
1401 // Get base, offset, and access size in MIa.
1402 unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
1403 if (!BaseRegA || !SizeA)
1404 return false;
1405
1406 // Get base, offset, and access size in MIb.
1407 unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
1408 if (!BaseRegB || !SizeB)
1409 return false;
1410
1411 if (BaseRegA != BaseRegB)
1412 return false;
1413
1414 // This is a mem access with the same base register and known offsets from it.
1415 // Reason about it.
1416 if (OffsetA > OffsetB) {
1417 uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1418 return (SizeB <= offDiff);
1419 } else if (OffsetA < OffsetB) {
1420 uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1421 return (SizeA <= offDiff);
1422 }
1423
1424 return false;
1425}
1426
1427
1428unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
1429 MachineRegisterInfo &MRI = MF->getRegInfo();
1430 const TargetRegisterClass *TRC;
1431 if (VT == MVT::i1) {
1432 TRC = &Hexagon::PredRegsRegClass;
1433 } else if (VT == MVT::i32 || VT == MVT::f32) {
1434 TRC = &Hexagon::IntRegsRegClass;
1435 } else if (VT == MVT::i64 || VT == MVT::f64) {
1436 TRC = &Hexagon::DoubleRegsRegClass;
1437 } else {
1438 llvm_unreachable("Cannot handle this register class");
1439 }
1440
1441 unsigned NewReg = MRI.createVirtualRegister(TRC);
1442 return NewReg;
1443}
1444
1445
1446bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
1447 return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1448}
1449
1450
1451bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
1452 const uint64_t F = MI->getDesc().TSFlags;
1453 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1454}
1455
1456
1457bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
1458 const MachineFunction *MF = MI->getParent()->getParent();
1459 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1460 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1461
1462 if (!(isTC1(MI))
1463 && !(QII->isTC2Early(MI))
1464 && !(MI->getDesc().mayLoad())
1465 && !(MI->getDesc().mayStore())
1466 && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
1467 && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
1468 && !(QII->isMemOp(MI))
1469 && !(MI->isBranch())
1470 && !(MI->isReturn())
1471 && !MI->isCall())
1472 return true;
1473
1474 return false;
1475}
1476
1477
Sanjay Patele4b9f502015-12-07 19:21:39 +00001478// Return true if the instruction is a compund branch instruction.
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001479bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
1480 return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
1481}
1482
1483
1484bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
1485 return (MI->isBranch() && isPredicated(MI)) ||
1486 isConditionalTransfer(MI) ||
1487 isConditionalALU32(MI) ||
1488 isConditionalLoad(MI) ||
1489 // Predicated stores which don't have a .new on any operands.
1490 (MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
1491 !isPredicatedNew(MI));
1492}
1493
1494
1495bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
1496 switch (MI->getOpcode()) {
1497 case Hexagon::A2_paddf:
1498 case Hexagon::A2_paddfnew:
1499 case Hexagon::A2_paddif:
1500 case Hexagon::A2_paddifnew:
1501 case Hexagon::A2_paddit:
1502 case Hexagon::A2_padditnew:
1503 case Hexagon::A2_paddt:
1504 case Hexagon::A2_paddtnew:
1505 case Hexagon::A2_pandf:
1506 case Hexagon::A2_pandfnew:
1507 case Hexagon::A2_pandt:
1508 case Hexagon::A2_pandtnew:
1509 case Hexagon::A2_porf:
1510 case Hexagon::A2_porfnew:
1511 case Hexagon::A2_port:
1512 case Hexagon::A2_portnew:
1513 case Hexagon::A2_psubf:
1514 case Hexagon::A2_psubfnew:
1515 case Hexagon::A2_psubt:
1516 case Hexagon::A2_psubtnew:
1517 case Hexagon::A2_pxorf:
1518 case Hexagon::A2_pxorfnew:
1519 case Hexagon::A2_pxort:
1520 case Hexagon::A2_pxortnew:
1521 case Hexagon::A4_paslhf:
1522 case Hexagon::A4_paslhfnew:
1523 case Hexagon::A4_paslht:
1524 case Hexagon::A4_paslhtnew:
1525 case Hexagon::A4_pasrhf:
1526 case Hexagon::A4_pasrhfnew:
1527 case Hexagon::A4_pasrht:
1528 case Hexagon::A4_pasrhtnew:
1529 case Hexagon::A4_psxtbf:
1530 case Hexagon::A4_psxtbfnew:
1531 case Hexagon::A4_psxtbt:
1532 case Hexagon::A4_psxtbtnew:
1533 case Hexagon::A4_psxthf:
1534 case Hexagon::A4_psxthfnew:
1535 case Hexagon::A4_psxtht:
1536 case Hexagon::A4_psxthtnew:
1537 case Hexagon::A4_pzxtbf:
1538 case Hexagon::A4_pzxtbfnew:
1539 case Hexagon::A4_pzxtbt:
1540 case Hexagon::A4_pzxtbtnew:
1541 case Hexagon::A4_pzxthf:
1542 case Hexagon::A4_pzxthfnew:
1543 case Hexagon::A4_pzxtht:
1544 case Hexagon::A4_pzxthtnew:
1545 case Hexagon::C2_ccombinewf:
1546 case Hexagon::C2_ccombinewt:
1547 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001548 }
1549 return false;
1550}
1551
1552
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001553// FIXME - Function name and it's functionality don't match.
1554// It should be renamed to hasPredNewOpcode()
1555bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
1556 if (!MI->getDesc().mayLoad() || !isPredicated(MI))
1557 return false;
1558
1559 int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1560 // Instruction with valid predicated-new opcode can be promoted to .new.
1561 return PNewOpcode >= 0;
1562}
1563
1564
1565// Returns true if an instruction is a conditional store.
1566//
1567// Note: It doesn't include conditional new-value stores as they can't be
1568// converted to .new predicate.
1569bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
1570 switch (MI->getOpcode()) {
1571 default: return false;
1572 case Hexagon::S4_storeirbt_io:
1573 case Hexagon::S4_storeirbf_io:
1574 case Hexagon::S4_pstorerbt_rr:
1575 case Hexagon::S4_pstorerbf_rr:
1576 case Hexagon::S2_pstorerbt_io:
1577 case Hexagon::S2_pstorerbf_io:
1578 case Hexagon::S2_pstorerbt_pi:
1579 case Hexagon::S2_pstorerbf_pi:
1580 case Hexagon::S2_pstorerdt_io:
1581 case Hexagon::S2_pstorerdf_io:
1582 case Hexagon::S4_pstorerdt_rr:
1583 case Hexagon::S4_pstorerdf_rr:
1584 case Hexagon::S2_pstorerdt_pi:
1585 case Hexagon::S2_pstorerdf_pi:
1586 case Hexagon::S2_pstorerht_io:
1587 case Hexagon::S2_pstorerhf_io:
1588 case Hexagon::S4_storeirht_io:
1589 case Hexagon::S4_storeirhf_io:
1590 case Hexagon::S4_pstorerht_rr:
1591 case Hexagon::S4_pstorerhf_rr:
1592 case Hexagon::S2_pstorerht_pi:
1593 case Hexagon::S2_pstorerhf_pi:
1594 case Hexagon::S2_pstorerit_io:
1595 case Hexagon::S2_pstorerif_io:
1596 case Hexagon::S4_storeirit_io:
1597 case Hexagon::S4_storeirif_io:
1598 case Hexagon::S4_pstorerit_rr:
1599 case Hexagon::S4_pstorerif_rr:
1600 case Hexagon::S2_pstorerit_pi:
1601 case Hexagon::S2_pstorerif_pi:
1602
1603 // V4 global address store before promoting to dot new.
1604 case Hexagon::S4_pstorerdt_abs:
1605 case Hexagon::S4_pstorerdf_abs:
1606 case Hexagon::S4_pstorerbt_abs:
1607 case Hexagon::S4_pstorerbf_abs:
1608 case Hexagon::S4_pstorerht_abs:
1609 case Hexagon::S4_pstorerhf_abs:
1610 case Hexagon::S4_pstorerit_abs:
1611 case Hexagon::S4_pstorerif_abs:
1612 return true;
1613
1614 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1615 // from the "Conditional Store" list. Because a predicated new value store
1616 // would NOT be promoted to a double dot new store.
1617 // This function returns yes for those stores that are predicated but not
1618 // yet promoted to predicate dot new instructions.
1619 }
1620}
1621
1622
1623bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
1624 switch (MI->getOpcode()) {
1625 case Hexagon::A2_tfrt:
1626 case Hexagon::A2_tfrf:
1627 case Hexagon::C2_cmoveit:
1628 case Hexagon::C2_cmoveif:
1629 case Hexagon::A2_tfrtnew:
1630 case Hexagon::A2_tfrfnew:
1631 case Hexagon::C2_cmovenewit:
1632 case Hexagon::C2_cmovenewif:
1633 case Hexagon::A2_tfrpt:
1634 case Hexagon::A2_tfrpf:
1635 return true;
1636
1637 default:
1638 return false;
1639 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001640 return false;
1641}
1642
1643
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001644// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1645// isFPImm and later getFPImm as well.
1646bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
1647 const uint64_t F = MI->getDesc().TSFlags;
1648 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1649 if (isExtended) // Instruction must be extended.
Krzysztof Parzyszekc6f19332015-03-19 15:18:57 +00001650 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001651
1652 unsigned isExtendable =
1653 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1654 if (!isExtendable)
1655 return false;
1656
1657 if (MI->isCall())
1658 return false;
1659
1660 short ExtOpNum = getCExtOpNum(MI);
1661 const MachineOperand &MO = MI->getOperand(ExtOpNum);
1662 // Use MO operand flags to determine if MO
1663 // has the HMOTF_ConstExtended flag set.
1664 if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
Brendon Cahoondf43e682015-05-08 16:16:29 +00001665 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001666 // If this is a Machine BB address we are talking about, and it is
1667 // not marked as extended, say so.
1668 if (MO.isMBB())
1669 return false;
1670
1671 // We could be using an instruction with an extendable immediate and shoehorn
1672 // a global address into it. If it is a global address it will be constant
1673 // extended. We do this for COMBINE.
1674 // We currently only handle isGlobal() because it is the only kind of
1675 // object we are going to end up with here for now.
1676 // In the future we probably should add isSymbol(), etc.
1677 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
1678 MO.isJTI() || MO.isCPI())
1679 return true;
1680
1681 // If the extendable operand is not 'Immediate' type, the instruction should
1682 // have 'isExtended' flag set.
1683 assert(MO.isImm() && "Extendable operand must be Immediate type");
1684
1685 int MinValue = getMinValue(MI);
1686 int MaxValue = getMaxValue(MI);
1687 int ImmValue = MO.getImm();
1688
1689 return (ImmValue < MinValue || ImmValue > MaxValue);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001690}
1691
1692
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001693bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1694 switch (MI->getOpcode()) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001695 case Hexagon::L4_return :
1696 case Hexagon::L4_return_t :
1697 case Hexagon::L4_return_f :
1698 case Hexagon::L4_return_tnew_pnt :
1699 case Hexagon::L4_return_fnew_pnt :
1700 case Hexagon::L4_return_tnew_pt :
1701 case Hexagon::L4_return_fnew_pt :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001702 return true;
1703 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001704 return false;
1705}
1706
1707
1708// Return true when ConsMI uses a register defined by ProdMI.
1709bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
1710 const MachineInstr *ConsMI) const {
1711 const MCInstrDesc &ProdMCID = ProdMI->getDesc();
1712 if (!ProdMCID.getNumDefs())
1713 return false;
1714
1715 auto &HRI = getRegisterInfo();
1716
1717 SmallVector<unsigned, 4> DefsA;
1718 SmallVector<unsigned, 4> DefsB;
1719 SmallVector<unsigned, 8> UsesA;
1720 SmallVector<unsigned, 8> UsesB;
1721
1722 parseOperands(ProdMI, DefsA, UsesA);
1723 parseOperands(ConsMI, DefsB, UsesB);
1724
1725 for (auto &RegA : DefsA)
1726 for (auto &RegB : UsesB) {
1727 // True data dependency.
1728 if (RegA == RegB)
1729 return true;
1730
1731 if (Hexagon::DoubleRegsRegClass.contains(RegA))
1732 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
1733 if (RegB == *SubRegs)
1734 return true;
1735
1736 if (Hexagon::DoubleRegsRegClass.contains(RegB))
1737 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
1738 if (RegA == *SubRegs)
1739 return true;
1740 }
1741
1742 return false;
1743}
1744
1745
1746// Returns true if the instruction is alread a .cur.
1747bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
1748 switch (MI->getOpcode()) {
1749 case Hexagon::V6_vL32b_cur_pi:
1750 case Hexagon::V6_vL32b_cur_ai:
1751 case Hexagon::V6_vL32b_cur_pi_128B:
1752 case Hexagon::V6_vL32b_cur_ai_128B:
1753 return true;
1754 }
1755 return false;
1756}
1757
1758
1759// Returns true, if any one of the operands is a dot new
1760// insn, whether it is predicated dot new or register dot new.
1761bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
1762 if (isNewValueInst(MI) ||
1763 (isPredicated(MI) && isPredicatedNew(MI)))
1764 return true;
1765
1766 return false;
1767}
1768
1769
1770/// Symmetrical. See if these two instructions are fit for duplex pair.
1771bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
1772 const MachineInstr *MIb) const {
1773 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
1774 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
1775 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
1776}
1777
1778
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00001779bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001780 if (!MI)
1781 return false;
1782
1783 if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
1784 return true;
1785
1786 // Multiply
1787 unsigned SchedClass = MI->getDesc().getSchedClass();
1788 if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
1789 return true;
1790 return false;
1791}
1792
1793
1794bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
1795 return (Opcode == Hexagon::ENDLOOP0 ||
1796 Opcode == Hexagon::ENDLOOP1);
1797}
1798
1799
1800bool HexagonInstrInfo::isExpr(unsigned OpType) const {
1801 switch(OpType) {
1802 case MachineOperand::MO_MachineBasicBlock:
1803 case MachineOperand::MO_GlobalAddress:
1804 case MachineOperand::MO_ExternalSymbol:
1805 case MachineOperand::MO_JumpTableIndex:
1806 case MachineOperand::MO_ConstantPoolIndex:
1807 case MachineOperand::MO_BlockAddress:
1808 return true;
1809 default:
1810 return false;
1811 }
1812}
1813
1814
1815bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
1816 const MCInstrDesc &MID = MI->getDesc();
1817 const uint64_t F = MID.TSFlags;
1818 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
1819 return true;
1820
1821 // TODO: This is largely obsolete now. Will need to be removed
1822 // in consecutive patches.
1823 switch(MI->getOpcode()) {
1824 // TFR_FI Remains a special case.
1825 case Hexagon::TFR_FI:
1826 return true;
1827 default:
1828 return false;
1829 }
1830 return false;
1831}
1832
1833
1834// This returns true in two cases:
1835// - The OP code itself indicates that this is an extended instruction.
1836// - One of MOs has been marked with HMOTF_ConstExtended flag.
1837bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
1838 // First check if this is permanently extended op code.
1839 const uint64_t F = MI->getDesc().TSFlags;
1840 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
1841 return true;
1842 // Use MO operand flags to determine if one of MI's operands
1843 // has HMOTF_ConstExtended flag set.
1844 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
1845 E = MI->operands_end(); I != E; ++I) {
1846 if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1847 return true;
1848 }
1849 return false;
1850}
1851
1852
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00001853bool HexagonInstrInfo::isFloat(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001854 unsigned Opcode = MI->getOpcode();
1855 const uint64_t F = get(Opcode).TSFlags;
1856 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
1857}
1858
1859
1860bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
1861 switch (MI->getOpcode()) {
1862 case Hexagon::J2_callr :
1863 case Hexagon::J2_callrf :
1864 case Hexagon::J2_callrt :
1865 return true;
1866 }
1867 return false;
1868}
1869
1870
1871bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
1872 switch (MI->getOpcode()) {
1873 case Hexagon::L4_return :
1874 case Hexagon::L4_return_t :
1875 case Hexagon::L4_return_f :
1876 case Hexagon::L4_return_fnew_pnt :
1877 case Hexagon::L4_return_fnew_pt :
1878 case Hexagon::L4_return_tnew_pnt :
1879 case Hexagon::L4_return_tnew_pt :
1880 return true;
1881 }
1882 return false;
1883}
1884
1885
1886bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
1887 switch (MI->getOpcode()) {
1888 case Hexagon::J2_jumpr :
1889 case Hexagon::J2_jumprt :
1890 case Hexagon::J2_jumprf :
1891 case Hexagon::J2_jumprtnewpt :
1892 case Hexagon::J2_jumprfnewpt :
1893 case Hexagon::J2_jumprtnew :
1894 case Hexagon::J2_jumprfnew :
1895 return true;
1896 }
1897 return false;
1898}
1899
1900
1901// Return true if a given MI can accomodate given offset.
1902// Use abs estimate as oppose to the exact number.
1903// TODO: This will need to be changed to use MC level
1904// definition of instruction extendable field size.
1905bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
1906 unsigned offset) const {
1907 // This selection of jump instructions matches to that what
1908 // AnalyzeBranch can parse, plus NVJ.
1909 if (isNewValueJump(MI)) // r9:2
1910 return isInt<11>(offset);
1911
1912 switch (MI->getOpcode()) {
1913 // Still missing Jump to address condition on register value.
1914 default:
1915 return false;
1916 case Hexagon::J2_jump: // bits<24> dst; // r22:2
1917 case Hexagon::J2_call:
1918 case Hexagon::CALLv3nr:
1919 return isInt<24>(offset);
1920 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
1921 case Hexagon::J2_jumpf:
1922 case Hexagon::J2_jumptnew:
1923 case Hexagon::J2_jumptnewpt:
1924 case Hexagon::J2_jumpfnew:
1925 case Hexagon::J2_jumpfnewpt:
1926 case Hexagon::J2_callt:
1927 case Hexagon::J2_callf:
1928 return isInt<17>(offset);
1929 case Hexagon::J2_loop0i:
1930 case Hexagon::J2_loop0iext:
1931 case Hexagon::J2_loop0r:
1932 case Hexagon::J2_loop0rext:
1933 case Hexagon::J2_loop1i:
1934 case Hexagon::J2_loop1iext:
1935 case Hexagon::J2_loop1r:
1936 case Hexagon::J2_loop1rext:
1937 return isInt<9>(offset);
1938 // TODO: Add all the compound branches here. Can we do this in Relation model?
1939 case Hexagon::J4_cmpeqi_tp0_jump_nt:
1940 case Hexagon::J4_cmpeqi_tp1_jump_nt:
1941 return isInt<11>(offset);
1942 }
1943}
1944
1945
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00001946bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr *LRMI,
1947 const MachineInstr *ESMI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001948 if (!LRMI || !ESMI)
1949 return false;
1950
1951 bool isLate = isLateResultInstr(LRMI);
1952 bool isEarly = isEarlySourceInstr(ESMI);
1953
1954 DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
1955 DEBUG(LRMI->dump());
1956 DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
1957 DEBUG(ESMI->dump());
1958
1959 if (isLate && isEarly) {
1960 DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
1961 return true;
1962 }
1963
1964 return false;
1965}
1966
1967
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00001968bool HexagonInstrInfo::isLateResultInstr(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001969 if (!MI)
1970 return false;
1971
1972 switch (MI->getOpcode()) {
1973 case TargetOpcode::EXTRACT_SUBREG:
1974 case TargetOpcode::INSERT_SUBREG:
1975 case TargetOpcode::SUBREG_TO_REG:
1976 case TargetOpcode::REG_SEQUENCE:
1977 case TargetOpcode::IMPLICIT_DEF:
1978 case TargetOpcode::COPY:
1979 case TargetOpcode::INLINEASM:
1980 case TargetOpcode::PHI:
1981 return false;
1982 default:
1983 break;
1984 }
1985
1986 unsigned SchedClass = MI->getDesc().getSchedClass();
1987
1988 switch (SchedClass) {
1989 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
1990 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
1991 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
1992 case Hexagon::Sched::ALU64_tc_1_SLOT23:
1993 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
1994 case Hexagon::Sched::S_2op_tc_1_SLOT23:
1995 case Hexagon::Sched::S_3op_tc_1_SLOT23:
1996 case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
1997 case Hexagon::Sched::V2LDST_tc_st_SLOT0:
1998 case Hexagon::Sched::V2LDST_tc_st_SLOT01:
1999 case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
2000 case Hexagon::Sched::V4LDST_tc_st_SLOT0:
2001 case Hexagon::Sched::V4LDST_tc_st_SLOT01:
2002 return false;
2003 }
2004 return true;
2005}
2006
2007
2008bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
2009 if (!MI)
2010 return false;
2011
2012 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2013 // resource, but all operands can be received late like an ALU instruction.
2014 return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
2015}
2016
2017
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002018bool HexagonInstrInfo::isLoopN(const MachineInstr *MI) const {
2019 unsigned Opcode = MI->getOpcode();
2020 return Opcode == Hexagon::J2_loop0i ||
2021 Opcode == Hexagon::J2_loop0r ||
2022 Opcode == Hexagon::J2_loop0iext ||
2023 Opcode == Hexagon::J2_loop0rext ||
2024 Opcode == Hexagon::J2_loop1i ||
2025 Opcode == Hexagon::J2_loop1r ||
2026 Opcode == Hexagon::J2_loop1iext ||
2027 Opcode == Hexagon::J2_loop1rext;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002028}
2029
2030
2031bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
2032 switch (MI->getOpcode()) {
2033 default: return false;
2034 case Hexagon::L4_iadd_memopw_io :
2035 case Hexagon::L4_isub_memopw_io :
2036 case Hexagon::L4_add_memopw_io :
2037 case Hexagon::L4_sub_memopw_io :
2038 case Hexagon::L4_and_memopw_io :
2039 case Hexagon::L4_or_memopw_io :
2040 case Hexagon::L4_iadd_memoph_io :
2041 case Hexagon::L4_isub_memoph_io :
2042 case Hexagon::L4_add_memoph_io :
2043 case Hexagon::L4_sub_memoph_io :
2044 case Hexagon::L4_and_memoph_io :
2045 case Hexagon::L4_or_memoph_io :
2046 case Hexagon::L4_iadd_memopb_io :
2047 case Hexagon::L4_isub_memopb_io :
2048 case Hexagon::L4_add_memopb_io :
2049 case Hexagon::L4_sub_memopb_io :
2050 case Hexagon::L4_and_memopb_io :
2051 case Hexagon::L4_or_memopb_io :
2052 case Hexagon::L4_ior_memopb_io:
2053 case Hexagon::L4_ior_memoph_io:
2054 case Hexagon::L4_ior_memopw_io:
2055 case Hexagon::L4_iand_memopb_io:
2056 case Hexagon::L4_iand_memoph_io:
2057 case Hexagon::L4_iand_memopw_io:
2058 return true;
2059 }
2060 return false;
2061}
2062
2063
2064bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
2065 const uint64_t F = MI->getDesc().TSFlags;
2066 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2067}
2068
2069
2070bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2071 const uint64_t F = get(Opcode).TSFlags;
2072 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2073}
2074
2075
2076bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
2077 return isNewValueJump(MI) || isNewValueStore(MI);
2078}
2079
2080
2081bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
2082 return isNewValue(MI) && MI->isBranch();
2083}
2084
2085
2086bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2087 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2088}
2089
2090
2091bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
2092 const uint64_t F = MI->getDesc().TSFlags;
2093 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2094}
2095
2096
2097bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2098 const uint64_t F = get(Opcode).TSFlags;
2099 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2100}
2101
2102
2103// Returns true if a particular operand is extendable for an instruction.
2104bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
2105 unsigned OperandNum) const {
2106 const uint64_t F = MI->getDesc().TSFlags;
2107 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2108 == OperandNum;
2109}
2110
2111
2112bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
2113 return getAddrMode(MI) == HexagonII::PostInc;
2114}
2115
2116
2117bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
2118 const uint64_t F = MI->getDesc().TSFlags;
2119 assert(isPredicated(MI));
2120 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2121}
2122
2123
2124bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2125 const uint64_t F = get(Opcode).TSFlags;
2126 assert(isPredicated(Opcode));
2127 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2128}
2129
2130
2131bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
2132 const uint64_t F = MI->getDesc().TSFlags;
2133 return !((F >> HexagonII::PredicatedFalsePos) &
2134 HexagonII::PredicatedFalseMask);
2135}
2136
2137
2138bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2139 const uint64_t F = get(Opcode).TSFlags;
2140 // Make sure that the instruction is predicated.
2141 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2142 return !((F >> HexagonII::PredicatedFalsePos) &
2143 HexagonII::PredicatedFalseMask);
2144}
2145
2146
2147bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2148 const uint64_t F = get(Opcode).TSFlags;
2149 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2150}
2151
2152
2153bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2154 const uint64_t F = get(Opcode).TSFlags;
2155 return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2156}
2157
2158
2159bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2160 const uint64_t F = get(Opcode).TSFlags;
2161 assert(get(Opcode).isBranch() &&
2162 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2163 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2164}
2165
2166
2167bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
2168 return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2169 MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
2170}
2171
2172
2173bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
2174 const uint64_t F = MI->getDesc().TSFlags;
2175 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2176}
2177
2178
2179bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
2180 switch (MI->getOpcode()) {
2181 case Hexagon::STriw_pred :
2182 case Hexagon::LDriw_pred :
2183 return true;
2184 default:
2185 return false;
2186 }
2187}
2188
2189
2190// Returns true when SU has a timing class TC1.
2191bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
2192 unsigned SchedClass = MI->getDesc().getSchedClass();
2193 switch (SchedClass) {
2194 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2195 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2196 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2197 case Hexagon::Sched::ALU64_tc_1_SLOT23:
2198 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2199 //case Hexagon::Sched::M_tc_1_SLOT23:
2200 case Hexagon::Sched::S_2op_tc_1_SLOT23:
2201 case Hexagon::Sched::S_3op_tc_1_SLOT23:
2202 return true;
2203
2204 default:
2205 return false;
2206 }
2207}
2208
2209
2210bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
2211 unsigned SchedClass = MI->getDesc().getSchedClass();
2212 switch (SchedClass) {
2213 case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
2214 case Hexagon::Sched::ALU64_tc_2_SLOT23:
2215 case Hexagon::Sched::CR_tc_2_SLOT3:
2216 case Hexagon::Sched::M_tc_2_SLOT23:
2217 case Hexagon::Sched::S_2op_tc_2_SLOT23:
2218 case Hexagon::Sched::S_3op_tc_2_SLOT23:
2219 return true;
2220
2221 default:
2222 return false;
2223 }
2224}
2225
2226
2227bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
2228 unsigned SchedClass = MI->getDesc().getSchedClass();
2229 switch (SchedClass) {
2230 case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
2231 case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
2232 case Hexagon::Sched::ALU64_tc_2early_SLOT23:
2233 case Hexagon::Sched::CR_tc_2early_SLOT23:
2234 case Hexagon::Sched::CR_tc_2early_SLOT3:
2235 case Hexagon::Sched::J_tc_2early_SLOT0123:
2236 case Hexagon::Sched::J_tc_2early_SLOT2:
2237 case Hexagon::Sched::J_tc_2early_SLOT23:
2238 case Hexagon::Sched::S_2op_tc_2early_SLOT23:
2239 case Hexagon::Sched::S_3op_tc_2early_SLOT23:
2240 return true;
2241
2242 default:
2243 return false;
2244 }
2245}
2246
2247
2248bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
2249 if (!MI)
2250 return false;
2251
2252 unsigned SchedClass = MI->getDesc().getSchedClass();
2253 return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
2254}
2255
2256
2257bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
2258 if (!MI)
2259 return false;
2260
2261 const uint64_t V = getType(MI);
2262 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2263}
2264
2265
2266// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2267//
2268bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
2269 if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
2270 VT == MVT::v32i16 || VT == MVT::v64i8) {
2271 return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
2272 Offset <= Hexagon_MEMV_AUTOINC_MAX &&
2273 (Offset & 0x3f) == 0);
2274 }
2275 // 128B
2276 if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
2277 VT == MVT::v64i16 || VT == MVT::v128i8) {
2278 return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
2279 Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
2280 (Offset & 0x7f) == 0);
2281 }
2282 if (VT == MVT::i64) {
2283 return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
2284 Offset <= Hexagon_MEMD_AUTOINC_MAX &&
2285 (Offset & 0x7) == 0);
2286 }
2287 if (VT == MVT::i32) {
2288 return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
2289 Offset <= Hexagon_MEMW_AUTOINC_MAX &&
2290 (Offset & 0x3) == 0);
2291 }
2292 if (VT == MVT::i16) {
2293 return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
2294 Offset <= Hexagon_MEMH_AUTOINC_MAX &&
2295 (Offset & 0x1) == 0);
2296 }
2297 if (VT == MVT::i8) {
2298 return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
2299 Offset <= Hexagon_MEMB_AUTOINC_MAX);
2300 }
2301 llvm_unreachable("Not an auto-inc opc!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002302}
2303
2304
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002305bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2306 bool Extend) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002307 // This function is to check whether the "Offset" is in the correct range of
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002308 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002309 // inserted to calculate the final address. Due to this reason, the function
2310 // assumes that the "Offset" has correct alignment.
Jyotsna Vermaec613662013-03-14 19:08:03 +00002311 // We used to assert if the offset was not properly aligned, however,
2312 // there are cases where a misaligned pointer recast can cause this
2313 // problem, and we need to allow for it. The front end warns of such
2314 // misaligns with respect to load size.
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002315
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002316 switch (Opcode) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002317 case Hexagon::STriq_pred_V6:
2318 case Hexagon::STriq_pred_vec_V6:
2319 case Hexagon::STriv_pseudo_V6:
2320 case Hexagon::STrivv_pseudo_V6:
2321 case Hexagon::LDriq_pred_V6:
2322 case Hexagon::LDriq_pred_vec_V6:
2323 case Hexagon::LDriv_pseudo_V6:
2324 case Hexagon::LDrivv_pseudo_V6:
2325 case Hexagon::LDrivv_indexed:
2326 case Hexagon::STrivv_indexed:
2327 case Hexagon::V6_vL32b_ai:
2328 case Hexagon::V6_vS32b_ai:
2329 case Hexagon::V6_vL32Ub_ai:
2330 case Hexagon::V6_vS32Ub_ai:
2331 return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
2332 (Offset <= Hexagon_MEMV_OFFSET_MAX);
2333
2334 case Hexagon::STriq_pred_V6_128B:
2335 case Hexagon::STriq_pred_vec_V6_128B:
2336 case Hexagon::STriv_pseudo_V6_128B:
2337 case Hexagon::STrivv_pseudo_V6_128B:
2338 case Hexagon::LDriq_pred_V6_128B:
2339 case Hexagon::LDriq_pred_vec_V6_128B:
2340 case Hexagon::LDriv_pseudo_V6_128B:
2341 case Hexagon::LDrivv_pseudo_V6_128B:
2342 case Hexagon::LDrivv_indexed_128B:
2343 case Hexagon::STrivv_indexed_128B:
2344 case Hexagon::V6_vL32b_ai_128B:
2345 case Hexagon::V6_vS32b_ai_128B:
2346 case Hexagon::V6_vL32Ub_ai_128B:
2347 case Hexagon::V6_vS32Ub_ai_128B:
2348 return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
2349 (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
2350
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002351 case Hexagon::J2_loop0i:
2352 case Hexagon::J2_loop1i:
2353 return isUInt<10>(Offset);
2354 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002355
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002356 if (Extend)
2357 return true;
2358
2359 switch (Opcode) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +00002360 case Hexagon::L2_loadri_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002361 case Hexagon::S2_storeri_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002362 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2363 (Offset <= Hexagon_MEMW_OFFSET_MAX);
2364
Colin LeMahieu947cd702014-12-23 20:44:59 +00002365 case Hexagon::L2_loadrd_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002366 case Hexagon::S2_storerd_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002367 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2368 (Offset <= Hexagon_MEMD_OFFSET_MAX);
2369
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00002370 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00002371 case Hexagon::L2_loadruh_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002372 case Hexagon::S2_storerh_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002373 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2374 (Offset <= Hexagon_MEMH_OFFSET_MAX);
2375
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00002376 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00002377 case Hexagon::L2_loadrub_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002378 case Hexagon::S2_storerb_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002379 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2380 (Offset <= Hexagon_MEMB_OFFSET_MAX);
2381
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00002382 case Hexagon::A2_addi:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002383 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2384 (Offset <= Hexagon_ADDI_OFFSET_MAX);
2385
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002386 case Hexagon::L4_iadd_memopw_io :
2387 case Hexagon::L4_isub_memopw_io :
2388 case Hexagon::L4_add_memopw_io :
2389 case Hexagon::L4_sub_memopw_io :
2390 case Hexagon::L4_and_memopw_io :
2391 case Hexagon::L4_or_memopw_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002392 return (0 <= Offset && Offset <= 255);
2393
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002394 case Hexagon::L4_iadd_memoph_io :
2395 case Hexagon::L4_isub_memoph_io :
2396 case Hexagon::L4_add_memoph_io :
2397 case Hexagon::L4_sub_memoph_io :
2398 case Hexagon::L4_and_memoph_io :
2399 case Hexagon::L4_or_memoph_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002400 return (0 <= Offset && Offset <= 127);
2401
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002402 case Hexagon::L4_iadd_memopb_io :
2403 case Hexagon::L4_isub_memopb_io :
2404 case Hexagon::L4_add_memopb_io :
2405 case Hexagon::L4_sub_memopb_io :
2406 case Hexagon::L4_and_memopb_io :
2407 case Hexagon::L4_or_memopb_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002408 return (0 <= Offset && Offset <= 63);
2409
2410 // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
2411 // any size. Later pass knows how to handle it.
2412 case Hexagon::STriw_pred:
2413 case Hexagon::LDriw_pred:
2414 return true;
2415
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002416 case Hexagon::TFR_FI:
2417 case Hexagon::TFR_FIA:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002418 case Hexagon::INLINEASM:
2419 return true;
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +00002420
2421 case Hexagon::L2_ploadrbt_io:
2422 case Hexagon::L2_ploadrbf_io:
2423 case Hexagon::L2_ploadrubt_io:
2424 case Hexagon::L2_ploadrubf_io:
2425 case Hexagon::S2_pstorerbt_io:
2426 case Hexagon::S2_pstorerbf_io:
2427 case Hexagon::S4_storeirb_io:
2428 case Hexagon::S4_storeirbt_io:
2429 case Hexagon::S4_storeirbf_io:
2430 return isUInt<6>(Offset);
2431
2432 case Hexagon::L2_ploadrht_io:
2433 case Hexagon::L2_ploadrhf_io:
2434 case Hexagon::L2_ploadruht_io:
2435 case Hexagon::L2_ploadruhf_io:
2436 case Hexagon::S2_pstorerht_io:
2437 case Hexagon::S2_pstorerhf_io:
2438 case Hexagon::S4_storeirh_io:
2439 case Hexagon::S4_storeirht_io:
2440 case Hexagon::S4_storeirhf_io:
2441 return isShiftedUInt<6,1>(Offset);
2442
2443 case Hexagon::L2_ploadrit_io:
2444 case Hexagon::L2_ploadrif_io:
2445 case Hexagon::S2_pstorerit_io:
2446 case Hexagon::S2_pstorerif_io:
2447 case Hexagon::S4_storeiri_io:
2448 case Hexagon::S4_storeirit_io:
2449 case Hexagon::S4_storeirif_io:
2450 return isShiftedUInt<6,2>(Offset);
2451
2452 case Hexagon::L2_ploadrdt_io:
2453 case Hexagon::L2_ploadrdf_io:
2454 case Hexagon::S2_pstorerdt_io:
2455 case Hexagon::S2_pstorerdf_io:
2456 return isShiftedUInt<6,3>(Offset);
2457 } // switch
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002458
Benjamin Kramerb6684012011-12-27 11:41:05 +00002459 llvm_unreachable("No offset range is defined for this opcode. "
2460 "Please define it in the above switch statement!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002461}
2462
2463
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002464bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
2465 return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002466}
2467
2468
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002469bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
2470 if (!MI)
Andrew Trickd06df962012-02-01 22:13:57 +00002471 return false;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002472 const uint64_t F = get(MI->getOpcode()).TSFlags;
2473 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2474 return
2475 V == HexagonII::TypeCVI_VA ||
2476 V == HexagonII::TypeCVI_VA_DV;
2477}
Andrew Trickd06df962012-02-01 22:13:57 +00002478
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002479
2480bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
2481 const MachineInstr *ConsMI) const {
2482 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2483 return true;
2484
2485 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2486 return true;
2487
2488 if (mayBeNewStore(ConsMI))
Andrew Trickd06df962012-02-01 22:13:57 +00002489 return true;
2490
2491 return false;
2492}
Jyotsna Verma84256432013-03-01 17:37:13 +00002493
Jyotsna Verma84256432013-03-01 17:37:13 +00002494
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002495bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2496 for (auto &I : *B)
2497 if (I.isEHLabel())
2498 return true;
2499 return false;
Jyotsna Verma84256432013-03-01 17:37:13 +00002500}
2501
Jyotsna Verma84256432013-03-01 17:37:13 +00002502
2503// Returns true if an instruction can be converted into a non-extended
2504// equivalent instruction.
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002505bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00002506 short NonExtOpcode;
2507 // Check if the instruction has a register form that uses register in place
2508 // of the extended operand, if so return that as the non-extended form.
2509 if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
2510 return true;
2511
2512 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00002513 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00002514
2515 switch (getAddrMode(MI)) {
2516 case HexagonII::Absolute :
2517 // Load/store with absolute addressing mode can be converted into
2518 // base+offset mode.
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00002519 NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00002520 break;
2521 case HexagonII::BaseImmOffset :
2522 // Load/store with base+offset addressing mode can be converted into
2523 // base+register offset addressing mode. However left shift operand should
2524 // be set to 0.
2525 NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
2526 break;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002527 case HexagonII::BaseLongOffset:
2528 NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
2529 break;
Jyotsna Verma84256432013-03-01 17:37:13 +00002530 default:
2531 return false;
2532 }
2533 if (NonExtOpcode < 0)
2534 return false;
2535 return true;
2536 }
2537 return false;
2538}
2539
Jyotsna Verma84256432013-03-01 17:37:13 +00002540
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002541bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002542 return Hexagon::getRealHWInstr(MI->getOpcode(),
2543 Hexagon::InstrType_Pseudo) >= 0;
2544}
2545
2546
2547bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
2548 const {
2549 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
2550 while (I != E) {
2551 if (I->isBarrier())
2552 return true;
2553 ++I;
2554 }
2555 return false;
2556}
2557
2558
2559// Returns true, if a LD insn can be promoted to a cur load.
2560bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
2561 auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
2562 const uint64_t F = MI->getDesc().TSFlags;
2563 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
2564 HST.hasV60TOps();
2565}
2566
2567
2568// Returns true, if a ST insn can be promoted to a new-value store.
2569bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
2570 const uint64_t F = MI->getDesc().TSFlags;
2571 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
2572}
2573
2574
2575bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
2576 const MachineInstr *ConsMI) const {
2577 // There is no stall when ProdMI is not a V60 vector.
2578 if (!isV60VectorInstruction(ProdMI))
2579 return false;
2580
2581 // There is no stall when ProdMI and ConsMI are not dependent.
2582 if (!isDependent(ProdMI, ConsMI))
2583 return false;
2584
2585 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
2586 // are scheduled in consecutive packets.
2587 if (isVecUsableNextPacket(ProdMI, ConsMI))
2588 return false;
2589
2590 return true;
2591}
2592
2593
2594bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
2595 MachineBasicBlock::const_instr_iterator BII) const {
2596 // There is no stall when I is not a V60 vector.
2597 if (!isV60VectorInstruction(MI))
2598 return false;
2599
2600 MachineBasicBlock::const_instr_iterator MII = BII;
2601 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
2602
2603 if (!(*MII).isBundle()) {
2604 const MachineInstr *J = &*MII;
2605 if (!isV60VectorInstruction(J))
2606 return false;
2607 else if (isVecUsableNextPacket(J, MI))
2608 return false;
2609 return true;
2610 }
2611
2612 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
2613 const MachineInstr *J = &*MII;
2614 if (producesStall(J, MI))
2615 return true;
2616 }
2617 return false;
2618}
2619
2620
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002621bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr *MI,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002622 unsigned PredReg) const {
2623 for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002624 const MachineOperand &MO = MI->getOperand(opNum);
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002625 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
2626 return false; // Predicate register must be explicitly defined.
2627 }
2628
2629 // Hexagon Programmer's Reference says that decbin, memw_locked, and
2630 // memd_locked cannot be used as .new as well,
2631 // but we don't seem to have these instructions defined.
2632 return MI->getOpcode() != Hexagon::A4_tlbmatch;
2633}
2634
2635
2636bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
2637 return (Opcode == Hexagon::J2_jumpt) ||
2638 (Opcode == Hexagon::J2_jumpf) ||
2639 (Opcode == Hexagon::J2_jumptnew) ||
2640 (Opcode == Hexagon::J2_jumpfnew) ||
2641 (Opcode == Hexagon::J2_jumptnewpt) ||
2642 (Opcode == Hexagon::J2_jumpfnewpt);
2643}
2644
2645
2646bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
2647 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
2648 return false;
2649 return !isPredicatedTrue(Cond[0].getImm());
2650}
2651
2652
2653unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
2654 const uint64_t F = MI->getDesc().TSFlags;
2655 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
2656}
2657
2658
2659// Returns the base register in a memory access (load/store). The offset is
2660// returned in Offset and the access size is returned in AccessSize.
2661unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
2662 int &Offset, unsigned &AccessSize) const {
2663 // Return if it is not a base+offset type instruction or a MemOp.
2664 if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
2665 getAddrMode(MI) != HexagonII::BaseLongOffset &&
2666 !isMemOp(MI) && !isPostIncrement(MI))
2667 return 0;
2668
2669 // Since it is a memory access instruction, getMemAccessSize() should never
2670 // return 0.
2671 assert (getMemAccessSize(MI) &&
2672 "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
2673
2674 // Return Values of getMemAccessSize() are
2675 // 0 - Checked in the assert above.
2676 // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
2677 // MemAccessSize is represented as 1+log2(N) where N is size in bits.
2678 AccessSize = (1U << (getMemAccessSize(MI) - 1));
2679
2680 unsigned basePos = 0, offsetPos = 0;
2681 if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
2682 return 0;
2683
2684 // Post increment updates its EA after the mem access,
2685 // so we need to treat its offset as zero.
2686 if (isPostIncrement(MI))
2687 Offset = 0;
2688 else {
2689 Offset = MI->getOperand(offsetPos).getImm();
2690 }
2691
2692 return MI->getOperand(basePos).getReg();
2693}
2694
2695
2696/// Return the position of the base and offset operands for this instruction.
2697bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
2698 unsigned &BasePos, unsigned &OffsetPos) const {
2699 // Deal with memops first.
2700 if (isMemOp(MI)) {
2701 assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
2702 "Bad Memop.");
2703 BasePos = 0;
2704 OffsetPos = 1;
2705 } else if (MI->mayStore()) {
2706 BasePos = 0;
2707 OffsetPos = 1;
2708 } else if (MI->mayLoad()) {
2709 BasePos = 1;
2710 OffsetPos = 2;
2711 } else
2712 return false;
2713
2714 if (isPredicated(MI)) {
2715 BasePos++;
2716 OffsetPos++;
2717 }
2718 if (isPostIncrement(MI)) {
2719 BasePos++;
2720 OffsetPos++;
2721 }
2722
2723 if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
2724 return false;
2725
2726 return true;
2727}
2728
2729
2730// Inserts branching instructions in reverse order of their occurence.
2731// e.g. jump_t t1 (i1)
2732// jump t2 (i2)
2733// Jumpers = {i2, i1}
2734SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
2735 MachineBasicBlock& MBB) const {
2736 SmallVector<MachineInstr*, 2> Jumpers;
2737 // If the block has no terminators, it just falls into the block after it.
2738 MachineBasicBlock::instr_iterator I = MBB.instr_end();
2739 if (I == MBB.instr_begin())
2740 return Jumpers;
2741
2742 // A basic block may looks like this:
2743 //
2744 // [ insn
2745 // EH_LABEL
2746 // insn
2747 // insn
2748 // insn
2749 // EH_LABEL
2750 // insn ]
2751 //
2752 // It has two succs but does not have a terminator
2753 // Don't know how to handle it.
2754 do {
2755 --I;
2756 if (I->isEHLabel())
2757 return Jumpers;
2758 } while (I != MBB.instr_begin());
2759
2760 I = MBB.instr_end();
2761 --I;
2762
2763 while (I->isDebugValue()) {
2764 if (I == MBB.instr_begin())
2765 return Jumpers;
2766 --I;
2767 }
2768 if (!isUnpredicatedTerminator(&*I))
2769 return Jumpers;
2770
2771 // Get the last instruction in the block.
2772 MachineInstr *LastInst = &*I;
2773 Jumpers.push_back(LastInst);
2774 MachineInstr *SecondLastInst = nullptr;
2775 // Find one more terminator if present.
2776 do {
2777 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
2778 if (!SecondLastInst) {
2779 SecondLastInst = &*I;
2780 Jumpers.push_back(SecondLastInst);
2781 } else // This is a third branch.
2782 return Jumpers;
2783 }
2784 if (I == MBB.instr_begin())
2785 break;
2786 --I;
2787 } while (true);
2788 return Jumpers;
2789}
2790
2791
2792// Returns Operand Index for the constant extended instruction.
2793unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
2794 const uint64_t F = MI->getDesc().TSFlags;
2795 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
2796}
2797
2798// See if instruction could potentially be a duplex candidate.
2799// If so, return its group. Zero otherwise.
2800HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
2801 const MachineInstr *MI) const {
2802 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
2803
2804 switch (MI->getOpcode()) {
2805 default:
2806 return HexagonII::HCG_None;
2807 //
2808 // Compound pairs.
2809 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
2810 // "Rd16=#U6 ; jump #r9:2"
2811 // "Rd16=Rs16 ; jump #r9:2"
2812 //
2813 case Hexagon::C2_cmpeq:
2814 case Hexagon::C2_cmpgt:
2815 case Hexagon::C2_cmpgtu:
2816 DstReg = MI->getOperand(0).getReg();
2817 Src1Reg = MI->getOperand(1).getReg();
2818 Src2Reg = MI->getOperand(2).getReg();
2819 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2820 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2821 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
2822 return HexagonII::HCG_A;
2823 break;
2824 case Hexagon::C2_cmpeqi:
2825 case Hexagon::C2_cmpgti:
2826 case Hexagon::C2_cmpgtui:
2827 // P0 = cmp.eq(Rs,#u2)
2828 DstReg = MI->getOperand(0).getReg();
2829 SrcReg = MI->getOperand(1).getReg();
2830 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2831 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2832 isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
2833 ((isUInt<5>(MI->getOperand(2).getImm())) ||
2834 (MI->getOperand(2).getImm() == -1)))
2835 return HexagonII::HCG_A;
2836 break;
2837 case Hexagon::A2_tfr:
2838 // Rd = Rs
2839 DstReg = MI->getOperand(0).getReg();
2840 SrcReg = MI->getOperand(1).getReg();
2841 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
2842 return HexagonII::HCG_A;
2843 break;
2844 case Hexagon::A2_tfrsi:
2845 // Rd = #u6
2846 // Do not test for #u6 size since the const is getting extended
2847 // regardless and compound could be formed.
2848 DstReg = MI->getOperand(0).getReg();
2849 if (isIntRegForSubInst(DstReg))
2850 return HexagonII::HCG_A;
2851 break;
2852 case Hexagon::S2_tstbit_i:
2853 DstReg = MI->getOperand(0).getReg();
2854 Src1Reg = MI->getOperand(1).getReg();
2855 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2856 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2857 MI->getOperand(2).isImm() &&
2858 isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
2859 return HexagonII::HCG_A;
2860 break;
2861 // The fact that .new form is used pretty much guarantees
2862 // that predicate register will match. Nevertheless,
2863 // there could be some false positives without additional
2864 // checking.
2865 case Hexagon::J2_jumptnew:
2866 case Hexagon::J2_jumpfnew:
2867 case Hexagon::J2_jumptnewpt:
2868 case Hexagon::J2_jumpfnewpt:
2869 Src1Reg = MI->getOperand(0).getReg();
2870 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
2871 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
2872 return HexagonII::HCG_B;
2873 break;
2874 // Transfer and jump:
2875 // Rd=#U6 ; jump #r9:2
2876 // Rd=Rs ; jump #r9:2
2877 // Do not test for jump range here.
2878 case Hexagon::J2_jump:
2879 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
2880 return HexagonII::HCG_C;
2881 break;
2882 }
2883
2884 return HexagonII::HCG_None;
2885}
2886
2887
2888// Returns -1 when there is no opcode found.
2889unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
2890 const MachineInstr *GB) const {
2891 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
2892 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
2893 if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
2894 (GB->getOpcode() != Hexagon::J2_jumptnew))
2895 return -1;
2896 unsigned DestReg = GA->getOperand(0).getReg();
2897 if (!GB->readsRegister(DestReg))
2898 return -1;
2899 if (DestReg == Hexagon::P0)
2900 return Hexagon::J4_cmpeqi_tp0_jump_nt;
2901 if (DestReg == Hexagon::P1)
2902 return Hexagon::J4_cmpeqi_tp1_jump_nt;
2903 return -1;
2904}
2905
2906
2907int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
2908 enum Hexagon::PredSense inPredSense;
2909 inPredSense = invertPredicate ? Hexagon::PredSense_false :
2910 Hexagon::PredSense_true;
2911 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
2912 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
2913 return CondOpcode;
2914
2915 // This switch case will be removed once all the instructions have been
2916 // modified to use relation maps.
2917 switch(Opc) {
2918 case Hexagon::TFRI_f:
2919 return !invertPredicate ? Hexagon::TFRI_cPt_f :
2920 Hexagon::TFRI_cNotPt_f;
2921 }
2922
2923 llvm_unreachable("Unexpected predicable instruction");
2924}
2925
2926
2927// Return the cur value instruction for a given store.
2928int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
2929 switch (MI->getOpcode()) {
2930 default: llvm_unreachable("Unknown .cur type");
2931 case Hexagon::V6_vL32b_pi:
2932 return Hexagon::V6_vL32b_cur_pi;
2933 case Hexagon::V6_vL32b_ai:
2934 return Hexagon::V6_vL32b_cur_ai;
2935 //128B
2936 case Hexagon::V6_vL32b_pi_128B:
2937 return Hexagon::V6_vL32b_cur_pi_128B;
2938 case Hexagon::V6_vL32b_ai_128B:
2939 return Hexagon::V6_vL32b_cur_ai_128B;
2940 }
2941 return 0;
2942}
2943
2944
2945
2946// The diagram below shows the steps involved in the conversion of a predicated
2947// store instruction to its .new predicated new-value form.
2948//
2949// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
2950// ^ ^
2951// / \ (not OK. it will cause new-value store to be
2952// / X conditional on p0.new while R2 producer is
2953// / \ on p0)
2954// / \.
2955// p.new store p.old NV store
2956// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
2957// ^ ^
2958// \ /
2959// \ /
2960// \ /
2961// p.old store
2962// [if (p0)memw(R0+#0)=R2]
2963//
2964//
2965// The following set of instructions further explains the scenario where
2966// conditional new-value store becomes invalid when promoted to .new predicate
2967// form.
2968//
2969// { 1) if (p0) r0 = add(r1, r2)
2970// 2) p0 = cmp.eq(r3, #0) }
2971//
2972// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
2973// the first two instructions because in instr 1, r0 is conditional on old value
2974// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
2975// is not valid for new-value stores.
2976// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
2977// from the "Conditional Store" list. Because a predicated new value store
2978// would NOT be promoted to a double dot new store. See diagram below:
2979// This function returns yes for those stores that are predicated but not
2980// yet promoted to predicate dot new instructions.
2981//
2982// +---------------------+
2983// /-----| if (p0) memw(..)=r0 |---------\~
2984// || +---------------------+ ||
2985// promote || /\ /\ || promote
2986// || /||\ /||\ ||
2987// \||/ demote || \||/
2988// \/ || || \/
2989// +-------------------------+ || +-------------------------+
2990// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
2991// +-------------------------+ || +-------------------------+
2992// || || ||
2993// || demote \||/
2994// promote || \/ NOT possible
2995// || || /\~
2996// \||/ || /||\~
2997// \/ || ||
2998// +-----------------------------+
2999// | if (p0.new) memw(..)=r0.new |
3000// +-----------------------------+
3001// Double Dot New Store
3002//
3003// Returns the most basic instruction for the .new predicated instructions and
3004// new-value stores.
3005// For example, all of the following instructions will be converted back to the
3006// same instruction:
3007// 1) if (p0.new) memw(R0+#0) = R1.new --->
3008// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3009// 3) if (p0.new) memw(R0+#0) = R1 --->
3010//
3011// To understand the translation of instruction 1 to its original form, consider
3012// a packet with 3 instructions.
3013// { p0 = cmp.eq(R0,R1)
3014// if (p0.new) R2 = add(R3, R4)
3015// R5 = add (R3, R1)
3016// }
3017// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3018//
3019// This instruction can be part of the previous packet only if both p0 and R2
3020// are promoted to .new values. This promotion happens in steps, first
3021// predicate register is promoted to .new and in the next iteration R2 is
3022// promoted. Therefore, in case of dependence check failure (due to R5) during
3023// next iteration, it should be converted back to its most basic form.
3024
3025
3026// Return the new value instruction for a given store.
3027int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
3028 int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
3029 if (NVOpcode >= 0) // Valid new-value store instruction.
3030 return NVOpcode;
3031
3032 switch (MI->getOpcode()) {
3033 default: llvm_unreachable("Unknown .new type");
3034 case Hexagon::S4_storerb_ur:
3035 return Hexagon::S4_storerbnew_ur;
3036
3037 case Hexagon::S2_storerb_pci:
3038 return Hexagon::S2_storerb_pci;
3039
3040 case Hexagon::S2_storeri_pci:
3041 return Hexagon::S2_storeri_pci;
3042
3043 case Hexagon::S2_storerh_pci:
3044 return Hexagon::S2_storerh_pci;
3045
3046 case Hexagon::S2_storerd_pci:
3047 return Hexagon::S2_storerd_pci;
3048
3049 case Hexagon::S2_storerf_pci:
3050 return Hexagon::S2_storerf_pci;
3051
3052 case Hexagon::V6_vS32b_ai:
3053 return Hexagon::V6_vS32b_new_ai;
3054
3055 case Hexagon::V6_vS32b_pi:
3056 return Hexagon::V6_vS32b_new_pi;
3057
3058 // 128B
3059 case Hexagon::V6_vS32b_ai_128B:
3060 return Hexagon::V6_vS32b_new_ai_128B;
3061
3062 case Hexagon::V6_vS32b_pi_128B:
3063 return Hexagon::V6_vS32b_new_pi_128B;
3064 }
3065 return 0;
3066}
3067
3068// Returns the opcode to use when converting MI, which is a conditional jump,
3069// into a conditional instruction which uses the .new value of the predicate.
3070// We also use branch probabilities to add a hint to the jump.
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003071int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr *MI,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003072 const MachineBranchProbabilityInfo *MBPI) const {
3073 // We assume that block can have at most two successors.
3074 bool taken = false;
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003075 const MachineBasicBlock *Src = MI->getParent();
3076 const MachineOperand *BrTarget = &MI->getOperand(1);
3077 const MachineBasicBlock *Dst = BrTarget->getMBB();
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003078
3079 const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
3080 if (Prediction >= BranchProbability(1,2))
3081 taken = true;
3082
3083 switch (MI->getOpcode()) {
3084 case Hexagon::J2_jumpt:
3085 return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3086 case Hexagon::J2_jumpf:
3087 return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3088
3089 default:
3090 llvm_unreachable("Unexpected jump instruction.");
3091 }
3092}
3093
3094
3095// Return .new predicate version for an instruction.
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003096int HexagonInstrInfo::getDotNewPredOp(const MachineInstr *MI,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003097 const MachineBranchProbabilityInfo *MBPI) const {
3098 int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
3099 if (NewOpcode >= 0) // Valid predicate new instruction
3100 return NewOpcode;
3101
3102 switch (MI->getOpcode()) {
3103 // Condtional Jumps
3104 case Hexagon::J2_jumpt:
3105 case Hexagon::J2_jumpf:
3106 return getDotNewPredJumpOp(MI, MBPI);
3107
3108 default:
3109 assert(0 && "Unknown .new type");
3110 }
3111 return 0;
3112}
3113
3114
3115int HexagonInstrInfo::getDotOldOp(const int opc) const {
3116 int NewOp = opc;
3117 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3118 NewOp = Hexagon::getPredOldOpcode(NewOp);
3119 assert(NewOp >= 0 &&
3120 "Couldn't change predicate new instruction to its old form.");
3121 }
3122
3123 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3124 NewOp = Hexagon::getNonNVStore(NewOp);
3125 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3126 }
3127 return NewOp;
3128}
3129
3130
3131// See if instruction could potentially be a duplex candidate.
3132// If so, return its group. Zero otherwise.
3133HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3134 const MachineInstr *MI) const {
3135 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3136 auto &HRI = getRegisterInfo();
3137
3138 switch (MI->getOpcode()) {
3139 default:
3140 return HexagonII::HSIG_None;
3141 //
3142 // Group L1:
3143 //
3144 // Rd = memw(Rs+#u4:2)
3145 // Rd = memub(Rs+#u4:0)
3146 case Hexagon::L2_loadri_io:
3147 DstReg = MI->getOperand(0).getReg();
3148 SrcReg = MI->getOperand(1).getReg();
3149 // Special case this one from Group L2.
3150 // Rd = memw(r29+#u5:2)
3151 if (isIntRegForSubInst(DstReg)) {
3152 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3153 HRI.getStackRegister() == SrcReg &&
3154 MI->getOperand(2).isImm() &&
3155 isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
3156 return HexagonII::HSIG_L2;
3157 // Rd = memw(Rs+#u4:2)
3158 if (isIntRegForSubInst(SrcReg) &&
3159 (MI->getOperand(2).isImm() &&
3160 isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
3161 return HexagonII::HSIG_L1;
3162 }
3163 break;
3164 case Hexagon::L2_loadrub_io:
3165 // Rd = memub(Rs+#u4:0)
3166 DstReg = MI->getOperand(0).getReg();
3167 SrcReg = MI->getOperand(1).getReg();
3168 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3169 MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
3170 return HexagonII::HSIG_L1;
3171 break;
3172 //
3173 // Group L2:
3174 //
3175 // Rd = memh/memuh(Rs+#u3:1)
3176 // Rd = memb(Rs+#u3:0)
3177 // Rd = memw(r29+#u5:2) - Handled above.
3178 // Rdd = memd(r29+#u5:3)
3179 // deallocframe
3180 // [if ([!]p0[.new])] dealloc_return
3181 // [if ([!]p0[.new])] jumpr r31
3182 case Hexagon::L2_loadrh_io:
3183 case Hexagon::L2_loadruh_io:
3184 // Rd = memh/memuh(Rs+#u3:1)
3185 DstReg = MI->getOperand(0).getReg();
3186 SrcReg = MI->getOperand(1).getReg();
3187 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3188 MI->getOperand(2).isImm() &&
3189 isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
3190 return HexagonII::HSIG_L2;
3191 break;
3192 case Hexagon::L2_loadrb_io:
3193 // Rd = memb(Rs+#u3:0)
3194 DstReg = MI->getOperand(0).getReg();
3195 SrcReg = MI->getOperand(1).getReg();
3196 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3197 MI->getOperand(2).isImm() &&
3198 isUInt<3>(MI->getOperand(2).getImm()))
3199 return HexagonII::HSIG_L2;
3200 break;
3201 case Hexagon::L2_loadrd_io:
3202 // Rdd = memd(r29+#u5:3)
3203 DstReg = MI->getOperand(0).getReg();
3204 SrcReg = MI->getOperand(1).getReg();
3205 if (isDblRegForSubInst(DstReg, HRI) &&
3206 Hexagon::IntRegsRegClass.contains(SrcReg) &&
3207 HRI.getStackRegister() == SrcReg &&
3208 MI->getOperand(2).isImm() &&
3209 isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
3210 return HexagonII::HSIG_L2;
3211 break;
3212 // dealloc_return is not documented in Hexagon Manual, but marked
3213 // with A_SUBINSN attribute in iset_v4classic.py.
3214 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3215 case Hexagon::L4_return:
3216 case Hexagon::L2_deallocframe:
3217 return HexagonII::HSIG_L2;
3218 case Hexagon::EH_RETURN_JMPR:
3219 case Hexagon::JMPret :
3220 // jumpr r31
3221 // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
3222 DstReg = MI->getOperand(0).getReg();
3223 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3224 return HexagonII::HSIG_L2;
3225 break;
3226 case Hexagon::JMPrett:
3227 case Hexagon::JMPretf:
3228 case Hexagon::JMPrettnewpt:
3229 case Hexagon::JMPretfnewpt :
3230 case Hexagon::JMPrettnew :
3231 case Hexagon::JMPretfnew :
3232 DstReg = MI->getOperand(1).getReg();
3233 SrcReg = MI->getOperand(0).getReg();
3234 // [if ([!]p0[.new])] jumpr r31
3235 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3236 (Hexagon::P0 == SrcReg)) &&
3237 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3238 return HexagonII::HSIG_L2;
3239 break;
3240 case Hexagon::L4_return_t :
3241 case Hexagon::L4_return_f :
3242 case Hexagon::L4_return_tnew_pnt :
3243 case Hexagon::L4_return_fnew_pnt :
3244 case Hexagon::L4_return_tnew_pt :
3245 case Hexagon::L4_return_fnew_pt :
3246 // [if ([!]p0[.new])] dealloc_return
3247 SrcReg = MI->getOperand(0).getReg();
3248 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3249 return HexagonII::HSIG_L2;
3250 break;
3251 //
3252 // Group S1:
3253 //
3254 // memw(Rs+#u4:2) = Rt
3255 // memb(Rs+#u4:0) = Rt
3256 case Hexagon::S2_storeri_io:
3257 // Special case this one from Group S2.
3258 // memw(r29+#u5:2) = Rt
3259 Src1Reg = MI->getOperand(0).getReg();
3260 Src2Reg = MI->getOperand(2).getReg();
3261 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3262 isIntRegForSubInst(Src2Reg) &&
3263 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3264 isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
3265 return HexagonII::HSIG_S2;
3266 // memw(Rs+#u4:2) = Rt
3267 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3268 MI->getOperand(1).isImm() &&
3269 isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
3270 return HexagonII::HSIG_S1;
3271 break;
3272 case Hexagon::S2_storerb_io:
3273 // memb(Rs+#u4:0) = Rt
3274 Src1Reg = MI->getOperand(0).getReg();
3275 Src2Reg = MI->getOperand(2).getReg();
3276 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3277 MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
3278 return HexagonII::HSIG_S1;
3279 break;
3280 //
3281 // Group S2:
3282 //
3283 // memh(Rs+#u3:1) = Rt
3284 // memw(r29+#u5:2) = Rt
3285 // memd(r29+#s6:3) = Rtt
3286 // memw(Rs+#u4:2) = #U1
3287 // memb(Rs+#u4) = #U1
3288 // allocframe(#u5:3)
3289 case Hexagon::S2_storerh_io:
3290 // memh(Rs+#u3:1) = Rt
3291 Src1Reg = MI->getOperand(0).getReg();
3292 Src2Reg = MI->getOperand(2).getReg();
3293 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3294 MI->getOperand(1).isImm() &&
3295 isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
3296 return HexagonII::HSIG_S1;
3297 break;
3298 case Hexagon::S2_storerd_io:
3299 // memd(r29+#s6:3) = Rtt
3300 Src1Reg = MI->getOperand(0).getReg();
3301 Src2Reg = MI->getOperand(2).getReg();
3302 if (isDblRegForSubInst(Src2Reg, HRI) &&
3303 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3304 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3305 isShiftedInt<6,3>(MI->getOperand(1).getImm()))
3306 return HexagonII::HSIG_S2;
3307 break;
3308 case Hexagon::S4_storeiri_io:
3309 // memw(Rs+#u4:2) = #U1
3310 Src1Reg = MI->getOperand(0).getReg();
3311 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3312 isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
3313 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3314 return HexagonII::HSIG_S2;
3315 break;
3316 case Hexagon::S4_storeirb_io:
3317 // memb(Rs+#u4) = #U1
3318 Src1Reg = MI->getOperand(0).getReg();
3319 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3320 isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
3321 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3322 return HexagonII::HSIG_S2;
3323 break;
3324 case Hexagon::S2_allocframe:
3325 if (MI->getOperand(0).isImm() &&
3326 isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
3327 return HexagonII::HSIG_S1;
3328 break;
3329 //
3330 // Group A:
3331 //
3332 // Rx = add(Rx,#s7)
3333 // Rd = Rs
3334 // Rd = #u6
3335 // Rd = #-1
3336 // if ([!]P0[.new]) Rd = #0
3337 // Rd = add(r29,#u6:2)
3338 // Rx = add(Rx,Rs)
3339 // P0 = cmp.eq(Rs,#u2)
3340 // Rdd = combine(#0,Rs)
3341 // Rdd = combine(Rs,#0)
3342 // Rdd = combine(#u2,#U2)
3343 // Rd = add(Rs,#1)
3344 // Rd = add(Rs,#-1)
3345 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3346 // Rd = and(Rs,#1)
3347 case Hexagon::A2_addi:
3348 DstReg = MI->getOperand(0).getReg();
3349 SrcReg = MI->getOperand(1).getReg();
3350 if (isIntRegForSubInst(DstReg)) {
3351 // Rd = add(r29,#u6:2)
3352 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3353 HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
3354 isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
3355 return HexagonII::HSIG_A;
3356 // Rx = add(Rx,#s7)
3357 if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
3358 isInt<7>(MI->getOperand(2).getImm()))
3359 return HexagonII::HSIG_A;
3360 // Rd = add(Rs,#1)
3361 // Rd = add(Rs,#-1)
3362 if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
3363 ((MI->getOperand(2).getImm() == 1) ||
3364 (MI->getOperand(2).getImm() == -1)))
3365 return HexagonII::HSIG_A;
3366 }
3367 break;
3368 case Hexagon::A2_add:
3369 // Rx = add(Rx,Rs)
3370 DstReg = MI->getOperand(0).getReg();
3371 Src1Reg = MI->getOperand(1).getReg();
3372 Src2Reg = MI->getOperand(2).getReg();
3373 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3374 isIntRegForSubInst(Src2Reg))
3375 return HexagonII::HSIG_A;
3376 break;
3377 case Hexagon::A2_andir:
3378 // Same as zxtb.
3379 // Rd16=and(Rs16,#255)
3380 // Rd16=and(Rs16,#1)
3381 DstReg = MI->getOperand(0).getReg();
3382 SrcReg = MI->getOperand(1).getReg();
3383 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3384 MI->getOperand(2).isImm() &&
3385 ((MI->getOperand(2).getImm() == 1) ||
3386 (MI->getOperand(2).getImm() == 255)))
3387 return HexagonII::HSIG_A;
3388 break;
3389 case Hexagon::A2_tfr:
3390 // Rd = Rs
3391 DstReg = MI->getOperand(0).getReg();
3392 SrcReg = MI->getOperand(1).getReg();
3393 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3394 return HexagonII::HSIG_A;
3395 break;
3396 case Hexagon::A2_tfrsi:
3397 // Rd = #u6
3398 // Do not test for #u6 size since the const is getting extended
3399 // regardless and compound could be formed.
3400 // Rd = #-1
3401 DstReg = MI->getOperand(0).getReg();
3402 if (isIntRegForSubInst(DstReg))
3403 return HexagonII::HSIG_A;
3404 break;
3405 case Hexagon::C2_cmoveit:
3406 case Hexagon::C2_cmovenewit:
3407 case Hexagon::C2_cmoveif:
3408 case Hexagon::C2_cmovenewif:
3409 // if ([!]P0[.new]) Rd = #0
3410 // Actual form:
3411 // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
3412 DstReg = MI->getOperand(0).getReg();
3413 SrcReg = MI->getOperand(1).getReg();
3414 if (isIntRegForSubInst(DstReg) &&
3415 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3416 MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
3417 return HexagonII::HSIG_A;
3418 break;
3419 case Hexagon::C2_cmpeqi:
3420 // P0 = cmp.eq(Rs,#u2)
3421 DstReg = MI->getOperand(0).getReg();
3422 SrcReg = MI->getOperand(1).getReg();
3423 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3424 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3425 MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
3426 return HexagonII::HSIG_A;
3427 break;
3428 case Hexagon::A2_combineii:
3429 case Hexagon::A4_combineii:
3430 // Rdd = combine(#u2,#U2)
3431 DstReg = MI->getOperand(0).getReg();
3432 if (isDblRegForSubInst(DstReg, HRI) &&
3433 ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
3434 (MI->getOperand(1).isGlobal() &&
3435 isUInt<2>(MI->getOperand(1).getOffset()))) &&
3436 ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
3437 (MI->getOperand(2).isGlobal() &&
3438 isUInt<2>(MI->getOperand(2).getOffset()))))
3439 return HexagonII::HSIG_A;
3440 break;
3441 case Hexagon::A4_combineri:
3442 // Rdd = combine(Rs,#0)
3443 DstReg = MI->getOperand(0).getReg();
3444 SrcReg = MI->getOperand(1).getReg();
3445 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3446 ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
3447 (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
3448 return HexagonII::HSIG_A;
3449 break;
3450 case Hexagon::A4_combineir:
3451 // Rdd = combine(#0,Rs)
3452 DstReg = MI->getOperand(0).getReg();
3453 SrcReg = MI->getOperand(2).getReg();
3454 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3455 ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
3456 (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
3457 return HexagonII::HSIG_A;
3458 break;
3459 case Hexagon::A2_sxtb:
3460 case Hexagon::A2_sxth:
3461 case Hexagon::A2_zxtb:
3462 case Hexagon::A2_zxth:
3463 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3464 DstReg = MI->getOperand(0).getReg();
3465 SrcReg = MI->getOperand(1).getReg();
3466 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3467 return HexagonII::HSIG_A;
3468 break;
3469 }
3470
3471 return HexagonII::HSIG_None;
3472}
3473
3474
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003475short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003476 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
3477}
3478
3479
3480// Return first non-debug instruction in the basic block.
3481MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
3482 const {
3483 for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
3484 MachineInstr *MI = &*MII;
3485 if (MI->isDebugValue())
3486 continue;
3487 return MI;
3488 }
3489 return nullptr;
3490}
3491
3492
3493unsigned HexagonInstrInfo::getInstrTimingClassLatency(
3494 const InstrItineraryData *ItinData, const MachineInstr *MI) const {
3495 // Default to one cycle for no itinerary. However, an "empty" itinerary may
3496 // still have a MinLatency property, which getStageLatency checks.
3497 if (!ItinData)
3498 return getInstrLatency(ItinData, MI);
3499
3500 // Get the latency embedded in the itinerary. If we're not using timing class
3501 // latencies or if we using BSB scheduling, then restrict the maximum latency
3502 // to 1 (that is, either 0 or 1).
3503 if (MI->isTransient())
3504 return 0;
3505 unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
3506 if (!EnableTimingClassLatency ||
3507 MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
3508 useBSBScheduling())
3509 if (Latency > 1)
3510 Latency = 1;
3511 return Latency;
3512}
3513
3514
3515// inverts the predication logic.
3516// p -> NotP
3517// NotP -> P
3518bool HexagonInstrInfo::getInvertedPredSense(
3519 SmallVectorImpl<MachineOperand> &Cond) const {
3520 if (Cond.empty())
3521 return false;
3522 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
3523 Cond[0].setImm(Opc);
3524 return true;
3525}
3526
3527
3528unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
3529 int InvPredOpcode;
3530 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
3531 : Hexagon::getTruePredOpcode(Opc);
3532 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
3533 return InvPredOpcode;
3534
3535 llvm_unreachable("Unexpected predicated instruction");
3536}
3537
3538
3539// Returns the max value that doesn't need to be extended.
3540int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
3541 const uint64_t F = MI->getDesc().TSFlags;
3542 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3543 & HexagonII::ExtentSignedMask;
3544 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3545 & HexagonII::ExtentBitsMask;
3546
3547 if (isSigned) // if value is signed
3548 return ~(-1U << (bits - 1));
3549 else
3550 return ~(-1U << bits);
3551}
3552
3553
3554unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
3555 const uint64_t F = MI->getDesc().TSFlags;
3556 return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
3557}
3558
3559
3560// Returns the min value that doesn't need to be extended.
3561int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
3562 const uint64_t F = MI->getDesc().TSFlags;
3563 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3564 & HexagonII::ExtentSignedMask;
3565 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3566 & HexagonII::ExtentBitsMask;
3567
3568 if (isSigned) // if value is signed
3569 return -1U << (bits - 1);
3570 else
3571 return 0;
3572}
3573
3574
3575// Returns opcode of the non-extended equivalent instruction.
3576short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00003577 // Check if the instruction has a register form that uses register in place
3578 // of the extended operand, if so return that as the non-extended form.
3579 short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
3580 if (NonExtOpcode >= 0)
3581 return NonExtOpcode;
3582
3583 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00003584 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00003585 switch (getAddrMode(MI)) {
3586 case HexagonII::Absolute :
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00003587 return Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00003588 case HexagonII::BaseImmOffset :
3589 return Hexagon::getBaseWithRegOffset(MI->getOpcode());
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003590 case HexagonII::BaseLongOffset:
3591 return Hexagon::getRegShlForm(MI->getOpcode());
3592
Jyotsna Verma84256432013-03-01 17:37:13 +00003593 default:
3594 return -1;
3595 }
3596 }
3597 return -1;
3598}
Jyotsna Verma5ed51812013-05-01 21:37:34 +00003599
Brendon Cahoondf43e682015-05-08 16:16:29 +00003600
Ahmed Bougachac88bf542015-06-11 19:30:37 +00003601bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003602 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +00003603 if (Cond.empty())
3604 return false;
3605 assert(Cond.size() == 2);
3606 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
3607 DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
3608 return false;
3609 }
3610 PredReg = Cond[1].getReg();
3611 PredRegPos = 1;
3612 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
3613 PredRegFlags = 0;
3614 if (Cond[1].isImplicit())
3615 PredRegFlags = RegState::Implicit;
3616 if (Cond[1].isUndef())
3617 PredRegFlags |= RegState::Undef;
3618 return true;
3619}
3620
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003621
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003622short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003623 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
3624}
3625
3626
3627short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
3628 return Hexagon::getRegForm(MI->getOpcode());
3629}
3630
3631
3632// Return the number of bytes required to encode the instruction.
3633// Hexagon instructions are fixed length, 4 bytes, unless they
3634// use a constant extender, which requires another 4 bytes.
3635// For debug instructions and prolog labels, return 0.
3636unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
3637 if (MI->isDebugValue() || MI->isPosition())
3638 return 0;
3639
3640 unsigned Size = MI->getDesc().getSize();
3641 if (!Size)
3642 // Assume the default insn size in case it cannot be determined
3643 // for whatever reason.
3644 Size = HEXAGON_INSTR_SIZE;
3645
3646 if (isConstExtended(MI) || isExtended(MI))
3647 Size += HEXAGON_INSTR_SIZE;
3648
3649 // Try and compute number of instructions in asm.
3650 if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
3651 const MachineBasicBlock &MBB = *MI->getParent();
3652 const MachineFunction *MF = MBB.getParent();
3653 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
3654
3655 // Count the number of register definitions to find the asm string.
3656 unsigned NumDefs = 0;
3657 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
3658 ++NumDefs)
3659 assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
3660
3661 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
3662 // Disassemble the AsmStr and approximate number of instructions.
3663 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
3664 Size = getInlineAsmLength(AsmStr, *MAI);
3665 }
3666
3667 return Size;
3668}
3669
3670
3671uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
3672 const uint64_t F = MI->getDesc().TSFlags;
3673 return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
3674}
3675
3676
3677unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
3678 const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
3679 const InstrItineraryData &II = *ST.getInstrItineraryData();
3680 const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
3681
3682 return IS.getUnits();
3683}
3684
3685
3686unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
3687 const uint64_t F = get(Opcode).TSFlags;
3688 return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
3689}
3690
3691
3692// Calculate size of the basic block without debug instructions.
3693unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
3694 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
3695}
3696
3697
3698unsigned HexagonInstrInfo::nonDbgBundleSize(
3699 MachineBasicBlock::const_iterator BundleHead) const {
3700 assert(BundleHead->isBundle() && "Not a bundle header");
3701 auto MII = BundleHead.getInstrIterator();
3702 // Skip the bundle header.
3703 return nonDbgMICount(++MII, getBundleEnd(BundleHead));
3704}
3705
3706
3707/// immediateExtend - Changes the instruction in place to one using an immediate
3708/// extender.
3709void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
3710 assert((isExtendable(MI)||isConstExtended(MI)) &&
3711 "Instruction must be extendable");
3712 // Find which operand is extendable.
3713 short ExtOpNum = getCExtOpNum(MI);
3714 MachineOperand &MO = MI->getOperand(ExtOpNum);
3715 // This needs to be something we understand.
3716 assert((MO.isMBB() || MO.isImm()) &&
3717 "Branch with unknown extendable field type");
3718 // Mark given operand as extended.
3719 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
3720}
3721
3722
3723bool HexagonInstrInfo::invertAndChangeJumpTarget(
3724 MachineInstr* MI, MachineBasicBlock* NewTarget) const {
3725 DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
3726 << NewTarget->getNumber(); MI->dump(););
3727 assert(MI->isBranch());
3728 unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
3729 int TargetPos = MI->getNumOperands() - 1;
3730 // In general branch target is the last operand,
3731 // but some implicit defs added at the end might change it.
3732 while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
3733 --TargetPos;
3734 assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
3735 MI->getOperand(TargetPos).setMBB(NewTarget);
3736 if (EnableBranchPrediction && isPredicatedNew(MI)) {
3737 NewOpcode = reversePrediction(NewOpcode);
3738 }
3739 MI->setDesc(get(NewOpcode));
3740 return true;
3741}
3742
3743
3744void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
3745 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
3746 MachineFunction::iterator A = MF.begin();
3747 MachineBasicBlock &B = *A;
3748 MachineBasicBlock::iterator I = B.begin();
3749 MachineInstr *MI = &*I;
3750 DebugLoc DL = MI->getDebugLoc();
3751 MachineInstr *NewMI;
3752
3753 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
3754 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
3755 NewMI = BuildMI(B, MI, DL, get(insn));
3756 DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
3757 " Class: " << NewMI->getDesc().getSchedClass());
3758 NewMI->eraseFromParent();
3759 }
3760 /* --- The code above is used to generate complete set of Hexagon Insn --- */
3761}
3762
3763
3764// inverts the predication logic.
3765// p -> NotP
3766// NotP -> P
3767bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
3768 DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
3769 MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
3770 return true;
3771}
3772
3773
3774// Reverse the branch prediction.
3775unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
3776 int PredRevOpcode = -1;
3777 if (isPredictedTaken(Opcode))
3778 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
3779 else
3780 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
3781 assert(PredRevOpcode > 0);
3782 return PredRevOpcode;
3783}
3784
3785
3786// TODO: Add more rigorous validation.
3787bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
3788 const {
3789 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
3790}
3791