blob: ae298afdeed3bd9d937d099eb0eae122097c4465 [file] [log] [blame]
Sean Silva709c44d2012-12-12 23:44:55 +00001=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6 :local:
Sean Silva13d43fe2013-01-02 21:09:58 +00007 :depth: 1
Sean Silva709c44d2012-12-12 23:44:55 +00008
Sean Silvaf380e0e2013-01-02 21:03:11 +00009.. toctree::
10 :hidden:
11
12 ObjectiveCLiterals
13 BlockLanguageSpec
Michael Gottesman6fd58462013-01-07 22:24:45 +000014 Block-ABI-Apple
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +000015 AutomaticReferenceCounting
Sean Silvaf380e0e2013-01-02 21:03:11 +000016
Sean Silva709c44d2012-12-12 23:44:55 +000017Introduction
18============
19
20This document describes the language extensions provided by Clang. In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions. Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them. In order to allow fine-grain features checks, we support three builtin
33function-like macros. This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46 #ifndef __has_builtin // Optional of course.
47 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
48 #endif
49
50 ...
51 #if __has_builtin(__builtin_trap)
52 __builtin_trap();
53 #else
54 abort();
55 #endif
56 ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature. ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not. They can be used like this:
70
71.. code-block:: c++
72
73 #ifndef __has_feature // Optional of course.
74 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
75 #endif
76 #ifndef __has_extension
77 #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78 #endif
79
80 ...
81 #if __has_feature(cxx_rvalue_references)
82 // This code will only be compiled with the -std=c++11 and -std=gnu++11
83 // options, because rvalue references are only standardized in C++11.
84 #endif
85
86 #if __has_extension(cxx_rvalue_references)
87 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88 // and -std=gnu++98 options, because rvalue references are supported as a
89 // language extension in C++98.
90 #endif
91
92.. _langext-has-feature-back-compat:
93
Alp Toker958027b2014-07-14 19:42:55 +000094For backward compatibility, ``__has_feature`` can also be used to test
Sean Silva709c44d2012-12-12 23:44:55 +000095for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
Sean Silva173d2522013-01-02 13:07:47 +000099to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
Aaron Ballmana0344c52014-11-14 13:44:02 +0000112``__has_cpp_attribute``
Aaron Ballman631bd7b2014-11-14 14:01:55 +0000113-----------------------
Aaron Ballmana0344c52014-11-14 13:44:02 +0000114
115This function-like macro takes a single argument that is the name of a
116C++11-style attribute. The argument can either be a single identifier, or a
117scoped identifier. If the attribute is supported, a nonzero value is returned.
118If the attribute is a standards-based attribute, this macro returns a nonzero
119value based on the year and month in which the attribute was voted into the
120working draft. If the attribute is not supported by the current compliation
121target, this macro evaluates to 0. It can be used like this:
122
123.. code-block:: c++
124
125 #ifndef __has_cpp_attribute // Optional of course.
126 #define __has_cpp_attribute(x) 0 // Compatibility with non-clang compilers.
127 #endif
128
129 ...
130 #if __has_cpp_attribute(clang::fallthrough)
131 #define FALLTHROUGH [[clang::fallthrough]]
132 #else
133 #define FALLTHROUGH
134 #endif
135 ...
136
137The attribute identifier (but not scope) can also be specified with a preceding
138and following ``__`` (double underscore) to avoid interference from a macro with
139the same name. For instance, ``gnu::__const__`` can be used instead of
140``gnu::const``.
141
Sean Silva709c44d2012-12-12 23:44:55 +0000142``__has_attribute``
143-------------------
144
145This function-like macro takes a single identifier argument that is the name of
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000146an attribute. It evaluates to 1 if the attribute is supported by the current
147compilation target, or 0 if not. It can be used like this:
Sean Silva709c44d2012-12-12 23:44:55 +0000148
149.. code-block:: c++
150
151 #ifndef __has_attribute // Optional of course.
152 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
153 #endif
154
155 ...
156 #if __has_attribute(always_inline)
157 #define ALWAYS_INLINE __attribute__((always_inline))
158 #else
159 #define ALWAYS_INLINE
160 #endif
161 ...
162
163The attribute name can also be specified with a preceding and following ``__``
164(double underscore) to avoid interference from a macro with the same name. For
165instance, ``__always_inline__`` can be used instead of ``always_inline``.
166
Yunzhong Gaoa8c45c92014-04-12 02:25:32 +0000167``__is_identifier``
168-------------------
169
170This function-like macro takes a single identifier argument that might be either
171a reserved word or a regular identifier. It evaluates to 1 if the argument is just
172a regular identifier and not a reserved word, in the sense that it can then be
173used as the name of a user-defined function or variable. Otherwise it evaluates
174to 0. It can be used like this:
175
176.. code-block:: c++
177
178 ...
179 #ifdef __is_identifier // Compatibility with non-clang compilers.
180 #if __is_identifier(__wchar_t)
181 typedef wchar_t __wchar_t;
182 #endif
183 #endif
184
185 __wchar_t WideCharacter;
186 ...
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000187
Sean Silva709c44d2012-12-12 23:44:55 +0000188Include File Checking Macros
189============================
190
191Not all developments systems have the same include files. The
192:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
193you to check for the existence of an include file before doing a possibly
Dmitri Gribenko764ea242013-01-17 17:04:54 +0000194failing ``#include`` directive. Include file checking macros must be used
195as expressions in ``#if`` or ``#elif`` preprocessing directives.
Sean Silva709c44d2012-12-12 23:44:55 +0000196
197.. _langext-__has_include:
198
199``__has_include``
200-----------------
201
202This function-like macro takes a single file name string argument that is the
203name of an include file. It evaluates to 1 if the file can be found using the
204include paths, or 0 otherwise:
205
206.. code-block:: c++
207
208 // Note the two possible file name string formats.
209 #if __has_include("myinclude.h") && __has_include(<stdint.h>)
210 # include "myinclude.h"
211 #endif
212
Richard Smithccfc9ff2013-07-11 00:27:05 +0000213To test for this feature, use ``#if defined(__has_include)``:
214
215.. code-block:: c++
216
Sean Silva709c44d2012-12-12 23:44:55 +0000217 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000218 #if defined(__has_include)
219 #if __has_include("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000220 # include "myinclude.h"
221 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000222 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000223
224.. _langext-__has_include_next:
225
226``__has_include_next``
227----------------------
228
229This function-like macro takes a single file name string argument that is the
230name of an include file. It is like ``__has_include`` except that it looks for
231the second instance of the given file found in the include paths. It evaluates
232to 1 if the second instance of the file can be found using the include paths,
233or 0 otherwise:
234
235.. code-block:: c++
236
237 // Note the two possible file name string formats.
238 #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
239 # include_next "myinclude.h"
240 #endif
241
242 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000243 #if defined(__has_include_next)
244 #if __has_include_next("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000245 # include_next "myinclude.h"
246 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000247 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000248
249Note that ``__has_include_next``, like the GNU extension ``#include_next``
250directive, is intended for use in headers only, and will issue a warning if
251used in the top-level compilation file. A warning will also be issued if an
252absolute path is used in the file argument.
253
254``__has_warning``
255-----------------
256
257This function-like macro takes a string literal that represents a command line
258option for a warning and returns true if that is a valid warning option.
259
260.. code-block:: c++
261
262 #if __has_warning("-Wformat")
263 ...
264 #endif
265
266Builtin Macros
267==============
268
269``__BASE_FILE__``
270 Defined to a string that contains the name of the main input file passed to
271 Clang.
272
273``__COUNTER__``
274 Defined to an integer value that starts at zero and is incremented each time
275 the ``__COUNTER__`` macro is expanded.
276
277``__INCLUDE_LEVEL__``
278 Defined to an integral value that is the include depth of the file currently
279 being translated. For the main file, this value is zero.
280
281``__TIMESTAMP__``
282 Defined to the date and time of the last modification of the current source
283 file.
284
285``__clang__``
286 Defined when compiling with Clang
287
288``__clang_major__``
289 Defined to the major marketing version number of Clang (e.g., the 2 in
290 2.0.1). Note that marketing version numbers should not be used to check for
291 language features, as different vendors use different numbering schemes.
292 Instead, use the :ref:`langext-feature_check`.
293
294``__clang_minor__``
295 Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
296 that marketing version numbers should not be used to check for language
297 features, as different vendors use different numbering schemes. Instead, use
298 the :ref:`langext-feature_check`.
299
300``__clang_patchlevel__``
301 Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
302
303``__clang_version__``
304 Defined to a string that captures the Clang marketing version, including the
305 Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
306
307.. _langext-vectors:
308
309Vectors and Extended Vectors
310============================
311
312Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
313
314OpenCL vector types are created using ``ext_vector_type`` attribute. It
315support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
316is:
317
318.. code-block:: c++
319
320 typedef float float4 __attribute__((ext_vector_type(4)));
321 typedef float float2 __attribute__((ext_vector_type(2)));
322
323 float4 foo(float2 a, float2 b) {
324 float4 c;
325 c.xz = a;
326 c.yw = b;
327 return c;
328 }
329
330Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
331
332Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
333and functions. For example:
334
335.. code-block:: c++
336
337 vector float foo(vector int a) {
338 vector int b;
339 b = vec_add(a, a) + a;
340 return (vector float)b;
341 }
342
343NEON vector types are created using ``neon_vector_type`` and
344``neon_polyvector_type`` attributes. For example:
345
346.. code-block:: c++
347
348 typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
349 typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
350
351 int8x8_t foo(int8x8_t a) {
352 int8x8_t v;
353 v = a;
354 return v;
355 }
356
357Vector Literals
358---------------
359
360Vector literals can be used to create vectors from a set of scalars, or
361vectors. Either parentheses or braces form can be used. In the parentheses
362form the number of literal values specified must be one, i.e. referring to a
363scalar value, or must match the size of the vector type being created. If a
364single scalar literal value is specified, the scalar literal value will be
365replicated to all the components of the vector type. In the brackets form any
366number of literals can be specified. For example:
367
368.. code-block:: c++
369
370 typedef int v4si __attribute__((__vector_size__(16)));
371 typedef float float4 __attribute__((ext_vector_type(4)));
372 typedef float float2 __attribute__((ext_vector_type(2)));
373
374 v4si vsi = (v4si){1, 2, 3, 4};
375 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
376 vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
377 vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
378 vector int vi3 = (vector int)(1, 2); // error
379 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
380 vector int vi5 = (vector int)(1, 2, 3, 4);
381 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
382
383Vector Operations
384-----------------
385
386The table below shows the support for each operation by vector extension. A
387dash indicates that an operation is not accepted according to a corresponding
388specification.
389
Anton Yartsev94e46f32014-09-03 17:59:21 +0000390============================== ======= ======= ======= =======
391 Opeator OpenCL AltiVec GCC NEON
392============================== ======= ======= ======= =======
393[] yes yes yes --
394unary operators +, -- yes yes yes --
395++, -- -- yes yes yes --
396+,--,*,/,% yes yes yes --
397bitwise operators &,|,^,~ yes yes yes --
398>>,<< yes yes yes --
399!, &&, || yes -- -- --
400==, !=, >, <, >=, <= yes yes -- --
401= yes yes yes yes
402:? yes -- -- --
403sizeof yes yes yes yes
404C-style cast yes yes yes no
405reinterpret_cast yes no yes no
406static_cast yes no yes no
407const_cast no no no no
408============================== ======= ======= ======= =======
Sean Silva709c44d2012-12-12 23:44:55 +0000409
Anton Yartsev94e46f32014-09-03 17:59:21 +0000410See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
Sean Silva709c44d2012-12-12 23:44:55 +0000411
412Messages on ``deprecated`` and ``unavailable`` Attributes
413=========================================================
414
415An optional string message can be added to the ``deprecated`` and
416``unavailable`` attributes. For example:
417
418.. code-block:: c++
419
420 void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
421
422If the deprecated or unavailable declaration is used, the message will be
423incorporated into the appropriate diagnostic:
424
425.. code-block:: c++
426
427 harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
428 [-Wdeprecated-declarations]
429 explode();
430 ^
431
432Query for this feature with
433``__has_extension(attribute_deprecated_with_message)`` and
434``__has_extension(attribute_unavailable_with_message)``.
435
436Attributes on Enumerators
437=========================
438
439Clang allows attributes to be written on individual enumerators. This allows
440enumerators to be deprecated, made unavailable, etc. The attribute must appear
441after the enumerator name and before any initializer, like so:
442
443.. code-block:: c++
444
445 enum OperationMode {
446 OM_Invalid,
447 OM_Normal,
448 OM_Terrified __attribute__((deprecated)),
449 OM_AbortOnError __attribute__((deprecated)) = 4
450 };
451
452Attributes on the ``enum`` declaration do not apply to individual enumerators.
453
454Query for this feature with ``__has_extension(enumerator_attributes)``.
455
456'User-Specified' System Frameworks
457==================================
458
459Clang provides a mechanism by which frameworks can be built in such a way that
460they will always be treated as being "system frameworks", even if they are not
461present in a system framework directory. This can be useful to system
462framework developers who want to be able to test building other applications
463with development builds of their framework, including the manner in which the
464compiler changes warning behavior for system headers.
465
466Framework developers can opt-in to this mechanism by creating a
467"``.system_framework``" file at the top-level of their framework. That is, the
468framework should have contents like:
469
470.. code-block:: none
471
472 .../TestFramework.framework
473 .../TestFramework.framework/.system_framework
474 .../TestFramework.framework/Headers
475 .../TestFramework.framework/Headers/TestFramework.h
476 ...
477
478Clang will treat the presence of this file as an indicator that the framework
479should be treated as a system framework, regardless of how it was found in the
480framework search path. For consistency, we recommend that such files never be
481included in installed versions of the framework.
482
Sean Silva709c44d2012-12-12 23:44:55 +0000483Checks for Standard Language Features
484=====================================
485
486The ``__has_feature`` macro can be used to query if certain standard language
487features are enabled. The ``__has_extension`` macro can be used to query if
488language features are available as an extension when compiling for a standard
489which does not provide them. The features which can be tested are listed here.
490
Richard Smith38af8562014-11-12 21:16:38 +0000491Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
492These are macros with names of the form ``__cpp_<feature_name>``, and are
493intended to be a portable way to query the supported features of the compiler.
494See `the C++ status page <http://clang.llvm.org/cxx_status.html#ts>`_ for
495information on the version of SD-6 supported by each Clang release, and the
496macros provided by that revision of the recommendations.
497
Sean Silva709c44d2012-12-12 23:44:55 +0000498C++98
499-----
500
501The features listed below are part of the C++98 standard. These features are
502enabled by default when compiling C++ code.
503
504C++ exceptions
505^^^^^^^^^^^^^^
506
507Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
508enabled. For example, compiling code with ``-fno-exceptions`` disables C++
509exceptions.
510
511C++ RTTI
512^^^^^^^^
513
514Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
515example, compiling code with ``-fno-rtti`` disables the use of RTTI.
516
517C++11
518-----
519
520The features listed below are part of the C++11 standard. As a result, all
521these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
522when compiling C++ code.
523
524C++11 SFINAE includes access control
525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
526
527Use ``__has_feature(cxx_access_control_sfinae)`` or
528``__has_extension(cxx_access_control_sfinae)`` to determine whether
529access-control errors (e.g., calling a private constructor) are considered to
530be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
531<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
532
533C++11 alias templates
534^^^^^^^^^^^^^^^^^^^^^
535
536Use ``__has_feature(cxx_alias_templates)`` or
537``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
538alias declarations and alias templates is enabled.
539
540C++11 alignment specifiers
541^^^^^^^^^^^^^^^^^^^^^^^^^^
542
543Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
544determine if support for alignment specifiers using ``alignas`` is enabled.
545
546C++11 attributes
547^^^^^^^^^^^^^^^^
548
549Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
550determine if support for attribute parsing with C++11's square bracket notation
551is enabled.
552
553C++11 generalized constant expressions
554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
555
556Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
557constant expressions (e.g., ``constexpr``) is enabled.
558
559C++11 ``decltype()``
560^^^^^^^^^^^^^^^^^^^^
561
562Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
563determine if support for the ``decltype()`` specifier is enabled. C++11's
564``decltype`` does not require type-completeness of a function call expression.
565Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
566``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
567support for this feature is enabled.
568
569C++11 default template arguments in function templates
570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
571
572Use ``__has_feature(cxx_default_function_template_args)`` or
573``__has_extension(cxx_default_function_template_args)`` to determine if support
574for default template arguments in function templates is enabled.
575
576C++11 ``default``\ ed functions
577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
578
579Use ``__has_feature(cxx_defaulted_functions)`` or
580``__has_extension(cxx_defaulted_functions)`` to determine if support for
581defaulted function definitions (with ``= default``) is enabled.
582
583C++11 delegating constructors
584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
585
586Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
587delegating constructors is enabled.
588
589C++11 ``deleted`` functions
590^^^^^^^^^^^^^^^^^^^^^^^^^^^
591
592Use ``__has_feature(cxx_deleted_functions)`` or
593``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
594function definitions (with ``= delete``) is enabled.
595
596C++11 explicit conversion functions
597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
598
599Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
600``explicit`` conversion functions is enabled.
601
602C++11 generalized initializers
603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
604
605Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
606generalized initializers (using braced lists and ``std::initializer_list``) is
607enabled.
608
609C++11 implicit move constructors/assignment operators
610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
611
612Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
613generate move constructors and move assignment operators where needed.
614
615C++11 inheriting constructors
616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
617
618Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
Richard Smith25b555a2013-04-19 17:00:31 +0000619inheriting constructors is enabled.
Sean Silva709c44d2012-12-12 23:44:55 +0000620
621C++11 inline namespaces
622^^^^^^^^^^^^^^^^^^^^^^^
623
624Use ``__has_feature(cxx_inline_namespaces)`` or
625``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
626namespaces is enabled.
627
628C++11 lambdas
629^^^^^^^^^^^^^
630
631Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
632determine if support for lambdas is enabled.
633
634C++11 local and unnamed types as template arguments
635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
636
637Use ``__has_feature(cxx_local_type_template_args)`` or
638``__has_extension(cxx_local_type_template_args)`` to determine if support for
639local and unnamed types as template arguments is enabled.
640
641C++11 noexcept
642^^^^^^^^^^^^^^
643
644Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
645determine if support for noexcept exception specifications is enabled.
646
647C++11 in-class non-static data member initialization
648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
649
650Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
651initialization of non-static data members is enabled.
652
653C++11 ``nullptr``
654^^^^^^^^^^^^^^^^^
655
656Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
657determine if support for ``nullptr`` is enabled.
658
659C++11 ``override control``
660^^^^^^^^^^^^^^^^^^^^^^^^^^
661
662Use ``__has_feature(cxx_override_control)`` or
663``__has_extension(cxx_override_control)`` to determine if support for the
664override control keywords is enabled.
665
666C++11 reference-qualified functions
667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
668
669Use ``__has_feature(cxx_reference_qualified_functions)`` or
670``__has_extension(cxx_reference_qualified_functions)`` to determine if support
671for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
672applied to ``*this``) is enabled.
673
674C++11 range-based ``for`` loop
675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
676
677Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
678determine if support for the range-based for loop is enabled.
679
680C++11 raw string literals
681^^^^^^^^^^^^^^^^^^^^^^^^^
682
683Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
684string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
685
686C++11 rvalue references
687^^^^^^^^^^^^^^^^^^^^^^^
688
689Use ``__has_feature(cxx_rvalue_references)`` or
690``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
691references is enabled.
692
693C++11 ``static_assert()``
694^^^^^^^^^^^^^^^^^^^^^^^^^
695
696Use ``__has_feature(cxx_static_assert)`` or
697``__has_extension(cxx_static_assert)`` to determine if support for compile-time
698assertions using ``static_assert`` is enabled.
699
Richard Smith25b555a2013-04-19 17:00:31 +0000700C++11 ``thread_local``
701^^^^^^^^^^^^^^^^^^^^^^
702
703Use ``__has_feature(cxx_thread_local)`` to determine if support for
704``thread_local`` variables is enabled.
705
Sean Silva709c44d2012-12-12 23:44:55 +0000706C++11 type inference
707^^^^^^^^^^^^^^^^^^^^
708
709Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
710determine C++11 type inference is supported using the ``auto`` specifier. If
711this is disabled, ``auto`` will instead be a storage class specifier, as in C
712or C++98.
713
714C++11 strongly typed enumerations
715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
716
717Use ``__has_feature(cxx_strong_enums)`` or
718``__has_extension(cxx_strong_enums)`` to determine if support for strongly
719typed, scoped enumerations is enabled.
720
721C++11 trailing return type
722^^^^^^^^^^^^^^^^^^^^^^^^^^
723
724Use ``__has_feature(cxx_trailing_return)`` or
725``__has_extension(cxx_trailing_return)`` to determine if support for the
726alternate function declaration syntax with trailing return type is enabled.
727
728C++11 Unicode string literals
729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
730
731Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
732string literals is enabled.
733
734C++11 unrestricted unions
735^^^^^^^^^^^^^^^^^^^^^^^^^
736
737Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
738unrestricted unions is enabled.
739
740C++11 user-defined literals
741^^^^^^^^^^^^^^^^^^^^^^^^^^^
742
743Use ``__has_feature(cxx_user_literals)`` to determine if support for
744user-defined literals is enabled.
745
746C++11 variadic templates
747^^^^^^^^^^^^^^^^^^^^^^^^
748
749Use ``__has_feature(cxx_variadic_templates)`` or
750``__has_extension(cxx_variadic_templates)`` to determine if support for
751variadic templates is enabled.
752
Richard Smith0a715422013-05-07 19:32:56 +0000753C++1y
754-----
755
756The features listed below are part of the committee draft for the C++1y
757standard. As a result, all these features are enabled with the ``-std=c++1y``
758or ``-std=gnu++1y`` option when compiling C++ code.
759
760C++1y binary literals
761^^^^^^^^^^^^^^^^^^^^^
762
763Use ``__has_feature(cxx_binary_literals)`` or
764``__has_extension(cxx_binary_literals)`` to determine whether
765binary literals (for instance, ``0b10010``) are recognized. Clang supports this
766feature as an extension in all language modes.
767
768C++1y contextual conversions
769^^^^^^^^^^^^^^^^^^^^^^^^^^^^
770
771Use ``__has_feature(cxx_contextual_conversions)`` or
772``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
773are used when performing an implicit conversion for an array bound in a
774*new-expression*, the operand of a *delete-expression*, an integral constant
Richard Smithc0f7b812013-07-24 17:41:31 +0000775expression, or a condition in a ``switch`` statement.
Richard Smith0a715422013-05-07 19:32:56 +0000776
777C++1y decltype(auto)
778^^^^^^^^^^^^^^^^^^^^
779
780Use ``__has_feature(cxx_decltype_auto)`` or
781``__has_extension(cxx_decltype_auto)`` to determine if support
782for the ``decltype(auto)`` placeholder type is enabled.
783
784C++1y default initializers for aggregates
785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
786
787Use ``__has_feature(cxx_aggregate_nsdmi)`` or
788``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
789for default initializers in aggregate members is enabled.
790
Richard Smith38af8562014-11-12 21:16:38 +0000791C++1y digit separators
792^^^^^^^^^^^^^^^^^^^^^^
793
794Use ``__cpp_digit_separators`` to determine if support for digit separators
795using single quotes (for instance, ``10'000``) is enabled. At this time, there
796is no corresponding ``__has_feature`` name
797
Richard Smith0a715422013-05-07 19:32:56 +0000798C++1y generalized lambda capture
799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
800
Richard Smith6d540142014-05-09 21:08:59 +0000801Use ``__has_feature(cxx_init_captures)`` or
802``__has_extension(cxx_init_captures)`` to determine if support for
Richard Smith4fb09722013-07-24 17:51:13 +0000803lambda captures with explicit initializers is enabled
Richard Smith0a715422013-05-07 19:32:56 +0000804(for instance, ``[n(0)] { return ++n; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000805
806C++1y generic lambdas
807^^^^^^^^^^^^^^^^^^^^^
808
Richard Smith6d540142014-05-09 21:08:59 +0000809Use ``__has_feature(cxx_generic_lambdas)`` or
810``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
Richard Smith0a715422013-05-07 19:32:56 +0000811(polymorphic) lambdas is enabled
812(for instance, ``[] (auto x) { return x + 1; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000813
814C++1y relaxed constexpr
815^^^^^^^^^^^^^^^^^^^^^^^
816
817Use ``__has_feature(cxx_relaxed_constexpr)`` or
818``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
819declarations, local variable modification, and control flow constructs
820are permitted in ``constexpr`` functions.
Richard Smith0a715422013-05-07 19:32:56 +0000821
822C++1y return type deduction
823^^^^^^^^^^^^^^^^^^^^^^^^^^^
824
825Use ``__has_feature(cxx_return_type_deduction)`` or
826``__has_extension(cxx_return_type_deduction)`` to determine if support
827for return type deduction for functions (using ``auto`` as a return type)
828is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000829
830C++1y runtime-sized arrays
831^^^^^^^^^^^^^^^^^^^^^^^^^^
832
833Use ``__has_feature(cxx_runtime_array)`` or
834``__has_extension(cxx_runtime_array)`` to determine if support
835for arrays of runtime bound (a restricted form of variable-length arrays)
836is enabled.
837Clang's implementation of this feature is incomplete.
838
839C++1y variable templates
840^^^^^^^^^^^^^^^^^^^^^^^^
841
842Use ``__has_feature(cxx_variable_templates)`` or
843``__has_extension(cxx_variable_templates)`` to determine if support for
844templated variable declarations is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000845
Sean Silva709c44d2012-12-12 23:44:55 +0000846C11
847---
848
849The features listed below are part of the C11 standard. As a result, all these
850features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
851compiling C code. Additionally, because these features are all
852backward-compatible, they are available as extensions in all language modes.
853
854C11 alignment specifiers
855^^^^^^^^^^^^^^^^^^^^^^^^
856
857Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
858if support for alignment specifiers using ``_Alignas`` is enabled.
859
860C11 atomic operations
861^^^^^^^^^^^^^^^^^^^^^
862
863Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
864if support for atomic types using ``_Atomic`` is enabled. Clang also provides
865:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
Hal Finkel6970ac82014-10-03 04:29:40 +0000866the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
867``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
868is available.
869
870Clang will use the system's ``<stdatomic.h>`` header when one is available, and
871will otherwise use its own. When using its own, implementations of the atomic
872operations are provided as macros. In the cases where C11 also requires a real
873function, this header provides only the declaration of that function (along
874with a shadowing macro implementation), and you must link to a library which
875provides a definition of the function if you use it instead of the macro.
Sean Silva709c44d2012-12-12 23:44:55 +0000876
877C11 generic selections
878^^^^^^^^^^^^^^^^^^^^^^
879
880Use ``__has_feature(c_generic_selections)`` or
881``__has_extension(c_generic_selections)`` to determine if support for generic
882selections is enabled.
883
884As an extension, the C11 generic selection expression is available in all
885languages supported by Clang. The syntax is the same as that given in the C11
886standard.
887
888In C, type compatibility is decided according to the rules given in the
889appropriate standard, but in C++, which lacks the type compatibility rules used
890in C, types are considered compatible only if they are equivalent.
891
892C11 ``_Static_assert()``
893^^^^^^^^^^^^^^^^^^^^^^^^
894
895Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
896to determine if support for compile-time assertions using ``_Static_assert`` is
897enabled.
898
Richard Smith25b555a2013-04-19 17:00:31 +0000899C11 ``_Thread_local``
900^^^^^^^^^^^^^^^^^^^^^
901
Ed Schouten401aeba2013-09-14 16:17:20 +0000902Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
903to determine if support for ``_Thread_local`` variables is enabled.
Richard Smith25b555a2013-04-19 17:00:31 +0000904
Alp Toker64197b92014-01-18 21:49:02 +0000905Checks for Type Trait Primitives
906================================
907
908Type trait primitives are special builtin constant expressions that can be used
909by the standard C++ library to facilitate or simplify the implementation of
910user-facing type traits in the <type_traits> header.
911
912They are not intended to be used directly by user code because they are
913implementation-defined and subject to change -- as such they're tied closely to
914the supported set of system headers, currently:
915
916* LLVM's own libc++
917* GNU libstdc++
918* The Microsoft standard C++ library
Sean Silva709c44d2012-12-12 23:44:55 +0000919
920Clang supports the `GNU C++ type traits
921<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
922`Microsoft Visual C++ Type traits
Alp Toker64197b92014-01-18 21:49:02 +0000923<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
924
925Feature detection is supported only for some of the primitives at present. User
926code should not use these checks because they bear no direct relation to the
927actual set of type traits supported by the C++ standard library.
928
929For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
930type trait primitive in the compiler. A simplistic usage example as might be
931seen in standard C++ headers follows:
Sean Silva709c44d2012-12-12 23:44:55 +0000932
933.. code-block:: c++
934
935 #if __has_extension(is_convertible_to)
936 template<typename From, typename To>
937 struct is_convertible_to {
938 static const bool value = __is_convertible_to(From, To);
939 };
940 #else
Alp Toker64197b92014-01-18 21:49:02 +0000941 // Emulate type trait for compatibility with other compilers.
Sean Silva709c44d2012-12-12 23:44:55 +0000942 #endif
943
Alp Toker64197b92014-01-18 21:49:02 +0000944The following type trait primitives are supported by Clang:
Sean Silva709c44d2012-12-12 23:44:55 +0000945
946* ``__has_nothrow_assign`` (GNU, Microsoft)
947* ``__has_nothrow_copy`` (GNU, Microsoft)
948* ``__has_nothrow_constructor`` (GNU, Microsoft)
949* ``__has_trivial_assign`` (GNU, Microsoft)
950* ``__has_trivial_copy`` (GNU, Microsoft)
951* ``__has_trivial_constructor`` (GNU, Microsoft)
952* ``__has_trivial_destructor`` (GNU, Microsoft)
953* ``__has_virtual_destructor`` (GNU, Microsoft)
954* ``__is_abstract`` (GNU, Microsoft)
955* ``__is_base_of`` (GNU, Microsoft)
956* ``__is_class`` (GNU, Microsoft)
957* ``__is_convertible_to`` (Microsoft)
958* ``__is_empty`` (GNU, Microsoft)
959* ``__is_enum`` (GNU, Microsoft)
960* ``__is_interface_class`` (Microsoft)
961* ``__is_pod`` (GNU, Microsoft)
962* ``__is_polymorphic`` (GNU, Microsoft)
963* ``__is_union`` (GNU, Microsoft)
964* ``__is_literal(type)``: Determines whether the given type is a literal type
965* ``__is_final``: Determines whether the given type is declared with a
966 ``final`` class-virt-specifier.
967* ``__underlying_type(type)``: Retrieves the underlying type for a given
968 ``enum`` type. This trait is required to implement the C++11 standard
969 library.
970* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
971 of type ``totype`` can be assigned to from a value of type ``fromtype`` such
972 that no non-trivial functions are called as part of that assignment. This
973 trait is required to implement the C++11 standard library.
974* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
975 value of type ``type`` can be direct-initialized with arguments of types
976 ``argtypes...`` such that no non-trivial functions are called as part of
977 that initialization. This trait is required to implement the C++11 standard
978 library.
Alp Toker73287bf2014-01-20 00:24:09 +0000979* ``__is_destructible`` (MSVC 2013): partially implemented
980* ``__is_nothrow_destructible`` (MSVC 2013): partially implemented
981* ``__is_nothrow_assignable`` (MSVC 2013, clang)
982* ``__is_constructible`` (MSVC 2013, clang)
983* ``__is_nothrow_constructible`` (MSVC 2013, clang)
Sean Silva709c44d2012-12-12 23:44:55 +0000984
985Blocks
986======
987
988The syntax and high level language feature description is in
Michael Gottesman6fd58462013-01-07 22:24:45 +0000989:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
990the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000991
992Query for this feature with ``__has_extension(blocks)``.
993
994Objective-C Features
995====================
996
997Related result types
998--------------------
999
1000According to Cocoa conventions, Objective-C methods with certain names
1001("``init``", "``alloc``", etc.) always return objects that are an instance of
1002the receiving class's type. Such methods are said to have a "related result
1003type", meaning that a message send to one of these methods will have the same
1004static type as an instance of the receiver class. For example, given the
1005following classes:
1006
1007.. code-block:: objc
1008
1009 @interface NSObject
1010 + (id)alloc;
1011 - (id)init;
1012 @end
1013
1014 @interface NSArray : NSObject
1015 @end
1016
1017and this common initialization pattern
1018
1019.. code-block:: objc
1020
1021 NSArray *array = [[NSArray alloc] init];
1022
1023the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
1024``alloc`` implicitly has a related result type. Similarly, the type of the
1025expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
1026related result type and its receiver is known to have the type ``NSArray *``.
1027If neither ``alloc`` nor ``init`` had a related result type, the expressions
1028would have had type ``id``, as declared in the method signature.
1029
1030A method with a related result type can be declared by using the type
1031``instancetype`` as its result type. ``instancetype`` is a contextual keyword
1032that is only permitted in the result type of an Objective-C method, e.g.
1033
1034.. code-block:: objc
1035
1036 @interface A
1037 + (instancetype)constructAnA;
1038 @end
1039
1040The related result type can also be inferred for some methods. To determine
1041whether a method has an inferred related result type, the first word in the
1042camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
1043and the method will have a related result type if its return type is compatible
1044with the type of its class and if:
1045
1046* the first word is "``alloc``" or "``new``", and the method is a class method,
1047 or
1048
1049* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
1050 and the method is an instance method.
1051
1052If a method with a related result type is overridden by a subclass method, the
1053subclass method must also return a type that is compatible with the subclass
1054type. For example:
1055
1056.. code-block:: objc
1057
1058 @interface NSString : NSObject
1059 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1060 @end
1061
1062Related result types only affect the type of a message send or property access
1063via the given method. In all other respects, a method with a related result
1064type is treated the same way as method that returns ``id``.
1065
1066Use ``__has_feature(objc_instancetype)`` to determine whether the
1067``instancetype`` contextual keyword is available.
1068
1069Automatic reference counting
1070----------------------------
1071
Sean Silva173d2522013-01-02 13:07:47 +00001072Clang provides support for :doc:`automated reference counting
1073<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
Sean Silva709c44d2012-12-12 23:44:55 +00001074for manual ``retain``/``release``/``autorelease`` message sends. There are two
1075feature macros associated with automatic reference counting:
1076``__has_feature(objc_arc)`` indicates the availability of automated reference
1077counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1078automated reference counting also includes support for ``__weak`` pointers to
1079Objective-C objects.
1080
Sean Silva173d2522013-01-02 13:07:47 +00001081.. _objc-fixed-enum:
1082
Sean Silva709c44d2012-12-12 23:44:55 +00001083Enumerations with a fixed underlying type
1084-----------------------------------------
1085
1086Clang provides support for C++11 enumerations with a fixed underlying type
1087within Objective-C. For example, one can write an enumeration type as:
1088
1089.. code-block:: c++
1090
1091 typedef enum : unsigned char { Red, Green, Blue } Color;
1092
1093This specifies that the underlying type, which is used to store the enumeration
1094value, is ``unsigned char``.
1095
1096Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1097underlying types is available in Objective-C.
1098
1099Interoperability with C++11 lambdas
1100-----------------------------------
1101
1102Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1103permitting a lambda to be implicitly converted to a block pointer with the
1104corresponding signature. For example, consider an API such as ``NSArray``'s
1105array-sorting method:
1106
1107.. code-block:: objc
1108
1109 - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1110
1111``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1112(^)(id, id)``, and parameters of this type are generally provided with block
1113literals as arguments. However, one can also use a C++11 lambda so long as it
1114provides the same signature (in this case, accepting two parameters of type
1115``id`` and returning an ``NSComparisonResult``):
1116
1117.. code-block:: objc
1118
1119 NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1120 @"String 02"];
1121 const NSStringCompareOptions comparisonOptions
1122 = NSCaseInsensitiveSearch | NSNumericSearch |
1123 NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1124 NSLocale *currentLocale = [NSLocale currentLocale];
1125 NSArray *sorted
1126 = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1127 NSRange string1Range = NSMakeRange(0, [s1 length]);
1128 return [s1 compare:s2 options:comparisonOptions
1129 range:string1Range locale:currentLocale];
1130 }];
1131 NSLog(@"sorted: %@", sorted);
1132
1133This code relies on an implicit conversion from the type of the lambda
1134expression (an unnamed, local class type called the *closure type*) to the
1135corresponding block pointer type. The conversion itself is expressed by a
1136conversion operator in that closure type that produces a block pointer with the
1137same signature as the lambda itself, e.g.,
1138
1139.. code-block:: objc
1140
1141 operator NSComparisonResult (^)(id, id)() const;
1142
1143This conversion function returns a new block that simply forwards the two
1144parameters to the lambda object (which it captures by copy), then returns the
1145result. The returned block is first copied (with ``Block_copy``) and then
1146autoreleased. As an optimization, if a lambda expression is immediately
1147converted to a block pointer (as in the first example, above), then the block
1148is not copied and autoreleased: rather, it is given the same lifetime as a
1149block literal written at that point in the program, which avoids the overhead
1150of copying a block to the heap in the common case.
1151
1152The conversion from a lambda to a block pointer is only available in
1153Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1154management (autorelease).
1155
1156Object Literals and Subscripting
1157--------------------------------
1158
Sean Silva173d2522013-01-02 13:07:47 +00001159Clang provides support for :doc:`Object Literals and Subscripting
1160<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
Sean Silva709c44d2012-12-12 23:44:55 +00001161programming patterns, makes programs more concise, and improves the safety of
1162container creation. There are several feature macros associated with object
1163literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1164availability of array literals; ``__has_feature(objc_dictionary_literals)``
1165tests the availability of dictionary literals;
1166``__has_feature(objc_subscripting)`` tests the availability of object
1167subscripting.
1168
1169Objective-C Autosynthesis of Properties
1170---------------------------------------
1171
1172Clang provides support for autosynthesis of declared properties. Using this
1173feature, clang provides default synthesis of those properties not declared
1174@dynamic and not having user provided backing getter and setter methods.
1175``__has_feature(objc_default_synthesize_properties)`` checks for availability
1176of this feature in version of clang being used.
1177
Jordan Rose32e94892012-12-15 00:37:01 +00001178.. _langext-objc-retain-release:
1179
1180Objective-C retaining behavior attributes
1181-----------------------------------------
1182
1183In Objective-C, functions and methods are generally assumed to follow the
1184`Cocoa Memory Management
1185<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1186conventions for ownership of object arguments and
1187return values. However, there are exceptions, and so Clang provides attributes
1188to allow these exceptions to be documented. This are used by ARC and the
1189`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
Aaron Ballman840cef32014-02-19 15:45:13 +00001190better described using the ``objc_method_family`` attribute instead.
Jordan Rose32e94892012-12-15 00:37:01 +00001191
1192**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1193``ns_returns_autoreleased``, ``cf_returns_retained``, and
1194``cf_returns_not_retained`` attributes can be placed on methods and functions
1195that return Objective-C or CoreFoundation objects. They are commonly placed at
1196the end of a function prototype or method declaration:
1197
1198.. code-block:: objc
1199
1200 id foo() __attribute__((ns_returns_retained));
1201
1202 - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1203
1204The ``*_returns_retained`` attributes specify that the returned object has a +1
1205retain count. The ``*_returns_not_retained`` attributes specify that the return
1206object has a +0 retain count, even if the normal convention for its selector
1207would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
1208+0, but is guaranteed to live at least as long as the next flush of an
1209autorelease pool.
1210
1211**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1212an parameter declaration; they specify that the argument is expected to have a
1213+1 retain count, which will be balanced in some way by the function or method.
1214The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1215method; it specifies that the method expects its ``self`` parameter to have a
1216+1 retain count, which it will balance in some way.
1217
1218.. code-block:: objc
1219
1220 void foo(__attribute__((ns_consumed)) NSString *string);
1221
1222 - (void) bar __attribute__((ns_consumes_self));
1223 - (void) baz:(id) __attribute__((ns_consumed)) x;
1224
1225Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1226<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1227
1228Query for these features with ``__has_attribute(ns_consumed)``,
1229``__has_attribute(ns_returns_retained)``, etc.
1230
1231
Ted Kremenek84342d62013-10-15 04:28:42 +00001232Objective-C++ ABI: protocol-qualifier mangling of parameters
1233------------------------------------------------------------
1234
1235Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1236type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
1237parameters to be differentiated from those with the regular unqualified ``id``
1238type.
1239
1240This was a non-backward compatible mangling change to the ABI. This change
1241allows proper overloading, and also prevents mangling conflicts with template
1242parameters of protocol-qualified type.
1243
1244Query the presence of this new mangling with
1245``__has_feature(objc_protocol_qualifier_mangling)``.
1246
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001247.. _langext-overloading:
1248
Sean Silva709c44d2012-12-12 23:44:55 +00001249Initializer lists for complex numbers in C
1250==========================================
1251
1252clang supports an extension which allows the following in C:
1253
1254.. code-block:: c++
1255
1256 #include <math.h>
1257 #include <complex.h>
1258 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1259
1260This construct is useful because there is no way to separately initialize the
1261real and imaginary parts of a complex variable in standard C, given that clang
1262does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
1263``__imag__`` extensions from gcc, which help in some cases, but are not usable
1264in static initializers.)
1265
1266Note that this extension does not allow eliding the braces; the meaning of the
1267following two lines is different:
1268
1269.. code-block:: c++
1270
1271 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1272 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1273
1274This extension also works in C++ mode, as far as that goes, but does not apply
1275to the C++ ``std::complex``. (In C++11, list initialization allows the same
1276syntax to be used with ``std::complex`` with the same meaning.)
1277
1278Builtin Functions
1279=================
1280
1281Clang supports a number of builtin library functions with the same syntax as
1282GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1283``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
Hal Finkelbcc06082014-09-07 22:58:14 +00001284``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc. In addition to
1285the GCC builtins, Clang supports a number of builtins that GCC does not, which
1286are listed here.
Sean Silva709c44d2012-12-12 23:44:55 +00001287
1288Please note that Clang does not and will not support all of the GCC builtins
1289for vector operations. Instead of using builtins, you should use the functions
1290defined in target-specific header files like ``<xmmintrin.h>``, which define
1291portable wrappers for these. Many of the Clang versions of these functions are
1292implemented directly in terms of :ref:`extended vector support
1293<langext-vectors>` instead of builtins, in order to reduce the number of
1294builtins that we need to implement.
1295
Hal Finkelbcc06082014-09-07 22:58:14 +00001296``__builtin_assume``
1297------------------------------
1298
1299``__builtin_assume`` is used to provide the optimizer with a boolean
1300invariant that is defined to be true.
1301
1302**Syntax**:
1303
1304.. code-block:: c++
1305
1306 __builtin_assume(bool)
1307
1308**Example of Use**:
1309
1310.. code-block:: c++
1311
1312 int foo(int x) {
1313 __builtin_assume(x != 0);
1314
1315 // The optimizer may short-circuit this check using the invariant.
1316 if (x == 0)
1317 return do_something();
1318
1319 return do_something_else();
1320 }
1321
1322**Description**:
1323
1324The boolean argument to this function is defined to be true. The optimizer may
1325analyze the form of the expression provided as the argument and deduce from
1326that information used to optimize the program. If the condition is violated
1327during execution, the behavior is undefined. The argument itself is never
1328evaluated, so any side effects of the expression will be discarded.
1329
1330Query for this feature with ``__has_builtin(__builtin_assume)``.
1331
Sean Silva709c44d2012-12-12 23:44:55 +00001332``__builtin_readcyclecounter``
1333------------------------------
1334
1335``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1336a similar low-latency, high-accuracy clock) on those targets that support it.
1337
1338**Syntax**:
1339
1340.. code-block:: c++
1341
1342 __builtin_readcyclecounter()
1343
1344**Example of Use**:
1345
1346.. code-block:: c++
1347
1348 unsigned long long t0 = __builtin_readcyclecounter();
1349 do_something();
1350 unsigned long long t1 = __builtin_readcyclecounter();
1351 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1352
1353**Description**:
1354
1355The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1356which may be either global or process/thread-specific depending on the target.
1357As the backing counters often overflow quickly (on the order of seconds) this
1358should only be used for timing small intervals. When not supported by the
1359target, the return value is always zero. This builtin takes no arguments and
1360produces an unsigned long long result.
1361
Tim Northoverbfe2e5f72013-05-23 19:14:12 +00001362Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1363that even if present, its use may depend on run-time privilege or other OS
1364controlled state.
Sean Silva709c44d2012-12-12 23:44:55 +00001365
1366.. _langext-__builtin_shufflevector:
1367
1368``__builtin_shufflevector``
1369---------------------------
1370
1371``__builtin_shufflevector`` is used to express generic vector
1372permutation/shuffle/swizzle operations. This builtin is also very important
1373for the implementation of various target-specific header files like
1374``<xmmintrin.h>``.
1375
1376**Syntax**:
1377
1378.. code-block:: c++
1379
1380 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1381
1382**Examples**:
1383
1384.. code-block:: c++
1385
Craig Topper50ad5b72013-08-03 17:40:38 +00001386 // identity operation - return 4-element vector v1.
1387 __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
Sean Silva709c44d2012-12-12 23:44:55 +00001388
1389 // "Splat" element 0 of V1 into a 4-element result.
1390 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1391
1392 // Reverse 4-element vector V1.
1393 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1394
1395 // Concatenate every other element of 4-element vectors V1 and V2.
1396 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1397
1398 // Concatenate every other element of 8-element vectors V1 and V2.
1399 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1400
Craig Topper50ad5b72013-08-03 17:40:38 +00001401 // Shuffle v1 with some elements being undefined
1402 __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1403
Sean Silva709c44d2012-12-12 23:44:55 +00001404**Description**:
1405
1406The first two arguments to ``__builtin_shufflevector`` are vectors that have
1407the same element type. The remaining arguments are a list of integers that
1408specify the elements indices of the first two vectors that should be extracted
1409and returned in a new vector. These element indices are numbered sequentially
1410starting with the first vector, continuing into the second vector. Thus, if
1411``vec1`` is a 4-element vector, index 5 would refer to the second element of
Craig Topper50ad5b72013-08-03 17:40:38 +00001412``vec2``. An index of -1 can be used to indicate that the corresponding element
1413in the returned vector is a don't care and can be optimized by the backend.
Sean Silva709c44d2012-12-12 23:44:55 +00001414
1415The result of ``__builtin_shufflevector`` is a vector with the same element
1416type as ``vec1``/``vec2`` but that has an element count equal to the number of
1417indices specified.
1418
1419Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1420
Anton Yartsev94e46f32014-09-03 17:59:21 +00001421.. _langext-__builtin_convertvector:
1422
Hal Finkelc4d7c822013-09-18 03:29:45 +00001423``__builtin_convertvector``
1424---------------------------
1425
1426``__builtin_convertvector`` is used to express generic vector
1427type-conversion operations. The input vector and the output vector
1428type must have the same number of elements.
1429
1430**Syntax**:
1431
1432.. code-block:: c++
1433
1434 __builtin_convertvector(src_vec, dst_vec_type)
1435
1436**Examples**:
1437
1438.. code-block:: c++
1439
1440 typedef double vector4double __attribute__((__vector_size__(32)));
1441 typedef float vector4float __attribute__((__vector_size__(16)));
1442 typedef short vector4short __attribute__((__vector_size__(8)));
1443 vector4float vf; vector4short vs;
1444
1445 // convert from a vector of 4 floats to a vector of 4 doubles.
1446 __builtin_convertvector(vf, vector4double)
1447 // equivalent to:
1448 (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1449
1450 // convert from a vector of 4 shorts to a vector of 4 floats.
1451 __builtin_convertvector(vs, vector4float)
1452 // equivalent to:
Yunzhong Gao637cb90b2014-09-02 19:24:14 +00001453 (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
Hal Finkelc4d7c822013-09-18 03:29:45 +00001454
1455**Description**:
1456
1457The first argument to ``__builtin_convertvector`` is a vector, and the second
1458argument is a vector type with the same number of elements as the first
1459argument.
1460
1461The result of ``__builtin_convertvector`` is a vector with the same element
1462type as the second argument, with a value defined in terms of the action of a
1463C-style cast applied to each element of the first argument.
1464
1465Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1466
Sean Silva709c44d2012-12-12 23:44:55 +00001467``__builtin_unreachable``
1468-------------------------
1469
1470``__builtin_unreachable`` is used to indicate that a specific point in the
1471program cannot be reached, even if the compiler might otherwise think it can.
1472This is useful to improve optimization and eliminates certain warnings. For
1473example, without the ``__builtin_unreachable`` in the example below, the
1474compiler assumes that the inline asm can fall through and prints a "function
1475declared '``noreturn``' should not return" warning.
1476
1477**Syntax**:
1478
1479.. code-block:: c++
1480
1481 __builtin_unreachable()
1482
1483**Example of use**:
1484
1485.. code-block:: c++
1486
1487 void myabort(void) __attribute__((noreturn));
1488 void myabort(void) {
1489 asm("int3");
1490 __builtin_unreachable();
1491 }
1492
1493**Description**:
1494
1495The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1496Since it has undefined behavior, it is a statement that it is never reached and
1497the optimizer can take advantage of this to produce better code. This builtin
1498takes no arguments and produces a void result.
1499
1500Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1501
1502``__sync_swap``
1503---------------
1504
1505``__sync_swap`` is used to atomically swap integers or pointers in memory.
1506
1507**Syntax**:
1508
1509.. code-block:: c++
1510
1511 type __sync_swap(type *ptr, type value, ...)
1512
1513**Example of Use**:
1514
1515.. code-block:: c++
1516
1517 int old_value = __sync_swap(&value, new_value);
1518
1519**Description**:
1520
1521The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1522atomic intrinsics to allow code to atomically swap the current value with the
1523new value. More importantly, it helps developers write more efficient and
1524correct code by avoiding expensive loops around
1525``__sync_bool_compare_and_swap()`` or relying on the platform specific
1526implementation details of ``__sync_lock_test_and_set()``. The
1527``__sync_swap()`` builtin is a full barrier.
1528
Richard Smith6cbd65d2013-07-11 02:27:57 +00001529``__builtin_addressof``
1530-----------------------
1531
1532``__builtin_addressof`` performs the functionality of the built-in ``&``
1533operator, ignoring any ``operator&`` overload. This is useful in constant
1534expressions in C++11, where there is no other way to take the address of an
1535object that overloads ``operator&``.
1536
1537**Example of use**:
1538
1539.. code-block:: c++
1540
1541 template<typename T> constexpr T *addressof(T &value) {
1542 return __builtin_addressof(value);
1543 }
1544
Richard Smith760520b2014-06-03 23:27:44 +00001545``__builtin_operator_new`` and ``__builtin_operator_delete``
1546------------------------------------------------------------
1547
1548``__builtin_operator_new`` allocates memory just like a non-placement non-class
1549*new-expression*. This is exactly like directly calling the normal
1550non-placement ``::operator new``, except that it allows certain optimizations
1551that the C++ standard does not permit for a direct function call to
1552``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
1553merging allocations).
1554
1555Likewise, ``__builtin_operator_delete`` deallocates memory just like a
1556non-class *delete-expression*, and is exactly like directly calling the normal
1557``::operator delete``, except that it permits optimizations. Only the unsized
1558form of ``__builtin_operator_delete`` is currently available.
1559
1560These builtins are intended for use in the implementation of ``std::allocator``
1561and other similar allocation libraries, and are only available in C++.
1562
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001563Multiprecision Arithmetic Builtins
1564----------------------------------
1565
1566Clang provides a set of builtins which expose multiprecision arithmetic in a
1567manner amenable to C. They all have the following form:
1568
1569.. code-block:: c
1570
1571 unsigned x = ..., y = ..., carryin = ..., carryout;
1572 unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1573
1574Thus one can form a multiprecision addition chain in the following manner:
1575
1576.. code-block:: c
1577
1578 unsigned *x, *y, *z, carryin=0, carryout;
1579 z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1580 carryin = carryout;
1581 z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1582 carryin = carryout;
1583 z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1584 carryin = carryout;
1585 z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1586
1587The complete list of builtins are:
1588
1589.. code-block:: c
1590
Michael Gottesman15343992013-06-18 20:40:40 +00001591 unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001592 unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1593 unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1594 unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1595 unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
Michael Gottesman15343992013-06-18 20:40:40 +00001596 unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001597 unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1598 unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1599 unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1600 unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1601
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001602Checked Arithmetic Builtins
1603---------------------------
1604
1605Clang provides a set of builtins that implement checked arithmetic for security
1606critical applications in a manner that is fast and easily expressable in C. As
1607an example of their usage:
1608
1609.. code-block:: c
1610
1611 errorcode_t security_critical_application(...) {
1612 unsigned x, y, result;
1613 ...
1614 if (__builtin_umul_overflow(x, y, &result))
1615 return kErrorCodeHackers;
1616 ...
1617 use_multiply(result);
1618 ...
1619 }
1620
1621A complete enumeration of the builtins are:
1622
1623.. code-block:: c
1624
1625 bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
1626 bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1627 bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1628 bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
1629 bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1630 bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1631 bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
1632 bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1633 bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1634 bool __builtin_sadd_overflow (int x, int y, int *sum);
1635 bool __builtin_saddl_overflow (long x, long y, long *sum);
1636 bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1637 bool __builtin_ssub_overflow (int x, int y, int *diff);
1638 bool __builtin_ssubl_overflow (long x, long y, long *diff);
1639 bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1640 bool __builtin_smul_overflow (int x, int y, int *prod);
1641 bool __builtin_smull_overflow (long x, long y, long *prod);
1642 bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1643
1644
Sean Silva709c44d2012-12-12 23:44:55 +00001645.. _langext-__c11_atomic:
1646
1647__c11_atomic builtins
1648---------------------
1649
1650Clang provides a set of builtins which are intended to be used to implement
1651C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
1652``_explicit`` form of the corresponding C11 operation, and are named with a
Hal Finkel6970ac82014-10-03 04:29:40 +00001653``__c11_`` prefix. The supported operations, and the differences from
1654the corresponding C11 operations, are:
Sean Silva709c44d2012-12-12 23:44:55 +00001655
1656* ``__c11_atomic_init``
1657* ``__c11_atomic_thread_fence``
1658* ``__c11_atomic_signal_fence``
Hal Finkel6970ac82014-10-03 04:29:40 +00001659* ``__c11_atomic_is_lock_free`` (The argument is the size of the
Dan Liewfe726862014-10-03 12:36:20 +00001660 ``_Atomic(...)`` object, instead of its address)
Sean Silva709c44d2012-12-12 23:44:55 +00001661* ``__c11_atomic_store``
1662* ``__c11_atomic_load``
1663* ``__c11_atomic_exchange``
1664* ``__c11_atomic_compare_exchange_strong``
1665* ``__c11_atomic_compare_exchange_weak``
1666* ``__c11_atomic_fetch_add``
1667* ``__c11_atomic_fetch_sub``
1668* ``__c11_atomic_fetch_and``
1669* ``__c11_atomic_fetch_or``
1670* ``__c11_atomic_fetch_xor``
1671
Hal Finkel6970ac82014-10-03 04:29:40 +00001672The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
JF Bastiene6ccacf2014-10-10 16:09:48 +00001673``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
Hal Finkel6970ac82014-10-03 04:29:40 +00001674provided, with values corresponding to the enumerators of C11's
1675``memory_order`` enumeration.
1676
Tim Northover6aacd492013-07-16 09:47:53 +00001677Low-level ARM exclusive memory builtins
1678---------------------------------------
1679
1680Clang provides overloaded builtins giving direct access to the three key ARM
1681instructions for implementing atomic operations.
1682
1683.. code-block:: c
Sean Silvaa928c242013-09-09 19:50:40 +00001684
Tim Northover6aacd492013-07-16 09:47:53 +00001685 T __builtin_arm_ldrex(const volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001686 T __builtin_arm_ldaex(const volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001687 int __builtin_arm_strex(T val, volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001688 int __builtin_arm_stlex(T val, volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001689 void __builtin_arm_clrex(void);
1690
1691The types ``T`` currently supported are:
Tim Northover573cbee2014-05-24 12:52:07 +00001692* Integer types with width at most 64 bits (or 128 bits on AArch64).
Tim Northover6aacd492013-07-16 09:47:53 +00001693* Floating-point types
1694* Pointer types.
1695
1696Note that the compiler does not guarantee it will not insert stores which clear
Tim Northover3acd6bd2014-07-02 12:56:02 +00001697the exclusive monitor in between an ``ldrex`` type operation and its paired
1698``strex``. In practice this is only usually a risk when the extra store is on
1699the same cache line as the variable being modified and Clang will only insert
1700stack stores on its own, so it is best not to use these operations on variables
1701with automatic storage duration.
Tim Northover6aacd492013-07-16 09:47:53 +00001702
1703Also, loads and stores may be implicit in code written between the ``ldrex`` and
1704``strex``. Clang will not necessarily mitigate the effects of these either, so
1705care should be exercised.
1706
1707For these reasons the higher level atomic primitives should be preferred where
1708possible.
1709
Sean Silva709c44d2012-12-12 23:44:55 +00001710Non-standard C++11 Attributes
1711=============================
1712
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001713Clang's non-standard C++11 attributes live in the ``clang`` attribute
1714namespace.
Sean Silva709c44d2012-12-12 23:44:55 +00001715
Aaron Ballman68893db2014-02-19 23:21:40 +00001716Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001717are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1718``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1719(see the list of `GCC function attributes
1720<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1721attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1722`GCC type attributes
Richard Smithccfc9ff2013-07-11 00:27:05 +00001723<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001724implementation, these attributes must appertain to the *declarator-id* in a
1725declaration, which means they must go either at the start of the declaration or
1726immediately after the name being declared.
1727
1728For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
1729also applies the GNU ``noreturn`` attribute to ``f``.
1730
1731.. code-block:: c++
1732
1733 [[gnu::unused]] int a, f [[gnu::noreturn]] ();
1734
Sean Silva709c44d2012-12-12 23:44:55 +00001735Target-Specific Extensions
1736==========================
1737
1738Clang supports some language features conditionally on some targets.
1739
Yi Kong4de26fb2014-07-23 09:25:02 +00001740ARM/AArch64 Language Extensions
1741-------------------------------
1742
1743Memory Barrier Intrinsics
1744^^^^^^^^^^^^^^^^^^^^^^^^^
1745Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
1746in the `ARM C Language Extensions Release 2.0
1747<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
1748Note that these intrinsics are implemented as motion barriers that block
1749reordering of memory accesses and side effect instructions. Other instructions
1750like simple arithmatic may be reordered around the intrinsic. If you expect to
1751have no reordering at all, use inline assembly instead.
1752
Sean Silva709c44d2012-12-12 23:44:55 +00001753X86/X86-64 Language Extensions
1754------------------------------
1755
1756The X86 backend has these language extensions:
1757
1758Memory references off the GS segment
1759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1760
1761Annotating a pointer with address space #256 causes it to be code generated
1762relative to the X86 GS segment register, and address space #257 causes it to be
1763relative to the X86 FS segment. Note that this is a very very low-level
1764feature that should only be used if you know what you're doing (for example in
1765an OS kernel).
1766
1767Here is an example:
1768
1769.. code-block:: c++
1770
1771 #define GS_RELATIVE __attribute__((address_space(256)))
1772 int foo(int GS_RELATIVE *P) {
1773 return *P;
1774 }
1775
1776Which compiles to (on X86-32):
1777
1778.. code-block:: gas
1779
1780 _foo:
1781 movl 4(%esp), %eax
1782 movl %gs:(%eax), %eax
1783 ret
1784
Jordan Rose32e94892012-12-15 00:37:01 +00001785Extensions for Static Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001786==============================
Sean Silva709c44d2012-12-12 23:44:55 +00001787
1788Clang supports additional attributes that are useful for documenting program
Jordan Rose32e94892012-12-15 00:37:01 +00001789invariants and rules for static analysis tools, such as the `Clang Static
1790Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
1791in the analyzer's `list of source-level annotations
1792<http://clang-analyzer.llvm.org/annotations.html>`_.
Sean Silva709c44d2012-12-12 23:44:55 +00001793
Sean Silva709c44d2012-12-12 23:44:55 +00001794
Jordan Rose32e94892012-12-15 00:37:01 +00001795Extensions for Dynamic Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001796===============================
Sean Silva709c44d2012-12-12 23:44:55 +00001797
Sean Silva709c44d2012-12-12 23:44:55 +00001798Use ``__has_feature(address_sanitizer)`` to check if the code is being built
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001799with :doc:`AddressSanitizer`.
Sean Silva709c44d2012-12-12 23:44:55 +00001800
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001801Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
1802with :doc:`ThreadSanitizer`.
1803
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001804Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
1805with :doc:`MemorySanitizer`.
Dario Domizioli33c17872014-05-28 14:06:38 +00001806
1807
1808Extensions for selectively disabling optimization
1809=================================================
1810
1811Clang provides a mechanism for selectively disabling optimizations in functions
1812and methods.
1813
1814To disable optimizations in a single function definition, the GNU-style or C++11
1815non-standard attribute ``optnone`` can be used.
1816
1817.. code-block:: c++
1818
1819 // The following functions will not be optimized.
1820 // GNU-style attribute
1821 __attribute__((optnone)) int foo() {
1822 // ... code
1823 }
1824 // C++11 attribute
1825 [[clang::optnone]] int bar() {
1826 // ... code
1827 }
1828
1829To facilitate disabling optimization for a range of function definitions, a
1830range-based pragma is provided. Its syntax is ``#pragma clang optimize``
1831followed by ``off`` or ``on``.
1832
1833All function definitions in the region between an ``off`` and the following
1834``on`` will be decorated with the ``optnone`` attribute unless doing so would
1835conflict with explicit attributes already present on the function (e.g. the
1836ones that control inlining).
1837
1838.. code-block:: c++
1839
1840 #pragma clang optimize off
1841 // This function will be decorated with optnone.
1842 int foo() {
1843 // ... code
1844 }
1845
1846 // optnone conflicts with always_inline, so bar() will not be decorated.
1847 __attribute__((always_inline)) int bar() {
1848 // ... code
1849 }
1850 #pragma clang optimize on
1851
1852If no ``on`` is found to close an ``off`` region, the end of the region is the
1853end of the compilation unit.
1854
1855Note that a stray ``#pragma clang optimize on`` does not selectively enable
1856additional optimizations when compiling at low optimization levels. This feature
1857can only be used to selectively disable optimizations.
1858
1859The pragma has an effect on functions only at the point of their definition; for
1860function templates, this means that the state of the pragma at the point of an
1861instantiation is not necessarily relevant. Consider the following example:
1862
1863.. code-block:: c++
1864
1865 template<typename T> T twice(T t) {
1866 return 2 * t;
1867 }
1868
1869 #pragma clang optimize off
1870 template<typename T> T thrice(T t) {
1871 return 3 * t;
1872 }
1873
1874 int container(int a, int b) {
1875 return twice(a) + thrice(b);
1876 }
1877 #pragma clang optimize on
1878
1879In this example, the definition of the template function ``twice`` is outside
1880the pragma region, whereas the definition of ``thrice`` is inside the region.
1881The ``container`` function is also in the region and will not be optimized, but
1882it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
1883these two instantiations, ``twice`` will be optimized (because its definition
1884was outside the region) and ``thrice`` will not be optimized.
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001885
1886Extensions for loop hint optimizations
1887======================================
1888
1889The ``#pragma clang loop`` directive is used to specify hints for optimizing the
1890subsequent for, while, do-while, or c++11 range-based for loop. The directive
Eli Bendersky778268d2014-06-19 18:12:44 +00001891provides options for vectorization, interleaving, and unrolling. Loop hints can
1892be specified before any loop and will be ignored if the optimization is not safe
1893to apply.
1894
1895Vectorization and Interleaving
1896------------------------------
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001897
1898A vectorized loop performs multiple iterations of the original loop
1899in parallel using vector instructions. The instruction set of the target
1900processor determines which vector instructions are available and their vector
1901widths. This restricts the types of loops that can be vectorized. The vectorizer
1902automatically determines if the loop is safe and profitable to vectorize. A
1903vector instruction cost model is used to select the vector width.
1904
1905Interleaving multiple loop iterations allows modern processors to further
1906improve instruction-level parallelism (ILP) using advanced hardware features,
1907such as multiple execution units and out-of-order execution. The vectorizer uses
1908a cost model that depends on the register pressure and generated code size to
1909select the interleaving count.
1910
1911Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
1912by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
1913manually enable vectorization or interleaving.
1914
1915.. code-block:: c++
1916
1917 #pragma clang loop vectorize(enable)
1918 #pragma clang loop interleave(enable)
1919 for(...) {
1920 ...
1921 }
1922
1923The vector width is specified by ``vectorize_width(_value_)`` and the interleave
1924count is specified by ``interleave_count(_value_)``, where
1925_value_ is a positive integer. This is useful for specifying the optimal
1926width/count of the set of target architectures supported by your application.
1927
1928.. code-block:: c++
1929
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001930 #pragma clang loop vectorize_width(2)
1931 #pragma clang loop interleave_count(2)
1932 for(...) {
1933 ...
1934 }
1935
1936Specifying a width/count of 1 disables the optimization, and is equivalent to
1937``vectorize(disable)`` or ``interleave(disable)``.
1938
Eli Bendersky778268d2014-06-19 18:12:44 +00001939Loop Unrolling
1940--------------
1941
1942Unrolling a loop reduces the loop control overhead and exposes more
1943opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
1944eliminates the loop and replaces it with an enumerated sequence of loop
1945iterations. Full unrolling is only possible if the loop trip count is known at
1946compile time. Partial unrolling replicates the loop body within the loop and
1947reduces the trip count.
1948
Mark Heffernan450c2382014-07-23 17:31:31 +00001949If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
Eli Bendersky778268d2014-06-19 18:12:44 +00001950loop if the trip count is known at compile time. If the loop count is not known
1951or the fully unrolled code size is greater than the limit specified by the
1952`-pragma-unroll-threshold` command line option the loop will be partially
1953unrolled subject to the same limit.
1954
1955.. code-block:: c++
1956
Mark Heffernan450c2382014-07-23 17:31:31 +00001957 #pragma clang loop unroll(full)
Eli Bendersky778268d2014-06-19 18:12:44 +00001958 for(...) {
1959 ...
1960 }
1961
1962The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
1963_value_ is a positive integer. If this value is greater than the trip count the
1964loop will be fully unrolled. Otherwise the loop is partially unrolled subject
1965to the `-pragma-unroll-threshold` limit.
1966
1967.. code-block:: c++
1968
1969 #pragma clang loop unroll_count(8)
1970 for(...) {
1971 ...
1972 }
1973
1974Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
1975
1976Additional Information
1977----------------------
1978
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001979For convenience multiple loop hints can be specified on a single line.
1980
1981.. code-block:: c++
1982
1983 #pragma clang loop vectorize_width(4) interleave_count(8)
1984 for(...) {
1985 ...
1986 }
1987
1988If an optimization cannot be applied any hints that apply to it will be ignored.
1989For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
1990proven safe to vectorize. To identify and diagnose optimization issues use
1991`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
1992user guide for details.