Shuxin Yang | c94c3bb | 2012-11-13 00:08:49 +0000 | [diff] [blame] | 1 | //===- Reassociate.cpp - Reassociate binary expressions -------------------===// |
Misha Brukman | b1c9317 | 2005-04-21 23:48:37 +0000 | [diff] [blame] | 2 | // |
John Criswell | 482202a | 2003-10-20 19:43:21 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
Chris Lattner | f3ebc3f | 2007-12-29 20:36:04 +0000 | [diff] [blame] | 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
Misha Brukman | b1c9317 | 2005-04-21 23:48:37 +0000 | [diff] [blame] | 7 | // |
John Criswell | 482202a | 2003-10-20 19:43:21 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 9 | // |
| 10 | // This pass reassociates commutative expressions in an order that is designed |
Chris Lattner | a552683 | 2010-01-01 00:04:26 +0000 | [diff] [blame] | 11 | // to promote better constant propagation, GCSE, LICM, PRE, etc. |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 12 | // |
| 13 | // For example: 4 + (x + 5) -> x + (4 + 5) |
| 14 | // |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 15 | // In the implementation of this algorithm, constants are assigned rank = 0, |
| 16 | // function arguments are rank = 1, and other values are assigned ranks |
| 17 | // corresponding to the reverse post order traversal of current function |
| 18 | // (starting at 2), which effectively gives values in deep loops higher rank |
| 19 | // than values not in loops. |
| 20 | // |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 23 | #define DEBUG_TYPE "reassociate" |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 24 | #include "llvm/Transforms/Scalar.h" |
Chandler Carruth | ed0881b | 2012-12-03 16:50:05 +0000 | [diff] [blame] | 25 | #include "llvm/ADT/DenseMap.h" |
| 26 | #include "llvm/ADT/PostOrderIterator.h" |
| 27 | #include "llvm/ADT/STLExtras.h" |
| 28 | #include "llvm/ADT/SetVector.h" |
| 29 | #include "llvm/ADT/Statistic.h" |
| 30 | #include "llvm/Assembly/Writer.h" |
Chandler Carruth | 9fb823b | 2013-01-02 11:36:10 +0000 | [diff] [blame] | 31 | #include "llvm/IR/Constants.h" |
| 32 | #include "llvm/IR/DerivedTypes.h" |
| 33 | #include "llvm/IR/Function.h" |
| 34 | #include "llvm/IR/IRBuilder.h" |
| 35 | #include "llvm/IR/Instructions.h" |
| 36 | #include "llvm/IR/IntrinsicInst.h" |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 37 | #include "llvm/Pass.h" |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 38 | #include "llvm/Support/CFG.h" |
Reid Spencer | 7c16caa | 2004-09-01 22:55:40 +0000 | [diff] [blame] | 39 | #include "llvm/Support/Debug.h" |
Chris Lattner | f72ce6e | 2009-03-31 22:13:29 +0000 | [diff] [blame] | 40 | #include "llvm/Support/ValueHandle.h" |
Chris Lattner | b25de3f | 2009-08-23 04:37:46 +0000 | [diff] [blame] | 41 | #include "llvm/Support/raw_ostream.h" |
Chandler Carruth | ed0881b | 2012-12-03 16:50:05 +0000 | [diff] [blame] | 42 | #include "llvm/Transforms/Utils/Local.h" |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 43 | #include <algorithm> |
Chris Lattner | 49525f8 | 2004-01-09 06:02:20 +0000 | [diff] [blame] | 44 | using namespace llvm; |
Brian Gaeke | 960707c | 2003-11-11 22:41:34 +0000 | [diff] [blame] | 45 | |
Chris Lattner | 79a42ac | 2006-12-19 21:40:18 +0000 | [diff] [blame] | 46 | STATISTIC(NumChanged, "Number of insts reassociated"); |
| 47 | STATISTIC(NumAnnihil, "Number of expr tree annihilated"); |
| 48 | STATISTIC(NumFactor , "Number of multiplies factored"); |
Chris Lattner | bf3a099 | 2002-10-01 22:38:41 +0000 | [diff] [blame] | 49 | |
Chris Lattner | 79a42ac | 2006-12-19 21:40:18 +0000 | [diff] [blame] | 50 | namespace { |
Chris Lattner | 2dd09db | 2009-09-02 06:11:42 +0000 | [diff] [blame] | 51 | struct ValueEntry { |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 52 | unsigned Rank; |
| 53 | Value *Op; |
| 54 | ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} |
| 55 | }; |
| 56 | inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { |
| 57 | return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. |
| 58 | } |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 59 | } |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 60 | |
Devang Patel | 702f45d | 2008-11-21 21:00:20 +0000 | [diff] [blame] | 61 | #ifndef NDEBUG |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 62 | /// PrintOps - Print out the expression identified in the Ops list. |
| 63 | /// |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 64 | static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 65 | Module *M = I->getParent()->getParent()->getParent(); |
David Greene | d17c391 | 2010-01-05 01:27:24 +0000 | [diff] [blame] | 66 | dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " |
Chris Lattner | bc1512c | 2009-12-31 07:17:37 +0000 | [diff] [blame] | 67 | << *Ops[0].Op->getType() << '\t'; |
Chris Lattner | 57693dd | 2008-08-19 04:45:19 +0000 | [diff] [blame] | 68 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
David Greene | d17c391 | 2010-01-05 01:27:24 +0000 | [diff] [blame] | 69 | dbgs() << "[ "; |
| 70 | WriteAsOperand(dbgs(), Ops[i].Op, false, M); |
| 71 | dbgs() << ", #" << Ops[i].Rank << "] "; |
Chris Lattner | 57693dd | 2008-08-19 04:45:19 +0000 | [diff] [blame] | 72 | } |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 73 | } |
Devang Patel | cb181bb | 2008-11-21 20:00:59 +0000 | [diff] [blame] | 74 | #endif |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 75 | |
Dan Gohman | d78c400 | 2008-05-13 00:00:25 +0000 | [diff] [blame] | 76 | namespace { |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 77 | /// \brief Utility class representing a base and exponent pair which form one |
| 78 | /// factor of some product. |
| 79 | struct Factor { |
| 80 | Value *Base; |
| 81 | unsigned Power; |
| 82 | |
| 83 | Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} |
| 84 | |
| 85 | /// \brief Sort factors by their Base. |
| 86 | struct BaseSorter { |
| 87 | bool operator()(const Factor &LHS, const Factor &RHS) { |
| 88 | return LHS.Base < RHS.Base; |
| 89 | } |
| 90 | }; |
| 91 | |
| 92 | /// \brief Compare factors for equal bases. |
| 93 | struct BaseEqual { |
| 94 | bool operator()(const Factor &LHS, const Factor &RHS) { |
| 95 | return LHS.Base == RHS.Base; |
| 96 | } |
| 97 | }; |
| 98 | |
| 99 | /// \brief Sort factors in descending order by their power. |
| 100 | struct PowerDescendingSorter { |
| 101 | bool operator()(const Factor &LHS, const Factor &RHS) { |
| 102 | return LHS.Power > RHS.Power; |
| 103 | } |
| 104 | }; |
| 105 | |
| 106 | /// \brief Compare factors for equal powers. |
| 107 | struct PowerEqual { |
| 108 | bool operator()(const Factor &LHS, const Factor &RHS) { |
| 109 | return LHS.Power == RHS.Power; |
| 110 | } |
| 111 | }; |
| 112 | }; |
Shuxin Yang | 7b0c94e | 2013-03-30 02:15:01 +0000 | [diff] [blame] | 113 | |
| 114 | /// Utility class representing a non-constant Xor-operand. We classify |
| 115 | /// non-constant Xor-Operands into two categories: |
| 116 | /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 |
| 117 | /// C2) |
| 118 | /// C2.1) The operand is in the form of "X | C", where C is a non-zero |
| 119 | /// constant. |
| 120 | /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this |
| 121 | /// operand as "E | 0" |
| 122 | class XorOpnd { |
| 123 | public: |
| 124 | XorOpnd(Value *V); |
| 125 | const XorOpnd &operator=(const XorOpnd &That); |
| 126 | |
| 127 | bool isInvalid() const { return SymbolicPart == 0; } |
| 128 | bool isOrExpr() const { return isOr; } |
| 129 | Value *getValue() const { return OrigVal; } |
| 130 | Value *getSymbolicPart() const { return SymbolicPart; } |
| 131 | unsigned getSymbolicRank() const { return SymbolicRank; } |
| 132 | const APInt &getConstPart() const { return ConstPart; } |
| 133 | |
| 134 | void Invalidate() { SymbolicPart = OrigVal = 0; } |
| 135 | void setSymbolicRank(unsigned R) { SymbolicRank = R; } |
| 136 | |
| 137 | // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. |
| 138 | // The purpose is twofold: |
| 139 | // 1) Cluster together the operands sharing the same symbolic-value. |
| 140 | // 2) Operand having smaller symbolic-value-rank is permuted earlier, which |
| 141 | // could potentially shorten crital path, and expose more loop-invariants. |
| 142 | // Note that values' rank are basically defined in RPO order (FIXME). |
| 143 | // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier |
| 144 | // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", |
| 145 | // "z" in the order of X-Y-Z is better than any other orders. |
| 146 | struct PtrSortFunctor { |
| 147 | bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { |
| 148 | return LHS->getSymbolicRank() < RHS->getSymbolicRank(); |
| 149 | } |
| 150 | }; |
| 151 | private: |
| 152 | Value *OrigVal; |
| 153 | Value *SymbolicPart; |
| 154 | APInt ConstPart; |
| 155 | unsigned SymbolicRank; |
| 156 | bool isOr; |
| 157 | }; |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 158 | } |
| 159 | |
| 160 | namespace { |
Chris Lattner | 2dd09db | 2009-09-02 06:11:42 +0000 | [diff] [blame] | 161 | class Reassociate : public FunctionPass { |
Chris Lattner | 17229a7 | 2010-01-01 00:01:34 +0000 | [diff] [blame] | 162 | DenseMap<BasicBlock*, unsigned> RankMap; |
Craig Topper | 6e80c28 | 2012-03-26 06:58:25 +0000 | [diff] [blame] | 163 | DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; |
Shuxin Yang | c94c3bb | 2012-11-13 00:08:49 +0000 | [diff] [blame] | 164 | SetVector<AssertingVH<Instruction> > RedoInsts; |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 165 | bool MadeChange; |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 166 | public: |
Nick Lewycky | e7da2d6 | 2007-05-06 13:37:16 +0000 | [diff] [blame] | 167 | static char ID; // Pass identification, replacement for typeid |
Owen Anderson | 6c18d1a | 2010-10-19 17:21:58 +0000 | [diff] [blame] | 168 | Reassociate() : FunctionPass(ID) { |
| 169 | initializeReassociatePass(*PassRegistry::getPassRegistry()); |
| 170 | } |
Devang Patel | 09f162c | 2007-05-01 21:15:47 +0000 | [diff] [blame] | 171 | |
Chris Lattner | 113f4f4 | 2002-06-25 16:13:24 +0000 | [diff] [blame] | 172 | bool runOnFunction(Function &F); |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 173 | |
| 174 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
Chris Lattner | 820d971 | 2002-10-21 20:00:28 +0000 | [diff] [blame] | 175 | AU.setPreservesCFG(); |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 176 | } |
| 177 | private: |
Chris Lattner | 113f4f4 | 2002-06-25 16:13:24 +0000 | [diff] [blame] | 178 | void BuildRankMap(Function &F); |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 179 | unsigned getRank(Value *V); |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 180 | void ReassociateExpression(BinaryOperator *I); |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 181 | void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 182 | Value *OptimizeExpression(BinaryOperator *I, |
| 183 | SmallVectorImpl<ValueEntry> &Ops); |
| 184 | Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); |
Shuxin Yang | 7b0c94e | 2013-03-30 02:15:01 +0000 | [diff] [blame] | 185 | Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); |
| 186 | bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, |
| 187 | Value *&Res); |
| 188 | bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, |
| 189 | APInt &ConstOpnd, Value *&Res); |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 190 | bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, |
| 191 | SmallVectorImpl<Factor> &Factors); |
| 192 | Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, |
| 193 | SmallVectorImpl<Factor> &Factors); |
| 194 | Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 195 | Value *RemoveFactorFromExpression(Value *V, Value *Factor); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 196 | void EraseInst(Instruction *I); |
| 197 | void OptimizeInst(Instruction *I); |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 198 | }; |
| 199 | } |
| 200 | |
Shuxin Yang | 7b0c94e | 2013-03-30 02:15:01 +0000 | [diff] [blame] | 201 | XorOpnd::XorOpnd(Value *V) { |
| 202 | assert(!isa<Constant>(V) && "No constant"); |
| 203 | OrigVal = V; |
| 204 | Instruction *I = dyn_cast<Instruction>(V); |
| 205 | SymbolicRank = 0; |
| 206 | |
| 207 | if (I && (I->getOpcode() == Instruction::Or || |
| 208 | I->getOpcode() == Instruction::And)) { |
| 209 | Value *V0 = I->getOperand(0); |
| 210 | Value *V1 = I->getOperand(1); |
| 211 | if (isa<ConstantInt>(V0)) |
| 212 | std::swap(V0, V1); |
| 213 | |
| 214 | if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { |
| 215 | ConstPart = C->getValue(); |
| 216 | SymbolicPart = V0; |
| 217 | isOr = (I->getOpcode() == Instruction::Or); |
| 218 | return; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | // view the operand as "V | 0" |
| 223 | SymbolicPart = V; |
| 224 | ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); |
| 225 | isOr = true; |
| 226 | } |
| 227 | |
| 228 | const XorOpnd &XorOpnd::operator=(const XorOpnd &That) { |
| 229 | OrigVal = That.OrigVal; |
| 230 | SymbolicPart = That.SymbolicPart; |
| 231 | ConstPart = That.ConstPart; |
| 232 | SymbolicRank = That.SymbolicRank; |
| 233 | isOr = That.isOr; |
| 234 | return *this; |
| 235 | } |
| 236 | |
Dan Gohman | d78c400 | 2008-05-13 00:00:25 +0000 | [diff] [blame] | 237 | char Reassociate::ID = 0; |
Owen Anderson | a57b97e | 2010-07-21 22:09:45 +0000 | [diff] [blame] | 238 | INITIALIZE_PASS(Reassociate, "reassociate", |
Owen Anderson | df7a4f2 | 2010-10-07 22:25:06 +0000 | [diff] [blame] | 239 | "Reassociate expressions", false, false) |
Dan Gohman | d78c400 | 2008-05-13 00:00:25 +0000 | [diff] [blame] | 240 | |
Brian Gaeke | 960707c | 2003-11-11 22:41:34 +0000 | [diff] [blame] | 241 | // Public interface to the Reassociate pass |
Chris Lattner | 49525f8 | 2004-01-09 06:02:20 +0000 | [diff] [blame] | 242 | FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 243 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 244 | /// isReassociableOp - Return true if V is an instruction of the specified |
| 245 | /// opcode and if it only has one use. |
| 246 | static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { |
| 247 | if (V->hasOneUse() && isa<Instruction>(V) && |
| 248 | cast<Instruction>(V)->getOpcode() == Opcode) |
| 249 | return cast<BinaryOperator>(V); |
| 250 | return 0; |
| 251 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 252 | |
Chris Lattner | 9f284e0 | 2005-05-08 20:57:04 +0000 | [diff] [blame] | 253 | static bool isUnmovableInstruction(Instruction *I) { |
| 254 | if (I->getOpcode() == Instruction::PHI || |
Bill Wendling | fa0ebcd | 2012-05-04 04:22:32 +0000 | [diff] [blame] | 255 | I->getOpcode() == Instruction::LandingPad || |
Chris Lattner | 9f284e0 | 2005-05-08 20:57:04 +0000 | [diff] [blame] | 256 | I->getOpcode() == Instruction::Alloca || |
| 257 | I->getOpcode() == Instruction::Load || |
Chris Lattner | 9f284e0 | 2005-05-08 20:57:04 +0000 | [diff] [blame] | 258 | I->getOpcode() == Instruction::Invoke || |
Dale Johannesen | fb1caf3 | 2009-03-06 01:41:59 +0000 | [diff] [blame] | 259 | (I->getOpcode() == Instruction::Call && |
| 260 | !isa<DbgInfoIntrinsic>(I)) || |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 261 | I->getOpcode() == Instruction::UDiv || |
Reid Spencer | 7e80b0b | 2006-10-26 06:15:43 +0000 | [diff] [blame] | 262 | I->getOpcode() == Instruction::SDiv || |
| 263 | I->getOpcode() == Instruction::FDiv || |
Reid Spencer | 7eb55b3 | 2006-11-02 01:53:59 +0000 | [diff] [blame] | 264 | I->getOpcode() == Instruction::URem || |
| 265 | I->getOpcode() == Instruction::SRem || |
| 266 | I->getOpcode() == Instruction::FRem) |
Chris Lattner | 9f284e0 | 2005-05-08 20:57:04 +0000 | [diff] [blame] | 267 | return true; |
| 268 | return false; |
| 269 | } |
| 270 | |
Chris Lattner | 113f4f4 | 2002-06-25 16:13:24 +0000 | [diff] [blame] | 271 | void Reassociate::BuildRankMap(Function &F) { |
Chris Lattner | 58c7eb6 | 2003-08-12 20:14:27 +0000 | [diff] [blame] | 272 | unsigned i = 2; |
Chris Lattner | 8ac196d | 2003-08-13 16:16:26 +0000 | [diff] [blame] | 273 | |
| 274 | // Assign distinct ranks to function arguments |
Chris Lattner | 531f9e9 | 2005-03-15 04:54:21 +0000 | [diff] [blame] | 275 | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) |
Chris Lattner | f72ce6e | 2009-03-31 22:13:29 +0000 | [diff] [blame] | 276 | ValueRankMap[&*I] = ++i; |
Chris Lattner | 8ac196d | 2003-08-13 16:16:26 +0000 | [diff] [blame] | 277 | |
Chris Lattner | 113f4f4 | 2002-06-25 16:13:24 +0000 | [diff] [blame] | 278 | ReversePostOrderTraversal<Function*> RPOT(&F); |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 279 | for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), |
Chris Lattner | 9f284e0 | 2005-05-08 20:57:04 +0000 | [diff] [blame] | 280 | E = RPOT.end(); I != E; ++I) { |
| 281 | BasicBlock *BB = *I; |
| 282 | unsigned BBRank = RankMap[BB] = ++i << 16; |
| 283 | |
| 284 | // Walk the basic block, adding precomputed ranks for any instructions that |
| 285 | // we cannot move. This ensures that the ranks for these instructions are |
| 286 | // all different in the block. |
| 287 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| 288 | if (isUnmovableInstruction(I)) |
Chris Lattner | f72ce6e | 2009-03-31 22:13:29 +0000 | [diff] [blame] | 289 | ValueRankMap[&*I] = ++BBRank; |
Chris Lattner | 9f284e0 | 2005-05-08 20:57:04 +0000 | [diff] [blame] | 290 | } |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 291 | } |
| 292 | |
| 293 | unsigned Reassociate::getRank(Value *V) { |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 294 | Instruction *I = dyn_cast<Instruction>(V); |
Chris Lattner | 17229a7 | 2010-01-01 00:01:34 +0000 | [diff] [blame] | 295 | if (I == 0) { |
| 296 | if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. |
| 297 | return 0; // Otherwise it's a global or constant, rank 0. |
| 298 | } |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 299 | |
Chris Lattner | 17229a7 | 2010-01-01 00:01:34 +0000 | [diff] [blame] | 300 | if (unsigned Rank = ValueRankMap[I]) |
| 301 | return Rank; // Rank already known? |
Jeff Cohen | 5f4ef3c | 2005-07-27 06:12:32 +0000 | [diff] [blame] | 302 | |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 303 | // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that |
| 304 | // we can reassociate expressions for code motion! Since we do not recurse |
| 305 | // for PHI nodes, we cannot have infinite recursion here, because there |
| 306 | // cannot be loops in the value graph that do not go through PHI nodes. |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 307 | unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; |
| 308 | for (unsigned i = 0, e = I->getNumOperands(); |
| 309 | i != e && Rank != MaxRank; ++i) |
| 310 | Rank = std::max(Rank, getRank(I->getOperand(i))); |
Jeff Cohen | 5f4ef3c | 2005-07-27 06:12:32 +0000 | [diff] [blame] | 311 | |
Chris Lattner | 6e2086d | 2005-05-08 00:08:33 +0000 | [diff] [blame] | 312 | // If this is a not or neg instruction, do not count it for rank. This |
| 313 | // assures us that X and ~X will have the same rank. |
Duncan Sands | 9dff9be | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 314 | if (!I->getType()->isIntegerTy() || |
Owen Anderson | bb2501b | 2009-07-13 22:18:28 +0000 | [diff] [blame] | 315 | (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) |
Chris Lattner | 6e2086d | 2005-05-08 00:08:33 +0000 | [diff] [blame] | 316 | ++Rank; |
| 317 | |
David Greene | d17c391 | 2010-01-05 01:27:24 +0000 | [diff] [blame] | 318 | //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " |
Chris Lattner | b25de3f | 2009-08-23 04:37:46 +0000 | [diff] [blame] | 319 | // << Rank << "\n"); |
Jeff Cohen | 5f4ef3c | 2005-07-27 06:12:32 +0000 | [diff] [blame] | 320 | |
Chris Lattner | 17229a7 | 2010-01-01 00:01:34 +0000 | [diff] [blame] | 321 | return ValueRankMap[I] = Rank; |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 322 | } |
| 323 | |
Chris Lattner | 877b114 | 2005-05-08 21:28:52 +0000 | [diff] [blame] | 324 | /// LowerNegateToMultiply - Replace 0-X with X*-1. |
| 325 | /// |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 326 | static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { |
Owen Anderson | 5a1acd9 | 2009-07-31 20:28:14 +0000 | [diff] [blame] | 327 | Constant *Cst = Constant::getAllOnesValue(Neg->getType()); |
Chris Lattner | 877b114 | 2005-05-08 21:28:52 +0000 | [diff] [blame] | 328 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 329 | BinaryOperator *Res = |
| 330 | BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 331 | Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op. |
Chris Lattner | 6e0123b | 2007-02-11 01:23:03 +0000 | [diff] [blame] | 332 | Res->takeName(Neg); |
Chris Lattner | 877b114 | 2005-05-08 21:28:52 +0000 | [diff] [blame] | 333 | Neg->replaceAllUsesWith(Res); |
Devang Patel | 80d1d3a | 2011-04-28 22:48:14 +0000 | [diff] [blame] | 334 | Res->setDebugLoc(Neg->getDebugLoc()); |
Chris Lattner | 877b114 | 2005-05-08 21:28:52 +0000 | [diff] [blame] | 335 | return Res; |
| 336 | } |
| 337 | |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 338 | /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda |
| 339 | /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for |
| 340 | /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. |
| 341 | /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every |
| 342 | /// even x in Bitwidth-bit arithmetic. |
| 343 | static unsigned CarmichaelShift(unsigned Bitwidth) { |
| 344 | if (Bitwidth < 3) |
| 345 | return Bitwidth - 1; |
| 346 | return Bitwidth - 2; |
| 347 | } |
| 348 | |
| 349 | /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', |
| 350 | /// reducing the combined weight using any special properties of the operation. |
| 351 | /// The existing weight LHS represents the computation X op X op ... op X where |
| 352 | /// X occurs LHS times. The combined weight represents X op X op ... op X with |
| 353 | /// X occurring LHS + RHS times. If op is "Xor" for example then the combined |
| 354 | /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; |
| 355 | /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. |
| 356 | static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { |
| 357 | // If we were working with infinite precision arithmetic then the combined |
| 358 | // weight would be LHS + RHS. But we are using finite precision arithmetic, |
| 359 | // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct |
| 360 | // for nilpotent operations and addition, but not for idempotent operations |
| 361 | // and multiplication), so it is important to correctly reduce the combined |
| 362 | // weight back into range if wrapping would be wrong. |
| 363 | |
| 364 | // If RHS is zero then the weight didn't change. |
| 365 | if (RHS.isMinValue()) |
| 366 | return; |
| 367 | // If LHS is zero then the combined weight is RHS. |
| 368 | if (LHS.isMinValue()) { |
| 369 | LHS = RHS; |
| 370 | return; |
| 371 | } |
| 372 | // From this point on we know that neither LHS nor RHS is zero. |
| 373 | |
| 374 | if (Instruction::isIdempotent(Opcode)) { |
| 375 | // Idempotent means X op X === X, so any non-zero weight is equivalent to a |
| 376 | // weight of 1. Keeping weights at zero or one also means that wrapping is |
| 377 | // not a problem. |
| 378 | assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); |
| 379 | return; // Return a weight of 1. |
| 380 | } |
| 381 | if (Instruction::isNilpotent(Opcode)) { |
| 382 | // Nilpotent means X op X === 0, so reduce weights modulo 2. |
| 383 | assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); |
| 384 | LHS = 0; // 1 + 1 === 0 modulo 2. |
| 385 | return; |
| 386 | } |
| 387 | if (Opcode == Instruction::Add) { |
| 388 | // TODO: Reduce the weight by exploiting nsw/nuw? |
| 389 | LHS += RHS; |
| 390 | return; |
| 391 | } |
| 392 | |
| 393 | assert(Opcode == Instruction::Mul && "Unknown associative operation!"); |
| 394 | unsigned Bitwidth = LHS.getBitWidth(); |
| 395 | // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth |
| 396 | // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth |
| 397 | // bit number x, since either x is odd in which case x^CM = 1, or x is even in |
| 398 | // which case both x^W and x^(W - CM) are zero. By subtracting off multiples |
| 399 | // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) |
| 400 | // which by a happy accident means that they can always be represented using |
| 401 | // Bitwidth bits. |
| 402 | // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than |
| 403 | // the Carmichael number). |
| 404 | if (Bitwidth > 3) { |
| 405 | /// CM - The value of Carmichael's lambda function. |
| 406 | APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); |
| 407 | // Any weight W >= Threshold can be replaced with W - CM. |
| 408 | APInt Threshold = CM + Bitwidth; |
| 409 | assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); |
| 410 | // For Bitwidth 4 or more the following sum does not overflow. |
| 411 | LHS += RHS; |
| 412 | while (LHS.uge(Threshold)) |
| 413 | LHS -= CM; |
| 414 | } else { |
| 415 | // To avoid problems with overflow do everything the same as above but using |
| 416 | // a larger type. |
| 417 | unsigned CM = 1U << CarmichaelShift(Bitwidth); |
| 418 | unsigned Threshold = CM + Bitwidth; |
| 419 | assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && |
| 420 | "Weights not reduced!"); |
| 421 | unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); |
| 422 | while (Total >= Threshold) |
| 423 | Total -= CM; |
| 424 | LHS = Total; |
| 425 | } |
| 426 | } |
| 427 | |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 428 | typedef std::pair<Value*, APInt> RepeatedValue; |
| 429 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 430 | /// LinearizeExprTree - Given an associative binary expression, return the leaf |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 431 | /// nodes in Ops along with their weights (how many times the leaf occurs). The |
| 432 | /// original expression is the same as |
| 433 | /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times |
Nadav Rotem | 465834c | 2012-07-24 10:51:42 +0000 | [diff] [blame] | 434 | /// op |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 435 | /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times |
| 436 | /// op |
| 437 | /// ... |
| 438 | /// op |
| 439 | /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times |
| 440 | /// |
Duncan Sands | ac852c7 | 2012-11-15 09:58:38 +0000 | [diff] [blame] | 441 | /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 442 | /// |
| 443 | /// This routine may modify the function, in which case it returns 'true'. The |
| 444 | /// changes it makes may well be destructive, changing the value computed by 'I' |
| 445 | /// to something completely different. Thus if the routine returns 'true' then |
| 446 | /// you MUST either replace I with a new expression computed from the Ops array, |
| 447 | /// or use RewriteExprTree to put the values back in. |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 448 | /// |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 449 | /// A leaf node is either not a binary operation of the same kind as the root |
| 450 | /// node 'I' (i.e. is not a binary operator at all, or is, but with a different |
| 451 | /// opcode), or is the same kind of binary operator but has a use which either |
| 452 | /// does not belong to the expression, or does belong to the expression but is |
| 453 | /// a leaf node. Every leaf node has at least one use that is a non-leaf node |
| 454 | /// of the expression, while for non-leaf nodes (except for the root 'I') every |
| 455 | /// use is a non-leaf node of the expression. |
| 456 | /// |
| 457 | /// For example: |
| 458 | /// expression graph node names |
| 459 | /// |
| 460 | /// + | I |
| 461 | /// / \ | |
| 462 | /// + + | A, B |
| 463 | /// / \ / \ | |
| 464 | /// * + * | C, D, E |
| 465 | /// / \ / \ / \ | |
| 466 | /// + * | F, G |
| 467 | /// |
| 468 | /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 469 | /// that order) (C, 1), (E, 1), (F, 2), (G, 2). |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 470 | /// |
| 471 | /// The expression is maximal: if some instruction is a binary operator of the |
| 472 | /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, |
| 473 | /// then the instruction also belongs to the expression, is not a leaf node of |
| 474 | /// it, and its operands also belong to the expression (but may be leaf nodes). |
| 475 | /// |
| 476 | /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in |
| 477 | /// order to ensure that every non-root node in the expression has *exactly one* |
| 478 | /// use by a non-leaf node of the expression. This destruction means that the |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 479 | /// caller MUST either replace 'I' with a new expression or use something like |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 480 | /// RewriteExprTree to put the values back in if the routine indicates that it |
| 481 | /// made a change by returning 'true'. |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 482 | /// |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 483 | /// In the above example either the right operand of A or the left operand of B |
| 484 | /// will be replaced by undef. If it is B's operand then this gives: |
| 485 | /// |
| 486 | /// + | I |
| 487 | /// / \ | |
| 488 | /// + + | A, B - operand of B replaced with undef |
| 489 | /// / \ \ | |
| 490 | /// * + * | C, D, E |
| 491 | /// / \ / \ / \ | |
| 492 | /// + * | F, G |
| 493 | /// |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 494 | /// Note that such undef operands can only be reached by passing through 'I'. |
| 495 | /// For example, if you visit operands recursively starting from a leaf node |
| 496 | /// then you will never see such an undef operand unless you get back to 'I', |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 497 | /// which requires passing through a phi node. |
| 498 | /// |
| 499 | /// Note that this routine may also mutate binary operators of the wrong type |
| 500 | /// that have all uses inside the expression (i.e. only used by non-leaf nodes |
| 501 | /// of the expression) if it can turn them into binary operators of the right |
| 502 | /// type and thus make the expression bigger. |
| 503 | |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 504 | static bool LinearizeExprTree(BinaryOperator *I, |
| 505 | SmallVectorImpl<RepeatedValue> &Ops) { |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 506 | DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 507 | unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); |
| 508 | unsigned Opcode = I->getOpcode(); |
| 509 | assert(Instruction::isAssociative(Opcode) && |
| 510 | Instruction::isCommutative(Opcode) && |
| 511 | "Expected an associative and commutative operation!"); |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 512 | |
| 513 | // Visit all operands of the expression, keeping track of their weight (the |
| 514 | // number of paths from the expression root to the operand, or if you like |
| 515 | // the number of times that operand occurs in the linearized expression). |
| 516 | // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 |
| 517 | // while A has weight two. |
| 518 | |
| 519 | // Worklist of non-leaf nodes (their operands are in the expression too) along |
| 520 | // with their weights, representing a certain number of paths to the operator. |
| 521 | // If an operator occurs in the worklist multiple times then we found multiple |
| 522 | // ways to get to it. |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 523 | SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) |
| 524 | Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); |
| 525 | bool MadeChange = false; |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 526 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 527 | // Leaves of the expression are values that either aren't the right kind of |
| 528 | // operation (eg: a constant, or a multiply in an add tree), or are, but have |
| 529 | // some uses that are not inside the expression. For example, in I = X + X, |
| 530 | // X = A + B, the value X has two uses (by I) that are in the expression. If |
| 531 | // X has any other uses, for example in a return instruction, then we consider |
| 532 | // X to be a leaf, and won't analyze it further. When we first visit a value, |
| 533 | // if it has more than one use then at first we conservatively consider it to |
| 534 | // be a leaf. Later, as the expression is explored, we may discover some more |
| 535 | // uses of the value from inside the expression. If all uses turn out to be |
| 536 | // from within the expression (and the value is a binary operator of the right |
| 537 | // kind) then the value is no longer considered to be a leaf, and its operands |
| 538 | // are explored. |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 539 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 540 | // Leaves - Keeps track of the set of putative leaves as well as the number of |
| 541 | // paths to each leaf seen so far. |
Duncan Sands | 72aea01 | 2012-06-12 20:26:43 +0000 | [diff] [blame] | 542 | typedef DenseMap<Value*, APInt> LeafMap; |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 543 | LeafMap Leaves; // Leaf -> Total weight so far. |
| 544 | SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. |
| 545 | |
| 546 | #ifndef NDEBUG |
| 547 | SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. |
| 548 | #endif |
| 549 | while (!Worklist.empty()) { |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 550 | std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 551 | I = P.first; // We examine the operands of this binary operator. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 552 | |
| 553 | for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. |
| 554 | Value *Op = I->getOperand(OpIdx); |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 555 | APInt Weight = P.second; // Number of paths to this operand. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 556 | DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); |
| 557 | assert(!Op->use_empty() && "No uses, so how did we get to it?!"); |
| 558 | |
| 559 | // If this is a binary operation of the right kind with only one use then |
| 560 | // add its operands to the expression. |
| 561 | if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { |
| 562 | assert(Visited.insert(Op) && "Not first visit!"); |
| 563 | DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); |
| 564 | Worklist.push_back(std::make_pair(BO, Weight)); |
| 565 | continue; |
| 566 | } |
| 567 | |
| 568 | // Appears to be a leaf. Is the operand already in the set of leaves? |
| 569 | LeafMap::iterator It = Leaves.find(Op); |
| 570 | if (It == Leaves.end()) { |
| 571 | // Not in the leaf map. Must be the first time we saw this operand. |
| 572 | assert(Visited.insert(Op) && "Not first visit!"); |
| 573 | if (!Op->hasOneUse()) { |
| 574 | // This value has uses not accounted for by the expression, so it is |
| 575 | // not safe to modify. Mark it as being a leaf. |
| 576 | DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); |
| 577 | LeafOrder.push_back(Op); |
| 578 | Leaves[Op] = Weight; |
| 579 | continue; |
| 580 | } |
| 581 | // No uses outside the expression, try morphing it. |
| 582 | } else if (It != Leaves.end()) { |
| 583 | // Already in the leaf map. |
| 584 | assert(Visited.count(Op) && "In leaf map but not visited!"); |
| 585 | |
| 586 | // Update the number of paths to the leaf. |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 587 | IncorporateWeight(It->second, Weight, Opcode); |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 588 | |
Duncan Sands | 5651452 | 2012-07-26 09:26:40 +0000 | [diff] [blame] | 589 | #if 0 // TODO: Re-enable once PR13021 is fixed. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 590 | // The leaf already has one use from inside the expression. As we want |
| 591 | // exactly one such use, drop this new use of the leaf. |
| 592 | assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); |
| 593 | I->setOperand(OpIdx, UndefValue::get(I->getType())); |
| 594 | MadeChange = true; |
| 595 | |
| 596 | // If the leaf is a binary operation of the right kind and we now see |
| 597 | // that its multiple original uses were in fact all by nodes belonging |
| 598 | // to the expression, then no longer consider it to be a leaf and add |
| 599 | // its operands to the expression. |
| 600 | if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { |
| 601 | DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); |
| 602 | Worklist.push_back(std::make_pair(BO, It->second)); |
| 603 | Leaves.erase(It); |
| 604 | continue; |
| 605 | } |
Duncan Sands | 5651452 | 2012-07-26 09:26:40 +0000 | [diff] [blame] | 606 | #endif |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 607 | |
| 608 | // If we still have uses that are not accounted for by the expression |
| 609 | // then it is not safe to modify the value. |
| 610 | if (!Op->hasOneUse()) |
| 611 | continue; |
| 612 | |
| 613 | // No uses outside the expression, try morphing it. |
| 614 | Weight = It->second; |
| 615 | Leaves.erase(It); // Since the value may be morphed below. |
| 616 | } |
| 617 | |
| 618 | // At this point we have a value which, first of all, is not a binary |
| 619 | // expression of the right kind, and secondly, is only used inside the |
| 620 | // expression. This means that it can safely be modified. See if we |
| 621 | // can usefully morph it into an expression of the right kind. |
| 622 | assert((!isa<Instruction>(Op) || |
| 623 | cast<Instruction>(Op)->getOpcode() != Opcode) && |
| 624 | "Should have been handled above!"); |
| 625 | assert(Op->hasOneUse() && "Has uses outside the expression tree!"); |
| 626 | |
| 627 | // If this is a multiply expression, turn any internal negations into |
| 628 | // multiplies by -1 so they can be reassociated. |
| 629 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Op); |
| 630 | if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { |
| 631 | DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 632 | BO = LowerNegateToMultiply(BO); |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 633 | DEBUG(dbgs() << *BO << 'n'); |
| 634 | Worklist.push_back(std::make_pair(BO, Weight)); |
| 635 | MadeChange = true; |
| 636 | continue; |
| 637 | } |
| 638 | |
| 639 | // Failed to morph into an expression of the right type. This really is |
| 640 | // a leaf. |
| 641 | DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); |
| 642 | assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); |
| 643 | LeafOrder.push_back(Op); |
| 644 | Leaves[Op] = Weight; |
Chris Lattner | 877b114 | 2005-05-08 21:28:52 +0000 | [diff] [blame] | 645 | } |
| 646 | } |
| 647 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 648 | // The leaves, repeated according to their weights, represent the linearized |
| 649 | // form of the expression. |
| 650 | for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { |
| 651 | Value *V = LeafOrder[i]; |
| 652 | LeafMap::iterator It = Leaves.find(V); |
| 653 | if (It == Leaves.end()) |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 654 | // Node initially thought to be a leaf wasn't. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 655 | continue; |
| 656 | assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 657 | APInt Weight = It->second; |
| 658 | if (Weight.isMinValue()) |
| 659 | // Leaf already output or weight reduction eliminated it. |
| 660 | continue; |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 661 | // Ensure the leaf is only output once. |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 662 | It->second = 0; |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 663 | Ops.push_back(std::make_pair(V, Weight)); |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 664 | } |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 665 | |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 666 | // For nilpotent operations or addition there may be no operands, for example |
| 667 | // because the expression was "X xor X" or consisted of 2^Bitwidth additions: |
| 668 | // in both cases the weight reduces to 0 causing the value to be skipped. |
| 669 | if (Ops.empty()) { |
Duncan Sands | ac852c7 | 2012-11-15 09:58:38 +0000 | [diff] [blame] | 670 | Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); |
Duncan Sands | 318a89d | 2012-06-13 09:42:13 +0000 | [diff] [blame] | 671 | assert(Identity && "Associative operation without identity!"); |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 672 | Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); |
| 673 | } |
| 674 | |
| 675 | return MadeChange; |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 676 | } |
| 677 | |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 678 | // RewriteExprTree - Now that the operands for this expression tree are |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 679 | // linearized and optimized, emit them in-order. |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 680 | void Reassociate::RewriteExprTree(BinaryOperator *I, |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 681 | SmallVectorImpl<ValueEntry> &Ops) { |
| 682 | assert(Ops.size() > 1 && "Single values should be used directly!"); |
Dan Gohman | 08d2c98 | 2011-02-02 02:02:34 +0000 | [diff] [blame] | 683 | |
Duncan Sands | 20bd7fa | 2012-11-18 19:27:01 +0000 | [diff] [blame] | 684 | // Since our optimizations should never increase the number of operations, the |
| 685 | // new expression can usually be written reusing the existing binary operators |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 686 | // from the original expression tree, without creating any new instructions, |
| 687 | // though the rewritten expression may have a completely different topology. |
| 688 | // We take care to not change anything if the new expression will be the same |
| 689 | // as the original. If more than trivial changes (like commuting operands) |
| 690 | // were made then we are obliged to clear out any optional subclass data like |
| 691 | // nsw flags. |
Dan Gohman | 08d2c98 | 2011-02-02 02:02:34 +0000 | [diff] [blame] | 692 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 693 | /// NodesToRewrite - Nodes from the original expression available for writing |
| 694 | /// the new expression into. |
| 695 | SmallVector<BinaryOperator*, 8> NodesToRewrite; |
| 696 | unsigned Opcode = I->getOpcode(); |
Duncan Sands | 9838286 | 2012-06-29 19:03:05 +0000 | [diff] [blame] | 697 | BinaryOperator *Op = I; |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 698 | |
Duncan Sands | 20bd7fa | 2012-11-18 19:27:01 +0000 | [diff] [blame] | 699 | /// NotRewritable - The operands being written will be the leaves of the new |
| 700 | /// expression and must not be used as inner nodes (via NodesToRewrite) by |
| 701 | /// mistake. Inner nodes are always reassociable, and usually leaves are not |
| 702 | /// (if they were they would have been incorporated into the expression and so |
| 703 | /// would not be leaves), so most of the time there is no danger of this. But |
| 704 | /// in rare cases a leaf may become reassociable if an optimization kills uses |
| 705 | /// of it, or it may momentarily become reassociable during rewriting (below) |
| 706 | /// due it being removed as an operand of one of its uses. Ensure that misuse |
| 707 | /// of leaf nodes as inner nodes cannot occur by remembering all of the future |
| 708 | /// leaves and refusing to reuse any of them as inner nodes. |
| 709 | SmallPtrSet<Value*, 8> NotRewritable; |
| 710 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| 711 | NotRewritable.insert(Ops[i].Op); |
| 712 | |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 713 | // ExpressionChanged - Non-null if the rewritten expression differs from the |
| 714 | // original in some non-trivial way, requiring the clearing of optional flags. |
| 715 | // Flags are cleared from the operator in ExpressionChanged up to I inclusive. |
| 716 | BinaryOperator *ExpressionChanged = 0; |
Duncan Sands | 514db11 | 2012-06-27 14:19:00 +0000 | [diff] [blame] | 717 | for (unsigned i = 0; ; ++i) { |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 718 | // The last operation (which comes earliest in the IR) is special as both |
| 719 | // operands will come from Ops, rather than just one with the other being |
| 720 | // a subexpression. |
| 721 | if (i+2 == Ops.size()) { |
| 722 | Value *NewLHS = Ops[i].Op; |
| 723 | Value *NewRHS = Ops[i+1].Op; |
| 724 | Value *OldLHS = Op->getOperand(0); |
| 725 | Value *OldRHS = Op->getOperand(1); |
| 726 | |
| 727 | if (NewLHS == OldLHS && NewRHS == OldRHS) |
| 728 | // Nothing changed, leave it alone. |
| 729 | break; |
| 730 | |
| 731 | if (NewLHS == OldRHS && NewRHS == OldLHS) { |
| 732 | // The order of the operands was reversed. Swap them. |
| 733 | DEBUG(dbgs() << "RA: " << *Op << '\n'); |
| 734 | Op->swapOperands(); |
| 735 | DEBUG(dbgs() << "TO: " << *Op << '\n'); |
| 736 | MadeChange = true; |
| 737 | ++NumChanged; |
| 738 | break; |
| 739 | } |
| 740 | |
| 741 | // The new operation differs non-trivially from the original. Overwrite |
| 742 | // the old operands with the new ones. |
| 743 | DEBUG(dbgs() << "RA: " << *Op << '\n'); |
| 744 | if (NewLHS != OldLHS) { |
Duncan Sands | 20bd7fa | 2012-11-18 19:27:01 +0000 | [diff] [blame] | 745 | BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); |
| 746 | if (BO && !NotRewritable.count(BO)) |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 747 | NodesToRewrite.push_back(BO); |
| 748 | Op->setOperand(0, NewLHS); |
| 749 | } |
| 750 | if (NewRHS != OldRHS) { |
Duncan Sands | 20bd7fa | 2012-11-18 19:27:01 +0000 | [diff] [blame] | 751 | BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); |
| 752 | if (BO && !NotRewritable.count(BO)) |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 753 | NodesToRewrite.push_back(BO); |
| 754 | Op->setOperand(1, NewRHS); |
| 755 | } |
| 756 | DEBUG(dbgs() << "TO: " << *Op << '\n'); |
| 757 | |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 758 | ExpressionChanged = Op; |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 759 | MadeChange = true; |
| 760 | ++NumChanged; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 761 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 762 | break; |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 763 | } |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 764 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 765 | // Not the last operation. The left-hand side will be a sub-expression |
| 766 | // while the right-hand side will be the current element of Ops. |
| 767 | Value *NewRHS = Ops[i].Op; |
| 768 | if (NewRHS != Op->getOperand(1)) { |
| 769 | DEBUG(dbgs() << "RA: " << *Op << '\n'); |
| 770 | if (NewRHS == Op->getOperand(0)) { |
| 771 | // The new right-hand side was already present as the left operand. If |
| 772 | // we are lucky then swapping the operands will sort out both of them. |
| 773 | Op->swapOperands(); |
| 774 | } else { |
| 775 | // Overwrite with the new right-hand side. |
Duncan Sands | 20bd7fa | 2012-11-18 19:27:01 +0000 | [diff] [blame] | 776 | BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); |
| 777 | if (BO && !NotRewritable.count(BO)) |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 778 | NodesToRewrite.push_back(BO); |
| 779 | Op->setOperand(1, NewRHS); |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 780 | ExpressionChanged = Op; |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 781 | } |
| 782 | DEBUG(dbgs() << "TO: " << *Op << '\n'); |
| 783 | MadeChange = true; |
| 784 | ++NumChanged; |
| 785 | } |
Dan Gohman | 08d2c98 | 2011-02-02 02:02:34 +0000 | [diff] [blame] | 786 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 787 | // Now deal with the left-hand side. If this is already an operation node |
| 788 | // from the original expression then just rewrite the rest of the expression |
| 789 | // into it. |
Duncan Sands | 20bd7fa | 2012-11-18 19:27:01 +0000 | [diff] [blame] | 790 | BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); |
| 791 | if (BO && !NotRewritable.count(BO)) { |
Duncan Sands | 9838286 | 2012-06-29 19:03:05 +0000 | [diff] [blame] | 792 | Op = BO; |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 793 | continue; |
| 794 | } |
Dan Gohman | 08d2c98 | 2011-02-02 02:02:34 +0000 | [diff] [blame] | 795 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 796 | // Otherwise, grab a spare node from the original expression and use that as |
Duncan Sands | 369c6d2 | 2012-06-29 13:25:06 +0000 | [diff] [blame] | 797 | // the left-hand side. If there are no nodes left then the optimizers made |
| 798 | // an expression with more nodes than the original! This usually means that |
| 799 | // they did something stupid but it might mean that the problem was just too |
| 800 | // hard (finding the mimimal number of multiplications needed to realize a |
| 801 | // multiplication expression is NP-complete). Whatever the reason, smart or |
| 802 | // stupid, create a new node if there are none left. |
Duncan Sands | 9838286 | 2012-06-29 19:03:05 +0000 | [diff] [blame] | 803 | BinaryOperator *NewOp; |
Duncan Sands | 369c6d2 | 2012-06-29 13:25:06 +0000 | [diff] [blame] | 804 | if (NodesToRewrite.empty()) { |
| 805 | Constant *Undef = UndefValue::get(I->getType()); |
Duncan Sands | 9838286 | 2012-06-29 19:03:05 +0000 | [diff] [blame] | 806 | NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), |
| 807 | Undef, Undef, "", I); |
| 808 | } else { |
| 809 | NewOp = NodesToRewrite.pop_back_val(); |
Duncan Sands | 369c6d2 | 2012-06-29 13:25:06 +0000 | [diff] [blame] | 810 | } |
| 811 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 812 | DEBUG(dbgs() << "RA: " << *Op << '\n'); |
Duncan Sands | 9838286 | 2012-06-29 19:03:05 +0000 | [diff] [blame] | 813 | Op->setOperand(0, NewOp); |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 814 | DEBUG(dbgs() << "TO: " << *Op << '\n'); |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 815 | ExpressionChanged = Op; |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 816 | MadeChange = true; |
| 817 | ++NumChanged; |
Duncan Sands | 9838286 | 2012-06-29 19:03:05 +0000 | [diff] [blame] | 818 | Op = NewOp; |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 819 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 820 | |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 821 | // If the expression changed non-trivially then clear out all subclass data |
Duncan Sands | 514db11 | 2012-06-27 14:19:00 +0000 | [diff] [blame] | 822 | // starting from the operator specified in ExpressionChanged, and compactify |
| 823 | // the operators to just before the expression root to guarantee that the |
| 824 | // expression tree is dominated by all of Ops. |
| 825 | if (ExpressionChanged) |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 826 | do { |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 827 | ExpressionChanged->clearSubclassOptionalData(); |
| 828 | if (ExpressionChanged == I) |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 829 | break; |
Duncan Sands | 514db11 | 2012-06-27 14:19:00 +0000 | [diff] [blame] | 830 | ExpressionChanged->moveBefore(I); |
Duncan Sands | 3c05cd3 | 2012-05-26 16:42:52 +0000 | [diff] [blame] | 831 | ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin()); |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 832 | } while (1); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 833 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 834 | // Throw away any left over nodes from the original expression. |
| 835 | for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 836 | RedoInsts.insert(NodesToRewrite[i]); |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 837 | } |
| 838 | |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 839 | /// NegateValue - Insert instructions before the instruction pointed to by BI, |
| 840 | /// that computes the negative version of the value specified. The negative |
| 841 | /// version of the value is returned, and BI is left pointing at the instruction |
| 842 | /// that should be processed next by the reassociation pass. |
Nick Lewycky | 7935bcb | 2009-11-14 07:25:54 +0000 | [diff] [blame] | 843 | static Value *NegateValue(Value *V, Instruction *BI) { |
Chris Lattner | fed3397 | 2009-12-31 20:34:32 +0000 | [diff] [blame] | 844 | if (Constant *C = dyn_cast<Constant>(V)) |
| 845 | return ConstantExpr::getNeg(C); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 846 | |
Chris Lattner | 7bc532d | 2002-05-16 04:37:07 +0000 | [diff] [blame] | 847 | // We are trying to expose opportunity for reassociation. One of the things |
| 848 | // that we want to do to achieve this is to push a negation as deep into an |
| 849 | // expression chain as possible, to expose the add instructions. In practice, |
| 850 | // this means that we turn this: |
| 851 | // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D |
| 852 | // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate |
| 853 | // the constants. We assume that instcombine will clean up the mess later if |
Chris Lattner | a552683 | 2010-01-01 00:04:26 +0000 | [diff] [blame] | 854 | // we introduce tons of unnecessary negation instructions. |
Chris Lattner | 7bc532d | 2002-05-16 04:37:07 +0000 | [diff] [blame] | 855 | // |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 856 | if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { |
| 857 | // Push the negates through the add. |
| 858 | I->setOperand(0, NegateValue(I->getOperand(0), BI)); |
| 859 | I->setOperand(1, NegateValue(I->getOperand(1), BI)); |
Chris Lattner | 7bc532d | 2002-05-16 04:37:07 +0000 | [diff] [blame] | 860 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 861 | // We must move the add instruction here, because the neg instructions do |
| 862 | // not dominate the old add instruction in general. By moving it, we are |
| 863 | // assured that the neg instructions we just inserted dominate the |
| 864 | // instruction we are about to insert after them. |
| 865 | // |
| 866 | I->moveBefore(BI); |
| 867 | I->setName(I->getName()+".neg"); |
| 868 | return I; |
| 869 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 870 | |
Chris Lattner | fed3397 | 2009-12-31 20:34:32 +0000 | [diff] [blame] | 871 | // Okay, we need to materialize a negated version of V with an instruction. |
| 872 | // Scan the use lists of V to see if we have one already. |
| 873 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ |
Gabor Greif | 782f624 | 2010-07-12 12:03:02 +0000 | [diff] [blame] | 874 | User *U = *UI; |
| 875 | if (!BinaryOperator::isNeg(U)) continue; |
Chris Lattner | fed3397 | 2009-12-31 20:34:32 +0000 | [diff] [blame] | 876 | |
| 877 | // We found one! Now we have to make sure that the definition dominates |
| 878 | // this use. We do this by moving it to the entry block (if it is a |
| 879 | // non-instruction value) or right after the definition. These negates will |
| 880 | // be zapped by reassociate later, so we don't need much finesse here. |
Gabor Greif | 782f624 | 2010-07-12 12:03:02 +0000 | [diff] [blame] | 881 | BinaryOperator *TheNeg = cast<BinaryOperator>(U); |
Chris Lattner | e199d2d | 2010-01-02 21:46:33 +0000 | [diff] [blame] | 882 | |
| 883 | // Verify that the negate is in this function, V might be a constant expr. |
| 884 | if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) |
| 885 | continue; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 886 | |
Chris Lattner | fed3397 | 2009-12-31 20:34:32 +0000 | [diff] [blame] | 887 | BasicBlock::iterator InsertPt; |
| 888 | if (Instruction *InstInput = dyn_cast<Instruction>(V)) { |
| 889 | if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { |
| 890 | InsertPt = II->getNormalDest()->begin(); |
| 891 | } else { |
| 892 | InsertPt = InstInput; |
| 893 | ++InsertPt; |
| 894 | } |
| 895 | while (isa<PHINode>(InsertPt)) ++InsertPt; |
| 896 | } else { |
| 897 | InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); |
| 898 | } |
| 899 | TheNeg->moveBefore(InsertPt); |
| 900 | return TheNeg; |
| 901 | } |
Chris Lattner | 7bc532d | 2002-05-16 04:37:07 +0000 | [diff] [blame] | 902 | |
| 903 | // Insert a 'neg' instruction that subtracts the value from zero to get the |
| 904 | // negation. |
Dan Gohman | 5476cfd | 2009-08-12 16:23:25 +0000 | [diff] [blame] | 905 | return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 906 | } |
| 907 | |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 908 | /// ShouldBreakUpSubtract - Return true if we should break up this subtract of |
| 909 | /// X-Y into (X + -Y). |
Nick Lewycky | 7935bcb | 2009-11-14 07:25:54 +0000 | [diff] [blame] | 910 | static bool ShouldBreakUpSubtract(Instruction *Sub) { |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 911 | // If this is a negation, we can't split it up! |
Owen Anderson | bb2501b | 2009-07-13 22:18:28 +0000 | [diff] [blame] | 912 | if (BinaryOperator::isNeg(Sub)) |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 913 | return false; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 914 | |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 915 | // Don't bother to break this up unless either the LHS is an associable add or |
Chris Lattner | a70d138 | 2008-02-17 20:51:26 +0000 | [diff] [blame] | 916 | // subtract or if this is only used by one. |
| 917 | if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || |
| 918 | isReassociableOp(Sub->getOperand(0), Instruction::Sub)) |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 919 | return true; |
Chris Lattner | a70d138 | 2008-02-17 20:51:26 +0000 | [diff] [blame] | 920 | if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || |
Chris Lattner | 5f08ec8 | 2008-02-17 20:54:40 +0000 | [diff] [blame] | 921 | isReassociableOp(Sub->getOperand(1), Instruction::Sub)) |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 922 | return true; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 923 | if (Sub->hasOneUse() && |
Chris Lattner | a70d138 | 2008-02-17 20:51:26 +0000 | [diff] [blame] | 924 | (isReassociableOp(Sub->use_back(), Instruction::Add) || |
| 925 | isReassociableOp(Sub->use_back(), Instruction::Sub))) |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 926 | return true; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 927 | |
Chris Lattner | 902537c | 2008-02-17 20:44:51 +0000 | [diff] [blame] | 928 | return false; |
| 929 | } |
| 930 | |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 931 | /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is |
| 932 | /// only used by an add, transform this into (X+(0-Y)) to promote better |
| 933 | /// reassociation. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 934 | static BinaryOperator *BreakUpSubtract(Instruction *Sub) { |
Chris Lattner | a552683 | 2010-01-01 00:04:26 +0000 | [diff] [blame] | 935 | // Convert a subtract into an add and a neg instruction. This allows sub |
| 936 | // instructions to be commuted with other add instructions. |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 937 | // |
Chris Lattner | a552683 | 2010-01-01 00:04:26 +0000 | [diff] [blame] | 938 | // Calculate the negative value of Operand 1 of the sub instruction, |
| 939 | // and set it as the RHS of the add instruction we just made. |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 940 | // |
Nick Lewycky | 7935bcb | 2009-11-14 07:25:54 +0000 | [diff] [blame] | 941 | Value *NegVal = NegateValue(Sub->getOperand(1), Sub); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 942 | BinaryOperator *New = |
Gabor Greif | e1f6e4b | 2008-05-16 19:29:10 +0000 | [diff] [blame] | 943 | BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 944 | Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. |
| 945 | Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. |
Chris Lattner | 6e0123b | 2007-02-11 01:23:03 +0000 | [diff] [blame] | 946 | New->takeName(Sub); |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 947 | |
| 948 | // Everyone now refers to the add instruction. |
| 949 | Sub->replaceAllUsesWith(New); |
Devang Patel | 80d1d3a | 2011-04-28 22:48:14 +0000 | [diff] [blame] | 950 | New->setDebugLoc(Sub->getDebugLoc()); |
Jeff Cohen | 5f4ef3c | 2005-07-27 06:12:32 +0000 | [diff] [blame] | 951 | |
David Greene | d17c391 | 2010-01-05 01:27:24 +0000 | [diff] [blame] | 952 | DEBUG(dbgs() << "Negated: " << *New << '\n'); |
Chris Lattner | f43e974 | 2005-05-07 04:08:02 +0000 | [diff] [blame] | 953 | return New; |
Chris Lattner | 7bc532d | 2002-05-16 04:37:07 +0000 | [diff] [blame] | 954 | } |
| 955 | |
Chris Lattner | cea5799 | 2005-05-07 04:24:13 +0000 | [diff] [blame] | 956 | /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used |
| 957 | /// by one, change this into a multiply by a constant to assist with further |
| 958 | /// reassociation. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 959 | static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { |
| 960 | Constant *MulCst = ConstantInt::get(Shl->getType(), 1); |
| 961 | MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 962 | |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 963 | BinaryOperator *Mul = |
| 964 | BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); |
| 965 | Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. |
| 966 | Mul->takeName(Shl); |
| 967 | Shl->replaceAllUsesWith(Mul); |
| 968 | Mul->setDebugLoc(Shl->getDebugLoc()); |
| 969 | return Mul; |
Chris Lattner | cea5799 | 2005-05-07 04:24:13 +0000 | [diff] [blame] | 970 | } |
| 971 | |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 972 | /// FindInOperandList - Scan backwards and forwards among values with the same |
| 973 | /// rank as element i to see if X exists. If X does not exist, return i. This |
| 974 | /// is useful when scanning for 'x' when we see '-x' because they both get the |
| 975 | /// same rank. |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 976 | static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, |
Chris Lattner | 5847e5e | 2005-05-08 18:59:37 +0000 | [diff] [blame] | 977 | Value *X) { |
| 978 | unsigned XRank = Ops[i].Rank; |
| 979 | unsigned e = Ops.size(); |
| 980 | for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) |
| 981 | if (Ops[j].Op == X) |
| 982 | return j; |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 983 | // Scan backwards. |
Chris Lattner | 5847e5e | 2005-05-08 18:59:37 +0000 | [diff] [blame] | 984 | for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) |
| 985 | if (Ops[j].Op == X) |
| 986 | return j; |
| 987 | return i; |
| 988 | } |
| 989 | |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 990 | /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together |
| 991 | /// and returning the result. Insert the tree before I. |
Bill Wendling | 274ba89 | 2012-05-02 09:59:45 +0000 | [diff] [blame] | 992 | static Value *EmitAddTreeOfValues(Instruction *I, |
| 993 | SmallVectorImpl<WeakVH> &Ops){ |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 994 | if (Ops.size() == 1) return Ops.back(); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 995 | |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 996 | Value *V1 = Ops.back(); |
| 997 | Ops.pop_back(); |
| 998 | Value *V2 = EmitAddTreeOfValues(I, Ops); |
Gabor Greif | e1f6e4b | 2008-05-16 19:29:10 +0000 | [diff] [blame] | 999 | return BinaryOperator::CreateAdd(V2, V1, "tmp", I); |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1000 | } |
| 1001 | |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1002 | /// RemoveFactorFromExpression - If V is an expression tree that is a |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1003 | /// multiplication sequence, and if this sequence contains a multiply by Factor, |
| 1004 | /// remove Factor from the tree and return the new tree. |
| 1005 | Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { |
| 1006 | BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); |
| 1007 | if (!BO) return 0; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1008 | |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 1009 | SmallVector<RepeatedValue, 8> Tree; |
| 1010 | MadeChange |= LinearizeExprTree(BO, Tree); |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 1011 | SmallVector<ValueEntry, 8> Factors; |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 1012 | Factors.reserve(Tree.size()); |
| 1013 | for (unsigned i = 0, e = Tree.size(); i != e; ++i) { |
| 1014 | RepeatedValue E = Tree[i]; |
| 1015 | Factors.append(E.second.getZExtValue(), |
| 1016 | ValueEntry(getRank(E.first), E.first)); |
| 1017 | } |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1018 | |
| 1019 | bool FoundFactor = false; |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1020 | bool NeedsNegate = false; |
| 1021 | for (unsigned i = 0, e = Factors.size(); i != e; ++i) { |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1022 | if (Factors[i].Op == Factor) { |
| 1023 | FoundFactor = true; |
| 1024 | Factors.erase(Factors.begin()+i); |
| 1025 | break; |
| 1026 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1027 | |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1028 | // If this is a negative version of this factor, remove it. |
| 1029 | if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) |
| 1030 | if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) |
| 1031 | if (FC1->getValue() == -FC2->getValue()) { |
| 1032 | FoundFactor = NeedsNegate = true; |
| 1033 | Factors.erase(Factors.begin()+i); |
| 1034 | break; |
| 1035 | } |
| 1036 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1037 | |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 1038 | if (!FoundFactor) { |
| 1039 | // Make sure to restore the operands to the expression tree. |
| 1040 | RewriteExprTree(BO, Factors); |
| 1041 | return 0; |
| 1042 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1043 | |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1044 | BasicBlock::iterator InsertPt = BO; ++InsertPt; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1045 | |
Chris Lattner | 1d89794 | 2009-12-31 19:34:45 +0000 | [diff] [blame] | 1046 | // If this was just a single multiply, remove the multiply and return the only |
| 1047 | // remaining operand. |
| 1048 | if (Factors.size() == 1) { |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1049 | RedoInsts.insert(BO); |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1050 | V = Factors[0].Op; |
| 1051 | } else { |
| 1052 | RewriteExprTree(BO, Factors); |
| 1053 | V = BO; |
Chris Lattner | 1d89794 | 2009-12-31 19:34:45 +0000 | [diff] [blame] | 1054 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1055 | |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1056 | if (NeedsNegate) |
| 1057 | V = BinaryOperator::CreateNeg(V, "neg", InsertPt); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1058 | |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1059 | return V; |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1060 | } |
| 1061 | |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 1062 | /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively |
| 1063 | /// add its operands as factors, otherwise add V to the list of factors. |
Chris Lattner | c6c1523 | 2010-03-05 07:18:54 +0000 | [diff] [blame] | 1064 | /// |
| 1065 | /// Ops is the top-level list of add operands we're trying to factor. |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 1066 | static void FindSingleUseMultiplyFactors(Value *V, |
Chris Lattner | c6c1523 | 2010-03-05 07:18:54 +0000 | [diff] [blame] | 1067 | SmallVectorImpl<Value*> &Factors, |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1068 | const SmallVectorImpl<ValueEntry> &Ops) { |
| 1069 | BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); |
| 1070 | if (!BO) { |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 1071 | Factors.push_back(V); |
| 1072 | return; |
| 1073 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1074 | |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 1075 | // Otherwise, add the LHS and RHS to the list of factors. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1076 | FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); |
| 1077 | FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 1078 | } |
| 1079 | |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1080 | /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' |
| 1081 | /// instruction. This optimizes based on identities. If it can be reduced to |
| 1082 | /// a single Value, it is returned, otherwise the Ops list is mutated as |
| 1083 | /// necessary. |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 1084 | static Value *OptimizeAndOrXor(unsigned Opcode, |
| 1085 | SmallVectorImpl<ValueEntry> &Ops) { |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1086 | // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. |
| 1087 | // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. |
| 1088 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| 1089 | // First, check for X and ~X in the operand list. |
| 1090 | assert(i < Ops.size()); |
| 1091 | if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. |
| 1092 | Value *X = BinaryOperator::getNotArgument(Ops[i].Op); |
| 1093 | unsigned FoundX = FindInOperandList(Ops, i, X); |
| 1094 | if (FoundX != i) { |
Chris Lattner | ba1f36a | 2009-12-31 17:51:05 +0000 | [diff] [blame] | 1095 | if (Opcode == Instruction::And) // ...&X&~X = 0 |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1096 | return Constant::getNullValue(X->getType()); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1097 | |
Chris Lattner | ba1f36a | 2009-12-31 17:51:05 +0000 | [diff] [blame] | 1098 | if (Opcode == Instruction::Or) // ...|X|~X = -1 |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1099 | return Constant::getAllOnesValue(X->getType()); |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1100 | } |
| 1101 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1102 | |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1103 | // Next, check for duplicate pairs of values, which we assume are next to |
| 1104 | // each other, due to our sorting criteria. |
| 1105 | assert(i < Ops.size()); |
| 1106 | if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { |
| 1107 | if (Opcode == Instruction::And || Opcode == Instruction::Or) { |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1108 | // Drop duplicate values for And and Or. |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1109 | Ops.erase(Ops.begin()+i); |
| 1110 | --i; --e; |
| 1111 | ++NumAnnihil; |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1112 | continue; |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1113 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1114 | |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1115 | // Drop pairs of values for Xor. |
| 1116 | assert(Opcode == Instruction::Xor); |
| 1117 | if (e == 2) |
| 1118 | return Constant::getNullValue(Ops[0].Op->getType()); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1119 | |
Chris Lattner | a552683 | 2010-01-01 00:04:26 +0000 | [diff] [blame] | 1120 | // Y ^ X^X -> Y |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1121 | Ops.erase(Ops.begin()+i, Ops.begin()+i+2); |
| 1122 | i -= 1; e -= 2; |
| 1123 | ++NumAnnihil; |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1124 | } |
| 1125 | } |
| 1126 | return 0; |
| 1127 | } |
Chris Lattner | c5f866b | 2006-03-14 16:04:29 +0000 | [diff] [blame] | 1128 | |
Shuxin Yang | 7b0c94e | 2013-03-30 02:15:01 +0000 | [diff] [blame] | 1129 | /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and |
| 1130 | /// instruction with the given two operands, and return the resulting |
| 1131 | /// instruction. There are two special cases: 1) if the constant operand is 0, |
| 1132 | /// it will return NULL. 2) if the constant is ~0, the symbolic operand will |
| 1133 | /// be returned. |
| 1134 | static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, |
| 1135 | const APInt &ConstOpnd) { |
| 1136 | if (ConstOpnd != 0) { |
| 1137 | if (!ConstOpnd.isAllOnesValue()) { |
| 1138 | LLVMContext &Ctx = Opnd->getType()->getContext(); |
| 1139 | Instruction *I; |
| 1140 | I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), |
| 1141 | "and.ra", InsertBefore); |
| 1142 | I->setDebugLoc(InsertBefore->getDebugLoc()); |
| 1143 | return I; |
| 1144 | } |
| 1145 | return Opnd; |
| 1146 | } |
| 1147 | return 0; |
| 1148 | } |
| 1149 | |
| 1150 | // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" |
| 1151 | // into "R ^ C", where C would be 0, and R is a symbolic value. |
| 1152 | // |
| 1153 | // If it was successful, true is returned, and the "R" and "C" is returned |
| 1154 | // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, |
| 1155 | // and both "Res" and "ConstOpnd" remain unchanged. |
| 1156 | // |
| 1157 | bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, |
| 1158 | APInt &ConstOpnd, Value *&Res) { |
| 1159 | // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 |
| 1160 | // = ((x | c1) ^ c1) ^ (c1 ^ c2) |
| 1161 | // = (x & ~c1) ^ (c1 ^ c2) |
| 1162 | // It is useful only when c1 == c2. |
| 1163 | if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { |
| 1164 | if (!Opnd1->getValue()->hasOneUse()) |
| 1165 | return false; |
| 1166 | |
| 1167 | const APInt &C1 = Opnd1->getConstPart(); |
| 1168 | if (C1 != ConstOpnd) |
| 1169 | return false; |
| 1170 | |
| 1171 | Value *X = Opnd1->getSymbolicPart(); |
| 1172 | Res = createAndInstr(I, X, ~C1); |
| 1173 | // ConstOpnd was C2, now C1 ^ C2. |
| 1174 | ConstOpnd ^= C1; |
| 1175 | |
| 1176 | if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) |
| 1177 | RedoInsts.insert(T); |
| 1178 | return true; |
| 1179 | } |
| 1180 | return false; |
| 1181 | } |
| 1182 | |
| 1183 | |
| 1184 | // Helper function of OptimizeXor(). It tries to simplify |
| 1185 | // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a |
| 1186 | // symbolic value. |
| 1187 | // |
| 1188 | // If it was successful, true is returned, and the "R" and "C" is returned |
| 1189 | // via "Res" and "ConstOpnd", respectively (If the entire expression is |
| 1190 | // evaluated to a constant, the Res is set to NULL); otherwise, false is |
| 1191 | // returned, and both "Res" and "ConstOpnd" remain unchanged. |
| 1192 | bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, |
| 1193 | APInt &ConstOpnd, Value *&Res) { |
| 1194 | Value *X = Opnd1->getSymbolicPart(); |
| 1195 | if (X != Opnd2->getSymbolicPart()) |
| 1196 | return false; |
| 1197 | |
| 1198 | const APInt &C1 = Opnd1->getConstPart(); |
| 1199 | const APInt &C2 = Opnd2->getConstPart(); |
| 1200 | |
| 1201 | // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) |
| 1202 | int DeadInstNum = 1; |
| 1203 | if (Opnd1->getValue()->hasOneUse()) |
| 1204 | DeadInstNum++; |
| 1205 | if (Opnd2->getValue()->hasOneUse()) |
| 1206 | DeadInstNum++; |
| 1207 | |
| 1208 | // Xor-Rule 2: |
| 1209 | // (x | c1) ^ (x & c2) |
| 1210 | // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 |
| 1211 | // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 |
| 1212 | // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 |
| 1213 | // |
| 1214 | if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { |
| 1215 | if (Opnd2->isOrExpr()) |
| 1216 | std::swap(Opnd1, Opnd2); |
| 1217 | |
| 1218 | APInt C3((~C1) ^ C2); |
| 1219 | |
| 1220 | // Do not increase code size! |
| 1221 | if (C3 != 0 && !C3.isAllOnesValue()) { |
| 1222 | int NewInstNum = ConstOpnd != 0 ? 1 : 2; |
| 1223 | if (NewInstNum > DeadInstNum) |
| 1224 | return false; |
| 1225 | } |
| 1226 | |
| 1227 | Res = createAndInstr(I, X, C3); |
| 1228 | ConstOpnd ^= C1; |
| 1229 | |
| 1230 | } else if (Opnd1->isOrExpr()) { |
| 1231 | // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 |
| 1232 | // |
| 1233 | APInt C3 = C1 ^ C2; |
| 1234 | |
| 1235 | // Do not increase code size |
| 1236 | if (C3 != 0 && !C3.isAllOnesValue()) { |
| 1237 | int NewInstNum = ConstOpnd != 0 ? 1 : 2; |
| 1238 | if (NewInstNum > DeadInstNum) |
| 1239 | return false; |
| 1240 | } |
| 1241 | |
| 1242 | Res = createAndInstr(I, X, C3); |
| 1243 | ConstOpnd ^= C3; |
| 1244 | } else { |
| 1245 | // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) |
| 1246 | // |
| 1247 | APInt C3 = C1 ^ C2; |
| 1248 | Res = createAndInstr(I, X, C3); |
| 1249 | } |
| 1250 | |
| 1251 | // Put the original operands in the Redo list; hope they will be deleted |
| 1252 | // as dead code. |
| 1253 | if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) |
| 1254 | RedoInsts.insert(T); |
| 1255 | if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) |
| 1256 | RedoInsts.insert(T); |
| 1257 | |
| 1258 | return true; |
| 1259 | } |
| 1260 | |
| 1261 | /// Optimize a series of operands to an 'xor' instruction. If it can be reduced |
| 1262 | /// to a single Value, it is returned, otherwise the Ops list is mutated as |
| 1263 | /// necessary. |
| 1264 | Value *Reassociate::OptimizeXor(Instruction *I, |
| 1265 | SmallVectorImpl<ValueEntry> &Ops) { |
| 1266 | if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) |
| 1267 | return V; |
| 1268 | |
| 1269 | if (Ops.size() == 1) |
| 1270 | return 0; |
| 1271 | |
| 1272 | SmallVector<XorOpnd, 8> Opnds; |
| 1273 | SmallVector<XorOpnd*, 8> OpndPtrs; |
| 1274 | Type *Ty = Ops[0].Op->getType(); |
| 1275 | APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); |
| 1276 | |
| 1277 | // Step 1: Convert ValueEntry to XorOpnd |
| 1278 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| 1279 | Value *V = Ops[i].Op; |
| 1280 | if (!isa<ConstantInt>(V)) { |
| 1281 | XorOpnd O(V); |
| 1282 | O.setSymbolicRank(getRank(O.getSymbolicPart())); |
| 1283 | Opnds.push_back(O); |
| 1284 | OpndPtrs.push_back(&Opnds.back()); |
| 1285 | } else |
| 1286 | ConstOpnd ^= cast<ConstantInt>(V)->getValue(); |
| 1287 | } |
| 1288 | |
| 1289 | // Step 2: Sort the Xor-Operands in a way such that the operands containing |
| 1290 | // the same symbolic value cluster together. For instance, the input operand |
| 1291 | // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: |
| 1292 | // ("x | 123", "x & 789", "y & 456"). |
| 1293 | std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); |
| 1294 | |
| 1295 | // Step 3: Combine adjacent operands |
| 1296 | XorOpnd *PrevOpnd = 0; |
| 1297 | bool Changed = false; |
| 1298 | for (unsigned i = 0, e = Opnds.size(); i < e; i++) { |
| 1299 | XorOpnd *CurrOpnd = OpndPtrs[i]; |
| 1300 | // The combined value |
| 1301 | Value *CV; |
| 1302 | |
| 1303 | // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" |
| 1304 | if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { |
| 1305 | Changed = true; |
| 1306 | if (CV) |
| 1307 | *CurrOpnd = XorOpnd(CV); |
| 1308 | else { |
| 1309 | CurrOpnd->Invalidate(); |
| 1310 | continue; |
| 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { |
| 1315 | PrevOpnd = CurrOpnd; |
| 1316 | continue; |
| 1317 | } |
| 1318 | |
| 1319 | // step 3.2: When previous and current operands share the same symbolic |
| 1320 | // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" |
| 1321 | // |
| 1322 | if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { |
| 1323 | // Remove previous operand |
| 1324 | PrevOpnd->Invalidate(); |
| 1325 | if (CV) { |
| 1326 | *CurrOpnd = XorOpnd(CV); |
| 1327 | PrevOpnd = CurrOpnd; |
| 1328 | } else { |
| 1329 | CurrOpnd->Invalidate(); |
| 1330 | PrevOpnd = 0; |
| 1331 | } |
| 1332 | Changed = true; |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | // Step 4: Reassemble the Ops |
| 1337 | if (Changed) { |
| 1338 | Ops.clear(); |
| 1339 | for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { |
| 1340 | XorOpnd &O = Opnds[i]; |
| 1341 | if (O.isInvalid()) |
| 1342 | continue; |
| 1343 | ValueEntry VE(getRank(O.getValue()), O.getValue()); |
| 1344 | Ops.push_back(VE); |
| 1345 | } |
| 1346 | if (ConstOpnd != 0) { |
| 1347 | Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); |
| 1348 | ValueEntry VE(getRank(C), C); |
| 1349 | Ops.push_back(VE); |
| 1350 | } |
| 1351 | int Sz = Ops.size(); |
| 1352 | if (Sz == 1) |
| 1353 | return Ops.back().Op; |
| 1354 | else if (Sz == 0) { |
| 1355 | assert(ConstOpnd == 0); |
| 1356 | return ConstantInt::get(Ty->getContext(), ConstOpnd); |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | return 0; |
| 1361 | } |
| 1362 | |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1363 | /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This |
| 1364 | /// optimizes based on identities. If it can be reduced to a single Value, it |
| 1365 | /// is returned, otherwise the Ops list is mutated as necessary. |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 1366 | Value *Reassociate::OptimizeAdd(Instruction *I, |
| 1367 | SmallVectorImpl<ValueEntry> &Ops) { |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1368 | // Scan the operand lists looking for X and -X pairs. If we find any, we |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1369 | // can simplify the expression. X+-X == 0. While we're at it, scan for any |
| 1370 | // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1371 | // |
| 1372 | // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1". |
| 1373 | // |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1374 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1375 | Value *TheOp = Ops[i].Op; |
| 1376 | // Check to see if we've seen this operand before. If so, we factor all |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1377 | // instances of the operand together. Due to our sorting criteria, we know |
| 1378 | // that these need to be next to each other in the vector. |
| 1379 | if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { |
| 1380 | // Rescan the list, remove all instances of this operand from the expr. |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1381 | unsigned NumFound = 0; |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1382 | do { |
| 1383 | Ops.erase(Ops.begin()+i); |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1384 | ++NumFound; |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1385 | } while (i != Ops.size() && Ops[i].Op == TheOp); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1386 | |
Chris Lattner | ed18917 | 2009-12-31 19:25:19 +0000 | [diff] [blame] | 1387 | DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1388 | ++NumFactor; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1389 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1390 | // Insert a new multiply. |
| 1391 | Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound); |
| 1392 | Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1393 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1394 | // Now that we have inserted a multiply, optimize it. This allows us to |
| 1395 | // handle cases that require multiple factoring steps, such as this: |
| 1396 | // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1397 | RedoInsts.insert(cast<Instruction>(Mul)); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1398 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1399 | // If every add operand was a duplicate, return the multiply. |
| 1400 | if (Ops.empty()) |
| 1401 | return Mul; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1402 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1403 | // Otherwise, we had some input that didn't have the dupe, such as |
| 1404 | // "A + A + B" -> "A*2 + B". Add the new multiply to the list of |
| 1405 | // things being added by this operation. |
| 1406 | Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1407 | |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1408 | --i; |
| 1409 | e = Ops.size(); |
| 1410 | continue; |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1411 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1412 | |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1413 | // Check for X and -X in the operand list. |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1414 | if (!BinaryOperator::isNeg(TheOp)) |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1415 | continue; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1416 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1417 | Value *X = BinaryOperator::getNegArgument(TheOp); |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1418 | unsigned FoundX = FindInOperandList(Ops, i, X); |
| 1419 | if (FoundX == i) |
| 1420 | continue; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1421 | |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1422 | // Remove X and -X from the operand list. |
Chris Lattner | ba1f36a | 2009-12-31 17:51:05 +0000 | [diff] [blame] | 1423 | if (Ops.size() == 2) |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1424 | return Constant::getNullValue(X->getType()); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1425 | |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1426 | Ops.erase(Ops.begin()+i); |
| 1427 | if (i < FoundX) |
| 1428 | --FoundX; |
| 1429 | else |
| 1430 | --i; // Need to back up an extra one. |
| 1431 | Ops.erase(Ops.begin()+FoundX); |
| 1432 | ++NumAnnihil; |
| 1433 | --i; // Revisit element. |
| 1434 | e -= 2; // Removed two elements. |
| 1435 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1436 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1437 | // Scan the operand list, checking to see if there are any common factors |
| 1438 | // between operands. Consider something like A*A+A*B*C+D. We would like to |
| 1439 | // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. |
| 1440 | // To efficiently find this, we count the number of times a factor occurs |
| 1441 | // for any ADD operands that are MULs. |
| 1442 | DenseMap<Value*, unsigned> FactorOccurrences; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1443 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1444 | // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) |
| 1445 | // where they are actually the same multiply. |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1446 | unsigned MaxOcc = 0; |
| 1447 | Value *MaxOccVal = 0; |
| 1448 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1449 | BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); |
| 1450 | if (!BOp) |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1451 | continue; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1452 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1453 | // Compute all of the factors of this added value. |
| 1454 | SmallVector<Value*, 8> Factors; |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1455 | FindSingleUseMultiplyFactors(BOp, Factors, Ops); |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1456 | assert(Factors.size() > 1 && "Bad linearize!"); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1457 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1458 | // Add one to FactorOccurrences for each unique factor in this op. |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1459 | SmallPtrSet<Value*, 8> Duplicates; |
| 1460 | for (unsigned i = 0, e = Factors.size(); i != e; ++i) { |
| 1461 | Value *Factor = Factors[i]; |
| 1462 | if (!Duplicates.insert(Factor)) continue; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1463 | |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1464 | unsigned Occ = ++FactorOccurrences[Factor]; |
| 1465 | if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1466 | |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1467 | // If Factor is a negative constant, add the negated value as a factor |
| 1468 | // because we can percolate the negate out. Watch for minint, which |
| 1469 | // cannot be positivified. |
| 1470 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) |
Chris Lattner | b1a1512 | 2011-07-15 06:08:15 +0000 | [diff] [blame] | 1471 | if (CI->isNegative() && !CI->isMinValue(true)) { |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1472 | Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); |
| 1473 | assert(!Duplicates.count(Factor) && |
| 1474 | "Shouldn't have two constant factors, missed a canonicalize"); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1475 | |
Chris Lattner | 0c59ac3 | 2010-01-01 01:13:15 +0000 | [diff] [blame] | 1476 | unsigned Occ = ++FactorOccurrences[Factor]; |
| 1477 | if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } |
| 1478 | } |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1479 | } |
| 1480 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1481 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1482 | // If any factor occurred more than one time, we can pull it out. |
| 1483 | if (MaxOcc > 1) { |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1484 | DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1485 | ++NumFactor; |
| 1486 | |
| 1487 | // Create a new instruction that uses the MaxOccVal twice. If we don't do |
| 1488 | // this, we could otherwise run into situations where removing a factor |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1489 | // from an expression will drop a use of maxocc, and this can cause |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1490 | // RemoveFactorFromExpression on successive values to behave differently. |
| 1491 | Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); |
Bill Wendling | 274ba89 | 2012-05-02 09:59:45 +0000 | [diff] [blame] | 1492 | SmallVector<WeakVH, 4> NewMulOps; |
Duncan Sands | 69bdb58 | 2011-01-26 10:08:38 +0000 | [diff] [blame] | 1493 | for (unsigned i = 0; i != Ops.size(); ++i) { |
Chris Lattner | ab7087a | 2010-01-09 06:01:36 +0000 | [diff] [blame] | 1494 | // Only try to remove factors from expressions we're allowed to. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1495 | BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); |
| 1496 | if (!BOp) |
Chris Lattner | ab7087a | 2010-01-09 06:01:36 +0000 | [diff] [blame] | 1497 | continue; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1498 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1499 | if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { |
Duncan Sands | 69bdb58 | 2011-01-26 10:08:38 +0000 | [diff] [blame] | 1500 | // The factorized operand may occur several times. Convert them all in |
| 1501 | // one fell swoop. |
| 1502 | for (unsigned j = Ops.size(); j != i;) { |
| 1503 | --j; |
| 1504 | if (Ops[j].Op == Ops[i].Op) { |
| 1505 | NewMulOps.push_back(V); |
| 1506 | Ops.erase(Ops.begin()+j); |
| 1507 | } |
| 1508 | } |
| 1509 | --i; |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1510 | } |
| 1511 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1512 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1513 | // No need for extra uses anymore. |
| 1514 | delete DummyInst; |
Duncan Sands | 4a8b15d | 2010-01-08 17:51:48 +0000 | [diff] [blame] | 1515 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1516 | unsigned NumAddedValues = NewMulOps.size(); |
| 1517 | Value *V = EmitAddTreeOfValues(I, NewMulOps); |
Duncan Sands | 4a8b15d | 2010-01-08 17:51:48 +0000 | [diff] [blame] | 1518 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1519 | // Now that we have inserted the add tree, optimize it. This allows us to |
| 1520 | // handle cases that require multiple factoring steps, such as this: |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1521 | // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) |
Chris Lattner | ac61550 | 2009-12-31 18:18:46 +0000 | [diff] [blame] | 1522 | assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); |
Duncan Sands | 4a8b15d | 2010-01-08 17:51:48 +0000 | [diff] [blame] | 1523 | (void)NumAddedValues; |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1524 | if (Instruction *VI = dyn_cast<Instruction>(V)) |
| 1525 | RedoInsts.insert(VI); |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1526 | |
| 1527 | // Create the multiply. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1528 | Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1529 | |
Chris Lattner | 60c2ca7 | 2009-12-31 19:49:01 +0000 | [diff] [blame] | 1530 | // Rerun associate on the multiply in case the inner expression turned into |
| 1531 | // a multiply. We want to make sure that we keep things in canonical form. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1532 | RedoInsts.insert(V2); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1533 | |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1534 | // If every add operand included the factor (e.g. "A*B + A*C"), then the |
| 1535 | // entire result expression is just the multiply "A*(B+C)". |
| 1536 | if (Ops.empty()) |
| 1537 | return V2; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1538 | |
Chris Lattner | ac61550 | 2009-12-31 18:18:46 +0000 | [diff] [blame] | 1539 | // Otherwise, we had some input that didn't have the factor, such as |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1540 | // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of |
Chris Lattner | ac61550 | 2009-12-31 18:18:46 +0000 | [diff] [blame] | 1541 | // things being added by this operation. |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1542 | Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); |
| 1543 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1544 | |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1545 | return 0; |
| 1546 | } |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1547 | |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1548 | namespace { |
| 1549 | /// \brief Predicate tests whether a ValueEntry's op is in a map. |
| 1550 | struct IsValueInMap { |
| 1551 | const DenseMap<Value *, unsigned> ⤅ |
| 1552 | |
| 1553 | IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {} |
| 1554 | |
| 1555 | bool operator()(const ValueEntry &Entry) { |
| 1556 | return Map.find(Entry.Op) != Map.end(); |
| 1557 | } |
| 1558 | }; |
| 1559 | } |
| 1560 | |
| 1561 | /// \brief Build up a vector of value/power pairs factoring a product. |
| 1562 | /// |
| 1563 | /// Given a series of multiplication operands, build a vector of factors and |
| 1564 | /// the powers each is raised to when forming the final product. Sort them in |
| 1565 | /// the order of descending power. |
| 1566 | /// |
| 1567 | /// (x*x) -> [(x, 2)] |
| 1568 | /// ((x*x)*x) -> [(x, 3)] |
| 1569 | /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] |
| 1570 | /// |
| 1571 | /// \returns Whether any factors have a power greater than one. |
| 1572 | bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, |
| 1573 | SmallVectorImpl<Factor> &Factors) { |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1574 | // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. |
| 1575 | // Compute the sum of powers of simplifiable factors. |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1576 | unsigned FactorPowerSum = 0; |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1577 | for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { |
| 1578 | Value *Op = Ops[Idx-1].Op; |
| 1579 | |
| 1580 | // Count the number of occurrences of this value. |
| 1581 | unsigned Count = 1; |
| 1582 | for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) |
| 1583 | ++Count; |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1584 | // Track for simplification all factors which occur 2 or more times. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1585 | if (Count > 1) |
| 1586 | FactorPowerSum += Count; |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1587 | } |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1588 | |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1589 | // We can only simplify factors if the sum of the powers of our simplifiable |
| 1590 | // factors is 4 or higher. When that is the case, we will *always* have |
| 1591 | // a simplification. This is an important invariant to prevent cyclicly |
| 1592 | // trying to simplify already minimal formations. |
| 1593 | if (FactorPowerSum < 4) |
| 1594 | return false; |
| 1595 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1596 | // Now gather the simplifiable factors, removing them from Ops. |
| 1597 | FactorPowerSum = 0; |
| 1598 | for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { |
| 1599 | Value *Op = Ops[Idx-1].Op; |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1600 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1601 | // Count the number of occurrences of this value. |
| 1602 | unsigned Count = 1; |
| 1603 | for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) |
| 1604 | ++Count; |
| 1605 | if (Count == 1) |
| 1606 | continue; |
Benjamin Kramer | bde9176 | 2012-06-02 10:20:22 +0000 | [diff] [blame] | 1607 | // Move an even number of occurrences to Factors. |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1608 | Count &= ~1U; |
| 1609 | Idx -= Count; |
| 1610 | FactorPowerSum += Count; |
| 1611 | Factors.push_back(Factor(Op, Count)); |
| 1612 | Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1613 | } |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1614 | |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1615 | // None of the adjustments above should have reduced the sum of factor powers |
| 1616 | // below our mininum of '4'. |
| 1617 | assert(FactorPowerSum >= 4); |
| 1618 | |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1619 | std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); |
| 1620 | return true; |
| 1621 | } |
| 1622 | |
| 1623 | /// \brief Build a tree of multiplies, computing the product of Ops. |
| 1624 | static Value *buildMultiplyTree(IRBuilder<> &Builder, |
| 1625 | SmallVectorImpl<Value*> &Ops) { |
| 1626 | if (Ops.size() == 1) |
| 1627 | return Ops.back(); |
| 1628 | |
| 1629 | Value *LHS = Ops.pop_back_val(); |
| 1630 | do { |
| 1631 | LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); |
| 1632 | } while (!Ops.empty()); |
| 1633 | |
| 1634 | return LHS; |
| 1635 | } |
| 1636 | |
| 1637 | /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... |
| 1638 | /// |
| 1639 | /// Given a vector of values raised to various powers, where no two values are |
| 1640 | /// equal and the powers are sorted in decreasing order, compute the minimal |
| 1641 | /// DAG of multiplies to compute the final product, and return that product |
| 1642 | /// value. |
| 1643 | Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, |
| 1644 | SmallVectorImpl<Factor> &Factors) { |
| 1645 | assert(Factors[0].Power); |
| 1646 | SmallVector<Value *, 4> OuterProduct; |
| 1647 | for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); |
| 1648 | Idx < Size && Factors[Idx].Power > 0; ++Idx) { |
| 1649 | if (Factors[Idx].Power != Factors[LastIdx].Power) { |
| 1650 | LastIdx = Idx; |
| 1651 | continue; |
| 1652 | } |
| 1653 | |
| 1654 | // We want to multiply across all the factors with the same power so that |
| 1655 | // we can raise them to that power as a single entity. Build a mini tree |
| 1656 | // for that. |
| 1657 | SmallVector<Value *, 4> InnerProduct; |
| 1658 | InnerProduct.push_back(Factors[LastIdx].Base); |
| 1659 | do { |
| 1660 | InnerProduct.push_back(Factors[Idx].Base); |
| 1661 | ++Idx; |
| 1662 | } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); |
| 1663 | |
| 1664 | // Reset the base value of the first factor to the new expression tree. |
| 1665 | // We'll remove all the factors with the same power in a second pass. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1666 | Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); |
| 1667 | if (Instruction *MI = dyn_cast<Instruction>(M)) |
| 1668 | RedoInsts.insert(MI); |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1669 | |
| 1670 | LastIdx = Idx; |
| 1671 | } |
| 1672 | // Unique factors with equal powers -- we've folded them into the first one's |
| 1673 | // base. |
| 1674 | Factors.erase(std::unique(Factors.begin(), Factors.end(), |
| 1675 | Factor::PowerEqual()), |
| 1676 | Factors.end()); |
| 1677 | |
| 1678 | // Iteratively collect the base of each factor with an add power into the |
| 1679 | // outer product, and halve each power in preparation for squaring the |
| 1680 | // expression. |
| 1681 | for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { |
| 1682 | if (Factors[Idx].Power & 1) |
| 1683 | OuterProduct.push_back(Factors[Idx].Base); |
| 1684 | Factors[Idx].Power >>= 1; |
| 1685 | } |
| 1686 | if (Factors[0].Power) { |
| 1687 | Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); |
| 1688 | OuterProduct.push_back(SquareRoot); |
| 1689 | OuterProduct.push_back(SquareRoot); |
| 1690 | } |
| 1691 | if (OuterProduct.size() == 1) |
| 1692 | return OuterProduct.front(); |
| 1693 | |
Duncan Sands | 3bbb1d5 | 2012-05-08 12:16:05 +0000 | [diff] [blame] | 1694 | Value *V = buildMultiplyTree(Builder, OuterProduct); |
Duncan Sands | 3bbb1d5 | 2012-05-08 12:16:05 +0000 | [diff] [blame] | 1695 | return V; |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1696 | } |
| 1697 | |
| 1698 | Value *Reassociate::OptimizeMul(BinaryOperator *I, |
| 1699 | SmallVectorImpl<ValueEntry> &Ops) { |
| 1700 | // We can only optimize the multiplies when there is a chain of more than |
| 1701 | // three, such that a balanced tree might require fewer total multiplies. |
| 1702 | if (Ops.size() < 4) |
| 1703 | return 0; |
| 1704 | |
| 1705 | // Try to turn linear trees of multiplies without other uses of the |
| 1706 | // intermediate stages into minimal multiply DAGs with perfect sub-expression |
| 1707 | // re-use. |
| 1708 | SmallVector<Factor, 4> Factors; |
| 1709 | if (!collectMultiplyFactors(Ops, Factors)) |
| 1710 | return 0; // All distinct factors, so nothing left for us to do. |
| 1711 | |
| 1712 | IRBuilder<> Builder(I); |
| 1713 | Value *V = buildMinimalMultiplyDAG(Builder, Factors); |
| 1714 | if (Ops.empty()) |
| 1715 | return V; |
| 1716 | |
| 1717 | ValueEntry NewEntry = ValueEntry(getRank(V), V); |
| 1718 | Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); |
| 1719 | return 0; |
| 1720 | } |
| 1721 | |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1722 | Value *Reassociate::OptimizeExpression(BinaryOperator *I, |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 1723 | SmallVectorImpl<ValueEntry> &Ops) { |
Chris Lattner | e1850b8 | 2005-05-08 00:19:31 +0000 | [diff] [blame] | 1724 | // Now that we have the linearized expression tree, try to optimize it. |
| 1725 | // Start by folding any constants that we found. |
Duncan Sands | ac852c7 | 2012-11-15 09:58:38 +0000 | [diff] [blame] | 1726 | Constant *Cst = 0; |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1727 | unsigned Opcode = I->getOpcode(); |
Duncan Sands | ac852c7 | 2012-11-15 09:58:38 +0000 | [diff] [blame] | 1728 | while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { |
| 1729 | Constant *C = cast<Constant>(Ops.pop_back_val().Op); |
| 1730 | Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; |
| 1731 | } |
| 1732 | // If there was nothing but constants then we are done. |
| 1733 | if (Ops.empty()) |
| 1734 | return Cst; |
| 1735 | |
| 1736 | // Put the combined constant back at the end of the operand list, except if |
| 1737 | // there is no point. For example, an add of 0 gets dropped here, while a |
| 1738 | // multiplication by zero turns the whole expression into zero. |
| 1739 | if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { |
| 1740 | if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) |
| 1741 | return Cst; |
| 1742 | Ops.push_back(ValueEntry(0, Cst)); |
| 1743 | } |
| 1744 | |
| 1745 | if (Ops.size() == 1) return Ops[0].Op; |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1746 | |
Chris Lattner | 9039ff8 | 2009-12-31 07:33:14 +0000 | [diff] [blame] | 1747 | // Handle destructive annihilation due to identities between elements in the |
Chris Lattner | e1850b8 | 2005-05-08 00:19:31 +0000 | [diff] [blame] | 1748 | // argument list here. |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1749 | unsigned NumOps = Ops.size(); |
Chris Lattner | 5847e5e | 2005-05-08 18:59:37 +0000 | [diff] [blame] | 1750 | switch (Opcode) { |
| 1751 | default: break; |
| 1752 | case Instruction::And: |
| 1753 | case Instruction::Or: |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1754 | if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) |
| 1755 | return Result; |
Chris Lattner | 5847e5e | 2005-05-08 18:59:37 +0000 | [diff] [blame] | 1756 | break; |
| 1757 | |
Shuxin Yang | 7b0c94e | 2013-03-30 02:15:01 +0000 | [diff] [blame] | 1758 | case Instruction::Xor: |
| 1759 | if (Value *Result = OptimizeXor(I, Ops)) |
| 1760 | return Result; |
| 1761 | break; |
| 1762 | |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1763 | case Instruction::Add: |
Chris Lattner | 177140a | 2009-12-31 18:17:13 +0000 | [diff] [blame] | 1764 | if (Value *Result = OptimizeAdd(I, Ops)) |
Chris Lattner | 5f8a005 | 2009-12-31 07:59:34 +0000 | [diff] [blame] | 1765 | return Result; |
Chris Lattner | 5847e5e | 2005-05-08 18:59:37 +0000 | [diff] [blame] | 1766 | break; |
Chandler Carruth | 739ef80 | 2012-04-26 05:30:30 +0000 | [diff] [blame] | 1767 | |
| 1768 | case Instruction::Mul: |
| 1769 | if (Value *Result = OptimizeMul(I, Ops)) |
| 1770 | return Result; |
| 1771 | break; |
Chris Lattner | 5847e5e | 2005-05-08 18:59:37 +0000 | [diff] [blame] | 1772 | } |
| 1773 | |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1774 | if (Ops.size() != NumOps) |
Chris Lattner | 4c06509 | 2006-03-04 09:31:13 +0000 | [diff] [blame] | 1775 | return OptimizeExpression(I, Ops); |
| 1776 | return 0; |
Chris Lattner | e1850b8 | 2005-05-08 00:19:31 +0000 | [diff] [blame] | 1777 | } |
| 1778 | |
Shuxin Yang | c94c3bb | 2012-11-13 00:08:49 +0000 | [diff] [blame] | 1779 | /// EraseInst - Zap the given instruction, adding interesting operands to the |
| 1780 | /// work list. |
| 1781 | void Reassociate::EraseInst(Instruction *I) { |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1782 | assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); |
| 1783 | SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); |
| 1784 | // Erase the dead instruction. |
| 1785 | ValueRankMap.erase(I); |
Shuxin Yang | c94c3bb | 2012-11-13 00:08:49 +0000 | [diff] [blame] | 1786 | RedoInsts.remove(I); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1787 | I->eraseFromParent(); |
| 1788 | // Optimize its operands. |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 1789 | SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1790 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| 1791 | if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { |
| 1792 | // If this is a node in an expression tree, climb to the expression root |
| 1793 | // and add that since that's where optimization actually happens. |
| 1794 | unsigned Opcode = Op->getOpcode(); |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 1795 | while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode && |
| 1796 | Visited.insert(Op)) |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1797 | Op = Op->use_back(); |
Shuxin Yang | c94c3bb | 2012-11-13 00:08:49 +0000 | [diff] [blame] | 1798 | RedoInsts.insert(Op); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1799 | } |
| 1800 | } |
| 1801 | |
| 1802 | /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing |
| 1803 | /// instructions is not allowed. |
| 1804 | void Reassociate::OptimizeInst(Instruction *I) { |
| 1805 | // Only consider operations that we understand. |
| 1806 | if (!isa<BinaryOperator>(I)) |
| 1807 | return; |
| 1808 | |
| 1809 | if (I->getOpcode() == Instruction::Shl && |
| 1810 | isa<ConstantInt>(I->getOperand(1))) |
| 1811 | // If an operand of this shift is a reassociable multiply, or if the shift |
| 1812 | // is used by a reassociable multiply or add, turn into a multiply. |
| 1813 | if (isReassociableOp(I->getOperand(0), Instruction::Mul) || |
| 1814 | (I->hasOneUse() && |
| 1815 | (isReassociableOp(I->use_back(), Instruction::Mul) || |
| 1816 | isReassociableOp(I->use_back(), Instruction::Add)))) { |
| 1817 | Instruction *NI = ConvertShiftToMul(I); |
| 1818 | RedoInsts.insert(I); |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1819 | MadeChange = true; |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1820 | I = NI; |
Chris Lattner | 877b114 | 2005-05-08 21:28:52 +0000 | [diff] [blame] | 1821 | } |
Chris Lattner | 8fdf75c | 2002-10-31 17:12:59 +0000 | [diff] [blame] | 1822 | |
Owen Anderson | f4f80e1 | 2012-05-07 20:47:23 +0000 | [diff] [blame] | 1823 | // Floating point binary operators are not associative, but we can still |
| 1824 | // commute (some) of them, to canonicalize the order of their operands. |
| 1825 | // This can potentially expose more CSE opportunities, and makes writing |
| 1826 | // other transformations simpler. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1827 | if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { |
Owen Anderson | f4f80e1 | 2012-05-07 20:47:23 +0000 | [diff] [blame] | 1828 | // FAdd and FMul can be commuted. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1829 | if (I->getOpcode() != Instruction::FMul && |
| 1830 | I->getOpcode() != Instruction::FAdd) |
Owen Anderson | f4f80e1 | 2012-05-07 20:47:23 +0000 | [diff] [blame] | 1831 | return; |
| 1832 | |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1833 | Value *LHS = I->getOperand(0); |
| 1834 | Value *RHS = I->getOperand(1); |
Owen Anderson | f4f80e1 | 2012-05-07 20:47:23 +0000 | [diff] [blame] | 1835 | unsigned LHSRank = getRank(LHS); |
| 1836 | unsigned RHSRank = getRank(RHS); |
| 1837 | |
| 1838 | // Sort the operands by rank. |
| 1839 | if (RHSRank < LHSRank) { |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1840 | I->setOperand(0, RHS); |
| 1841 | I->setOperand(1, LHS); |
Owen Anderson | f4f80e1 | 2012-05-07 20:47:23 +0000 | [diff] [blame] | 1842 | } |
| 1843 | |
| 1844 | return; |
| 1845 | } |
| 1846 | |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1847 | // Do not reassociate boolean (i1) expressions. We want to preserve the |
| 1848 | // original order of evaluation for short-circuited comparisons that |
| 1849 | // SimplifyCFG has folded to AND/OR expressions. If the expression |
| 1850 | // is not further optimized, it is likely to be transformed back to a |
| 1851 | // short-circuited form for code gen, and the source order may have been |
| 1852 | // optimized for the most likely conditions. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1853 | if (I->getType()->isIntegerTy(1)) |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1854 | return; |
Chris Lattner | 7bc532d | 2002-05-16 04:37:07 +0000 | [diff] [blame] | 1855 | |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1856 | // If this is a subtract instruction which is not already in negate form, |
| 1857 | // see if we can convert it to X+-Y. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1858 | if (I->getOpcode() == Instruction::Sub) { |
| 1859 | if (ShouldBreakUpSubtract(I)) { |
| 1860 | Instruction *NI = BreakUpSubtract(I); |
| 1861 | RedoInsts.insert(I); |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1862 | MadeChange = true; |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1863 | I = NI; |
| 1864 | } else if (BinaryOperator::isNeg(I)) { |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1865 | // Otherwise, this is a negation. See if the operand is a multiply tree |
| 1866 | // and if this is not an inner node of a multiply tree. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1867 | if (isReassociableOp(I->getOperand(1), Instruction::Mul) && |
| 1868 | (!I->hasOneUse() || |
| 1869 | !isReassociableOp(I->use_back(), Instruction::Mul))) { |
| 1870 | Instruction *NI = LowerNegateToMultiply(I); |
| 1871 | RedoInsts.insert(I); |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1872 | MadeChange = true; |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1873 | I = NI; |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1874 | } |
| 1875 | } |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1876 | } |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1877 | |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1878 | // If this instruction is an associative binary operator, process it. |
| 1879 | if (!I->isAssociative()) return; |
| 1880 | BinaryOperator *BO = cast<BinaryOperator>(I); |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1881 | |
| 1882 | // If this is an interior node of a reassociable tree, ignore it until we |
| 1883 | // get to the root of the tree, to avoid N^2 analysis. |
Nadav Rotem | 1088811 | 2012-07-23 13:44:15 +0000 | [diff] [blame] | 1884 | unsigned Opcode = BO->getOpcode(); |
| 1885 | if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode) |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1886 | return; |
| 1887 | |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1888 | // If this is an add tree that is used by a sub instruction, ignore it |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1889 | // until we process the subtract. |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1890 | if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && |
| 1891 | cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub) |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1892 | return; |
| 1893 | |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1894 | ReassociateExpression(BO); |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1895 | } |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 1896 | |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 1897 | void Reassociate::ReassociateExpression(BinaryOperator *I) { |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1898 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1899 | // First, walk the expression tree, linearizing the tree, collecting the |
| 1900 | // operand information. |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 1901 | SmallVector<RepeatedValue, 8> Tree; |
| 1902 | MadeChange |= LinearizeExprTree(I, Tree); |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 1903 | SmallVector<ValueEntry, 8> Ops; |
Duncan Sands | d7aeefe | 2012-06-12 14:33:56 +0000 | [diff] [blame] | 1904 | Ops.reserve(Tree.size()); |
| 1905 | for (unsigned i = 0, e = Tree.size(); i != e; ++i) { |
| 1906 | RepeatedValue E = Tree[i]; |
| 1907 | Ops.append(E.second.getZExtValue(), |
| 1908 | ValueEntry(getRank(E.first), E.first)); |
| 1909 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1910 | |
Duncan Sands | c94ac6f | 2012-05-26 07:47:48 +0000 | [diff] [blame] | 1911 | DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); |
| 1912 | |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1913 | // Now that we have linearized the tree to a list and have gathered all of |
| 1914 | // the operands and their ranks, sort the operands by their rank. Use a |
| 1915 | // stable_sort so that values with equal ranks will have their relative |
| 1916 | // positions maintained (and so the compiler is deterministic). Note that |
| 1917 | // this sorts so that the highest ranking values end up at the beginning of |
| 1918 | // the vector. |
| 1919 | std::stable_sort(Ops.begin(), Ops.end()); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1920 | |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1921 | // OptimizeExpression - Now that we have the expression tree in a convenient |
| 1922 | // sorted form, optimize it globally if possible. |
| 1923 | if (Value *V = OptimizeExpression(I, Ops)) { |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 1924 | if (V == I) |
| 1925 | // Self-referential expression in unreachable code. |
| 1926 | return; |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1927 | // This expression tree simplified to something that isn't a tree, |
| 1928 | // eliminate it. |
David Greene | d17c391 | 2010-01-05 01:27:24 +0000 | [diff] [blame] | 1929 | DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1930 | I->replaceAllUsesWith(V); |
Devang Patel | 80d1d3a | 2011-04-28 22:48:14 +0000 | [diff] [blame] | 1931 | if (Instruction *VI = dyn_cast<Instruction>(V)) |
| 1932 | VI->setDebugLoc(I->getDebugLoc()); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1933 | RedoInsts.insert(I); |
Chris Lattner | ba1f36a | 2009-12-31 17:51:05 +0000 | [diff] [blame] | 1934 | ++NumAnnihil; |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 1935 | return; |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1936 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1937 | |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1938 | // We want to sink immediates as deeply as possible except in the case where |
| 1939 | // this is a multiply tree used only by an add, and the immediate is a -1. |
| 1940 | // In this case we reassociate to put the negation on the outside so that we |
| 1941 | // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y |
| 1942 | if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && |
| 1943 | cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add && |
| 1944 | isa<ConstantInt>(Ops.back().Op) && |
| 1945 | cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { |
Chris Lattner | 38abecb | 2009-12-31 18:40:32 +0000 | [diff] [blame] | 1946 | ValueEntry Tmp = Ops.pop_back_val(); |
| 1947 | Ops.insert(Ops.begin(), Tmp); |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1948 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1949 | |
David Greene | d17c391 | 2010-01-05 01:27:24 +0000 | [diff] [blame] | 1950 | DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1951 | |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1952 | if (Ops.size() == 1) { |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 1953 | if (Ops[0].Op == I) |
| 1954 | // Self-referential expression in unreachable code. |
| 1955 | return; |
| 1956 | |
Chris Lattner | 2fc319d | 2006-03-14 07:11:11 +0000 | [diff] [blame] | 1957 | // This expression tree simplified to something that isn't a tree, |
| 1958 | // eliminate it. |
| 1959 | I->replaceAllUsesWith(Ops[0].Op); |
Devang Patel | 80d1d3a | 2011-04-28 22:48:14 +0000 | [diff] [blame] | 1960 | if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) |
| 1961 | OI->setDebugLoc(I->getDebugLoc()); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1962 | RedoInsts.insert(I); |
Duncan Sands | 7838603 | 2012-06-15 08:37:50 +0000 | [diff] [blame] | 1963 | return; |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 1964 | } |
Bill Wendling | c94d86c | 2012-05-02 23:43:23 +0000 | [diff] [blame] | 1965 | |
Chris Lattner | 60b71b5 | 2009-12-31 19:24:52 +0000 | [diff] [blame] | 1966 | // Now that we ordered and optimized the expressions, splat them back into |
| 1967 | // the expression tree, removing any unneeded nodes. |
| 1968 | RewriteExprTree(I, Ops); |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 1969 | } |
| 1970 | |
Chris Lattner | 113f4f4 | 2002-06-25 16:13:24 +0000 | [diff] [blame] | 1971 | bool Reassociate::runOnFunction(Function &F) { |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1972 | // Calculate the rank map for F |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 1973 | BuildRankMap(F); |
| 1974 | |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 1975 | MadeChange = false; |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1976 | for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { |
| 1977 | // Optimize every instruction in the basic block. |
| 1978 | for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) |
| 1979 | if (isInstructionTriviallyDead(II)) { |
| 1980 | EraseInst(II++); |
| 1981 | } else { |
| 1982 | OptimizeInst(II); |
| 1983 | assert(II->getParent() == BI && "Moved to a different block!"); |
| 1984 | ++II; |
| 1985 | } |
Duncan Sands | 9a5cf92 | 2012-06-08 13:37:30 +0000 | [diff] [blame] | 1986 | |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1987 | // If this produced extra instructions to optimize, handle them now. |
| 1988 | while (!RedoInsts.empty()) { |
Shuxin Yang | c94c3bb | 2012-11-13 00:08:49 +0000 | [diff] [blame] | 1989 | Instruction *I = RedoInsts.pop_back_val(); |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1990 | if (isInstructionTriviallyDead(I)) |
| 1991 | EraseInst(I); |
| 1992 | else |
| 1993 | OptimizeInst(I); |
Dan Gohman | 1c6c348 | 2011-04-12 00:11:56 +0000 | [diff] [blame] | 1994 | } |
Duncan Sands | 3293f46 | 2012-06-08 20:15:33 +0000 | [diff] [blame] | 1995 | } |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 1996 | |
Duncan Sands | bddfb2f | 2012-05-25 12:03:02 +0000 | [diff] [blame] | 1997 | // We are done with the rank map. |
| 1998 | RankMap.clear(); |
| 1999 | ValueRankMap.clear(); |
| 2000 | |
Chris Lattner | 1e50650 | 2005-05-07 21:59:39 +0000 | [diff] [blame] | 2001 | return MadeChange; |
Chris Lattner | c0f5800 | 2002-05-08 22:19:27 +0000 | [diff] [blame] | 2002 | } |