blob: 10d96e7f2d7580dcf2f7f20ecae4bf3fea1795bc [file] [log] [blame]
Davide Italiano7e274e02016-12-22 16:03:48 +00001//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
Daniel Berlindb3c7be2017-01-26 21:39:49 +000020/// A brief overview of the algorithm: The algorithm is essentially the same as
21/// the standard RPO value numbering algorithm (a good reference is the paper
22/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23/// The RPO algorithm proceeds, on every iteration, to process every reachable
24/// block and every instruction in that block. This is because the standard RPO
25/// algorithm does not track what things have the same value number, it only
26/// tracks what the value number of a given operation is (the mapping is
27/// operation -> value number). Thus, when a value number of an operation
28/// changes, it must reprocess everything to ensure all uses of a value number
29/// get updated properly. In constrast, the sparse algorithm we use *also*
30/// tracks what operations have a given value number (IE it also tracks the
31/// reverse mapping from value number -> operations with that value number), so
32/// that it only needs to reprocess the instructions that are affected when
33/// something's value number changes. The rest of the algorithm is devoted to
34/// performing symbolic evaluation, forward propagation, and simplification of
35/// operations based on the value numbers deduced so far.
36///
37/// We also do not perform elimination by using any published algorithm. All
38/// published algorithms are O(Instructions). Instead, we use a technique that
39/// is O(number of operations with the same value number), enabling us to skip
40/// trying to eliminate things that have unique value numbers.
Davide Italiano7e274e02016-12-22 16:03:48 +000041//===----------------------------------------------------------------------===//
42
43#include "llvm/Transforms/Scalar/NewGVN.h"
44#include "llvm/ADT/BitVector.h"
45#include "llvm/ADT/DenseMap.h"
46#include "llvm/ADT/DenseSet.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48#include "llvm/ADT/Hashing.h"
49#include "llvm/ADT/MapVector.h"
50#include "llvm/ADT/PostOrderIterator.h"
Daniel Berlind7c12ee2016-12-25 22:23:49 +000051#include "llvm/ADT/STLExtras.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000052#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SparseBitVector.h"
55#include "llvm/ADT/Statistic.h"
56#include "llvm/ADT/TinyPtrVector.h"
57#include "llvm/Analysis/AliasAnalysis.h"
58#include "llvm/Analysis/AssumptionCache.h"
59#include "llvm/Analysis/CFG.h"
60#include "llvm/Analysis/CFGPrinter.h"
61#include "llvm/Analysis/ConstantFolding.h"
62#include "llvm/Analysis/GlobalsModRef.h"
63#include "llvm/Analysis/InstructionSimplify.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000064#include "llvm/Analysis/MemoryBuiltins.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000065#include "llvm/Analysis/MemoryLocation.h"
Daniel Berlin2f72b192017-04-14 02:53:37 +000066#include "llvm/Analysis/MemorySSA.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000067#include "llvm/Analysis/TargetLibraryInfo.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000068#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/GlobalVariable.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/IntrinsicInst.h"
73#include "llvm/IR/LLVMContext.h"
74#include "llvm/IR/Metadata.h"
75#include "llvm/IR/PatternMatch.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000076#include "llvm/IR/Type.h"
77#include "llvm/Support/Allocator.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Debug.h"
Daniel Berlin283a6082017-03-01 19:59:26 +000080#include "llvm/Support/DebugCounter.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000081#include "llvm/Transforms/Scalar.h"
82#include "llvm/Transforms/Scalar/GVNExpression.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
Daniel Berlinf7d95802017-02-18 23:06:50 +000085#include "llvm/Transforms/Utils/PredicateInfo.h"
Daniel Berlin07daac82017-04-02 13:23:44 +000086#include "llvm/Transforms/Utils/VNCoercion.h"
Daniel Berlin1316a942017-04-06 18:52:50 +000087#include <numeric>
Davide Italiano7e274e02016-12-22 16:03:48 +000088#include <unordered_map>
89#include <utility>
90#include <vector>
91using namespace llvm;
92using namespace PatternMatch;
93using namespace llvm::GVNExpression;
Daniel Berlin07daac82017-04-02 13:23:44 +000094using namespace llvm::VNCoercion;
Davide Italiano7e274e02016-12-22 16:03:48 +000095#define DEBUG_TYPE "newgvn"
96
97STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
98STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
99STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
100STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
Daniel Berlin04443432017-01-07 03:23:47 +0000101STATISTIC(NumGVNMaxIterations,
102 "Maximum Number of iterations it took to converge GVN");
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000103STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
104STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
105STATISTIC(NumGVNAvoidedSortedLeaderChanges,
106 "Number of avoided sorted leader changes");
Daniel Berlin89fea6f2017-01-20 06:38:41 +0000107STATISTIC(NumGVNNotMostDominatingLeader,
108 "Number of times a member dominated it's new classes' leader");
Daniel Berlinc4796862017-01-27 02:37:11 +0000109STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
Daniel Berlin283a6082017-03-01 19:59:26 +0000110DEBUG_COUNTER(VNCounter, "newgvn-vn",
111 "Controls which instructions are value numbered")
Daniel Berlin1316a942017-04-06 18:52:50 +0000112
113// Currently store defining access refinement is too slow due to basicaa being
114// egregiously slow. This flag lets us keep it working while we work on this
115// issue.
116static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
117 cl::init(false), cl::Hidden);
118
Davide Italiano7e274e02016-12-22 16:03:48 +0000119//===----------------------------------------------------------------------===//
120// GVN Pass
121//===----------------------------------------------------------------------===//
122
123// Anchor methods.
124namespace llvm {
125namespace GVNExpression {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000126Expression::~Expression() = default;
127BasicExpression::~BasicExpression() = default;
128CallExpression::~CallExpression() = default;
129LoadExpression::~LoadExpression() = default;
130StoreExpression::~StoreExpression() = default;
131AggregateValueExpression::~AggregateValueExpression() = default;
132PHIExpression::~PHIExpression() = default;
Davide Italiano7e274e02016-12-22 16:03:48 +0000133}
134}
135
Daniel Berlin2f72b192017-04-14 02:53:37 +0000136// Tarjan's SCC finding algorithm with Nuutila's improvements
137// SCCIterator is actually fairly complex for the simple thing we want.
138// It also wants to hand us SCC's that are unrelated to the phi node we ask
139// about, and have us process them there or risk redoing work.
140// Graph traits over a filter iterator also doesn't work that well here.
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000141// This SCC finder is specialized to walk use-def chains, and only follows
142// instructions,
Daniel Berlin2f72b192017-04-14 02:53:37 +0000143// not generic values (arguments, etc).
144struct TarjanSCC {
145
146 TarjanSCC() : Components(1) {}
147
148 void Start(const Instruction *Start) {
149 if (Root.lookup(Start) == 0)
150 FindSCC(Start);
151 }
152
153 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
154 unsigned ComponentID = ValueToComponent.lookup(V);
155
156 assert(ComponentID > 0 &&
157 "Asking for a component for a value we never processed");
158 return Components[ComponentID];
159 }
160
161private:
162 void FindSCC(const Instruction *I) {
163 Root[I] = ++DFSNum;
164 // Store the DFS Number we had before it possibly gets incremented.
165 unsigned int OurDFS = DFSNum;
166 for (auto &Op : I->operands()) {
167 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
168 if (Root.lookup(Op) == 0)
169 FindSCC(InstOp);
170 if (!InComponent.count(Op))
171 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
172 }
173 }
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000174 // See if we really were the root of a component, by seeing if we still have
175 // our DFSNumber.
176 // If we do, we are the root of the component, and we have completed a
177 // component. If we do not,
Daniel Berlin2f72b192017-04-14 02:53:37 +0000178 // we are not the root of a component, and belong on the component stack.
179 if (Root.lookup(I) == OurDFS) {
180 unsigned ComponentID = Components.size();
181 Components.resize(Components.size() + 1);
182 auto &Component = Components.back();
183 Component.insert(I);
184 DEBUG(dbgs() << "Component root is " << *I << "\n");
185 InComponent.insert(I);
186 ValueToComponent[I] = ComponentID;
187 // Pop a component off the stack and label it.
188 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
189 auto *Member = Stack.back();
190 DEBUG(dbgs() << "Component member is " << *Member << "\n");
191 Component.insert(Member);
192 InComponent.insert(Member);
193 ValueToComponent[Member] = ComponentID;
194 Stack.pop_back();
195 }
196 } else {
197 // Part of a component, push to stack
198 Stack.push_back(I);
199 }
200 }
201 unsigned int DFSNum = 1;
202 SmallPtrSet<const Value *, 8> InComponent;
203 DenseMap<const Value *, unsigned int> Root;
204 SmallVector<const Value *, 8> Stack;
205 // Store the components as vector of ptr sets, because we need the topo order
206 // of SCC's, but not individual member order
207 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
208 DenseMap<const Value *, unsigned> ValueToComponent;
209};
Davide Italiano7e274e02016-12-22 16:03:48 +0000210// Congruence classes represent the set of expressions/instructions
211// that are all the same *during some scope in the function*.
212// That is, because of the way we perform equality propagation, and
213// because of memory value numbering, it is not correct to assume
214// you can willy-nilly replace any member with any other at any
215// point in the function.
216//
217// For any Value in the Member set, it is valid to replace any dominated member
218// with that Value.
219//
Daniel Berlin1316a942017-04-06 18:52:50 +0000220// Every congruence class has a leader, and the leader is used to symbolize
221// instructions in a canonical way (IE every operand of an instruction that is a
222// member of the same congruence class will always be replaced with leader
223// during symbolization). To simplify symbolization, we keep the leader as a
224// constant if class can be proved to be a constant value. Otherwise, the
225// leader is the member of the value set with the smallest DFS number. Each
226// congruence class also has a defining expression, though the expression may be
227// null. If it exists, it can be used for forward propagation and reassociation
228// of values.
229
230// For memory, we also track a representative MemoryAccess, and a set of memory
231// members for MemoryPhis (which have no real instructions). Note that for
232// memory, it seems tempting to try to split the memory members into a
233// MemoryCongruenceClass or something. Unfortunately, this does not work
234// easily. The value numbering of a given memory expression depends on the
235// leader of the memory congruence class, and the leader of memory congruence
236// class depends on the value numbering of a given memory expression. This
237// leads to wasted propagation, and in some cases, missed optimization. For
238// example: If we had value numbered two stores together before, but now do not,
239// we move them to a new value congruence class. This in turn will move at one
240// of the memorydefs to a new memory congruence class. Which in turn, affects
241// the value numbering of the stores we just value numbered (because the memory
242// congruence class is part of the value number). So while theoretically
243// possible to split them up, it turns out to be *incredibly* complicated to get
244// it to work right, because of the interdependency. While structurally
245// slightly messier, it is algorithmically much simpler and faster to do what we
Daniel Berlina8236562017-04-07 18:38:09 +0000246// do here, and track them both at once in the same class.
247// Note: The default iterators for this class iterate over values
248class CongruenceClass {
249public:
250 using MemberType = Value;
251 using MemberSet = SmallPtrSet<MemberType *, 4>;
252 using MemoryMemberType = MemoryPhi;
253 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
254
255 explicit CongruenceClass(unsigned ID) : ID(ID) {}
256 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
257 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
258 unsigned getID() const { return ID; }
259 // True if this class has no members left. This is mainly used for assertion
260 // purposes, and for skipping empty classes.
261 bool isDead() const {
262 // If it's both dead from a value perspective, and dead from a memory
263 // perspective, it's really dead.
264 return empty() && memory_empty();
265 }
266 // Leader functions
267 Value *getLeader() const { return RepLeader; }
268 void setLeader(Value *Leader) { RepLeader = Leader; }
269 const std::pair<Value *, unsigned int> &getNextLeader() const {
270 return NextLeader;
271 }
272 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
273
274 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
275 if (LeaderPair.second < NextLeader.second)
276 NextLeader = LeaderPair;
277 }
278
279 Value *getStoredValue() const { return RepStoredValue; }
280 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
281 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
282 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
283
284 // Forward propagation info
285 const Expression *getDefiningExpr() const { return DefiningExpr; }
286 void setDefiningExpr(const Expression *E) { DefiningExpr = E; }
287
288 // Value member set
289 bool empty() const { return Members.empty(); }
290 unsigned size() const { return Members.size(); }
291 MemberSet::const_iterator begin() const { return Members.begin(); }
292 MemberSet::const_iterator end() const { return Members.end(); }
293 void insert(MemberType *M) { Members.insert(M); }
294 void erase(MemberType *M) { Members.erase(M); }
295 void swap(MemberSet &Other) { Members.swap(Other); }
296
297 // Memory member set
298 bool memory_empty() const { return MemoryMembers.empty(); }
299 unsigned memory_size() const { return MemoryMembers.size(); }
300 MemoryMemberSet::const_iterator memory_begin() const {
301 return MemoryMembers.begin();
302 }
303 MemoryMemberSet::const_iterator memory_end() const {
304 return MemoryMembers.end();
305 }
306 iterator_range<MemoryMemberSet::const_iterator> memory() const {
307 return make_range(memory_begin(), memory_end());
308 }
309 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
310 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
311
312 // Store count
313 unsigned getStoreCount() const { return StoreCount; }
314 void incStoreCount() { ++StoreCount; }
315 void decStoreCount() {
316 assert(StoreCount != 0 && "Store count went negative");
317 --StoreCount;
318 }
319
320 // Return true if two congruence classes are equivalent to each other. This
321 // means
322 // that every field but the ID number and the dead field are equivalent.
323 bool isEquivalentTo(const CongruenceClass *Other) const {
324 if (!Other)
325 return false;
326 if (this == Other)
327 return true;
328
329 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
330 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
331 Other->RepMemoryAccess))
332 return false;
333 if (DefiningExpr != Other->DefiningExpr)
334 if (!DefiningExpr || !Other->DefiningExpr ||
335 *DefiningExpr != *Other->DefiningExpr)
336 return false;
337 // We need some ordered set
338 std::set<Value *> AMembers(Members.begin(), Members.end());
339 std::set<Value *> BMembers(Members.begin(), Members.end());
340 return AMembers == BMembers;
341 }
342
343private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000344 unsigned ID;
345 // Representative leader.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000346 Value *RepLeader = nullptr;
Daniel Berlina8236562017-04-07 18:38:09 +0000347 // The most dominating leader after our current leader, because the member set
348 // is not sorted and is expensive to keep sorted all the time.
349 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
Daniel Berlin1316a942017-04-06 18:52:50 +0000350 // If this is represented by a store, the value of the store.
Daniel Berlin26addef2017-01-20 21:04:30 +0000351 Value *RepStoredValue = nullptr;
Daniel Berlin1316a942017-04-06 18:52:50 +0000352 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
353 // access.
354 const MemoryAccess *RepMemoryAccess = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000355 // Defining Expression.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000356 const Expression *DefiningExpr = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000357 // Actual members of this class.
358 MemberSet Members;
Daniel Berlin1316a942017-04-06 18:52:50 +0000359 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
360 // MemoryUses have real instructions representing them, so we only need to
361 // track MemoryPhis here.
362 MemoryMemberSet MemoryMembers;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000363 // Number of stores in this congruence class.
364 // This is used so we can detect store equivalence changes properly.
Davide Italianoeac05f62017-01-11 23:41:24 +0000365 int StoreCount = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +0000366};
367
368namespace llvm {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000369template <> struct DenseMapInfo<const Expression *> {
370 static const Expression *getEmptyKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000371 auto Val = static_cast<uintptr_t>(-1);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000372 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
373 return reinterpret_cast<const Expression *>(Val);
374 }
375 static const Expression *getTombstoneKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000376 auto Val = static_cast<uintptr_t>(~1U);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000377 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
378 return reinterpret_cast<const Expression *>(Val);
379 }
380 static unsigned getHashValue(const Expression *V) {
381 return static_cast<unsigned>(V->getHashValue());
382 }
383 static bool isEqual(const Expression *LHS, const Expression *RHS) {
384 if (LHS == RHS)
385 return true;
386 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
387 LHS == getEmptyKey() || RHS == getEmptyKey())
388 return false;
389 return *LHS == *RHS;
390 }
391};
Davide Italiano7e274e02016-12-22 16:03:48 +0000392} // end namespace llvm
393
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000394namespace {
Daniel Berlin64e68992017-03-12 04:46:45 +0000395class NewGVN {
396 Function &F;
Davide Italiano7e274e02016-12-22 16:03:48 +0000397 DominatorTree *DT;
Daniel Berlin64e68992017-03-12 04:46:45 +0000398 const TargetLibraryInfo *TLI;
Davide Italiano7e274e02016-12-22 16:03:48 +0000399 AliasAnalysis *AA;
400 MemorySSA *MSSA;
401 MemorySSAWalker *MSSAWalker;
Daniel Berlin64e68992017-03-12 04:46:45 +0000402 const DataLayout &DL;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000403 std::unique_ptr<PredicateInfo> PredInfo;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000404
405 // These are the only two things the create* functions should have
406 // side-effects on due to allocating memory.
407 mutable BumpPtrAllocator ExpressionAllocator;
408 mutable ArrayRecycler<Value *> ArgRecycler;
409 mutable TarjanSCC SCCFinder;
Daniel Berlinede130d2017-04-26 20:56:14 +0000410 const SimplifyQuery SQ;
Davide Italiano7e274e02016-12-22 16:03:48 +0000411
Daniel Berlin1c087672017-02-11 15:07:01 +0000412 // Number of function arguments, used by ranking
413 unsigned int NumFuncArgs;
414
Daniel Berlin2f72b192017-04-14 02:53:37 +0000415 // RPOOrdering of basic blocks
416 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
417
Davide Italiano7e274e02016-12-22 16:03:48 +0000418 // Congruence class info.
Daniel Berlinb79f5362017-02-11 12:48:50 +0000419
420 // This class is called INITIAL in the paper. It is the class everything
421 // startsout in, and represents any value. Being an optimistic analysis,
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000422 // anything in the TOP class has the value TOP, which is indeterminate and
Daniel Berlinb79f5362017-02-11 12:48:50 +0000423 // equivalent to everything.
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000424 CongruenceClass *TOPClass;
Davide Italiano7e274e02016-12-22 16:03:48 +0000425 std::vector<CongruenceClass *> CongruenceClasses;
426 unsigned NextCongruenceNum;
427
428 // Value Mappings.
429 DenseMap<Value *, CongruenceClass *> ValueToClass;
430 DenseMap<Value *, const Expression *> ValueToExpression;
431
Daniel Berlinf7d95802017-02-18 23:06:50 +0000432 // Mapping from predicate info we used to the instructions we used it with.
433 // In order to correctly ensure propagation, we must keep track of what
434 // comparisons we used, so that when the values of the comparisons change, we
435 // propagate the information to the places we used the comparison.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000436 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
437 PredicateToUsers;
Daniel Berlin1316a942017-04-06 18:52:50 +0000438 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
439 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000440 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
441 MemoryToUsers;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000442
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000443 // A table storing which memorydefs/phis represent a memory state provably
444 // equivalent to another memory state.
445 // We could use the congruence class machinery, but the MemoryAccess's are
446 // abstract memory states, so they can only ever be equivalent to each other,
447 // and not to constants, etc.
Daniel Berlin1ea5f322017-01-26 22:21:48 +0000448 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000449
Daniel Berlin1316a942017-04-06 18:52:50 +0000450 // We could, if we wanted, build MemoryPhiExpressions and
451 // MemoryVariableExpressions, etc, and value number them the same way we value
452 // number phi expressions. For the moment, this seems like overkill. They
453 // can only exist in one of three states: they can be TOP (equal to
454 // everything), Equivalent to something else, or unique. Because we do not
455 // create expressions for them, we need to simulate leader change not just
456 // when they change class, but when they change state. Note: We can do the
457 // same thing for phis, and avoid having phi expressions if we wanted, We
458 // should eventually unify in one direction or the other, so this is a little
459 // bit of an experiment in which turns out easier to maintain.
460 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
461 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
462
Daniel Berlin2f72b192017-04-14 02:53:37 +0000463 enum PhiCycleState { PCS_Unknown, PCS_CycleFree, PCS_Cycle };
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000464 mutable DenseMap<const PHINode *, PhiCycleState> PhiCycleState;
Davide Italiano7e274e02016-12-22 16:03:48 +0000465 // Expression to class mapping.
Piotr Padlewskie4047b82016-12-28 19:29:26 +0000466 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
Davide Italiano7e274e02016-12-22 16:03:48 +0000467 ExpressionClassMap ExpressionToClass;
468
469 // Which values have changed as a result of leader changes.
Daniel Berlin3a1bd022017-01-11 20:22:05 +0000470 SmallPtrSet<Value *, 8> LeaderChanges;
Davide Italiano7e274e02016-12-22 16:03:48 +0000471
472 // Reachability info.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000473 using BlockEdge = BasicBlockEdge;
Davide Italiano7e274e02016-12-22 16:03:48 +0000474 DenseSet<BlockEdge> ReachableEdges;
475 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
476
477 // This is a bitvector because, on larger functions, we may have
478 // thousands of touched instructions at once (entire blocks,
479 // instructions with hundreds of uses, etc). Even with optimization
480 // for when we mark whole blocks as touched, when this was a
481 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
482 // the time in GVN just managing this list. The bitvector, on the
483 // other hand, efficiently supports test/set/clear of both
484 // individual and ranges, as well as "find next element" This
485 // enables us to use it as a worklist with essentially 0 cost.
486 BitVector TouchedInstructions;
487
488 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
Davide Italiano7e274e02016-12-22 16:03:48 +0000489
490#ifndef NDEBUG
491 // Debugging for how many times each block and instruction got processed.
492 DenseMap<const Value *, unsigned> ProcessedCount;
493#endif
494
495 // DFS info.
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000496 // This contains a mapping from Instructions to DFS numbers.
497 // The numbering starts at 1. An instruction with DFS number zero
498 // means that the instruction is dead.
Davide Italiano7e274e02016-12-22 16:03:48 +0000499 DenseMap<const Value *, unsigned> InstrDFS;
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000500
501 // This contains the mapping DFS numbers to instructions.
Daniel Berlin1f31fe522016-12-27 09:20:36 +0000502 SmallVector<Value *, 32> DFSToInstr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000503
504 // Deletion info.
505 SmallPtrSet<Instruction *, 8> InstructionsToErase;
506
507public:
Daniel Berlin64e68992017-03-12 04:46:45 +0000508 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
509 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
510 const DataLayout &DL)
Daniel Berlin4d0fe642017-04-28 19:55:38 +0000511 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
Daniel Berlinede130d2017-04-26 20:56:14 +0000512 PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
513 }
Daniel Berlin64e68992017-03-12 04:46:45 +0000514 bool runGVN();
Davide Italiano7e274e02016-12-22 16:03:48 +0000515
516private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000517 // Expression handling.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000518 const Expression *createExpression(Instruction *) const;
519 const Expression *createBinaryExpression(unsigned, Type *, Value *,
520 Value *) const;
521 PHIExpression *createPHIExpression(Instruction *, bool &HasBackEdge,
522 bool &AllConstant) const;
523 const VariableExpression *createVariableExpression(Value *) const;
524 const ConstantExpression *createConstantExpression(Constant *) const;
525 const Expression *createVariableOrConstant(Value *V) const;
526 const UnknownExpression *createUnknownExpression(Instruction *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000527 const StoreExpression *createStoreExpression(StoreInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000528 const MemoryAccess *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000529 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000530 const MemoryAccess *) const;
531 const CallExpression *createCallExpression(CallInst *,
532 const MemoryAccess *) const;
533 const AggregateValueExpression *
534 createAggregateValueExpression(Instruction *) const;
535 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000536
537 // Congruence class handling.
538 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000539 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000540 CongruenceClasses.emplace_back(result);
Davide Italiano7e274e02016-12-22 16:03:48 +0000541 return result;
542 }
543
Daniel Berlin1316a942017-04-06 18:52:50 +0000544 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
545 auto *CC = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000546 CC->setMemoryLeader(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000547 return CC;
548 }
549 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
550 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +0000551 if (CC->getMemoryLeader() != MA)
Daniel Berlin1316a942017-04-06 18:52:50 +0000552 CC = createMemoryClass(MA);
553 return CC;
554 }
555
Davide Italiano7e274e02016-12-22 16:03:48 +0000556 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
Davide Italiano0e714802016-12-28 14:00:11 +0000557 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000558 CClass->insert(Member);
Davide Italiano7e274e02016-12-22 16:03:48 +0000559 ValueToClass[Member] = CClass;
560 return CClass;
561 }
562 void initializeCongruenceClasses(Function &F);
563
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000564 // Value number an Instruction or MemoryPhi.
565 void valueNumberMemoryPhi(MemoryPhi *);
566 void valueNumberInstruction(Instruction *);
567
Davide Italiano7e274e02016-12-22 16:03:48 +0000568 // Symbolic evaluation.
569 const Expression *checkSimplificationResults(Expression *, Instruction *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000570 Value *) const;
571 const Expression *performSymbolicEvaluation(Value *) const;
Daniel Berlin07daac82017-04-02 13:23:44 +0000572 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000573 Instruction *,
574 MemoryAccess *) const;
575 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
576 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
577 const Expression *performSymbolicCallEvaluation(Instruction *) const;
578 const Expression *performSymbolicPHIEvaluation(Instruction *) const;
579 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
580 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
581 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000582
583 // Congruence finding.
Daniel Berlin9d0796e2017-03-24 05:30:34 +0000584 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
Daniel Berlin203f47b2017-01-31 22:31:53 +0000585 Value *lookupOperandLeader(Value *) const;
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000586 void performCongruenceFinding(Instruction *, const Expression *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000587 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
588 CongruenceClass *, CongruenceClass *);
589 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
590 CongruenceClass *, CongruenceClass *);
591 Value *getNextValueLeader(CongruenceClass *) const;
592 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
593 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
594 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
595 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
Daniel Berlinc4796862017-01-27 02:37:11 +0000596 bool isMemoryAccessTop(const MemoryAccess *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000597
Daniel Berlin1c087672017-02-11 15:07:01 +0000598 // Ranking
599 unsigned int getRank(const Value *) const;
600 bool shouldSwapOperands(const Value *, const Value *) const;
601
Davide Italiano7e274e02016-12-22 16:03:48 +0000602 // Reachability handling.
603 void updateReachableEdge(BasicBlock *, BasicBlock *);
604 void processOutgoingEdges(TerminatorInst *, BasicBlock *);
Daniel Berlin97718e62017-01-31 22:32:03 +0000605 Value *findConditionEquivalence(Value *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000606
607 // Elimination.
608 struct ValueDFS;
Daniel Berlina8236562017-04-07 18:38:09 +0000609 void convertClassToDFSOrdered(const CongruenceClass &,
Daniel Berline3e69e12017-03-10 00:32:33 +0000610 SmallVectorImpl<ValueDFS> &,
611 DenseMap<const Value *, unsigned int> &,
Daniel Berlina8236562017-04-07 18:38:09 +0000612 SmallPtrSetImpl<Instruction *> &) const;
613 void convertClassToLoadsAndStores(const CongruenceClass &,
614 SmallVectorImpl<ValueDFS> &) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000615
616 bool eliminateInstructions(Function &);
617 void replaceInstruction(Instruction *, Value *);
618 void markInstructionForDeletion(Instruction *);
619 void deleteInstructionsInBlock(BasicBlock *);
620
621 // New instruction creation.
622 void handleNewInstruction(Instruction *){};
Daniel Berlin32f8d562017-01-07 16:55:14 +0000623
624 // Various instruction touch utilities
Davide Italiano7e274e02016-12-22 16:03:48 +0000625 void markUsersTouched(Value *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000626 void markMemoryUsersTouched(const MemoryAccess *);
627 void markMemoryDefTouched(const MemoryAccess *);
Daniel Berlinf7d95802017-02-18 23:06:50 +0000628 void markPredicateUsersTouched(Instruction *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000629 void markValueLeaderChangeTouched(CongruenceClass *CC);
630 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000631 void addPredicateUsers(const PredicateBase *, Instruction *) const;
632 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000633
Daniel Berlin06329a92017-03-18 15:41:40 +0000634 // Main loop of value numbering
635 void iterateTouchedInstructions();
636
Davide Italiano7e274e02016-12-22 16:03:48 +0000637 // Utilities.
638 void cleanupTables();
639 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
640 void updateProcessedCount(Value *V);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000641 void verifyMemoryCongruency() const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000642 void verifyIterationSettled(Function &F);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000643 bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000644 BasicBlock *getBlockForValue(Value *V) const;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000645 void deleteExpression(const Expression *E) const;
Daniel Berlin21279bd2017-04-06 18:52:58 +0000646 unsigned InstrToDFSNum(const Value *V) const {
Daniel Berlin1316a942017-04-06 18:52:50 +0000647 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
648 return InstrDFS.lookup(V);
649 }
650
Daniel Berlin21279bd2017-04-06 18:52:58 +0000651 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
652 return MemoryToDFSNum(MA);
653 }
654 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
655 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
656 // This deliberately takes a value so it can be used with Use's, which will
657 // auto-convert to Value's but not to MemoryAccess's.
658 unsigned MemoryToDFSNum(const Value *MA) const {
659 assert(isa<MemoryAccess>(MA) &&
660 "This should not be used with instructions");
661 return isa<MemoryUseOrDef>(MA)
662 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
663 : InstrDFS.lookup(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000664 }
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000665 bool isCycleFree(const PHINode *PN) const ;
Daniel Berlin1316a942017-04-06 18:52:50 +0000666 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000667 // Debug counter info. When verifying, we have to reset the value numbering
668 // debug counter to the same state it started in to get the same results.
669 std::pair<int, int> StartingVNCounter;
Davide Italiano7e274e02016-12-22 16:03:48 +0000670};
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000671} // end anonymous namespace
Davide Italiano7e274e02016-12-22 16:03:48 +0000672
Davide Italianob1114092016-12-28 13:37:17 +0000673template <typename T>
674static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
Daniel Berlin9b498492017-04-01 09:44:29 +0000675 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
Davide Italiano7e274e02016-12-22 16:03:48 +0000676 return false;
Daniel Berlin9b498492017-04-01 09:44:29 +0000677 return LHS.MemoryExpression::equals(RHS);
Davide Italiano7e274e02016-12-22 16:03:48 +0000678}
679
Davide Italianob1114092016-12-28 13:37:17 +0000680bool LoadExpression::equals(const Expression &Other) const {
681 return equalsLoadStoreHelper(*this, Other);
682}
Davide Italiano7e274e02016-12-22 16:03:48 +0000683
Davide Italianob1114092016-12-28 13:37:17 +0000684bool StoreExpression::equals(const Expression &Other) const {
Daniel Berlin9b498492017-04-01 09:44:29 +0000685 if (!equalsLoadStoreHelper(*this, Other))
686 return false;
Daniel Berlin26addef2017-01-20 21:04:30 +0000687 // Make sure that store vs store includes the value operand.
Daniel Berlin9b498492017-04-01 09:44:29 +0000688 if (const auto *S = dyn_cast<StoreExpression>(&Other))
689 if (getStoredValue() != S->getStoredValue())
690 return false;
691 return true;
Davide Italiano7e274e02016-12-22 16:03:48 +0000692}
693
694#ifndef NDEBUG
695static std::string getBlockName(const BasicBlock *B) {
Davide Italiano0e714802016-12-28 14:00:11 +0000696 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +0000697}
698#endif
699
Daniel Berlin06329a92017-03-18 15:41:40 +0000700// Get the basic block from an instruction/memory value.
701BasicBlock *NewGVN::getBlockForValue(Value *V) const {
702 if (auto *I = dyn_cast<Instruction>(V))
703 return I->getParent();
704 else if (auto *MP = dyn_cast<MemoryPhi>(V))
705 return MP->getBlock();
706 llvm_unreachable("Should have been able to figure out a block for our value");
707 return nullptr;
708}
709
Daniel Berlin0e900112017-03-24 06:33:48 +0000710// Delete a definitely dead expression, so it can be reused by the expression
711// allocator. Some of these are not in creation functions, so we have to accept
712// const versions.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000713void NewGVN::deleteExpression(const Expression *E) const {
Daniel Berlin0e900112017-03-24 06:33:48 +0000714 assert(isa<BasicExpression>(E));
715 auto *BE = cast<BasicExpression>(E);
716 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
717 ExpressionAllocator.Deallocate(E);
718}
719
Daniel Berlin2f72b192017-04-14 02:53:37 +0000720PHIExpression *NewGVN::createPHIExpression(Instruction *I, bool &HasBackedge,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000721 bool &AllConstant) const {
Daniel Berlind92e7f92017-01-07 00:01:42 +0000722 BasicBlock *PHIBlock = I->getParent();
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000723 auto *PN = cast<PHINode>(I);
Daniel Berlind92e7f92017-01-07 00:01:42 +0000724 auto *E =
725 new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +0000726
727 E->allocateOperands(ArgRecycler, ExpressionAllocator);
728 E->setType(I->getType());
729 E->setOpcode(I->getOpcode());
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000730
Daniel Berlin2f72b192017-04-14 02:53:37 +0000731 unsigned PHIRPO = RPOOrdering.lookup(DT->getNode(PHIBlock));
732
Davide Italianob3886dd2017-01-25 23:37:49 +0000733 // Filter out unreachable phi operands.
734 auto Filtered = make_filter_range(PN->operands(), [&](const Use &U) {
Daniel Berlin41b39162017-03-18 15:41:36 +0000735 return ReachableEdges.count({PN->getIncomingBlock(U), PHIBlock});
Davide Italianob3886dd2017-01-25 23:37:49 +0000736 });
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000737
738 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
739 [&](const Use &U) -> Value * {
Daniel Berlin2f72b192017-04-14 02:53:37 +0000740 auto *BB = PN->getIncomingBlock(U);
741 auto *DTN = DT->getNode(BB);
742 if (RPOOrdering.lookup(DTN) >= PHIRPO)
743 HasBackedge = true;
744 AllConstant &= isa<UndefValue>(U) || isa<Constant>(U);
745
Daniel Berlind92e7f92017-01-07 00:01:42 +0000746 // Don't try to transform self-defined phis.
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000747 if (U == PN)
748 return PN;
Daniel Berlin203f47b2017-01-31 22:31:53 +0000749 return lookupOperandLeader(U);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000750 });
Davide Italiano7e274e02016-12-22 16:03:48 +0000751 return E;
752}
753
754// Set basic expression info (Arguments, type, opcode) for Expression
755// E from Instruction I in block B.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000756bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000757 bool AllConstant = true;
758 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
759 E->setType(GEP->getSourceElementType());
760 else
761 E->setType(I->getType());
762 E->setOpcode(I->getOpcode());
763 E->allocateOperands(ArgRecycler, ExpressionAllocator);
764
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000765 // Transform the operand array into an operand leader array, and keep track of
766 // whether all members are constant.
767 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
Daniel Berlin203f47b2017-01-31 22:31:53 +0000768 auto Operand = lookupOperandLeader(O);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000769 AllConstant &= isa<Constant>(Operand);
770 return Operand;
771 });
772
Davide Italiano7e274e02016-12-22 16:03:48 +0000773 return AllConstant;
774}
775
776const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000777 Value *Arg1,
778 Value *Arg2) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000779 auto *E = new (ExpressionAllocator) BasicExpression(2);
Davide Italiano7e274e02016-12-22 16:03:48 +0000780
781 E->setType(T);
782 E->setOpcode(Opcode);
783 E->allocateOperands(ArgRecycler, ExpressionAllocator);
784 if (Instruction::isCommutative(Opcode)) {
785 // Ensure that commutative instructions that only differ by a permutation
786 // of their operands get the same value number by sorting the operand value
787 // numbers. Since all commutative instructions have two operands it is more
788 // efficient to sort by hand rather than using, say, std::sort.
Daniel Berlin1c087672017-02-11 15:07:01 +0000789 if (shouldSwapOperands(Arg1, Arg2))
Davide Italiano7e274e02016-12-22 16:03:48 +0000790 std::swap(Arg1, Arg2);
791 }
Daniel Berlin203f47b2017-01-31 22:31:53 +0000792 E->op_push_back(lookupOperandLeader(Arg1));
793 E->op_push_back(lookupOperandLeader(Arg2));
Davide Italiano7e274e02016-12-22 16:03:48 +0000794
Daniel Berlinede130d2017-04-26 20:56:14 +0000795 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000796 if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
797 return SimplifiedE;
798 return E;
799}
800
801// Take a Value returned by simplification of Expression E/Instruction
802// I, and see if it resulted in a simpler expression. If so, return
803// that expression.
804// TODO: Once finished, this should not take an Instruction, we only
805// use it for printing.
806const Expression *NewGVN::checkSimplificationResults(Expression *E,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000807 Instruction *I,
808 Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000809 if (!V)
810 return nullptr;
811 if (auto *C = dyn_cast<Constant>(V)) {
812 if (I)
813 DEBUG(dbgs() << "Simplified " << *I << " to "
814 << " constant " << *C << "\n");
815 NumGVNOpsSimplified++;
816 assert(isa<BasicExpression>(E) &&
817 "We should always have had a basic expression here");
Daniel Berlin0e900112017-03-24 06:33:48 +0000818 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000819 return createConstantExpression(C);
820 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
821 if (I)
822 DEBUG(dbgs() << "Simplified " << *I << " to "
823 << " variable " << *V << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +0000824 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000825 return createVariableExpression(V);
826 }
827
828 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlina8236562017-04-07 18:38:09 +0000829 if (CC && CC->getDefiningExpr()) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000830 if (I)
831 DEBUG(dbgs() << "Simplified " << *I << " to "
832 << " expression " << *V << "\n");
833 NumGVNOpsSimplified++;
Daniel Berlin0e900112017-03-24 06:33:48 +0000834 deleteExpression(E);
Daniel Berlina8236562017-04-07 18:38:09 +0000835 return CC->getDefiningExpr();
Davide Italiano7e274e02016-12-22 16:03:48 +0000836 }
837 return nullptr;
838}
839
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000840const Expression *NewGVN::createExpression(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000841 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
Davide Italiano7e274e02016-12-22 16:03:48 +0000842
Daniel Berlin97718e62017-01-31 22:32:03 +0000843 bool AllConstant = setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000844
845 if (I->isCommutative()) {
846 // Ensure that commutative instructions that only differ by a permutation
847 // of their operands get the same value number by sorting the operand value
848 // numbers. Since all commutative instructions have two operands it is more
849 // efficient to sort by hand rather than using, say, std::sort.
850 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
Daniel Berlin508a1de2017-02-12 23:24:42 +0000851 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
Davide Italiano7e274e02016-12-22 16:03:48 +0000852 E->swapOperands(0, 1);
853 }
854
855 // Perform simplificaiton
856 // TODO: Right now we only check to see if we get a constant result.
857 // We may get a less than constant, but still better, result for
858 // some operations.
859 // IE
860 // add 0, x -> x
861 // and x, x -> x
862 // We should handle this by simply rewriting the expression.
863 if (auto *CI = dyn_cast<CmpInst>(I)) {
864 // Sort the operand value numbers so x<y and y>x get the same value
865 // number.
866 CmpInst::Predicate Predicate = CI->getPredicate();
Daniel Berlin1c087672017-02-11 15:07:01 +0000867 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000868 E->swapOperands(0, 1);
869 Predicate = CmpInst::getSwappedPredicate(Predicate);
870 }
871 E->setOpcode((CI->getOpcode() << 8) | Predicate);
872 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
Davide Italiano7e274e02016-12-22 16:03:48 +0000873 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
874 "Wrong types on cmp instruction");
Daniel Berlin97718e62017-01-31 22:32:03 +0000875 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
876 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
Daniel Berlinede130d2017-04-26 20:56:14 +0000877 Value *V =
878 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
Daniel Berlinff12c922017-01-31 22:32:01 +0000879 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
880 return SimplifiedE;
Davide Italiano7e274e02016-12-22 16:03:48 +0000881 } else if (isa<SelectInst>(I)) {
882 if (isa<Constant>(E->getOperand(0)) ||
Daniel Berlin97718e62017-01-31 22:32:03 +0000883 E->getOperand(0) == E->getOperand(1)) {
884 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
885 E->getOperand(2)->getType() == I->getOperand(2)->getType());
Davide Italiano7e274e02016-12-22 16:03:48 +0000886 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
Daniel Berlinede130d2017-04-26 20:56:14 +0000887 E->getOperand(2), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000888 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
889 return SimplifiedE;
890 }
891 } else if (I->isBinaryOp()) {
Daniel Berlinede130d2017-04-26 20:56:14 +0000892 Value *V =
893 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000894 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
895 return SimplifiedE;
896 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
Daniel Berlin4d0fe642017-04-28 19:55:38 +0000897 Value *V =
898 SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000899 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
900 return SimplifiedE;
901 } else if (isa<GetElementPtrInst>(I)) {
Daniel Berlinede130d2017-04-26 20:56:14 +0000902 Value *V = SimplifyGEPInst(
903 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000904 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
905 return SimplifiedE;
906 } else if (AllConstant) {
907 // We don't bother trying to simplify unless all of the operands
908 // were constant.
909 // TODO: There are a lot of Simplify*'s we could call here, if we
910 // wanted to. The original motivating case for this code was a
911 // zext i1 false to i8, which we don't have an interface to
912 // simplify (IE there is no SimplifyZExt).
913
914 SmallVector<Constant *, 8> C;
915 for (Value *Arg : E->operands())
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000916 C.emplace_back(cast<Constant>(Arg));
Davide Italiano7e274e02016-12-22 16:03:48 +0000917
Daniel Berlin64e68992017-03-12 04:46:45 +0000918 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
Davide Italiano7e274e02016-12-22 16:03:48 +0000919 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
920 return SimplifiedE;
921 }
922 return E;
923}
924
925const AggregateValueExpression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000926NewGVN::createAggregateValueExpression(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000927 if (auto *II = dyn_cast<InsertValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000928 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000929 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +0000930 setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000931 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000932 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000933 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +0000934 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000935 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000936 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +0000937 setBasicExpressionInfo(EI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000938 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000939 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000940 return E;
941 }
942 llvm_unreachable("Unhandled type of aggregate value operation");
943}
944
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000945const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000946 auto *E = new (ExpressionAllocator) VariableExpression(V);
Davide Italiano7e274e02016-12-22 16:03:48 +0000947 E->setOpcode(V->getValueID());
948 return E;
949}
950
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000951const Expression *NewGVN::createVariableOrConstant(Value *V) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +0000952 if (auto *C = dyn_cast<Constant>(V))
953 return createConstantExpression(C);
954 return createVariableExpression(V);
955}
956
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000957const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000958 auto *E = new (ExpressionAllocator) ConstantExpression(C);
Davide Italiano7e274e02016-12-22 16:03:48 +0000959 E->setOpcode(C->getValueID());
960 return E;
961}
962
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000963const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
Daniel Berlin02c6b172017-01-02 18:00:53 +0000964 auto *E = new (ExpressionAllocator) UnknownExpression(I);
965 E->setOpcode(I->getOpcode());
966 return E;
967}
968
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000969const CallExpression *
970NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000971 // FIXME: Add operand bundles for calls.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000972 auto *E =
Daniel Berlin1316a942017-04-06 18:52:50 +0000973 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
Daniel Berlin97718e62017-01-31 22:32:03 +0000974 setBasicExpressionInfo(CI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000975 return E;
976}
977
Daniel Berlin9d0796e2017-03-24 05:30:34 +0000978// Return true if some equivalent of instruction Inst dominates instruction U.
979bool NewGVN::someEquivalentDominates(const Instruction *Inst,
980 const Instruction *U) const {
981 auto *CC = ValueToClass.lookup(Inst);
Daniel Berlinffc30782017-03-24 06:33:51 +0000982 // This must be an instruction because we are only called from phi nodes
983 // in the case that the value it needs to check against is an instruction.
984
985 // The most likely candiates for dominance are the leader and the next leader.
986 // The leader or nextleader will dominate in all cases where there is an
987 // equivalent that is higher up in the dom tree.
988 // We can't *only* check them, however, because the
989 // dominator tree could have an infinite number of non-dominating siblings
990 // with instructions that are in the right congruence class.
991 // A
992 // B C D E F G
993 // |
994 // H
995 // Instruction U could be in H, with equivalents in every other sibling.
996 // Depending on the rpo order picked, the leader could be the equivalent in
997 // any of these siblings.
998 if (!CC)
999 return false;
Daniel Berlina8236562017-04-07 18:38:09 +00001000 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001001 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001002 if (CC->getNextLeader().first &&
1003 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001004 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001005 return llvm::any_of(*CC, [&](const Value *Member) {
1006 return Member != CC->getLeader() &&
Daniel Berlinffc30782017-03-24 06:33:51 +00001007 DT->dominates(cast<Instruction>(Member), U);
1008 });
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001009}
1010
Davide Italiano7e274e02016-12-22 16:03:48 +00001011// See if we have a congruence class and leader for this operand, and if so,
1012// return it. Otherwise, return the operand itself.
Daniel Berlin203f47b2017-01-31 22:31:53 +00001013Value *NewGVN::lookupOperandLeader(Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001014 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlinb79f5362017-02-11 12:48:50 +00001015 if (CC) {
Daniel Berlin5c338ff2017-03-10 19:05:04 +00001016 // Everything in TOP is represneted by undef, as it can be any value.
Daniel Berlinb79f5362017-02-11 12:48:50 +00001017 // We do have to make sure we get the type right though, so we can't set the
1018 // RepLeader to undef.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00001019 if (CC == TOPClass)
Daniel Berlinb79f5362017-02-11 12:48:50 +00001020 return UndefValue::get(V->getType());
Daniel Berlina8236562017-04-07 18:38:09 +00001021 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlinb79f5362017-02-11 12:48:50 +00001022 }
1023
Davide Italiano7e274e02016-12-22 16:03:48 +00001024 return V;
1025}
1026
Daniel Berlin1316a942017-04-06 18:52:50 +00001027const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1028 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +00001029 assert(CC->getMemoryLeader() &&
1030 "Every MemoryAccess should be mapped to a "
1031 "congruence class with a represenative memory "
1032 "access");
1033 return CC->getMemoryLeader();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001034}
1035
Daniel Berlinc4796862017-01-27 02:37:11 +00001036// Return true if the MemoryAccess is really equivalent to everything. This is
1037// equivalent to the lattice value "TOP" in most lattices. This is the initial
Daniel Berlin1316a942017-04-06 18:52:50 +00001038// state of all MemoryAccesses.
Daniel Berlinc4796862017-01-27 02:37:11 +00001039bool NewGVN::isMemoryAccessTop(const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001040 return getMemoryClass(MA) == TOPClass;
1041}
1042
Davide Italiano7e274e02016-12-22 16:03:48 +00001043LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
Daniel Berlin1316a942017-04-06 18:52:50 +00001044 LoadInst *LI,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001045 const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001046 auto *E =
1047 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
Davide Italiano7e274e02016-12-22 16:03:48 +00001048 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1049 E->setType(LoadType);
1050
1051 // Give store and loads same opcode so they value number together.
1052 E->setOpcode(0);
Daniel Berlin1316a942017-04-06 18:52:50 +00001053 E->op_push_back(PointerOp);
Davide Italiano7e274e02016-12-22 16:03:48 +00001054 if (LI)
1055 E->setAlignment(LI->getAlignment());
1056
1057 // TODO: Value number heap versions. We may be able to discover
1058 // things alias analysis can't on it's own (IE that a store and a
1059 // load have the same value, and thus, it isn't clobbering the load).
1060 return E;
1061}
1062
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001063const StoreExpression *
1064NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001065 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin26addef2017-01-20 21:04:30 +00001066 auto *E = new (ExpressionAllocator)
Daniel Berlin1316a942017-04-06 18:52:50 +00001067 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
Davide Italiano7e274e02016-12-22 16:03:48 +00001068 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1069 E->setType(SI->getValueOperand()->getType());
1070
1071 // Give store and loads same opcode so they value number together.
1072 E->setOpcode(0);
Daniel Berlin203f47b2017-01-31 22:31:53 +00001073 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
Davide Italiano7e274e02016-12-22 16:03:48 +00001074
1075 // TODO: Value number heap versions. We may be able to discover
1076 // things alias analysis can't on it's own (IE that a store and a
1077 // load have the same value, and thus, it isn't clobbering the load).
1078 return E;
1079}
1080
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001081const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
Daniel Berlin589cecc2017-01-02 18:00:46 +00001082 // Unlike loads, we never try to eliminate stores, so we do not check if they
1083 // are simple and avoid value numbering them.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001084 auto *SI = cast<StoreInst>(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00001085 auto *StoreAccess = MSSA->getMemoryAccess(SI);
Daniel Berlinc4796862017-01-27 02:37:11 +00001086 // Get the expression, if any, for the RHS of the MemoryDef.
Daniel Berlin1316a942017-04-06 18:52:50 +00001087 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1088 if (EnableStoreRefinement)
1089 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1090 // If we bypassed the use-def chains, make sure we add a use.
1091 if (StoreRHS != StoreAccess->getDefiningAccess())
1092 addMemoryUsers(StoreRHS, StoreAccess);
1093
1094 StoreRHS = lookupMemoryLeader(StoreRHS);
Daniel Berlinc4796862017-01-27 02:37:11 +00001095 // If we are defined by ourselves, use the live on entry def.
1096 if (StoreRHS == StoreAccess)
1097 StoreRHS = MSSA->getLiveOnEntryDef();
1098
Daniel Berlin589cecc2017-01-02 18:00:46 +00001099 if (SI->isSimple()) {
Daniel Berlinc4796862017-01-27 02:37:11 +00001100 // See if we are defined by a previous store expression, it already has a
1101 // value, and it's the same value as our current store. FIXME: Right now, we
1102 // only do this for simple stores, we should expand to cover memcpys, etc.
Daniel Berlin1316a942017-04-06 18:52:50 +00001103 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1104 const auto *LastCC = ExpressionToClass.lookup(LastStore);
Daniel Berlinb755aea2017-01-09 05:34:29 +00001105 // Basically, check if the congruence class the store is in is defined by a
1106 // store that isn't us, and has the same value. MemorySSA takes care of
1107 // ensuring the store has the same memory state as us already.
Daniel Berlin26addef2017-01-20 21:04:30 +00001108 // The RepStoredValue gets nulled if all the stores disappear in a class, so
1109 // we don't need to check if the class contains a store besides us.
Daniel Berlin1316a942017-04-06 18:52:50 +00001110 if (LastCC &&
Daniel Berlina8236562017-04-07 18:38:09 +00001111 LastCC->getStoredValue() == lookupOperandLeader(SI->getValueOperand()))
Daniel Berlin1316a942017-04-06 18:52:50 +00001112 return LastStore;
1113 deleteExpression(LastStore);
Daniel Berlinc4796862017-01-27 02:37:11 +00001114 // Also check if our value operand is defined by a load of the same memory
Daniel Berlin1316a942017-04-06 18:52:50 +00001115 // location, and the memory state is the same as it was then (otherwise, it
1116 // could have been overwritten later. See test32 in
1117 // transforms/DeadStoreElimination/simple.ll).
1118 if (auto *LI =
1119 dyn_cast<LoadInst>(lookupOperandLeader(SI->getValueOperand()))) {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001120 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1121 lookupOperandLeader(SI->getPointerOperand())) &&
Daniel Berlin1316a942017-04-06 18:52:50 +00001122 (lookupMemoryLeader(MSSA->getMemoryAccess(LI)->getDefiningAccess()) ==
1123 StoreRHS))
Daniel Berlinc4796862017-01-27 02:37:11 +00001124 return createVariableExpression(LI);
1125 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001126 }
Daniel Berlin1316a942017-04-06 18:52:50 +00001127
1128 // If the store is not equivalent to anything, value number it as a store that
1129 // produces a unique memory state (instead of using it's MemoryUse, we use
1130 // it's MemoryDef).
Daniel Berlin97718e62017-01-31 22:32:03 +00001131 return createStoreExpression(SI, StoreAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001132}
1133
Daniel Berlin07daac82017-04-02 13:23:44 +00001134// See if we can extract the value of a loaded pointer from a load, a store, or
1135// a memory instruction.
1136const Expression *
1137NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1138 LoadInst *LI, Instruction *DepInst,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001139 MemoryAccess *DefiningAccess) const {
Daniel Berlin07daac82017-04-02 13:23:44 +00001140 assert((!LI || LI->isSimple()) && "Not a simple load");
1141 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1142 // Can't forward from non-atomic to atomic without violating memory model.
1143 // Also don't need to coerce if they are the same type, we will just
1144 // propogate..
1145 if (LI->isAtomic() > DepSI->isAtomic() ||
1146 LoadType == DepSI->getValueOperand()->getType())
1147 return nullptr;
1148 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1149 if (Offset >= 0) {
1150 if (auto *C = dyn_cast<Constant>(
1151 lookupOperandLeader(DepSI->getValueOperand()))) {
1152 DEBUG(dbgs() << "Coercing load from store " << *DepSI << " to constant "
1153 << *C << "\n");
1154 return createConstantExpression(
1155 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1156 }
1157 }
1158
1159 } else if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1160 // Can't forward from non-atomic to atomic without violating memory model.
1161 if (LI->isAtomic() > DepLI->isAtomic())
1162 return nullptr;
1163 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1164 if (Offset >= 0) {
1165 // We can coerce a constant load into a load
1166 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1167 if (auto *PossibleConstant =
1168 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1169 DEBUG(dbgs() << "Coercing load from load " << *LI << " to constant "
1170 << *PossibleConstant << "\n");
1171 return createConstantExpression(PossibleConstant);
1172 }
1173 }
1174
1175 } else if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1176 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1177 if (Offset >= 0) {
1178 if (auto *PossibleConstant =
1179 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1180 DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1181 << " to constant " << *PossibleConstant << "\n");
1182 return createConstantExpression(PossibleConstant);
1183 }
1184 }
1185 }
1186
1187 // All of the below are only true if the loaded pointer is produced
1188 // by the dependent instruction.
1189 if (LoadPtr != lookupOperandLeader(DepInst) &&
1190 !AA->isMustAlias(LoadPtr, DepInst))
1191 return nullptr;
1192 // If this load really doesn't depend on anything, then we must be loading an
1193 // undef value. This can happen when loading for a fresh allocation with no
1194 // intervening stores, for example. Note that this is only true in the case
1195 // that the result of the allocation is pointer equal to the load ptr.
1196 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1197 return createConstantExpression(UndefValue::get(LoadType));
1198 }
1199 // If this load occurs either right after a lifetime begin,
1200 // then the loaded value is undefined.
1201 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1202 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1203 return createConstantExpression(UndefValue::get(LoadType));
1204 }
1205 // If this load follows a calloc (which zero initializes memory),
1206 // then the loaded value is zero
1207 else if (isCallocLikeFn(DepInst, TLI)) {
1208 return createConstantExpression(Constant::getNullValue(LoadType));
1209 }
1210
1211 return nullptr;
1212}
1213
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001214const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001215 auto *LI = cast<LoadInst>(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001216
1217 // We can eliminate in favor of non-simple loads, but we won't be able to
Daniel Berlin589cecc2017-01-02 18:00:46 +00001218 // eliminate the loads themselves.
Davide Italiano7e274e02016-12-22 16:03:48 +00001219 if (!LI->isSimple())
1220 return nullptr;
1221
Daniel Berlin203f47b2017-01-31 22:31:53 +00001222 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
Davide Italiano7e274e02016-12-22 16:03:48 +00001223 // Load of undef is undef.
1224 if (isa<UndefValue>(LoadAddressLeader))
1225 return createConstantExpression(UndefValue::get(LI->getType()));
1226
1227 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
1228
1229 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1230 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1231 Instruction *DefiningInst = MD->getMemoryInst();
1232 // If the defining instruction is not reachable, replace with undef.
1233 if (!ReachableBlocks.count(DefiningInst->getParent()))
1234 return createConstantExpression(UndefValue::get(LI->getType()));
Daniel Berlin07daac82017-04-02 13:23:44 +00001235 // This will handle stores and memory insts. We only do if it the
1236 // defining access has a different type, or it is a pointer produced by
1237 // certain memory operations that cause the memory to have a fixed value
1238 // (IE things like calloc).
Daniel Berlin5845e052017-04-06 18:52:53 +00001239 if (const auto *CoercionResult =
1240 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1241 DefiningInst, DefiningAccess))
Daniel Berlin07daac82017-04-02 13:23:44 +00001242 return CoercionResult;
Davide Italiano7e274e02016-12-22 16:03:48 +00001243 }
1244 }
1245
Daniel Berlin1316a942017-04-06 18:52:50 +00001246 const Expression *E = createLoadExpression(LI->getType(), LoadAddressLeader,
1247 LI, DefiningAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001248 return E;
1249}
1250
Daniel Berlinf7d95802017-02-18 23:06:50 +00001251const Expression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001252NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001253 auto *PI = PredInfo->getPredicateInfoFor(I);
1254 if (!PI)
1255 return nullptr;
1256
1257 DEBUG(dbgs() << "Found predicate info from instruction !\n");
Daniel Berlinfccbda92017-02-22 22:20:58 +00001258
1259 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1260 if (!PWC)
Daniel Berlinf7d95802017-02-18 23:06:50 +00001261 return nullptr;
1262
Daniel Berlinfccbda92017-02-22 22:20:58 +00001263 auto *CopyOf = I->getOperand(0);
1264 auto *Cond = PWC->Condition;
1265
Daniel Berlinf7d95802017-02-18 23:06:50 +00001266 // If this a copy of the condition, it must be either true or false depending
1267 // on the predicate info type and edge
1268 if (CopyOf == Cond) {
Daniel Berlinfccbda92017-02-22 22:20:58 +00001269 // We should not need to add predicate users because the predicate info is
1270 // already a use of this operand.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001271 if (isa<PredicateAssume>(PI))
1272 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1273 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1274 if (PBranch->TrueEdge)
1275 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1276 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1277 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001278 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1279 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001280 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001281
Daniel Berlinf7d95802017-02-18 23:06:50 +00001282 // Not a copy of the condition, so see what the predicates tell us about this
1283 // value. First, though, we check to make sure the value is actually a copy
1284 // of one of the condition operands. It's possible, in certain cases, for it
1285 // to be a copy of a predicateinfo copy. In particular, if two branch
1286 // operations use the same condition, and one branch dominates the other, we
1287 // will end up with a copy of a copy. This is currently a small deficiency in
Daniel Berlinfccbda92017-02-22 22:20:58 +00001288 // predicateinfo. What will end up happening here is that we will value
Daniel Berlinf7d95802017-02-18 23:06:50 +00001289 // number both copies the same anyway.
Daniel Berlinfccbda92017-02-22 22:20:58 +00001290
1291 // Everything below relies on the condition being a comparison.
1292 auto *Cmp = dyn_cast<CmpInst>(Cond);
1293 if (!Cmp)
1294 return nullptr;
1295
1296 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001297 DEBUG(dbgs() << "Copy is not of any condition operands!");
1298 return nullptr;
1299 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001300 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1301 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001302 bool SwappedOps = false;
1303 // Sort the ops
1304 if (shouldSwapOperands(FirstOp, SecondOp)) {
1305 std::swap(FirstOp, SecondOp);
1306 SwappedOps = true;
1307 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001308 CmpInst::Predicate Predicate =
1309 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1310
1311 if (isa<PredicateAssume>(PI)) {
1312 // If the comparison is true when the operands are equal, then we know the
1313 // operands are equal, because assumes must always be true.
1314 if (CmpInst::isTrueWhenEqual(Predicate)) {
1315 addPredicateUsers(PI, I);
1316 return createVariableOrConstant(FirstOp);
1317 }
1318 }
1319 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1320 // If we are *not* a copy of the comparison, we may equal to the other
1321 // operand when the predicate implies something about equality of
1322 // operations. In particular, if the comparison is true/false when the
1323 // operands are equal, and we are on the right edge, we know this operation
1324 // is equal to something.
1325 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1326 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1327 addPredicateUsers(PI, I);
1328 return createVariableOrConstant(FirstOp);
1329 }
1330 // Handle the special case of floating point.
1331 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1332 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1333 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1334 addPredicateUsers(PI, I);
1335 return createConstantExpression(cast<Constant>(FirstOp));
1336 }
1337 }
1338 return nullptr;
1339}
1340
Davide Italiano7e274e02016-12-22 16:03:48 +00001341// Evaluate read only and pure calls, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001342const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001343 auto *CI = cast<CallInst>(I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001344 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1345 // Instrinsics with the returned attribute are copies of arguments.
1346 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1347 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1348 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1349 return Result;
1350 return createVariableOrConstant(ReturnedValue);
1351 }
1352 }
1353 if (AA->doesNotAccessMemory(CI)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001354 return createCallExpression(CI, TOPClass->getMemoryLeader());
Daniel Berlinf7d95802017-02-18 23:06:50 +00001355 } else if (AA->onlyReadsMemory(CI)) {
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001356 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
Daniel Berlin1316a942017-04-06 18:52:50 +00001357 return createCallExpression(CI, DefiningAccess);
Davide Italianob2225492016-12-27 18:15:39 +00001358 }
1359 return nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001360}
1361
Daniel Berlin1316a942017-04-06 18:52:50 +00001362// Retrieve the memory class for a given MemoryAccess.
1363CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1364
1365 auto *Result = MemoryAccessToClass.lookup(MA);
1366 assert(Result && "Should have found memory class");
1367 return Result;
1368}
1369
1370// Update the MemoryAccess equivalence table to say that From is equal to To,
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001371// and return true if this is different from what already existed in the table.
Daniel Berlin1316a942017-04-06 18:52:50 +00001372bool NewGVN::setMemoryClass(const MemoryAccess *From,
1373 CongruenceClass *NewClass) {
1374 assert(NewClass &&
1375 "Every MemoryAccess should be getting mapped to a non-null class");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001376 DEBUG(dbgs() << "Setting " << *From);
Daniel Berlin1316a942017-04-06 18:52:50 +00001377 DEBUG(dbgs() << " equivalent to congruence class ");
Daniel Berlina8236562017-04-07 18:38:09 +00001378 DEBUG(dbgs() << NewClass->getID() << " with current MemoryAccess leader ");
1379 DEBUG(dbgs() << *NewClass->getMemoryLeader());
Daniel Berlin9f376b72017-01-29 10:26:03 +00001380 DEBUG(dbgs() << "\n");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001381
1382 auto LookupResult = MemoryAccessToClass.find(From);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001383 bool Changed = false;
1384 // If it's already in the table, see if the value changed.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001385 if (LookupResult != MemoryAccessToClass.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001386 auto *OldClass = LookupResult->second;
1387 if (OldClass != NewClass) {
1388 // If this is a phi, we have to handle memory member updates.
1389 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001390 OldClass->memory_erase(MP);
1391 NewClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00001392 // This may have killed the class if it had no non-memory members
Daniel Berlina8236562017-04-07 18:38:09 +00001393 if (OldClass->getMemoryLeader() == From) {
1394 if (OldClass->memory_empty()) {
1395 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00001396 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00001397 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
Daniel Berlin1316a942017-04-06 18:52:50 +00001398 DEBUG(dbgs() << "Memory class leader change for class "
Daniel Berlina8236562017-04-07 18:38:09 +00001399 << OldClass->getID() << " to "
1400 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00001401 << " due to removal of a memory member " << *From
1402 << "\n");
1403 markMemoryLeaderChangeTouched(OldClass);
1404 }
1405 }
1406 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001407 // It wasn't equivalent before, and now it is.
Daniel Berlin1316a942017-04-06 18:52:50 +00001408 LookupResult->second = NewClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001409 Changed = true;
1410 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001411 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00001412
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001413 return Changed;
1414}
Daniel Berlin0e900112017-03-24 06:33:48 +00001415
Daniel Berlin2f72b192017-04-14 02:53:37 +00001416// Determine if a phi is cycle-free. That means the values in the phi don't
1417// depend on any expressions that can change value as a result of the phi.
1418// For example, a non-cycle free phi would be v = phi(0, v+1).
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001419bool NewGVN::isCycleFree(const PHINode *PN) const {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001420 // In order to compute cycle-freeness, we do SCC finding on the phi, and see
1421 // what kind of SCC it ends up in. If it is a singleton, it is cycle-free.
1422 // If it is not in a singleton, it is only cycle free if the other members are
1423 // all phi nodes (as they do not compute anything, they are copies). TODO:
1424 // There are likely a few other intrinsics or expressions that could be
1425 // included here, but this happens so infrequently already that it is not
1426 // likely to be worth it.
1427 auto PCS = PhiCycleState.lookup(PN);
1428 if (PCS == PCS_Unknown) {
1429 SCCFinder.Start(PN);
1430 auto &SCC = SCCFinder.getComponentFor(PN);
1431 // It's cycle free if it's size 1 or or the SCC is *only* phi nodes.
1432 if (SCC.size() == 1)
1433 PhiCycleState.insert({PN, PCS_CycleFree});
1434 else {
1435 bool AllPhis =
1436 llvm::all_of(SCC, [](const Value *V) { return isa<PHINode>(V); });
1437 PCS = AllPhis ? PCS_CycleFree : PCS_Cycle;
1438 for (auto *Member : SCC)
1439 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1440 PhiCycleState.insert({MemberPhi, PCS});
1441 }
1442 }
1443 if (PCS == PCS_Cycle)
1444 return false;
1445 return true;
1446}
1447
Davide Italiano7e274e02016-12-22 16:03:48 +00001448// Evaluate PHI nodes symbolically, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001449const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I) const {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001450 // True if one of the incoming phi edges is a backedge.
1451 bool HasBackedge = false;
1452 // All constant tracks the state of whether all the *original* phi operands
Davide Italiano839c7e62017-05-02 21:11:40 +00001453 // were constant. This is really shorthand for "this phi cannot cycle due
1454 // to forward propagation", as any change in value of the phi is guaranteed
1455 // not to later change the value of the phi.
Daniel Berlin2f72b192017-04-14 02:53:37 +00001456 // IE it can't be v = phi(undef, v+1)
1457 bool AllConstant = true;
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001458 auto *E = cast<PHIExpression>(createPHIExpression(I, HasBackedge, AllConstant));
Daniel Berlind92e7f92017-01-07 00:01:42 +00001459 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
Davide Italiano839c7e62017-05-02 21:11:40 +00001460 // See if all arguments are the same.
Daniel Berlind92e7f92017-01-07 00:01:42 +00001461 // We track if any were undef because they need special handling.
1462 bool HasUndef = false;
1463 auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
1464 if (Arg == I)
1465 return false;
1466 if (isa<UndefValue>(Arg)) {
1467 HasUndef = true;
1468 return false;
1469 }
1470 return true;
1471 });
1472 // If we are left with no operands, it's undef
1473 if (Filtered.begin() == Filtered.end()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001474 DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
1475 << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001476 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +00001477 return createConstantExpression(UndefValue::get(I->getType()));
1478 }
Daniel Berlin2f72b192017-04-14 02:53:37 +00001479 unsigned NumOps = 0;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001480 Value *AllSameValue = *(Filtered.begin());
1481 ++Filtered.begin();
1482 // Can't use std::equal here, sadly, because filter.begin moves.
Daniel Berlin2f72b192017-04-14 02:53:37 +00001483 if (llvm::all_of(Filtered, [AllSameValue, &NumOps](const Value *V) {
1484 ++NumOps;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001485 return V == AllSameValue;
1486 })) {
1487 // In LLVM's non-standard representation of phi nodes, it's possible to have
1488 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1489 // on the original phi node), especially in weird CFG's where some arguments
1490 // are unreachable, or uninitialized along certain paths. This can cause
1491 // infinite loops during evaluation. We work around this by not trying to
1492 // really evaluate them independently, but instead using a variable
1493 // expression to say if one is equivalent to the other.
1494 // We also special case undef, so that if we have an undef, we can't use the
1495 // common value unless it dominates the phi block.
1496 if (HasUndef) {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001497 // If we have undef and at least one other value, this is really a
1498 // multivalued phi, and we need to know if it's cycle free in order to
1499 // evaluate whether we can ignore the undef. The other parts of this are
1500 // just shortcuts. If there is no backedge, or all operands are
1501 // constants, or all operands are ignored but the undef, it also must be
1502 // cycle free.
1503 if (!AllConstant && HasBackedge && NumOps > 0 &&
1504 !isa<UndefValue>(AllSameValue) && !isCycleFree(cast<PHINode>(I)))
1505 return E;
1506
Daniel Berlind92e7f92017-01-07 00:01:42 +00001507 // Only have to check for instructions
Davide Italiano1b97fc32017-01-07 02:05:50 +00001508 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001509 if (!someEquivalentDominates(AllSameInst, I))
Daniel Berlind92e7f92017-01-07 00:01:42 +00001510 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +00001511 }
1512
Davide Italiano7e274e02016-12-22 16:03:48 +00001513 NumGVNPhisAllSame++;
1514 DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1515 << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001516 deleteExpression(E);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001517 return createVariableOrConstant(AllSameValue);
Davide Italiano7e274e02016-12-22 16:03:48 +00001518 }
1519 return E;
1520}
1521
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001522const Expression *
1523NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001524 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1525 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1526 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1527 unsigned Opcode = 0;
1528 // EI might be an extract from one of our recognised intrinsics. If it
1529 // is we'll synthesize a semantically equivalent expression instead on
1530 // an extract value expression.
1531 switch (II->getIntrinsicID()) {
1532 case Intrinsic::sadd_with_overflow:
1533 case Intrinsic::uadd_with_overflow:
1534 Opcode = Instruction::Add;
1535 break;
1536 case Intrinsic::ssub_with_overflow:
1537 case Intrinsic::usub_with_overflow:
1538 Opcode = Instruction::Sub;
1539 break;
1540 case Intrinsic::smul_with_overflow:
1541 case Intrinsic::umul_with_overflow:
1542 Opcode = Instruction::Mul;
1543 break;
1544 default:
1545 break;
1546 }
1547
1548 if (Opcode != 0) {
1549 // Intrinsic recognized. Grab its args to finish building the
1550 // expression.
1551 assert(II->getNumArgOperands() == 2 &&
1552 "Expect two args for recognised intrinsics.");
Daniel Berlinb79f5362017-02-11 12:48:50 +00001553 return createBinaryExpression(
1554 Opcode, EI->getType(), II->getArgOperand(0), II->getArgOperand(1));
Davide Italiano7e274e02016-12-22 16:03:48 +00001555 }
1556 }
1557 }
1558
Daniel Berlin97718e62017-01-31 22:32:03 +00001559 return createAggregateValueExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001560}
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001561const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001562 auto *CI = dyn_cast<CmpInst>(I);
1563 // See if our operands are equal to those of a previous predicate, and if so,
1564 // if it implies true or false.
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001565 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1566 auto Op1 = lookupOperandLeader(CI->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001567 auto OurPredicate = CI->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001568 if (shouldSwapOperands(Op0, Op1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001569 std::swap(Op0, Op1);
1570 OurPredicate = CI->getSwappedPredicate();
1571 }
1572
1573 // Avoid processing the same info twice
1574 const PredicateBase *LastPredInfo = nullptr;
Daniel Berlinf7d95802017-02-18 23:06:50 +00001575 // See if we know something about the comparison itself, like it is the target
1576 // of an assume.
1577 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1578 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1579 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1580
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001581 if (Op0 == Op1) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001582 // This condition does not depend on predicates, no need to add users
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001583 if (CI->isTrueWhenEqual())
1584 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1585 else if (CI->isFalseWhenEqual())
1586 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1587 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001588
1589 // NOTE: Because we are comparing both operands here and below, and using
1590 // previous comparisons, we rely on fact that predicateinfo knows to mark
1591 // comparisons that use renamed operands as users of the earlier comparisons.
1592 // It is *not* enough to just mark predicateinfo renamed operands as users of
1593 // the earlier comparisons, because the *other* operand may have changed in a
1594 // previous iteration.
1595 // Example:
1596 // icmp slt %a, %b
1597 // %b.0 = ssa.copy(%b)
1598 // false branch:
1599 // icmp slt %c, %b.0
1600
1601 // %c and %a may start out equal, and thus, the code below will say the second
1602 // %icmp is false. c may become equal to something else, and in that case the
1603 // %second icmp *must* be reexamined, but would not if only the renamed
1604 // %operands are considered users of the icmp.
1605
1606 // *Currently* we only check one level of comparisons back, and only mark one
1607 // level back as touched when changes appen . If you modify this code to look
1608 // back farther through comparisons, you *must* mark the appropriate
1609 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1610 // we know something just from the operands themselves
1611
1612 // See if our operands have predicate info, so that we may be able to derive
1613 // something from a previous comparison.
1614 for (const auto &Op : CI->operands()) {
1615 auto *PI = PredInfo->getPredicateInfoFor(Op);
1616 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1617 if (PI == LastPredInfo)
1618 continue;
1619 LastPredInfo = PI;
Daniel Berlinfccbda92017-02-22 22:20:58 +00001620
Daniel Berlinf7d95802017-02-18 23:06:50 +00001621 // TODO: Along the false edge, we may know more things too, like icmp of
1622 // same operands is false.
1623 // TODO: We only handle actual comparison conditions below, not and/or.
1624 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1625 if (!BranchCond)
1626 continue;
1627 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1628 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1629 auto BranchPredicate = BranchCond->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001630 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001631 std::swap(BranchOp0, BranchOp1);
1632 BranchPredicate = BranchCond->getSwappedPredicate();
1633 }
1634 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1635 if (PBranch->TrueEdge) {
1636 // If we know the previous predicate is true and we are in the true
1637 // edge then we may be implied true or false.
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001638 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1639 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001640 addPredicateUsers(PI, I);
1641 return createConstantExpression(
1642 ConstantInt::getTrue(CI->getType()));
1643 }
1644
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001645 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1646 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001647 addPredicateUsers(PI, I);
1648 return createConstantExpression(
1649 ConstantInt::getFalse(CI->getType()));
1650 }
1651
1652 } else {
1653 // Just handle the ne and eq cases, where if we have the same
1654 // operands, we may know something.
1655 if (BranchPredicate == OurPredicate) {
1656 addPredicateUsers(PI, I);
1657 // Same predicate, same ops,we know it was false, so this is false.
1658 return createConstantExpression(
1659 ConstantInt::getFalse(CI->getType()));
1660 } else if (BranchPredicate ==
1661 CmpInst::getInversePredicate(OurPredicate)) {
1662 addPredicateUsers(PI, I);
1663 // Inverse predicate, we know the other was false, so this is true.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001664 return createConstantExpression(
1665 ConstantInt::getTrue(CI->getType()));
1666 }
1667 }
1668 }
1669 }
1670 }
1671 // Create expression will take care of simplifyCmpInst
Daniel Berlin97718e62017-01-31 22:32:03 +00001672 return createExpression(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001673}
Davide Italiano7e274e02016-12-22 16:03:48 +00001674
1675// Substitute and symbolize the value before value numbering.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001676const Expression *NewGVN::performSymbolicEvaluation(Value *V) const {
Davide Italiano0e714802016-12-28 14:00:11 +00001677 const Expression *E = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001678 if (auto *C = dyn_cast<Constant>(V))
1679 E = createConstantExpression(C);
1680 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1681 E = createVariableExpression(V);
1682 } else {
1683 // TODO: memory intrinsics.
1684 // TODO: Some day, we should do the forward propagation and reassociation
1685 // parts of the algorithm.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001686 auto *I = cast<Instruction>(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001687 switch (I->getOpcode()) {
1688 case Instruction::ExtractValue:
1689 case Instruction::InsertValue:
Daniel Berlin97718e62017-01-31 22:32:03 +00001690 E = performSymbolicAggrValueEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001691 break;
1692 case Instruction::PHI:
Daniel Berlin97718e62017-01-31 22:32:03 +00001693 E = performSymbolicPHIEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001694 break;
1695 case Instruction::Call:
Daniel Berlin97718e62017-01-31 22:32:03 +00001696 E = performSymbolicCallEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001697 break;
1698 case Instruction::Store:
Daniel Berlin97718e62017-01-31 22:32:03 +00001699 E = performSymbolicStoreEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001700 break;
1701 case Instruction::Load:
Daniel Berlin97718e62017-01-31 22:32:03 +00001702 E = performSymbolicLoadEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001703 break;
1704 case Instruction::BitCast: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001705 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001706 } break;
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001707 case Instruction::ICmp:
1708 case Instruction::FCmp: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001709 E = performSymbolicCmpEvaluation(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001710 } break;
Davide Italiano7e274e02016-12-22 16:03:48 +00001711 case Instruction::Add:
1712 case Instruction::FAdd:
1713 case Instruction::Sub:
1714 case Instruction::FSub:
1715 case Instruction::Mul:
1716 case Instruction::FMul:
1717 case Instruction::UDiv:
1718 case Instruction::SDiv:
1719 case Instruction::FDiv:
1720 case Instruction::URem:
1721 case Instruction::SRem:
1722 case Instruction::FRem:
1723 case Instruction::Shl:
1724 case Instruction::LShr:
1725 case Instruction::AShr:
1726 case Instruction::And:
1727 case Instruction::Or:
1728 case Instruction::Xor:
Davide Italiano7e274e02016-12-22 16:03:48 +00001729 case Instruction::Trunc:
1730 case Instruction::ZExt:
1731 case Instruction::SExt:
1732 case Instruction::FPToUI:
1733 case Instruction::FPToSI:
1734 case Instruction::UIToFP:
1735 case Instruction::SIToFP:
1736 case Instruction::FPTrunc:
1737 case Instruction::FPExt:
1738 case Instruction::PtrToInt:
1739 case Instruction::IntToPtr:
1740 case Instruction::Select:
1741 case Instruction::ExtractElement:
1742 case Instruction::InsertElement:
1743 case Instruction::ShuffleVector:
1744 case Instruction::GetElementPtr:
Daniel Berlin97718e62017-01-31 22:32:03 +00001745 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001746 break;
1747 default:
1748 return nullptr;
1749 }
1750 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001751 return E;
1752}
1753
Davide Italiano7e274e02016-12-22 16:03:48 +00001754void NewGVN::markUsersTouched(Value *V) {
1755 // Now mark the users as touched.
Daniel Berline0bd37e2016-12-29 22:15:12 +00001756 for (auto *User : V->users()) {
1757 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
Daniel Berlin21279bd2017-04-06 18:52:58 +00001758 TouchedInstructions.set(InstrToDFSNum(User));
Davide Italiano7e274e02016-12-22 16:03:48 +00001759 }
1760}
1761
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001762void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001763 DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
1764 MemoryToUsers[To].insert(U);
1765}
1766
1767void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001768 TouchedInstructions.set(MemoryToDFSNum(MA));
Daniel Berlin1316a942017-04-06 18:52:50 +00001769}
1770
1771void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
1772 if (isa<MemoryUse>(MA))
1773 return;
1774 for (auto U : MA->users())
Daniel Berlin21279bd2017-04-06 18:52:58 +00001775 TouchedInstructions.set(MemoryToDFSNum(U));
Daniel Berlin1316a942017-04-06 18:52:50 +00001776 const auto Result = MemoryToUsers.find(MA);
1777 if (Result != MemoryToUsers.end()) {
1778 for (auto *User : Result->second)
Daniel Berlin21279bd2017-04-06 18:52:58 +00001779 TouchedInstructions.set(MemoryToDFSNum(User));
Daniel Berlin1316a942017-04-06 18:52:50 +00001780 MemoryToUsers.erase(Result);
Davide Italiano7e274e02016-12-22 16:03:48 +00001781 }
1782}
1783
Daniel Berlinf7d95802017-02-18 23:06:50 +00001784// Add I to the set of users of a given predicate.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001785void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001786 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
1787 PredicateToUsers[PBranch->Condition].insert(I);
1788 else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
1789 PredicateToUsers[PAssume->Condition].insert(I);
1790}
1791
1792// Touch all the predicates that depend on this instruction.
1793void NewGVN::markPredicateUsersTouched(Instruction *I) {
1794 const auto Result = PredicateToUsers.find(I);
Daniel Berlin46b72e62017-03-19 00:07:32 +00001795 if (Result != PredicateToUsers.end()) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001796 for (auto *User : Result->second)
Daniel Berlin21279bd2017-04-06 18:52:58 +00001797 TouchedInstructions.set(InstrToDFSNum(User));
Daniel Berlin46b72e62017-03-19 00:07:32 +00001798 PredicateToUsers.erase(Result);
1799 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001800}
1801
Daniel Berlin1316a942017-04-06 18:52:50 +00001802// Mark users affected by a memory leader change.
1803void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001804 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00001805 markMemoryDefTouched(M);
1806}
1807
Daniel Berlin32f8d562017-01-07 16:55:14 +00001808// Touch the instructions that need to be updated after a congruence class has a
1809// leader change, and mark changed values.
Daniel Berlin1316a942017-04-06 18:52:50 +00001810void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001811 for (auto M : *CC) {
Daniel Berlin32f8d562017-01-07 16:55:14 +00001812 if (auto *I = dyn_cast<Instruction>(M))
Daniel Berlin21279bd2017-04-06 18:52:58 +00001813 TouchedInstructions.set(InstrToDFSNum(I));
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001814 LeaderChanges.insert(M);
1815 }
1816}
1817
Daniel Berlin1316a942017-04-06 18:52:50 +00001818// Give a range of things that have instruction DFS numbers, this will return
1819// the member of the range with the smallest dfs number.
1820template <class T, class Range>
1821T *NewGVN::getMinDFSOfRange(const Range &R) const {
1822 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
1823 for (const auto X : R) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001824 auto DFSNum = InstrToDFSNum(X);
Daniel Berlin1316a942017-04-06 18:52:50 +00001825 if (DFSNum < MinDFS.second)
1826 MinDFS = {X, DFSNum};
1827 }
1828 return MinDFS.first;
1829}
1830
1831// This function returns the MemoryAccess that should be the next leader of
1832// congruence class CC, under the assumption that the current leader is going to
1833// disappear.
1834const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
1835 // TODO: If this ends up to slow, we can maintain a next memory leader like we
1836 // do for regular leaders.
1837 // Make sure there will be a leader to find
Davide Italianof58a30232017-04-10 23:08:35 +00001838 assert((CC->getStoreCount() > 0 || !CC->memory_empty()) &&
1839 "Can't get next leader if there is none");
Daniel Berlina8236562017-04-07 18:38:09 +00001840 if (CC->getStoreCount() > 0) {
1841 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
Daniel Berlin1316a942017-04-06 18:52:50 +00001842 return MSSA->getMemoryAccess(NL);
1843 // Find the store with the minimum DFS number.
1844 auto *V = getMinDFSOfRange<Value>(make_filter_range(
Daniel Berlina8236562017-04-07 18:38:09 +00001845 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
Daniel Berlin1316a942017-04-06 18:52:50 +00001846 return MSSA->getMemoryAccess(cast<StoreInst>(V));
1847 }
Daniel Berlina8236562017-04-07 18:38:09 +00001848 assert(CC->getStoreCount() == 0);
Daniel Berlin1316a942017-04-06 18:52:50 +00001849
1850 // Given our assertion, hitting this part must mean
Daniel Berlina8236562017-04-07 18:38:09 +00001851 // !OldClass->memory_empty()
1852 if (CC->memory_size() == 1)
1853 return *CC->memory_begin();
1854 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
Daniel Berlin1316a942017-04-06 18:52:50 +00001855}
1856
1857// This function returns the next value leader of a congruence class, under the
1858// assumption that the current leader is going away. This should end up being
1859// the next most dominating member.
1860Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
1861 // We don't need to sort members if there is only 1, and we don't care about
1862 // sorting the TOP class because everything either gets out of it or is
1863 // unreachable.
1864
Daniel Berlina8236562017-04-07 18:38:09 +00001865 if (CC->size() == 1 || CC == TOPClass) {
1866 return *(CC->begin());
1867 } else if (CC->getNextLeader().first) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001868 ++NumGVNAvoidedSortedLeaderChanges;
Daniel Berlina8236562017-04-07 18:38:09 +00001869 return CC->getNextLeader().first;
Daniel Berlin1316a942017-04-06 18:52:50 +00001870 } else {
1871 ++NumGVNSortedLeaderChanges;
1872 // NOTE: If this ends up to slow, we can maintain a dual structure for
1873 // member testing/insertion, or keep things mostly sorted, and sort only
1874 // here, or use SparseBitVector or ....
Daniel Berlina8236562017-04-07 18:38:09 +00001875 return getMinDFSOfRange<Value>(*CC);
Daniel Berlin1316a942017-04-06 18:52:50 +00001876 }
1877}
1878
1879// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
1880// the memory members, etc for the move.
1881//
1882// The invariants of this function are:
1883//
1884// I must be moving to NewClass from OldClass The StoreCount of OldClass and
1885// NewClass is expected to have been updated for I already if it is is a store.
1886// The OldClass memory leader has not been updated yet if I was the leader.
1887void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
1888 MemoryAccess *InstMA,
1889 CongruenceClass *OldClass,
1890 CongruenceClass *NewClass) {
1891 // If the leader is I, and we had a represenative MemoryAccess, it should
1892 // be the MemoryAccess of OldClass.
Davide Italianof58a30232017-04-10 23:08:35 +00001893 assert((!InstMA || !OldClass->getMemoryLeader() ||
1894 OldClass->getLeader() != I ||
1895 OldClass->getMemoryLeader() == InstMA) &&
1896 "Representative MemoryAccess mismatch");
Daniel Berlin1316a942017-04-06 18:52:50 +00001897 // First, see what happens to the new class
Daniel Berlina8236562017-04-07 18:38:09 +00001898 if (!NewClass->getMemoryLeader()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001899 // Should be a new class, or a store becoming a leader of a new class.
Daniel Berlina8236562017-04-07 18:38:09 +00001900 assert(NewClass->size() == 1 ||
1901 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
1902 NewClass->setMemoryLeader(InstMA);
Daniel Berlin1316a942017-04-06 18:52:50 +00001903 // Mark it touched if we didn't just create a singleton
Daniel Berlina8236562017-04-07 18:38:09 +00001904 DEBUG(dbgs() << "Memory class leader change for class " << NewClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00001905 << " due to new memory instruction becoming leader\n");
1906 markMemoryLeaderChangeTouched(NewClass);
1907 }
1908 setMemoryClass(InstMA, NewClass);
1909 // Now, fixup the old class if necessary
Daniel Berlina8236562017-04-07 18:38:09 +00001910 if (OldClass->getMemoryLeader() == InstMA) {
1911 if (OldClass->getStoreCount() != 0 || !OldClass->memory_empty()) {
1912 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1913 DEBUG(dbgs() << "Memory class leader change for class "
1914 << OldClass->getID() << " to "
1915 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00001916 << " due to removal of old leader " << *InstMA << "\n");
1917 markMemoryLeaderChangeTouched(OldClass);
1918 } else
Daniel Berlina8236562017-04-07 18:38:09 +00001919 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00001920 }
1921}
1922
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001923// Move a value, currently in OldClass, to be part of NewClass
Daniel Berlin1316a942017-04-06 18:52:50 +00001924// Update OldClass and NewClass for the move (including changing leaders, etc).
1925void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001926 CongruenceClass *OldClass,
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001927 CongruenceClass *NewClass) {
Daniel Berlina8236562017-04-07 18:38:09 +00001928 if (I == OldClass->getNextLeader().first)
1929 OldClass->resetNextLeader();
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001930
Daniel Berlin89fea6f2017-01-20 06:38:41 +00001931 // It's possible, though unlikely, for us to discover equivalences such
1932 // that the current leader does not dominate the old one.
1933 // This statistic tracks how often this happens.
1934 // We assert on phi nodes when this happens, currently, for debugging, because
1935 // we want to make sure we name phi node cycles properly.
Daniel Berlina8236562017-04-07 18:38:09 +00001936 if (isa<Instruction>(NewClass->getLeader()) && NewClass->getLeader() &&
1937 I != NewClass->getLeader()) {
Daniel Berlinffc30782017-03-24 06:33:51 +00001938 auto *IBB = I->getParent();
Daniel Berlina8236562017-04-07 18:38:09 +00001939 auto *NCBB = cast<Instruction>(NewClass->getLeader())->getParent();
Daniel Berlin21279bd2017-04-06 18:52:58 +00001940 bool Dominated =
Daniel Berlina8236562017-04-07 18:38:09 +00001941 IBB == NCBB && InstrToDFSNum(I) < InstrToDFSNum(NewClass->getLeader());
Daniel Berlinffc30782017-03-24 06:33:51 +00001942 Dominated = Dominated || DT->properlyDominates(IBB, NCBB);
1943 if (Dominated) {
1944 ++NumGVNNotMostDominatingLeader;
1945 assert(
1946 !isa<PHINode>(I) &&
1947 "New class for instruction should not be dominated by instruction");
1948 }
Daniel Berlin89fea6f2017-01-20 06:38:41 +00001949 }
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001950
Daniel Berlina8236562017-04-07 18:38:09 +00001951 if (NewClass->getLeader() != I)
1952 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001953
Daniel Berlina8236562017-04-07 18:38:09 +00001954 OldClass->erase(I);
1955 NewClass->insert(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00001956 // Handle our special casing of stores.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001957 if (auto *SI = dyn_cast<StoreInst>(I)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001958 OldClass->decStoreCount();
1959 // Okay, so when do we want to make a store a leader of a class?
1960 // If we have a store defined by an earlier load, we want the earlier load
1961 // to lead the class.
1962 // If we have a store defined by something else, we want the store to lead
1963 // the class so everything else gets the "something else" as a value.
Daniel Berlin1316a942017-04-06 18:52:50 +00001964 // If we have a store as the single member of the class, we want the store
Daniel Berlina8236562017-04-07 18:38:09 +00001965 // as the leader
1966 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001967 // If it's a store expression we are using, it means we are not equivalent
1968 // to something earlier.
1969 if (isa<StoreExpression>(E)) {
1970 assert(lookupOperandLeader(SI->getValueOperand()) !=
Daniel Berlina8236562017-04-07 18:38:09 +00001971 NewClass->getLeader());
1972 NewClass->setStoredValue(lookupOperandLeader(SI->getValueOperand()));
Daniel Berlin1316a942017-04-06 18:52:50 +00001973 markValueLeaderChangeTouched(NewClass);
1974 // Shift the new class leader to be the store
Daniel Berlina8236562017-04-07 18:38:09 +00001975 DEBUG(dbgs() << "Changing leader of congruence class "
1976 << NewClass->getID() << " from " << *NewClass->getLeader()
1977 << " to " << *SI << " because store joined class\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00001978 // If we changed the leader, we have to mark it changed because we don't
1979 // know what it will do to symbolic evlauation.
Daniel Berlina8236562017-04-07 18:38:09 +00001980 NewClass->setLeader(SI);
Daniel Berlin1316a942017-04-06 18:52:50 +00001981 }
1982 // We rely on the code below handling the MemoryAccess change.
1983 }
Daniel Berlina8236562017-04-07 18:38:09 +00001984 NewClass->incStoreCount();
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001985 }
Daniel Berlin1316a942017-04-06 18:52:50 +00001986 // True if there is no memory instructions left in a class that had memory
1987 // instructions before.
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001988
Daniel Berlin1316a942017-04-06 18:52:50 +00001989 // If it's not a memory use, set the MemoryAccess equivalence
1990 auto *InstMA = dyn_cast_or_null<MemoryDef>(MSSA->getMemoryAccess(I));
Daniel Berlina8236562017-04-07 18:38:09 +00001991 bool InstWasMemoryLeader = InstMA && OldClass->getMemoryLeader() == InstMA;
Daniel Berlin1316a942017-04-06 18:52:50 +00001992 if (InstMA)
1993 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001994 ValueToClass[I] = NewClass;
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001995 // See if we destroyed the class or need to swap leaders.
Daniel Berlina8236562017-04-07 18:38:09 +00001996 if (OldClass->empty() && OldClass != TOPClass) {
1997 if (OldClass->getDefiningExpr()) {
1998 DEBUG(dbgs() << "Erasing expression " << OldClass->getDefiningExpr()
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001999 << " from table\n");
Daniel Berlina8236562017-04-07 18:38:09 +00002000 ExpressionToClass.erase(OldClass->getDefiningExpr());
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002001 }
Daniel Berlina8236562017-04-07 18:38:09 +00002002 } else if (OldClass->getLeader() == I) {
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002003 // When the leader changes, the value numbering of
2004 // everything may change due to symbolization changes, so we need to
2005 // reprocess.
Daniel Berlina8236562017-04-07 18:38:09 +00002006 DEBUG(dbgs() << "Value class leader change for class " << OldClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002007 << "\n");
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002008 ++NumGVNLeaderChanges;
Daniel Berlin26addef2017-01-20 21:04:30 +00002009 // Destroy the stored value if there are no more stores to represent it.
Daniel Berlin1316a942017-04-06 18:52:50 +00002010 // Note that this is basically clean up for the expression removal that
2011 // happens below. If we remove stores from a class, we may leave it as a
2012 // class of equivalent memory phis.
Daniel Berlina8236562017-04-07 18:38:09 +00002013 if (OldClass->getStoreCount() == 0) {
2014 if (OldClass->getStoredValue())
2015 OldClass->setStoredValue(nullptr);
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002016 }
Daniel Berlin1316a942017-04-06 18:52:50 +00002017 // If we destroy the old access leader and it's a store, we have to
2018 // effectively destroy the congruence class. When it comes to scalars,
2019 // anything with the same value is as good as any other. That means that
2020 // one leader is as good as another, and as long as you have some leader for
2021 // the value, you are good.. When it comes to *memory states*, only one
2022 // particular thing really represents the definition of a given memory
2023 // state. Once it goes away, we need to re-evaluate which pieces of memory
2024 // are really still equivalent. The best way to do this is to re-value
2025 // number things. The only way to really make that happen is to destroy the
2026 // rest of the class. In order to effectively destroy the class, we reset
2027 // ExpressionToClass for each by using the ValueToExpression mapping. The
2028 // members later get marked as touched due to the leader change. We will
2029 // create new congruence classes, and the pieces that are still equivalent
2030 // will end back together in a new class. If this becomes too expensive, it
2031 // is possible to use a versioning scheme for the congruence classes to
2032 // avoid the expressions finding this old class. Note that the situation is
2033 // different for memory phis, becuase they are evaluated anew each time, and
2034 // they become equal not by hashing, but by seeing if all operands are the
2035 // same (or only one is reachable).
Daniel Berlina8236562017-04-07 18:38:09 +00002036 if (OldClass->getStoreCount() > 0 && InstWasMemoryLeader) {
2037 DEBUG(dbgs() << "Kicking everything out of class " << OldClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002038 << " because MemoryAccess leader changed");
Daniel Berlina8236562017-04-07 18:38:09 +00002039 for (auto Member : *OldClass)
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002040 ExpressionToClass.erase(ValueToExpression.lookup(Member));
2041 }
Daniel Berlina8236562017-04-07 18:38:09 +00002042 OldClass->setLeader(getNextValueLeader(OldClass));
2043 OldClass->resetNextLeader();
Daniel Berlin1316a942017-04-06 18:52:50 +00002044 markValueLeaderChangeTouched(OldClass);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002045 }
2046}
2047
Davide Italiano7e274e02016-12-22 16:03:48 +00002048// Perform congruence finding on a given value numbering expression.
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002049void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2050 ValueToExpression[I] = E;
Davide Italiano7e274e02016-12-22 16:03:48 +00002051 // This is guaranteed to return something, since it will at least find
Daniel Berlinb79f5362017-02-11 12:48:50 +00002052 // TOP.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002053
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002054 CongruenceClass *IClass = ValueToClass[I];
2055 assert(IClass && "Should have found a IClass");
Davide Italiano7e274e02016-12-22 16:03:48 +00002056 // Dead classes should have been eliminated from the mapping.
Daniel Berlin1316a942017-04-06 18:52:50 +00002057 assert(!IClass->isDead() && "Found a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002058
2059 CongruenceClass *EClass;
Daniel Berlin02c6b172017-01-02 18:00:53 +00002060 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002061 EClass = ValueToClass[VE->getVariableValue()];
2062 } else {
2063 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2064
2065 // If it's not in the value table, create a new congruence class.
2066 if (lookupResult.second) {
Davide Italiano0e714802016-12-28 14:00:11 +00002067 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00002068 auto place = lookupResult.first;
2069 place->second = NewClass;
2070
2071 // Constants and variables should always be made the leader.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002072 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002073 NewClass->setLeader(CE->getConstantValue());
Daniel Berlin32f8d562017-01-07 16:55:14 +00002074 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2075 StoreInst *SI = SE->getStoreInst();
Daniel Berlina8236562017-04-07 18:38:09 +00002076 NewClass->setLeader(SI);
2077 NewClass->setStoredValue(lookupOperandLeader(SI->getValueOperand()));
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002078 // The RepMemoryAccess field will be filled in properly by the
2079 // moveValueToNewCongruenceClass call.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002080 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00002081 NewClass->setLeader(I);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002082 }
2083 assert(!isa<VariableExpression>(E) &&
2084 "VariableExpression should have been handled already");
Davide Italiano7e274e02016-12-22 16:03:48 +00002085
2086 EClass = NewClass;
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002087 DEBUG(dbgs() << "Created new congruence class for " << *I
Daniel Berlina8236562017-04-07 18:38:09 +00002088 << " using expression " << *E << " at " << NewClass->getID()
2089 << " and leader " << *(NewClass->getLeader()));
2090 if (NewClass->getStoredValue())
2091 DEBUG(dbgs() << " and stored value " << *(NewClass->getStoredValue()));
Daniel Berlin26addef2017-01-20 21:04:30 +00002092 DEBUG(dbgs() << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002093 } else {
2094 EClass = lookupResult.first->second;
Daniel Berlin589cecc2017-01-02 18:00:46 +00002095 if (isa<ConstantExpression>(E))
Davide Italianof58a30232017-04-10 23:08:35 +00002096 assert((isa<Constant>(EClass->getLeader()) ||
2097 (EClass->getStoredValue() &&
2098 isa<Constant>(EClass->getStoredValue()))) &&
2099 "Any class with a constant expression should have a "
2100 "constant leader");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002101
Davide Italiano7e274e02016-12-22 16:03:48 +00002102 assert(EClass && "Somehow don't have an eclass");
2103
Daniel Berlin1316a942017-04-06 18:52:50 +00002104 assert(!EClass->isDead() && "We accidentally looked up a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002105 }
2106 }
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002107 bool ClassChanged = IClass != EClass;
2108 bool LeaderChanged = LeaderChanges.erase(I);
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002109 if (ClassChanged || LeaderChanged) {
Daniel Berlina8236562017-04-07 18:38:09 +00002110 DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " << *E
Davide Italiano7e274e02016-12-22 16:03:48 +00002111 << "\n");
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002112 if (ClassChanged)
Daniel Berlin1316a942017-04-06 18:52:50 +00002113 moveValueToNewCongruenceClass(I, E, IClass, EClass);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002114 markUsersTouched(I);
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002115 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002116 markMemoryUsersTouched(MA);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002117 if (auto *CI = dyn_cast<CmpInst>(I))
2118 markPredicateUsersTouched(CI);
Davide Italiano7e274e02016-12-22 16:03:48 +00002119 }
2120}
2121
2122// Process the fact that Edge (from, to) is reachable, including marking
2123// any newly reachable blocks and instructions for processing.
2124void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2125 // Check if the Edge was reachable before.
2126 if (ReachableEdges.insert({From, To}).second) {
2127 // If this block wasn't reachable before, all instructions are touched.
2128 if (ReachableBlocks.insert(To).second) {
2129 DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
2130 const auto &InstRange = BlockInstRange.lookup(To);
2131 TouchedInstructions.set(InstRange.first, InstRange.second);
2132 } else {
2133 DEBUG(dbgs() << "Block " << getBlockName(To)
2134 << " was reachable, but new edge {" << getBlockName(From)
2135 << "," << getBlockName(To) << "} to it found\n");
2136
2137 // We've made an edge reachable to an existing block, which may
2138 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2139 // they are the only thing that depend on new edges. Anything using their
2140 // values will get propagated to if necessary.
Daniel Berlin589cecc2017-01-02 18:00:46 +00002141 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
Daniel Berlin21279bd2017-04-06 18:52:58 +00002142 TouchedInstructions.set(InstrToDFSNum(MemPhi));
Daniel Berlin589cecc2017-01-02 18:00:46 +00002143
Davide Italiano7e274e02016-12-22 16:03:48 +00002144 auto BI = To->begin();
2145 while (isa<PHINode>(BI)) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00002146 TouchedInstructions.set(InstrToDFSNum(&*BI));
Davide Italiano7e274e02016-12-22 16:03:48 +00002147 ++BI;
2148 }
2149 }
2150 }
2151}
2152
2153// Given a predicate condition (from a switch, cmp, or whatever) and a block,
2154// see if we know some constant value for it already.
Daniel Berlin97718e62017-01-31 22:32:03 +00002155Value *NewGVN::findConditionEquivalence(Value *Cond) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00002156 auto Result = lookupOperandLeader(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002157 if (isa<Constant>(Result))
2158 return Result;
2159 return nullptr;
2160}
2161
2162// Process the outgoing edges of a block for reachability.
2163void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
2164 // Evaluate reachability of terminator instruction.
2165 BranchInst *BR;
2166 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2167 Value *Cond = BR->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002168 Value *CondEvaluated = findConditionEquivalence(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002169 if (!CondEvaluated) {
2170 if (auto *I = dyn_cast<Instruction>(Cond)) {
Daniel Berlin97718e62017-01-31 22:32:03 +00002171 const Expression *E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002172 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2173 CondEvaluated = CE->getConstantValue();
2174 }
2175 } else if (isa<ConstantInt>(Cond)) {
2176 CondEvaluated = Cond;
2177 }
2178 }
2179 ConstantInt *CI;
2180 BasicBlock *TrueSucc = BR->getSuccessor(0);
2181 BasicBlock *FalseSucc = BR->getSuccessor(1);
2182 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2183 if (CI->isOne()) {
2184 DEBUG(dbgs() << "Condition for Terminator " << *TI
2185 << " evaluated to true\n");
2186 updateReachableEdge(B, TrueSucc);
2187 } else if (CI->isZero()) {
2188 DEBUG(dbgs() << "Condition for Terminator " << *TI
2189 << " evaluated to false\n");
2190 updateReachableEdge(B, FalseSucc);
2191 }
2192 } else {
2193 updateReachableEdge(B, TrueSucc);
2194 updateReachableEdge(B, FalseSucc);
2195 }
2196 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2197 // For switches, propagate the case values into the case
2198 // destinations.
2199
2200 // Remember how many outgoing edges there are to every successor.
2201 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2202
Davide Italiano7e274e02016-12-22 16:03:48 +00002203 Value *SwitchCond = SI->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002204 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002205 // See if we were able to turn this switch statement into a constant.
2206 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002207 auto *CondVal = cast<ConstantInt>(CondEvaluated);
Davide Italiano7e274e02016-12-22 16:03:48 +00002208 // We should be able to get case value for this.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002209 auto Case = *SI->findCaseValue(CondVal);
2210 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002211 // We proved the value is outside of the range of the case.
2212 // We can't do anything other than mark the default dest as reachable,
2213 // and go home.
2214 updateReachableEdge(B, SI->getDefaultDest());
2215 return;
2216 }
2217 // Now get where it goes and mark it reachable.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002218 BasicBlock *TargetBlock = Case.getCaseSuccessor();
Davide Italiano7e274e02016-12-22 16:03:48 +00002219 updateReachableEdge(B, TargetBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +00002220 } else {
2221 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2222 BasicBlock *TargetBlock = SI->getSuccessor(i);
2223 ++SwitchEdges[TargetBlock];
2224 updateReachableEdge(B, TargetBlock);
2225 }
2226 }
2227 } else {
2228 // Otherwise this is either unconditional, or a type we have no
2229 // idea about. Just mark successors as reachable.
2230 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2231 BasicBlock *TargetBlock = TI->getSuccessor(i);
2232 updateReachableEdge(B, TargetBlock);
2233 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002234
2235 // This also may be a memory defining terminator, in which case, set it
Daniel Berlin1316a942017-04-06 18:52:50 +00002236 // equivalent only to itself.
2237 //
2238 auto *MA = MSSA->getMemoryAccess(TI);
2239 if (MA && !isa<MemoryUse>(MA)) {
2240 auto *CC = ensureLeaderOfMemoryClass(MA);
2241 if (setMemoryClass(MA, CC))
2242 markMemoryUsersTouched(MA);
2243 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002244 }
2245}
2246
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002247// The algorithm initially places the values of the routine in the TOP
2248// congruence class. The leader of TOP is the undetermined value `undef`.
2249// When the algorithm has finished, values still in TOP are unreachable.
Davide Italiano7e274e02016-12-22 16:03:48 +00002250void NewGVN::initializeCongruenceClasses(Function &F) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002251 NextCongruenceNum = 0;
2252
2253 // Note that even though we use the live on entry def as a representative
2254 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2255 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2256 // should be checking whether the MemoryAccess is top if we want to know if it
2257 // is equivalent to everything. Otherwise, what this really signifies is that
2258 // the access "it reaches all the way back to the beginning of the function"
2259
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002260 // Initialize all other instructions to be in TOP class.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002261 TOPClass = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +00002262 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
Daniel Berlin1316a942017-04-06 18:52:50 +00002263 // The live on entry def gets put into it's own class
2264 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2265 createMemoryClass(MSSA->getLiveOnEntryDef());
Daniel Berlin589cecc2017-01-02 18:00:46 +00002266
Daniel Berlinec9deb72017-04-18 17:06:11 +00002267 for (auto DTN : nodes(DT)) {
2268 BasicBlock *BB = DTN->getBlock();
Daniel Berlin1316a942017-04-06 18:52:50 +00002269 // All MemoryAccesses are equivalent to live on entry to start. They must
2270 // be initialized to something so that initial changes are noticed. For
2271 // the maximal answer, we initialize them all to be the same as
2272 // liveOnEntry.
Daniel Berlinec9deb72017-04-18 17:06:11 +00002273 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
Daniel Berlin1316a942017-04-06 18:52:50 +00002274 if (MemoryBlockDefs)
2275 for (const auto &Def : *MemoryBlockDefs) {
2276 MemoryAccessToClass[&Def] = TOPClass;
2277 auto *MD = dyn_cast<MemoryDef>(&Def);
2278 // Insert the memory phis into the member list.
2279 if (!MD) {
2280 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
Daniel Berlina8236562017-04-07 18:38:09 +00002281 TOPClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00002282 MemoryPhiState.insert({MP, MPS_TOP});
2283 }
2284
2285 if (MD && isa<StoreInst>(MD->getMemoryInst()))
Daniel Berlina8236562017-04-07 18:38:09 +00002286 TOPClass->incStoreCount();
Daniel Berlin1316a942017-04-06 18:52:50 +00002287 }
Daniel Berlinec9deb72017-04-18 17:06:11 +00002288 for (auto &I : *BB) {
Daniel Berlin22a4a012017-02-11 15:20:15 +00002289 // Don't insert void terminators into the class. We don't value number
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002290 // them, and they just end up sitting in TOP.
Daniel Berlin22a4a012017-02-11 15:20:15 +00002291 if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
2292 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002293 TOPClass->insert(&I);
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002294 ValueToClass[&I] = TOPClass;
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002295 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002296 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002297
2298 // Initialize arguments to be in their own unique congruence classes
2299 for (auto &FA : F.args())
2300 createSingletonCongruenceClass(&FA);
2301}
2302
2303void NewGVN::cleanupTables() {
2304 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
Daniel Berlina8236562017-04-07 18:38:09 +00002305 DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2306 << " has " << CongruenceClasses[i]->size() << " members\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002307 // Make sure we delete the congruence class (probably worth switching to
2308 // a unique_ptr at some point.
2309 delete CongruenceClasses[i];
Davide Italiano0e714802016-12-28 14:00:11 +00002310 CongruenceClasses[i] = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00002311 }
2312
2313 ValueToClass.clear();
2314 ArgRecycler.clear(ExpressionAllocator);
2315 ExpressionAllocator.Reset();
2316 CongruenceClasses.clear();
2317 ExpressionToClass.clear();
2318 ValueToExpression.clear();
2319 ReachableBlocks.clear();
2320 ReachableEdges.clear();
2321#ifndef NDEBUG
2322 ProcessedCount.clear();
2323#endif
Davide Italiano7e274e02016-12-22 16:03:48 +00002324 InstrDFS.clear();
2325 InstructionsToErase.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002326 DFSToInstr.clear();
2327 BlockInstRange.clear();
2328 TouchedInstructions.clear();
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002329 MemoryAccessToClass.clear();
Daniel Berlinf7d95802017-02-18 23:06:50 +00002330 PredicateToUsers.clear();
Daniel Berlin1316a942017-04-06 18:52:50 +00002331 MemoryToUsers.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002332}
2333
2334std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2335 unsigned Start) {
2336 unsigned End = Start;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002337 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
2338 InstrDFS[MemPhi] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002339 DFSToInstr.emplace_back(MemPhi);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002340 }
2341
Davide Italiano7e274e02016-12-22 16:03:48 +00002342 for (auto &I : *B) {
Daniel Berlin856fa142017-03-06 18:42:27 +00002343 // There's no need to call isInstructionTriviallyDead more than once on
2344 // an instruction. Therefore, once we know that an instruction is dead
2345 // we change its DFS number so that it doesn't get value numbered.
2346 if (isInstructionTriviallyDead(&I, TLI)) {
2347 InstrDFS[&I] = 0;
2348 DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2349 markInstructionForDeletion(&I);
2350 continue;
2351 }
2352
Davide Italiano7e274e02016-12-22 16:03:48 +00002353 InstrDFS[&I] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002354 DFSToInstr.emplace_back(&I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002355 }
2356
2357 // All of the range functions taken half-open ranges (open on the end side).
2358 // So we do not subtract one from count, because at this point it is one
2359 // greater than the last instruction.
2360 return std::make_pair(Start, End);
2361}
2362
2363void NewGVN::updateProcessedCount(Value *V) {
2364#ifndef NDEBUG
2365 if (ProcessedCount.count(V) == 0) {
2366 ProcessedCount.insert({V, 1});
2367 } else {
Davide Italiano7cf29dc2017-01-14 20:13:18 +00002368 ++ProcessedCount[V];
Davide Italiano7e274e02016-12-22 16:03:48 +00002369 assert(ProcessedCount[V] < 100 &&
Davide Italiano75e39f92016-12-30 15:01:17 +00002370 "Seem to have processed the same Value a lot");
Davide Italiano7e274e02016-12-22 16:03:48 +00002371 }
2372#endif
2373}
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002374// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
2375void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
2376 // If all the arguments are the same, the MemoryPhi has the same value as the
2377 // argument.
Daniel Berlinc4796862017-01-27 02:37:11 +00002378 // Filter out unreachable blocks and self phis from our operands.
Daniel Berlin41b39162017-03-18 15:41:36 +00002379 const BasicBlock *PHIBlock = MP->getBlock();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002380 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002381 return lookupMemoryLeader(cast<MemoryAccess>(U)) != MP &&
Daniel Berlinc4796862017-01-27 02:37:11 +00002382 !isMemoryAccessTop(cast<MemoryAccess>(U)) &&
Daniel Berlin41b39162017-03-18 15:41:36 +00002383 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002384 });
Daniel Berlinc4796862017-01-27 02:37:11 +00002385 // If all that is left is nothing, our memoryphi is undef. We keep it as
2386 // InitialClass. Note: The only case this should happen is if we have at
2387 // least one self-argument.
2388 if (Filtered.begin() == Filtered.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002389 if (setMemoryClass(MP, TOPClass))
Daniel Berlinc4796862017-01-27 02:37:11 +00002390 markMemoryUsersTouched(MP);
2391 return;
2392 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002393
2394 // Transform the remaining operands into operand leaders.
2395 // FIXME: mapped_iterator should have a range version.
2396 auto LookupFunc = [&](const Use &U) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002397 return lookupMemoryLeader(cast<MemoryAccess>(U));
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002398 };
2399 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
2400 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
2401
2402 // and now check if all the elements are equal.
2403 // Sadly, we can't use std::equals since these are random access iterators.
Daniel Berlin1316a942017-04-06 18:52:50 +00002404 const auto *AllSameValue = *MappedBegin;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002405 ++MappedBegin;
2406 bool AllEqual = std::all_of(
2407 MappedBegin, MappedEnd,
2408 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
2409
2410 if (AllEqual)
2411 DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
2412 else
2413 DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00002414 // If it's equal to something, it's in that class. Otherwise, it has to be in
2415 // a class where it is the leader (other things may be equivalent to it, but
2416 // it needs to start off in its own class, which means it must have been the
2417 // leader, and it can't have stopped being the leader because it was never
2418 // removed).
2419 CongruenceClass *CC =
2420 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
2421 auto OldState = MemoryPhiState.lookup(MP);
2422 assert(OldState != MPS_Invalid && "Invalid memory phi state");
2423 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
2424 MemoryPhiState[MP] = NewState;
2425 if (setMemoryClass(MP, CC) || OldState != NewState)
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002426 markMemoryUsersTouched(MP);
2427}
2428
2429// Value number a single instruction, symbolically evaluating, performing
2430// congruence finding, and updating mappings.
2431void NewGVN::valueNumberInstruction(Instruction *I) {
2432 DEBUG(dbgs() << "Processing instruction " << *I << "\n");
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002433 if (!I->isTerminator()) {
Daniel Berlin283a6082017-03-01 19:59:26 +00002434 const Expression *Symbolized = nullptr;
2435 if (DebugCounter::shouldExecute(VNCounter)) {
2436 Symbolized = performSymbolicEvaluation(I);
2437 } else {
Daniel Berlin343576a2017-03-06 18:42:39 +00002438 // Mark the instruction as unused so we don't value number it again.
2439 InstrDFS[I] = 0;
Daniel Berlin283a6082017-03-01 19:59:26 +00002440 }
Daniel Berlin02c6b172017-01-02 18:00:53 +00002441 // If we couldn't come up with a symbolic expression, use the unknown
2442 // expression
Daniel Berlin1316a942017-04-06 18:52:50 +00002443 if (Symbolized == nullptr) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002444 Symbolized = createUnknownExpression(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00002445 }
2446
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002447 performCongruenceFinding(I, Symbolized);
2448 } else {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002449 // Handle terminators that return values. All of them produce values we
Daniel Berlinb79f5362017-02-11 12:48:50 +00002450 // don't currently understand. We don't place non-value producing
2451 // terminators in a class.
Daniel Berlin25f05b02017-01-02 18:22:38 +00002452 if (!I->getType()->isVoidTy()) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002453 auto *Symbolized = createUnknownExpression(I);
2454 performCongruenceFinding(I, Symbolized);
2455 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002456 processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
2457 }
2458}
Davide Italiano7e274e02016-12-22 16:03:48 +00002459
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002460// Check if there is a path, using single or equal argument phi nodes, from
2461// First to Second.
2462bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
2463 const MemoryAccess *Second) const {
2464 if (First == Second)
2465 return true;
Daniel Berlin871ecd92017-04-01 09:44:24 +00002466 if (MSSA->isLiveOnEntryDef(First))
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002467 return false;
Daniel Berlin1316a942017-04-06 18:52:50 +00002468
Daniel Berlin871ecd92017-04-01 09:44:24 +00002469 const auto *EndDef = First;
Daniel Berlin3082b8e2017-04-05 17:26:25 +00002470 for (auto *ChainDef : optimized_def_chain(First)) {
Daniel Berlin871ecd92017-04-01 09:44:24 +00002471 if (ChainDef == Second)
2472 return true;
2473 if (MSSA->isLiveOnEntryDef(ChainDef))
2474 return false;
2475 EndDef = ChainDef;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002476 }
Daniel Berlin871ecd92017-04-01 09:44:24 +00002477 auto *MP = cast<MemoryPhi>(EndDef);
2478 auto ReachableOperandPred = [&](const Use &U) {
2479 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
2480 };
2481 auto FilteredPhiArgs =
2482 make_filter_range(MP->operands(), ReachableOperandPred);
2483 SmallVector<const Value *, 32> OperandList;
2484 std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2485 std::back_inserter(OperandList));
2486 bool Okay = OperandList.size() == 1;
2487 if (!Okay)
2488 Okay =
2489 std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
2490 if (Okay)
2491 return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
2492 return false;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002493}
2494
Daniel Berlin589cecc2017-01-02 18:00:46 +00002495// Verify the that the memory equivalence table makes sense relative to the
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002496// congruence classes. Note that this checking is not perfect, and is currently
Davide Italianoed67f192017-01-14 20:15:04 +00002497// subject to very rare false negatives. It is only useful for
2498// testing/debugging.
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002499void NewGVN::verifyMemoryCongruency() const {
Davide Italianoe9781e72017-03-25 02:40:02 +00002500#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002501 // Verify that the memory table equivalence and memory member set match
2502 for (const auto *CC : CongruenceClasses) {
2503 if (CC == TOPClass || CC->isDead())
2504 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002505 if (CC->getStoreCount() != 0) {
Davide Italianof58a30232017-04-10 23:08:35 +00002506 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002507 "Any class with a store as a leader should have a "
2508 "representative stored value");
Daniel Berlina8236562017-04-07 18:38:09 +00002509 assert(CC->getMemoryLeader() &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002510 "Any congruence class with a store should have a "
2511 "representative access");
Daniel Berlin1316a942017-04-06 18:52:50 +00002512 }
2513
Daniel Berlina8236562017-04-07 18:38:09 +00002514 if (CC->getMemoryLeader())
2515 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
Daniel Berlin1316a942017-04-06 18:52:50 +00002516 "Representative MemoryAccess does not appear to be reverse "
2517 "mapped properly");
Daniel Berlina8236562017-04-07 18:38:09 +00002518 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00002519 assert(MemoryAccessToClass.lookup(M) == CC &&
2520 "Memory member does not appear to be reverse mapped properly");
2521 }
2522
2523 // Anything equivalent in the MemoryAccess table should be in the same
Daniel Berlin589cecc2017-01-02 18:00:46 +00002524 // congruence class.
2525
2526 // Filter out the unreachable and trivially dead entries, because they may
2527 // never have been updated if the instructions were not processed.
2528 auto ReachableAccessPred =
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002529 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002530 bool Result = ReachableBlocks.count(Pair.first->getBlock());
Daniel Berlin9d0042b2017-04-18 20:15:47 +00002531 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
2532 MemoryToDFSNum(Pair.first) == 0)
Daniel Berlin589cecc2017-01-02 18:00:46 +00002533 return false;
2534 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
2535 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
2536 return true;
2537 };
2538
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002539 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
Daniel Berlin589cecc2017-01-02 18:00:46 +00002540 for (auto KV : Filtered) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002541 assert(KV.second != TOPClass &&
2542 "Memory not unreachable but ended up in TOP");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002543 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002544 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
Davide Italiano67ada752017-01-02 19:03:16 +00002545 if (FirstMUD && SecondMUD)
Davide Italianoff694052017-01-11 21:58:42 +00002546 assert((singleReachablePHIPath(FirstMUD, SecondMUD) ||
Davide Italianoed67f192017-01-14 20:15:04 +00002547 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
2548 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
2549 "The instructions for these memory operations should have "
2550 "been in the same congruence class or reachable through"
2551 "a single argument phi");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002552 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002553 // We can only sanely verify that MemoryDefs in the operand list all have
2554 // the same class.
2555 auto ReachableOperandPred = [&](const Use &U) {
Daniel Berlin41b39162017-03-18 15:41:36 +00002556 return ReachableEdges.count(
2557 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
Daniel Berlin589cecc2017-01-02 18:00:46 +00002558 isa<MemoryDef>(U);
2559
2560 };
2561 // All arguments should in the same class, ignoring unreachable arguments
2562 auto FilteredPhiArgs =
2563 make_filter_range(FirstMP->operands(), ReachableOperandPred);
2564 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
2565 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2566 std::back_inserter(PhiOpClasses), [&](const Use &U) {
2567 const MemoryDef *MD = cast<MemoryDef>(U);
2568 return ValueToClass.lookup(MD->getMemoryInst());
2569 });
2570 assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
2571 PhiOpClasses.begin()) &&
2572 "All MemoryPhi arguments should be in the same class");
2573 }
2574 }
Davide Italianoe9781e72017-03-25 02:40:02 +00002575#endif
Daniel Berlin589cecc2017-01-02 18:00:46 +00002576}
2577
Daniel Berlin06329a92017-03-18 15:41:40 +00002578// Verify that the sparse propagation we did actually found the maximal fixpoint
2579// We do this by storing the value to class mapping, touching all instructions,
2580// and redoing the iteration to see if anything changed.
2581void NewGVN::verifyIterationSettled(Function &F) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00002582#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002583 DEBUG(dbgs() << "Beginning iteration verification\n");
Daniel Berlin06329a92017-03-18 15:41:40 +00002584 if (DebugCounter::isCounterSet(VNCounter))
2585 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
2586
2587 // Note that we have to store the actual classes, as we may change existing
2588 // classes during iteration. This is because our memory iteration propagation
2589 // is not perfect, and so may waste a little work. But it should generate
2590 // exactly the same congruence classes we have now, with different IDs.
2591 std::map<const Value *, CongruenceClass> BeforeIteration;
2592
2593 for (auto &KV : ValueToClass) {
2594 if (auto *I = dyn_cast<Instruction>(KV.first))
2595 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002596 if (InstrToDFSNum(I) == 0)
Daniel Berlinf7d95802017-02-18 23:06:50 +00002597 continue;
Daniel Berlin06329a92017-03-18 15:41:40 +00002598 BeforeIteration.insert({KV.first, *KV.second});
2599 }
2600
2601 TouchedInstructions.set();
2602 TouchedInstructions.reset(0);
2603 iterateTouchedInstructions();
2604 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
2605 EqualClasses;
2606 for (const auto &KV : ValueToClass) {
2607 if (auto *I = dyn_cast<Instruction>(KV.first))
2608 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002609 if (InstrToDFSNum(I) == 0)
Daniel Berlin06329a92017-03-18 15:41:40 +00002610 continue;
2611 // We could sink these uses, but i think this adds a bit of clarity here as
2612 // to what we are comparing.
2613 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
2614 auto *AfterCC = KV.second;
2615 // Note that the classes can't change at this point, so we memoize the set
2616 // that are equal.
2617 if (!EqualClasses.count({BeforeCC, AfterCC})) {
Daniel Berlina8236562017-04-07 18:38:09 +00002618 assert(BeforeCC->isEquivalentTo(AfterCC) &&
Daniel Berlin06329a92017-03-18 15:41:40 +00002619 "Value number changed after main loop completed!");
2620 EqualClasses.insert({BeforeCC, AfterCC});
Daniel Berlinf7d95802017-02-18 23:06:50 +00002621 }
2622 }
2623#endif
2624}
2625
Daniel Berlin06329a92017-03-18 15:41:40 +00002626// This is the main value numbering loop, it iterates over the initial touched
2627// instruction set, propagating value numbers, marking things touched, etc,
2628// until the set of touched instructions is completely empty.
2629void NewGVN::iterateTouchedInstructions() {
2630 unsigned int Iterations = 0;
2631 // Figure out where touchedinstructions starts
2632 int FirstInstr = TouchedInstructions.find_first();
2633 // Nothing set, nothing to iterate, just return.
2634 if (FirstInstr == -1)
2635 return;
Daniel Berlin21279bd2017-04-06 18:52:58 +00002636 BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
Daniel Berlin06329a92017-03-18 15:41:40 +00002637 while (TouchedInstructions.any()) {
2638 ++Iterations;
2639 // Walk through all the instructions in all the blocks in RPO.
2640 // TODO: As we hit a new block, we should push and pop equalities into a
2641 // table lookupOperandLeader can use, to catch things PredicateInfo
2642 // might miss, like edge-only equivalences.
2643 for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
2644 InstrNum = TouchedInstructions.find_next(InstrNum)) {
2645
2646 // This instruction was found to be dead. We don't bother looking
2647 // at it again.
2648 if (InstrNum == 0) {
2649 TouchedInstructions.reset(InstrNum);
2650 continue;
2651 }
2652
Daniel Berlin21279bd2017-04-06 18:52:58 +00002653 Value *V = InstrFromDFSNum(InstrNum);
Daniel Berlin06329a92017-03-18 15:41:40 +00002654 BasicBlock *CurrBlock = getBlockForValue(V);
2655
2656 // If we hit a new block, do reachability processing.
2657 if (CurrBlock != LastBlock) {
2658 LastBlock = CurrBlock;
2659 bool BlockReachable = ReachableBlocks.count(CurrBlock);
2660 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
2661
2662 // If it's not reachable, erase any touched instructions and move on.
2663 if (!BlockReachable) {
2664 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
2665 DEBUG(dbgs() << "Skipping instructions in block "
2666 << getBlockName(CurrBlock)
2667 << " because it is unreachable\n");
2668 continue;
2669 }
2670 updateProcessedCount(CurrBlock);
2671 }
2672
2673 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
2674 DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
2675 valueNumberMemoryPhi(MP);
2676 } else if (auto *I = dyn_cast<Instruction>(V)) {
2677 valueNumberInstruction(I);
2678 } else {
2679 llvm_unreachable("Should have been a MemoryPhi or Instruction");
2680 }
2681 updateProcessedCount(V);
2682 // Reset after processing (because we may mark ourselves as touched when
2683 // we propagate equalities).
2684 TouchedInstructions.reset(InstrNum);
2685 }
2686 }
2687 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
2688}
2689
Daniel Berlin85f91b02016-12-26 20:06:58 +00002690// This is the main transformation entry point.
Daniel Berlin64e68992017-03-12 04:46:45 +00002691bool NewGVN::runGVN() {
Daniel Berlin06329a92017-03-18 15:41:40 +00002692 if (DebugCounter::isCounterSet(VNCounter))
2693 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
Davide Italiano7e274e02016-12-22 16:03:48 +00002694 bool Changed = false;
Daniel Berlin1529bb92017-02-11 15:13:49 +00002695 NumFuncArgs = F.arg_size();
Davide Italiano7e274e02016-12-22 16:03:48 +00002696 MSSAWalker = MSSA->getWalker();
2697
2698 // Count number of instructions for sizing of hash tables, and come
2699 // up with a global dfs numbering for instructions.
Daniel Berline0bd37e2016-12-29 22:15:12 +00002700 unsigned ICount = 1;
2701 // Add an empty instruction to account for the fact that we start at 1
2702 DFSToInstr.emplace_back(nullptr);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002703 // Note: We want ideal RPO traversal of the blocks, which is not quite the
2704 // same as dominator tree order, particularly with regard whether backedges
2705 // get visited first or second, given a block with multiple successors.
Davide Italiano7e274e02016-12-22 16:03:48 +00002706 // If we visit in the wrong order, we will end up performing N times as many
2707 // iterations.
Daniel Berlin6658cc92016-12-29 01:12:36 +00002708 // The dominator tree does guarantee that, for a given dom tree node, it's
2709 // parent must occur before it in the RPO ordering. Thus, we only need to sort
2710 // the siblings.
Davide Italiano7e274e02016-12-22 16:03:48 +00002711 ReversePostOrderTraversal<Function *> RPOT(&F);
Daniel Berlin6658cc92016-12-29 01:12:36 +00002712 unsigned Counter = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +00002713 for (auto &B : RPOT) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00002714 auto *Node = DT->getNode(B);
2715 assert(Node && "RPO and Dominator tree should have same reachability");
2716 RPOOrdering[Node] = ++Counter;
2717 }
2718 // Sort dominator tree children arrays into RPO.
2719 for (auto &B : RPOT) {
2720 auto *Node = DT->getNode(B);
2721 if (Node->getChildren().size() > 1)
2722 std::sort(Node->begin(), Node->end(),
Daniel Berlin2f72b192017-04-14 02:53:37 +00002723 [&](const DomTreeNode *A, const DomTreeNode *B) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00002724 return RPOOrdering[A] < RPOOrdering[B];
2725 });
2726 }
2727
2728 // Now a standard depth first ordering of the domtree is equivalent to RPO.
Daniel Berlinec9deb72017-04-18 17:06:11 +00002729 for (auto DTN : depth_first(DT->getRootNode())) {
2730 BasicBlock *B = DTN->getBlock();
Davide Italiano7e274e02016-12-22 16:03:48 +00002731 const auto &BlockRange = assignDFSNumbers(B, ICount);
2732 BlockInstRange.insert({B, BlockRange});
2733 ICount += BlockRange.second - BlockRange.first;
2734 }
2735
Daniel Berline0bd37e2016-12-29 22:15:12 +00002736 TouchedInstructions.resize(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00002737 // Ensure we don't end up resizing the expressionToClass map, as
2738 // that can be quite expensive. At most, we have one expression per
2739 // instruction.
Daniel Berline0bd37e2016-12-29 22:15:12 +00002740 ExpressionToClass.reserve(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00002741
2742 // Initialize the touched instructions to include the entry block.
2743 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
2744 TouchedInstructions.set(InstRange.first, InstRange.second);
2745 ReachableBlocks.insert(&F.getEntryBlock());
2746
2747 initializeCongruenceClasses(F);
Daniel Berlin06329a92017-03-18 15:41:40 +00002748 iterateTouchedInstructions();
Daniel Berlin589cecc2017-01-02 18:00:46 +00002749 verifyMemoryCongruency();
Daniel Berlin06329a92017-03-18 15:41:40 +00002750 verifyIterationSettled(F);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002751
Davide Italiano7e274e02016-12-22 16:03:48 +00002752 Changed |= eliminateInstructions(F);
2753
2754 // Delete all instructions marked for deletion.
2755 for (Instruction *ToErase : InstructionsToErase) {
2756 if (!ToErase->use_empty())
2757 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
2758
2759 ToErase->eraseFromParent();
2760 }
2761
2762 // Delete all unreachable blocks.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002763 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
2764 return !ReachableBlocks.count(&BB);
2765 };
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002766
2767 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
2768 DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
Daniel Berlin85f91b02016-12-26 20:06:58 +00002769 << " is unreachable\n");
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002770 deleteInstructionsInBlock(&BB);
2771 Changed = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00002772 }
2773
2774 cleanupTables();
2775 return Changed;
2776}
2777
Davide Italiano7e274e02016-12-22 16:03:48 +00002778// Return true if V is a value that will always be available (IE can
2779// be placed anywhere) in the function. We don't do globals here
2780// because they are often worse to put in place.
2781// TODO: Separate cost from availability
2782static bool alwaysAvailable(Value *V) {
2783 return isa<Constant>(V) || isa<Argument>(V);
2784}
2785
Davide Italiano7e274e02016-12-22 16:03:48 +00002786struct NewGVN::ValueDFS {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002787 int DFSIn = 0;
2788 int DFSOut = 0;
2789 int LocalNum = 0;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002790 // Only one of Def and U will be set.
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002791 // The bool in the Def tells us whether the Def is the stored value of a
2792 // store.
2793 PointerIntPair<Value *, 1, bool> Def;
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002794 Use *U = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00002795 bool operator<(const ValueDFS &Other) const {
2796 // It's not enough that any given field be less than - we have sets
2797 // of fields that need to be evaluated together to give a proper ordering.
2798 // For example, if you have;
2799 // DFS (1, 3)
2800 // Val 0
2801 // DFS (1, 2)
2802 // Val 50
2803 // We want the second to be less than the first, but if we just go field
2804 // by field, we will get to Val 0 < Val 50 and say the first is less than
2805 // the second. We only want it to be less than if the DFS orders are equal.
2806 //
2807 // Each LLVM instruction only produces one value, and thus the lowest-level
2808 // differentiator that really matters for the stack (and what we use as as a
2809 // replacement) is the local dfs number.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002810 // Everything else in the structure is instruction level, and only affects
2811 // the order in which we will replace operands of a given instruction.
Davide Italiano7e274e02016-12-22 16:03:48 +00002812 //
2813 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
2814 // the order of replacement of uses does not matter.
2815 // IE given,
2816 // a = 5
2817 // b = a + a
Daniel Berlin85f91b02016-12-26 20:06:58 +00002818 // When you hit b, you will have two valuedfs with the same dfsin, out, and
2819 // localnum.
Davide Italiano7e274e02016-12-22 16:03:48 +00002820 // The .val will be the same as well.
2821 // The .u's will be different.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002822 // You will replace both, and it does not matter what order you replace them
2823 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
2824 // operand 2).
2825 // Similarly for the case of same dfsin, dfsout, localnum, but different
2826 // .val's
Davide Italiano7e274e02016-12-22 16:03:48 +00002827 // a = 5
2828 // b = 6
2829 // c = a + b
Daniel Berlin85f91b02016-12-26 20:06:58 +00002830 // in c, we will a valuedfs for a, and one for b,with everything the same
2831 // but .val and .u.
Davide Italiano7e274e02016-12-22 16:03:48 +00002832 // It does not matter what order we replace these operands in.
2833 // You will always end up with the same IR, and this is guaranteed.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002834 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
2835 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
Davide Italiano7e274e02016-12-22 16:03:48 +00002836 Other.U);
2837 }
2838};
2839
Daniel Berlinc4796862017-01-27 02:37:11 +00002840// This function converts the set of members for a congruence class from values,
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002841// to sets of defs and uses with associated DFS info. The total number of
Daniel Berline3e69e12017-03-10 00:32:33 +00002842// reachable uses for each value is stored in UseCount, and instructions that
2843// seem
2844// dead (have no non-dead uses) are stored in ProbablyDead.
2845void NewGVN::convertClassToDFSOrdered(
Daniel Berlina8236562017-04-07 18:38:09 +00002846 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
Daniel Berline3e69e12017-03-10 00:32:33 +00002847 DenseMap<const Value *, unsigned int> &UseCounts,
Daniel Berlina8236562017-04-07 18:38:09 +00002848 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00002849 for (auto D : Dense) {
2850 // First add the value.
2851 BasicBlock *BB = getBlockForValue(D);
2852 // Constants are handled prior to ever calling this function, so
2853 // we should only be left with instructions as members.
Chandler Carruthee086762016-12-23 01:38:06 +00002854 assert(BB && "Should have figured out a basic block for value");
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002855 ValueDFS VDDef;
Daniel Berlinb66164c2017-01-14 00:24:23 +00002856 DomTreeNode *DomNode = DT->getNode(BB);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002857 VDDef.DFSIn = DomNode->getDFSNumIn();
2858 VDDef.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002859 // If it's a store, use the leader of the value operand, if it's always
2860 // available, or the value operand. TODO: We could do dominance checks to
2861 // find a dominating leader, but not worth it ATM.
Daniel Berlin26addef2017-01-20 21:04:30 +00002862 if (auto *SI = dyn_cast<StoreInst>(D)) {
Daniel Berlin808e3ff2017-01-31 22:31:56 +00002863 auto Leader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002864 if (alwaysAvailable(Leader)) {
2865 VDDef.Def.setPointer(Leader);
2866 } else {
2867 VDDef.Def.setPointer(SI->getValueOperand());
2868 VDDef.Def.setInt(true);
2869 }
Daniel Berlin26addef2017-01-20 21:04:30 +00002870 } else {
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002871 VDDef.Def.setPointer(D);
Daniel Berlin26addef2017-01-20 21:04:30 +00002872 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002873 assert(isa<Instruction>(D) &&
2874 "The dense set member should always be an instruction");
Daniel Berlin21279bd2017-04-06 18:52:58 +00002875 VDDef.LocalNum = InstrToDFSNum(D);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002876 DFSOrderedSet.emplace_back(VDDef);
Daniel Berline3e69e12017-03-10 00:32:33 +00002877 Instruction *Def = cast<Instruction>(D);
2878 unsigned int UseCount = 0;
Daniel Berlinb66164c2017-01-14 00:24:23 +00002879 // Now add the uses.
Daniel Berline3e69e12017-03-10 00:32:33 +00002880 for (auto &U : Def->uses()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002881 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
Daniel Berline3e69e12017-03-10 00:32:33 +00002882 // Don't try to replace into dead uses
2883 if (InstructionsToErase.count(I))
2884 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002885 ValueDFS VDUse;
Davide Italiano7e274e02016-12-22 16:03:48 +00002886 // Put the phi node uses in the incoming block.
2887 BasicBlock *IBlock;
2888 if (auto *P = dyn_cast<PHINode>(I)) {
2889 IBlock = P->getIncomingBlock(U);
2890 // Make phi node users appear last in the incoming block
2891 // they are from.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002892 VDUse.LocalNum = InstrDFS.size() + 1;
Davide Italiano7e274e02016-12-22 16:03:48 +00002893 } else {
2894 IBlock = I->getParent();
Daniel Berlin21279bd2017-04-06 18:52:58 +00002895 VDUse.LocalNum = InstrToDFSNum(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002896 }
Davide Italianoccbbc832017-01-26 00:42:42 +00002897
2898 // Skip uses in unreachable blocks, as we're going
2899 // to delete them.
2900 if (ReachableBlocks.count(IBlock) == 0)
2901 continue;
2902
Daniel Berlinb66164c2017-01-14 00:24:23 +00002903 DomTreeNode *DomNode = DT->getNode(IBlock);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002904 VDUse.DFSIn = DomNode->getDFSNumIn();
2905 VDUse.DFSOut = DomNode->getDFSNumOut();
2906 VDUse.U = &U;
Daniel Berline3e69e12017-03-10 00:32:33 +00002907 ++UseCount;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002908 DFSOrderedSet.emplace_back(VDUse);
Davide Italiano7e274e02016-12-22 16:03:48 +00002909 }
2910 }
Daniel Berline3e69e12017-03-10 00:32:33 +00002911
2912 // If there are no uses, it's probably dead (but it may have side-effects,
2913 // so not definitely dead. Otherwise, store the number of uses so we can
2914 // track if it becomes dead later).
2915 if (UseCount == 0)
2916 ProbablyDead.insert(Def);
2917 else
2918 UseCounts[Def] = UseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00002919 }
2920}
2921
Daniel Berlinc4796862017-01-27 02:37:11 +00002922// This function converts the set of members for a congruence class from values,
2923// to the set of defs for loads and stores, with associated DFS info.
Daniel Berline3e69e12017-03-10 00:32:33 +00002924void NewGVN::convertClassToLoadsAndStores(
Daniel Berlina8236562017-04-07 18:38:09 +00002925 const CongruenceClass &Dense,
2926 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
Daniel Berlinc4796862017-01-27 02:37:11 +00002927 for (auto D : Dense) {
2928 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
2929 continue;
2930
2931 BasicBlock *BB = getBlockForValue(D);
2932 ValueDFS VD;
2933 DomTreeNode *DomNode = DT->getNode(BB);
2934 VD.DFSIn = DomNode->getDFSNumIn();
2935 VD.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002936 VD.Def.setPointer(D);
Daniel Berlinc4796862017-01-27 02:37:11 +00002937
2938 // If it's an instruction, use the real local dfs number.
2939 if (auto *I = dyn_cast<Instruction>(D))
Daniel Berlin21279bd2017-04-06 18:52:58 +00002940 VD.LocalNum = InstrToDFSNum(I);
Daniel Berlinc4796862017-01-27 02:37:11 +00002941 else
2942 llvm_unreachable("Should have been an instruction");
2943
2944 LoadsAndStores.emplace_back(VD);
2945 }
2946}
2947
Davide Italiano7e274e02016-12-22 16:03:48 +00002948static void patchReplacementInstruction(Instruction *I, Value *Repl) {
Daniel Berlin4d547962017-02-12 23:24:45 +00002949 auto *ReplInst = dyn_cast<Instruction>(Repl);
Daniel Berlin86eab152017-02-12 22:25:20 +00002950 if (!ReplInst)
2951 return;
2952
Davide Italiano7e274e02016-12-22 16:03:48 +00002953 // Patch the replacement so that it is not more restrictive than the value
2954 // being replaced.
Daniel Berlin86eab152017-02-12 22:25:20 +00002955 // Note that if 'I' is a load being replaced by some operation,
2956 // for example, by an arithmetic operation, then andIRFlags()
2957 // would just erase all math flags from the original arithmetic
2958 // operation, which is clearly not wanted and not needed.
2959 if (!isa<LoadInst>(I))
2960 ReplInst->andIRFlags(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002961
Daniel Berlin86eab152017-02-12 22:25:20 +00002962 // FIXME: If both the original and replacement value are part of the
2963 // same control-flow region (meaning that the execution of one
2964 // guarantees the execution of the other), then we can combine the
2965 // noalias scopes here and do better than the general conservative
2966 // answer used in combineMetadata().
Davide Italiano7e274e02016-12-22 16:03:48 +00002967
Daniel Berlin86eab152017-02-12 22:25:20 +00002968 // In general, GVN unifies expressions over different control-flow
2969 // regions, and so we need a conservative combination of the noalias
2970 // scopes.
2971 static const unsigned KnownIDs[] = {
2972 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2973 LLVMContext::MD_noalias, LLVMContext::MD_range,
2974 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
2975 LLVMContext::MD_invariant_group};
2976 combineMetadata(ReplInst, I, KnownIDs);
Davide Italiano7e274e02016-12-22 16:03:48 +00002977}
2978
2979static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
2980 patchReplacementInstruction(I, Repl);
2981 I->replaceAllUsesWith(Repl);
2982}
2983
2984void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
2985 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
2986 ++NumGVNBlocksDeleted;
2987
Daniel Berline19f0e02017-01-30 17:06:55 +00002988 // Delete the instructions backwards, as it has a reduced likelihood of having
2989 // to update as many def-use and use-def chains. Start after the terminator.
2990 auto StartPoint = BB->rbegin();
2991 ++StartPoint;
2992 // Note that we explicitly recalculate BB->rend() on each iteration,
2993 // as it may change when we remove the first instruction.
2994 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
2995 Instruction &Inst = *I++;
2996 if (!Inst.use_empty())
2997 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
2998 if (isa<LandingPadInst>(Inst))
2999 continue;
3000
3001 Inst.eraseFromParent();
3002 ++NumGVNInstrDeleted;
3003 }
Daniel Berlina53a7222017-01-30 18:12:56 +00003004 // Now insert something that simplifycfg will turn into an unreachable.
3005 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3006 new StoreInst(UndefValue::get(Int8Ty),
3007 Constant::getNullValue(Int8Ty->getPointerTo()),
3008 BB->getTerminator());
Davide Italiano7e274e02016-12-22 16:03:48 +00003009}
3010
3011void NewGVN::markInstructionForDeletion(Instruction *I) {
3012 DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3013 InstructionsToErase.insert(I);
3014}
3015
3016void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3017
3018 DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3019 patchAndReplaceAllUsesWith(I, V);
3020 // We save the actual erasing to avoid invalidating memory
3021 // dependencies until we are done with everything.
3022 markInstructionForDeletion(I);
3023}
3024
3025namespace {
3026
3027// This is a stack that contains both the value and dfs info of where
3028// that value is valid.
3029class ValueDFSStack {
3030public:
3031 Value *back() const { return ValueStack.back(); }
3032 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3033
3034 void push_back(Value *V, int DFSIn, int DFSOut) {
Piotr Padlewski6c37d292016-12-28 23:24:02 +00003035 ValueStack.emplace_back(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00003036 DFSStack.emplace_back(DFSIn, DFSOut);
3037 }
3038 bool empty() const { return DFSStack.empty(); }
3039 bool isInScope(int DFSIn, int DFSOut) const {
3040 if (empty())
3041 return false;
3042 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3043 }
3044
3045 void popUntilDFSScope(int DFSIn, int DFSOut) {
3046
3047 // These two should always be in sync at this point.
3048 assert(ValueStack.size() == DFSStack.size() &&
3049 "Mismatch between ValueStack and DFSStack");
3050 while (
3051 !DFSStack.empty() &&
3052 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3053 DFSStack.pop_back();
3054 ValueStack.pop_back();
3055 }
3056 }
3057
3058private:
3059 SmallVector<Value *, 8> ValueStack;
3060 SmallVector<std::pair<int, int>, 8> DFSStack;
3061};
3062}
Daniel Berlin04443432017-01-07 03:23:47 +00003063
Davide Italiano7e274e02016-12-22 16:03:48 +00003064bool NewGVN::eliminateInstructions(Function &F) {
3065 // This is a non-standard eliminator. The normal way to eliminate is
3066 // to walk the dominator tree in order, keeping track of available
3067 // values, and eliminating them. However, this is mildly
3068 // pointless. It requires doing lookups on every instruction,
3069 // regardless of whether we will ever eliminate it. For
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003070 // instructions part of most singleton congruence classes, we know we
3071 // will never eliminate them.
Davide Italiano7e274e02016-12-22 16:03:48 +00003072
3073 // Instead, this eliminator looks at the congruence classes directly, sorts
3074 // them into a DFS ordering of the dominator tree, and then we just
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003075 // perform elimination straight on the sets by walking the congruence
Davide Italiano7e274e02016-12-22 16:03:48 +00003076 // class member uses in order, and eliminate the ones dominated by the
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003077 // last member. This is worst case O(E log E) where E = number of
3078 // instructions in a single congruence class. In theory, this is all
3079 // instructions. In practice, it is much faster, as most instructions are
3080 // either in singleton congruence classes or can't possibly be eliminated
3081 // anyway (if there are no overlapping DFS ranges in class).
Davide Italiano7e274e02016-12-22 16:03:48 +00003082 // When we find something not dominated, it becomes the new leader
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003083 // for elimination purposes.
3084 // TODO: If we wanted to be faster, We could remove any members with no
3085 // overlapping ranges while sorting, as we will never eliminate anything
3086 // with those members, as they don't dominate anything else in our set.
3087
Davide Italiano7e274e02016-12-22 16:03:48 +00003088 bool AnythingReplaced = false;
3089
3090 // Since we are going to walk the domtree anyway, and we can't guarantee the
3091 // DFS numbers are updated, we compute some ourselves.
3092 DT->updateDFSNumbers();
3093
3094 for (auto &B : F) {
3095 if (!ReachableBlocks.count(&B)) {
3096 for (const auto S : successors(&B)) {
3097 for (auto II = S->begin(); isa<PHINode>(II); ++II) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00003098 auto &Phi = cast<PHINode>(*II);
Davide Italiano7e274e02016-12-22 16:03:48 +00003099 DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
3100 << getBlockName(&B)
3101 << " with undef due to it being unreachable\n");
3102 for (auto &Operand : Phi.incoming_values())
3103 if (Phi.getIncomingBlock(Operand) == &B)
3104 Operand.set(UndefValue::get(Phi.getType()));
3105 }
3106 }
3107 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003108 }
3109
Daniel Berline3e69e12017-03-10 00:32:33 +00003110 // Map to store the use counts
3111 DenseMap<const Value *, unsigned int> UseCounts;
Daniel Berlin4d547962017-02-12 23:24:45 +00003112 for (CongruenceClass *CC : reverse(CongruenceClasses)) {
Daniel Berlinc4796862017-01-27 02:37:11 +00003113 // Track the equivalent store info so we can decide whether to try
3114 // dead store elimination.
3115 SmallVector<ValueDFS, 8> PossibleDeadStores;
Daniel Berline3e69e12017-03-10 00:32:33 +00003116 SmallPtrSet<Instruction *, 8> ProbablyDead;
Daniel Berlina8236562017-04-07 18:38:09 +00003117 if (CC->isDead() || CC->empty())
Davide Italiano7e274e02016-12-22 16:03:48 +00003118 continue;
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003119 // Everything still in the TOP class is unreachable or dead.
3120 if (CC == TOPClass) {
Daniel Berlinb79f5362017-02-11 12:48:50 +00003121#ifndef NDEBUG
Daniel Berlina8236562017-04-07 18:38:09 +00003122 for (auto M : *CC)
Daniel Berlinb79f5362017-02-11 12:48:50 +00003123 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3124 InstructionsToErase.count(cast<Instruction>(M))) &&
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003125 "Everything in TOP should be unreachable or dead at this "
Daniel Berlinb79f5362017-02-11 12:48:50 +00003126 "point");
3127#endif
3128 continue;
3129 }
3130
Daniel Berlina8236562017-04-07 18:38:09 +00003131 assert(CC->getLeader() && "We should have had a leader");
Davide Italiano7e274e02016-12-22 16:03:48 +00003132 // If this is a leader that is always available, and it's a
3133 // constant or has no equivalences, just replace everything with
3134 // it. We then update the congruence class with whatever members
3135 // are left.
Daniel Berlina8236562017-04-07 18:38:09 +00003136 Value *Leader =
3137 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlin26addef2017-01-20 21:04:30 +00003138 if (alwaysAvailable(Leader)) {
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003139 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003140 for (auto M : *CC) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003141 Value *Member = M;
Davide Italiano7e274e02016-12-22 16:03:48 +00003142 // Void things have no uses we can replace.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003143 if (Member == Leader || !isa<Instruction>(Member) ||
3144 Member->getType()->isVoidTy()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003145 MembersLeft.insert(Member);
3146 continue;
3147 }
Daniel Berlin26addef2017-01-20 21:04:30 +00003148 DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " << *Member
3149 << "\n");
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003150 auto *I = cast<Instruction>(Member);
3151 assert(Leader != I && "About to accidentally remove our leader");
3152 replaceInstruction(I, Leader);
3153 AnythingReplaced = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00003154 }
Daniel Berlina8236562017-04-07 18:38:09 +00003155 CC->swap(MembersLeft);
Davide Italiano7e274e02016-12-22 16:03:48 +00003156 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00003157 DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3158 << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003159 // If this is a singleton, we can skip it.
Daniel Berlina8236562017-04-07 18:38:09 +00003160 if (CC->size() != 1) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003161 // This is a stack because equality replacement/etc may place
3162 // constants in the middle of the member list, and we want to use
3163 // those constant values in preference to the current leader, over
3164 // the scope of those constants.
3165 ValueDFSStack EliminationStack;
3166
3167 // Convert the members to DFS ordered sets and then merge them.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003168 SmallVector<ValueDFS, 8> DFSOrderedSet;
Daniel Berlina8236562017-04-07 18:38:09 +00003169 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
Davide Italiano7e274e02016-12-22 16:03:48 +00003170
3171 // Sort the whole thing.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003172 std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003173 for (auto &VD : DFSOrderedSet) {
3174 int MemberDFSIn = VD.DFSIn;
3175 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003176 Value *Def = VD.Def.getPointer();
3177 bool FromStore = VD.Def.getInt();
Daniel Berline3e69e12017-03-10 00:32:33 +00003178 Use *U = VD.U;
Daniel Berlinc4796862017-01-27 02:37:11 +00003179 // We ignore void things because we can't get a value from them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003180 if (Def && Def->getType()->isVoidTy())
Daniel Berlinc4796862017-01-27 02:37:11 +00003181 continue;
Davide Italiano7e274e02016-12-22 16:03:48 +00003182
3183 if (EliminationStack.empty()) {
3184 DEBUG(dbgs() << "Elimination Stack is empty\n");
3185 } else {
3186 DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3187 << EliminationStack.dfs_back().first << ","
3188 << EliminationStack.dfs_back().second << ")\n");
3189 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003190
3191 DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3192 << MemberDFSOut << ")\n");
3193 // First, we see if we are out of scope or empty. If so,
3194 // and there equivalences, we try to replace the top of
3195 // stack with equivalences (if it's on the stack, it must
3196 // not have been eliminated yet).
3197 // Then we synchronize to our current scope, by
3198 // popping until we are back within a DFS scope that
3199 // dominates the current member.
3200 // Then, what happens depends on a few factors
3201 // If the stack is now empty, we need to push
3202 // If we have a constant or a local equivalence we want to
3203 // start using, we also push.
3204 // Otherwise, we walk along, processing members who are
3205 // dominated by this scope, and eliminate them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003206 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003207 bool OutOfScope =
3208 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3209
3210 if (OutOfScope || ShouldPush) {
3211 // Sync to our current scope.
3212 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
Daniel Berline3e69e12017-03-10 00:32:33 +00003213 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003214 if (ShouldPush) {
Daniel Berline3e69e12017-03-10 00:32:33 +00003215 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
Davide Italiano7e274e02016-12-22 16:03:48 +00003216 }
3217 }
3218
Daniel Berline3e69e12017-03-10 00:32:33 +00003219 // Skip the Def's, we only want to eliminate on their uses. But mark
3220 // dominated defs as dead.
3221 if (Def) {
3222 // For anything in this case, what and how we value number
3223 // guarantees that any side-effets that would have occurred (ie
3224 // throwing, etc) can be proven to either still occur (because it's
3225 // dominated by something that has the same side-effects), or never
3226 // occur. Otherwise, we would not have been able to prove it value
3227 // equivalent to something else. For these things, we can just mark
3228 // it all dead. Note that this is different from the "ProbablyDead"
3229 // set, which may not be dominated by anything, and thus, are only
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003230 // easy to prove dead if they are also side-effect free. Note that
3231 // because stores are put in terms of the stored value, we skip
3232 // stored values here. If the stored value is really dead, it will
3233 // still be marked for deletion when we process it in its own class.
Daniel Berline3e69e12017-03-10 00:32:33 +00003234 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003235 isa<Instruction>(Def) && !FromStore)
Daniel Berline3e69e12017-03-10 00:32:33 +00003236 markInstructionForDeletion(cast<Instruction>(Def));
3237 continue;
3238 }
3239 // At this point, we know it is a Use we are trying to possibly
3240 // replace.
3241
3242 assert(isa<Instruction>(U->get()) &&
3243 "Current def should have been an instruction");
3244 assert(isa<Instruction>(U->getUser()) &&
3245 "Current user should have been an instruction");
3246
3247 // If the thing we are replacing into is already marked to be dead,
3248 // this use is dead. Note that this is true regardless of whether
3249 // we have anything dominating the use or not. We do this here
3250 // because we are already walking all the uses anyway.
3251 Instruction *InstUse = cast<Instruction>(U->getUser());
3252 if (InstructionsToErase.count(InstUse)) {
3253 auto &UseCount = UseCounts[U->get()];
3254 if (--UseCount == 0) {
3255 ProbablyDead.insert(cast<Instruction>(U->get()));
3256 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003257 }
3258
Davide Italiano7e274e02016-12-22 16:03:48 +00003259 // If we get to this point, and the stack is empty we must have a use
Daniel Berline3e69e12017-03-10 00:32:33 +00003260 // with nothing we can use to eliminate this use, so just skip it.
Davide Italiano7e274e02016-12-22 16:03:48 +00003261 if (EliminationStack.empty())
3262 continue;
3263
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003264 Value *DominatingLeader = EliminationStack.back();
Davide Italiano7e274e02016-12-22 16:03:48 +00003265
Daniel Berlind92e7f92017-01-07 00:01:42 +00003266 // Don't replace our existing users with ourselves.
Daniel Berline3e69e12017-03-10 00:32:33 +00003267 if (U->get() == DominatingLeader)
Davide Italiano7e274e02016-12-22 16:03:48 +00003268 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003269 DEBUG(dbgs() << "Found replacement " << *DominatingLeader << " for "
Daniel Berline3e69e12017-03-10 00:32:33 +00003270 << *U->get() << " in " << *(U->getUser()) << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003271
3272 // If we replaced something in an instruction, handle the patching of
Daniel Berline3e69e12017-03-10 00:32:33 +00003273 // metadata. Skip this if we are replacing predicateinfo with its
3274 // original operand, as we already know we can just drop it.
3275 auto *ReplacedInst = cast<Instruction>(U->get());
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003276 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
3277 if (!PI || DominatingLeader != PI->OriginalOp)
3278 patchReplacementInstruction(ReplacedInst, DominatingLeader);
Daniel Berline3e69e12017-03-10 00:32:33 +00003279 U->set(DominatingLeader);
3280 // This is now a use of the dominating leader, which means if the
3281 // dominating leader was dead, it's now live!
3282 auto &LeaderUseCount = UseCounts[DominatingLeader];
3283 // It's about to be alive again.
3284 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
3285 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
3286 ++LeaderUseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00003287 AnythingReplaced = true;
3288 }
3289 }
3290 }
3291
Daniel Berline3e69e12017-03-10 00:32:33 +00003292 // At this point, anything still in the ProbablyDead set is actually dead if
3293 // would be trivially dead.
3294 for (auto *I : ProbablyDead)
3295 if (wouldInstructionBeTriviallyDead(I))
3296 markInstructionForDeletion(I);
3297
Davide Italiano7e274e02016-12-22 16:03:48 +00003298 // Cleanup the congruence class.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003299 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003300 for (auto *Member : *CC)
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003301 if (!isa<Instruction>(Member) ||
3302 !InstructionsToErase.count(cast<Instruction>(Member)))
Davide Italiano7e274e02016-12-22 16:03:48 +00003303 MembersLeft.insert(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003304 CC->swap(MembersLeft);
Daniel Berlinc4796862017-01-27 02:37:11 +00003305
3306 // If we have possible dead stores to look at, try to eliminate them.
Daniel Berlina8236562017-04-07 18:38:09 +00003307 if (CC->getStoreCount() > 0) {
3308 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
Daniel Berlinc4796862017-01-27 02:37:11 +00003309 std::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
3310 ValueDFSStack EliminationStack;
3311 for (auto &VD : PossibleDeadStores) {
3312 int MemberDFSIn = VD.DFSIn;
3313 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003314 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
Daniel Berlinc4796862017-01-27 02:37:11 +00003315 if (EliminationStack.empty() ||
3316 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
3317 // Sync to our current scope.
3318 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3319 if (EliminationStack.empty()) {
3320 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
3321 continue;
3322 }
3323 }
3324 // We already did load elimination, so nothing to do here.
3325 if (isa<LoadInst>(Member))
3326 continue;
3327 assert(!EliminationStack.empty());
3328 Instruction *Leader = cast<Instruction>(EliminationStack.back());
Richard Trieu0b79aa32017-01-27 06:06:05 +00003329 (void)Leader;
Daniel Berlinc4796862017-01-27 02:37:11 +00003330 assert(DT->dominates(Leader->getParent(), Member->getParent()));
3331 // Member is dominater by Leader, and thus dead
3332 DEBUG(dbgs() << "Marking dead store " << *Member
3333 << " that is dominated by " << *Leader << "\n");
3334 markInstructionForDeletion(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003335 CC->erase(Member);
Daniel Berlinc4796862017-01-27 02:37:11 +00003336 ++NumGVNDeadStores;
3337 }
3338 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003339 }
3340
3341 return AnythingReplaced;
3342}
Daniel Berlin1c087672017-02-11 15:07:01 +00003343
3344// This function provides global ranking of operations so that we can place them
3345// in a canonical order. Note that rank alone is not necessarily enough for a
3346// complete ordering, as constants all have the same rank. However, generally,
3347// we will simplify an operation with all constants so that it doesn't matter
3348// what order they appear in.
3349unsigned int NewGVN::getRank(const Value *V) const {
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003350 // Prefer undef to anything else
3351 if (isa<UndefValue>(V))
Daniel Berlin1c087672017-02-11 15:07:01 +00003352 return 0;
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003353 if (isa<Constant>(V))
3354 return 1;
Daniel Berlin1c087672017-02-11 15:07:01 +00003355 else if (auto *A = dyn_cast<Argument>(V))
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003356 return 2 + A->getArgNo();
Daniel Berlin1c087672017-02-11 15:07:01 +00003357
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003358 // Need to shift the instruction DFS by number of arguments + 3 to account for
Daniel Berlin1c087672017-02-11 15:07:01 +00003359 // the constant and argument ranking above.
Daniel Berlin21279bd2017-04-06 18:52:58 +00003360 unsigned Result = InstrToDFSNum(V);
Daniel Berlin1c087672017-02-11 15:07:01 +00003361 if (Result > 0)
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003362 return 3 + NumFuncArgs + Result;
Daniel Berlin1c087672017-02-11 15:07:01 +00003363 // Unreachable or something else, just return a really large number.
3364 return ~0;
3365}
3366
3367// This is a function that says whether two commutative operations should
3368// have their order swapped when canonicalizing.
3369bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
3370 // Because we only care about a total ordering, and don't rewrite expressions
3371 // in this order, we order by rank, which will give a strict weak ordering to
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003372 // everything but constants, and then we order by pointer address.
Daniel Berlinf7d95802017-02-18 23:06:50 +00003373 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
Daniel Berlin1c087672017-02-11 15:07:01 +00003374}
Daniel Berlin64e68992017-03-12 04:46:45 +00003375
3376class NewGVNLegacyPass : public FunctionPass {
3377public:
3378 static char ID; // Pass identification, replacement for typeid.
3379 NewGVNLegacyPass() : FunctionPass(ID) {
3380 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3381 }
3382 bool runOnFunction(Function &F) override;
3383
3384private:
3385 void getAnalysisUsage(AnalysisUsage &AU) const override {
3386 AU.addRequired<AssumptionCacheTracker>();
3387 AU.addRequired<DominatorTreeWrapperPass>();
3388 AU.addRequired<TargetLibraryInfoWrapperPass>();
3389 AU.addRequired<MemorySSAWrapperPass>();
3390 AU.addRequired<AAResultsWrapperPass>();
3391 AU.addPreserved<DominatorTreeWrapperPass>();
3392 AU.addPreserved<GlobalsAAWrapperPass>();
3393 }
3394};
3395
3396bool NewGVNLegacyPass::runOnFunction(Function &F) {
3397 if (skipFunction(F))
3398 return false;
3399 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3400 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3401 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
3402 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
3403 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
3404 F.getParent()->getDataLayout())
3405 .runGVN();
3406}
3407
3408INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
3409 false, false)
3410INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3411INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3412INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3413INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3414INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3415INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3416INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
3417 false)
3418
3419char NewGVNLegacyPass::ID = 0;
3420
3421// createGVNPass - The public interface to this file.
3422FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
3423
3424PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
3425 // Apparently the order in which we get these results matter for
3426 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
3427 // the same order here, just in case.
3428 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3429 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3430 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3431 auto &AA = AM.getResult<AAManager>(F);
3432 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
3433 bool Changed =
3434 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
3435 .runGVN();
3436 if (!Changed)
3437 return PreservedAnalyses::all();
3438 PreservedAnalyses PA;
3439 PA.preserve<DominatorTreeAnalysis>();
3440 PA.preserve<GlobalsAA>();
3441 return PA;
3442}