blob: 7d710850f9df61a0e286bb31f4886958a6debd51 [file] [log] [blame]
Chris Lattnerc0f58002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner36663782003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattnerf43e9742005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattnerc0f58002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattnercea57992005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnere63d8082006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukman2b3387a2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000029#include "llvm/Pass.h"
Chris Lattner9187f392005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000032#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
Chris Lattner1e506502005-05-07 21:59:39 +000035#include <algorithm>
Chris Lattnerc597b8a2006-01-22 23:32:06 +000036#include <iostream>
Chris Lattner49525f82004-01-09 06:02:20 +000037using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000038
Chris Lattnerc0f58002002-05-08 22:19:27 +000039namespace {
Chris Lattnerbf3a0992002-10-01 22:38:41 +000040 Statistic<> NumLinear ("reassociate","Number of insts linearized");
41 Statistic<> NumChanged("reassociate","Number of insts reassociated");
42 Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Chris Lattner5847e5e2005-05-08 18:59:37 +000043 Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Chris Lattner4c065092006-03-04 09:31:13 +000044 Statistic<> NumFactor ("reassociate","Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000045
Chris Lattner1e506502005-05-07 21:59:39 +000046 struct ValueEntry {
47 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
Chris Lattner4c065092006-03-04 09:31:13 +000054}
Chris Lattner1e506502005-05-07 21:59:39 +000055
Chris Lattner4c065092006-03-04 09:31:13 +000056/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59 Module *M = I->getParent()->getParent()->getParent();
60 std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61 << *Ops[0].Op->getType();
62 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
63 WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
64 << "," << Ops[i].Rank;
65}
66
67namespace {
Chris Lattnerc0f58002002-05-08 22:19:27 +000068 class Reassociate : public FunctionPass {
Chris Lattner10073a92002-07-25 06:17:51 +000069 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner8ac196d2003-08-13 16:16:26 +000070 std::map<Value*, unsigned> ValueRankMap;
Chris Lattner1e506502005-05-07 21:59:39 +000071 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +000072 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000073 bool runOnFunction(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000074
75 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner820d9712002-10-21 20:00:28 +000076 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +000077 }
78 private:
Chris Lattner113f4f42002-06-25 16:13:24 +000079 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000080 unsigned getRank(Value *V);
Chris Lattner2fc319d2006-03-14 07:11:11 +000081 void ReassociateExpression(BinaryOperator *I);
Chris Lattnerc5f866b2006-03-14 16:04:29 +000082 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
83 unsigned Idx = 0);
Chris Lattner4c065092006-03-04 09:31:13 +000084 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattner1e506502005-05-07 21:59:39 +000085 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
86 void LinearizeExpr(BinaryOperator *I);
Chris Lattner4c065092006-03-04 09:31:13 +000087 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattner1e506502005-05-07 21:59:39 +000088 void ReassociateBB(BasicBlock *BB);
Chris Lattner4c065092006-03-04 09:31:13 +000089
90 void RemoveDeadBinaryOp(Value *V);
Chris Lattnerc0f58002002-05-08 22:19:27 +000091 };
Chris Lattnerb28b6802002-07-23 18:06:35 +000092
Chris Lattnerc2d3d312006-08-27 22:42:52 +000093 RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattnerc0f58002002-05-08 22:19:27 +000094}
95
Brian Gaeke960707c2003-11-11 22:41:34 +000096// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +000097FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +000098
Chris Lattner4c065092006-03-04 09:31:13 +000099void Reassociate::RemoveDeadBinaryOp(Value *V) {
100 BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
101 if (!BOp || !BOp->use_empty()) return;
102
103 Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
104 RemoveDeadBinaryOp(LHS);
105 RemoveDeadBinaryOp(RHS);
106}
107
Chris Lattner9f284e02005-05-08 20:57:04 +0000108
109static bool isUnmovableInstruction(Instruction *I) {
110 if (I->getOpcode() == Instruction::PHI ||
111 I->getOpcode() == Instruction::Alloca ||
112 I->getOpcode() == Instruction::Load ||
113 I->getOpcode() == Instruction::Malloc ||
114 I->getOpcode() == Instruction::Invoke ||
115 I->getOpcode() == Instruction::Call ||
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000116 I->getOpcode() == Instruction::UDiv ||
117 I->getOpcode() == Instruction::SDiv ||
118 I->getOpcode() == Instruction::FDiv ||
Chris Lattner9f284e02005-05-08 20:57:04 +0000119 I->getOpcode() == Instruction::Rem)
120 return true;
121 return false;
122}
123
Chris Lattner113f4f42002-06-25 16:13:24 +0000124void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000125 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000126
127 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +0000128 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner8ac196d2003-08-13 16:16:26 +0000129 ValueRankMap[I] = ++i;
130
Chris Lattner113f4f42002-06-25 16:13:24 +0000131 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000132 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000133 E = RPOT.end(); I != E; ++I) {
134 BasicBlock *BB = *I;
135 unsigned BBRank = RankMap[BB] = ++i << 16;
136
137 // Walk the basic block, adding precomputed ranks for any instructions that
138 // we cannot move. This ensures that the ranks for these instructions are
139 // all different in the block.
140 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
141 if (isUnmovableInstruction(I))
142 ValueRankMap[I] = ++BBRank;
143 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000144}
145
146unsigned Reassociate::getRank(Value *V) {
Chris Lattner8ac196d2003-08-13 16:16:26 +0000147 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
148
Chris Lattnerf43e9742005-05-07 04:08:02 +0000149 Instruction *I = dyn_cast<Instruction>(V);
150 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattnerc0f58002002-05-08 22:19:27 +0000151
Chris Lattnerf43e9742005-05-07 04:08:02 +0000152 unsigned &CachedRank = ValueRankMap[I];
153 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000154
Chris Lattnerf43e9742005-05-07 04:08:02 +0000155 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
156 // we can reassociate expressions for code motion! Since we do not recurse
157 // for PHI nodes, we cannot have infinite recursion here, because there
158 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000159 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
160 for (unsigned i = 0, e = I->getNumOperands();
161 i != e && Rank != MaxRank; ++i)
162 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000163
Chris Lattner6e2086d2005-05-08 00:08:33 +0000164 // If this is a not or neg instruction, do not count it for rank. This
165 // assures us that X and ~X will have the same rank.
166 if (!I->getType()->isIntegral() ||
167 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
168 ++Rank;
169
Chris Lattner9f284e02005-05-08 20:57:04 +0000170 //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
171 //<< Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000172
Chris Lattner6e2086d2005-05-08 00:08:33 +0000173 return CachedRank = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000174}
175
Chris Lattner1e506502005-05-07 21:59:39 +0000176/// isReassociableOp - Return true if V is an instruction of the specified
177/// opcode and if it only has one use.
178static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000179 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattner1e506502005-05-07 21:59:39 +0000180 cast<Instruction>(V)->getOpcode() == Opcode)
181 return cast<BinaryOperator>(V);
182 return 0;
183}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000184
Chris Lattner877b1142005-05-08 21:28:52 +0000185/// LowerNegateToMultiply - Replace 0-X with X*-1.
186///
187static Instruction *LowerNegateToMultiply(Instruction *Neg) {
188 Constant *Cst;
189 if (Neg->getType()->isFloatingPoint())
190 Cst = ConstantFP::get(Neg->getType(), -1);
191 else
192 Cst = ConstantInt::getAllOnesValue(Neg->getType());
193
194 std::string NegName = Neg->getName(); Neg->setName("");
195 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
196 Neg);
197 Neg->replaceAllUsesWith(Res);
198 Neg->eraseFromParent();
199 return Res;
200}
201
Chris Lattner1e506502005-05-07 21:59:39 +0000202// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
203// Note that if D is also part of the expression tree that we recurse to
204// linearize it as well. Besides that case, this does not recurse into A,B, or
205// C.
206void Reassociate::LinearizeExpr(BinaryOperator *I) {
207 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
208 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000209 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattner1e506502005-05-07 21:59:39 +0000210 isReassociableOp(RHS, I->getOpcode()) &&
211 "Not an expression that needs linearization?");
Misha Brukmanb1c93172005-04-21 23:48:37 +0000212
Chris Lattner1e506502005-05-07 21:59:39 +0000213 DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000214
Chris Lattner1e506502005-05-07 21:59:39 +0000215 // Move the RHS instruction to live immediately before I, avoiding breaking
216 // dominator properties.
Chris Lattner9f269e42005-08-08 19:11:57 +0000217 RHS->moveBefore(I);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000218
Chris Lattner1e506502005-05-07 21:59:39 +0000219 // Move operands around to do the linearization.
220 I->setOperand(1, RHS->getOperand(0));
221 RHS->setOperand(0, LHS);
222 I->setOperand(0, RHS);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000223
Chris Lattner1e506502005-05-07 21:59:39 +0000224 ++NumLinear;
225 MadeChange = true;
226 DEBUG(std::cerr << "Linearized: " << *I);
227
228 // If D is part of this expression tree, tail recurse.
229 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
230 LinearizeExpr(I);
231}
232
233
234/// LinearizeExprTree - Given an associative binary expression tree, traverse
235/// all of the uses putting it into canonical form. This forces a left-linear
236/// form of the the expression (((a+b)+c)+d), and collects information about the
237/// rank of the non-tree operands.
238///
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000239/// NOTE: These intentionally destroys the expression tree operands (turning
240/// them into undef values) to reduce #uses of the values. This means that the
241/// caller MUST use something like RewriteExprTree to put the values back in.
242///
Chris Lattner1e506502005-05-07 21:59:39 +0000243void Reassociate::LinearizeExprTree(BinaryOperator *I,
244 std::vector<ValueEntry> &Ops) {
245 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
246 unsigned Opcode = I->getOpcode();
247
248 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
249 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
250 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
251
Chris Lattner877b1142005-05-08 21:28:52 +0000252 // If this is a multiply expression tree and it contains internal negations,
253 // transform them into multiplies by -1 so they can be reassociated.
254 if (I->getOpcode() == Instruction::Mul) {
255 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
256 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
257 LHSBO = isReassociableOp(LHS, Opcode);
258 }
259 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
260 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
261 RHSBO = isReassociableOp(RHS, Opcode);
262 }
263 }
264
Chris Lattner1e506502005-05-07 21:59:39 +0000265 if (!LHSBO) {
266 if (!RHSBO) {
267 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
268 // such, just remember these operands and their rank.
269 Ops.push_back(ValueEntry(getRank(LHS), LHS));
270 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000271
272 // Clear the leaves out.
273 I->setOperand(0, UndefValue::get(I->getType()));
274 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner1e506502005-05-07 21:59:39 +0000275 return;
276 } else {
277 // Turn X+(Y+Z) -> (Y+Z)+X
278 std::swap(LHSBO, RHSBO);
279 std::swap(LHS, RHS);
280 bool Success = !I->swapOperands();
281 assert(Success && "swapOperands failed");
282 MadeChange = true;
283 }
284 } else if (RHSBO) {
285 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
286 // part of the expression tree.
287 LinearizeExpr(I);
288 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
289 RHS = I->getOperand(1);
290 RHSBO = 0;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000291 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000292
Chris Lattner1e506502005-05-07 21:59:39 +0000293 // Okay, now we know that the LHS is a nested expression and that the RHS is
294 // not. Perform reassociation.
295 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattnerc0f58002002-05-08 22:19:27 +0000296
Chris Lattner1e506502005-05-07 21:59:39 +0000297 // Move LHS right before I to make sure that the tree expression dominates all
298 // values.
Chris Lattner9f269e42005-08-08 19:11:57 +0000299 LHSBO->moveBefore(I);
Chris Lattner98b3ecd2003-08-12 21:45:24 +0000300
Chris Lattner1e506502005-05-07 21:59:39 +0000301 // Linearize the expression tree on the LHS.
302 LinearizeExprTree(LHSBO, Ops);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000303
Chris Lattner1e506502005-05-07 21:59:39 +0000304 // Remember the RHS operand and its rank.
305 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000306
307 // Clear the RHS leaf out.
308 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000309}
310
Chris Lattner1e506502005-05-07 21:59:39 +0000311// RewriteExprTree - Now that the operands for this expression tree are
312// linearized and optimized, emit them in-order. This function is written to be
313// tail recursive.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000314void Reassociate::RewriteExprTree(BinaryOperator *I,
315 std::vector<ValueEntry> &Ops,
316 unsigned i) {
Chris Lattner1e506502005-05-07 21:59:39 +0000317 if (i+2 == Ops.size()) {
318 if (I->getOperand(0) != Ops[i].Op ||
319 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattner4c065092006-03-04 09:31:13 +0000320 Value *OldLHS = I->getOperand(0);
Chris Lattner1e506502005-05-07 21:59:39 +0000321 DEBUG(std::cerr << "RA: " << *I);
322 I->setOperand(0, Ops[i].Op);
323 I->setOperand(1, Ops[i+1].Op);
324 DEBUG(std::cerr << "TO: " << *I);
325 MadeChange = true;
326 ++NumChanged;
Chris Lattner4c065092006-03-04 09:31:13 +0000327
328 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
329 // delete the extra, now dead, nodes.
330 RemoveDeadBinaryOp(OldLHS);
Chris Lattner1e506502005-05-07 21:59:39 +0000331 }
332 return;
333 }
334 assert(i+2 < Ops.size() && "Ops index out of range!");
335
336 if (I->getOperand(1) != Ops[i].Op) {
337 DEBUG(std::cerr << "RA: " << *I);
338 I->setOperand(1, Ops[i].Op);
339 DEBUG(std::cerr << "TO: " << *I);
340 MadeChange = true;
341 ++NumChanged;
342 }
Chris Lattner4c065092006-03-04 09:31:13 +0000343
344 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
345 assert(LHS->getOpcode() == I->getOpcode() &&
346 "Improper expression tree!");
347
348 // Compactify the tree instructions together with each other to guarantee
349 // that the expression tree is dominated by all of Ops.
350 LHS->moveBefore(I);
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000351 RewriteExprTree(LHS, Ops, i+1);
Chris Lattner1e506502005-05-07 21:59:39 +0000352}
353
354
Chris Lattnerc0f58002002-05-08 22:19:27 +0000355
Chris Lattner7bc532d2002-05-16 04:37:07 +0000356// NegateValue - Insert instructions before the instruction pointed to by BI,
357// that computes the negative version of the value specified. The negative
358// version of the value is returned, and BI is left pointing at the instruction
359// that should be processed next by the reassociation pass.
360//
Chris Lattnerf43e9742005-05-07 04:08:02 +0000361static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner7bc532d2002-05-16 04:37:07 +0000362 // We are trying to expose opportunity for reassociation. One of the things
363 // that we want to do to achieve this is to push a negation as deep into an
364 // expression chain as possible, to expose the add instructions. In practice,
365 // this means that we turn this:
366 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
367 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
368 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman7eb05a12003-08-18 14:43:39 +0000369 // we introduce tons of unnecessary negation instructions...
Chris Lattner7bc532d2002-05-16 04:37:07 +0000370 //
371 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000372 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner9fe263a2005-09-02 06:38:04 +0000373 // Push the negates through the add.
374 I->setOperand(0, NegateValue(I->getOperand(0), BI));
375 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000376
Chris Lattner9fe263a2005-09-02 06:38:04 +0000377 // We must move the add instruction here, because the neg instructions do
378 // not dominate the old add instruction in general. By moving it, we are
379 // assured that the neg instructions we just inserted dominate the
380 // instruction we are about to insert after them.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000381 //
Chris Lattner9fe263a2005-09-02 06:38:04 +0000382 I->moveBefore(BI);
383 I->setName(I->getName()+".neg");
384 return I;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000385 }
386
387 // Insert a 'neg' instruction that subtracts the value from zero to get the
388 // negation.
389 //
Chris Lattnerf43e9742005-05-07 04:08:02 +0000390 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
391}
392
Chris Lattnerf43e9742005-05-07 04:08:02 +0000393/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
394/// only used by an add, transform this into (X+(0-Y)) to promote better
395/// reassociation.
396static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000397 // Don't bother to break this up unless either the LHS is an associable add or
398 // if this is only used by one.
399 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
400 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
401 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
402 return 0;
403
404 // Convert a subtract into an add and a neg instruction... so that sub
405 // instructions can be commuted with other add instructions...
406 //
407 // Calculate the negative value of Operand 1 of the sub instruction...
408 // and set it as the RHS of the add instruction we just made...
409 //
410 std::string Name = Sub->getName();
411 Sub->setName("");
412 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
413 Instruction *New =
414 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
415
416 // Everyone now refers to the add instruction.
417 Sub->replaceAllUsesWith(New);
418 Sub->eraseFromParent();
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000419
Chris Lattnerf43e9742005-05-07 04:08:02 +0000420 DEBUG(std::cerr << "Negated: " << *New);
421 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000422}
423
Chris Lattnercea57992005-05-07 04:24:13 +0000424/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
425/// by one, change this into a multiply by a constant to assist with further
426/// reassociation.
427static Instruction *ConvertShiftToMul(Instruction *Shl) {
Chris Lattnerd6bde462006-03-14 06:55:18 +0000428 // If an operand of this shift is a reassociable multiply, or if the shift
429 // is used by a reassociable multiply or add, turn into a multiply.
430 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
431 (Shl->hasOneUse() &&
432 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
433 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
434 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
435 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
436
437 std::string Name = Shl->getName(); Shl->setName("");
438 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
439 Name, Shl);
440 Shl->replaceAllUsesWith(Mul);
441 Shl->eraseFromParent();
442 return Mul;
443 }
444 return 0;
Chris Lattnercea57992005-05-07 04:24:13 +0000445}
446
Chris Lattner5847e5e2005-05-08 18:59:37 +0000447// Scan backwards and forwards among values with the same rank as element i to
448// see if X exists. If X does not exist, return i.
449static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
450 Value *X) {
451 unsigned XRank = Ops[i].Rank;
452 unsigned e = Ops.size();
453 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
454 if (Ops[j].Op == X)
455 return j;
456 // Scan backwards
457 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
458 if (Ops[j].Op == X)
459 return j;
460 return i;
461}
462
Chris Lattner4c065092006-03-04 09:31:13 +0000463/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
464/// and returning the result. Insert the tree before I.
465static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
466 if (Ops.size() == 1) return Ops.back();
467
468 Value *V1 = Ops.back();
469 Ops.pop_back();
470 Value *V2 = EmitAddTreeOfValues(I, Ops);
471 return BinaryOperator::createAdd(V2, V1, "tmp", I);
472}
473
474/// RemoveFactorFromExpression - If V is an expression tree that is a
475/// multiplication sequence, and if this sequence contains a multiply by Factor,
476/// remove Factor from the tree and return the new tree.
477Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
478 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
479 if (!BO) return 0;
480
481 std::vector<ValueEntry> Factors;
482 LinearizeExprTree(BO, Factors);
483
484 bool FoundFactor = false;
485 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
486 if (Factors[i].Op == Factor) {
487 FoundFactor = true;
488 Factors.erase(Factors.begin()+i);
489 break;
490 }
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000491 if (!FoundFactor) {
492 // Make sure to restore the operands to the expression tree.
493 RewriteExprTree(BO, Factors);
494 return 0;
495 }
Chris Lattner4c065092006-03-04 09:31:13 +0000496
497 if (Factors.size() == 1) return Factors[0].Op;
498
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000499 RewriteExprTree(BO, Factors);
Chris Lattner4c065092006-03-04 09:31:13 +0000500 return BO;
501}
502
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000503/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
504/// add its operands as factors, otherwise add V to the list of factors.
505static void FindSingleUseMultiplyFactors(Value *V,
506 std::vector<Value*> &Factors) {
507 BinaryOperator *BO;
508 if ((!V->hasOneUse() && !V->use_empty()) ||
509 !(BO = dyn_cast<BinaryOperator>(V)) ||
510 BO->getOpcode() != Instruction::Mul) {
511 Factors.push_back(V);
512 return;
513 }
514
515 // Otherwise, add the LHS and RHS to the list of factors.
516 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
517 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
518}
519
520
Chris Lattner4c065092006-03-04 09:31:13 +0000521
522Value *Reassociate::OptimizeExpression(BinaryOperator *I,
523 std::vector<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +0000524 // Now that we have the linearized expression tree, try to optimize it.
525 // Start by folding any constants that we found.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000526 bool IterateOptimization = false;
Chris Lattner4c065092006-03-04 09:31:13 +0000527 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattnere1850b82005-05-08 00:19:31 +0000528
Chris Lattner4c065092006-03-04 09:31:13 +0000529 unsigned Opcode = I->getOpcode();
530
Chris Lattnere1850b82005-05-08 00:19:31 +0000531 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
532 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
533 Ops.pop_back();
534 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattner4c065092006-03-04 09:31:13 +0000535 return OptimizeExpression(I, Ops);
Chris Lattnere1850b82005-05-08 00:19:31 +0000536 }
537
538 // Check for destructive annihilation due to a constant being used.
539 if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
540 switch (Opcode) {
541 default: break;
542 case Instruction::And:
543 if (CstVal->isNullValue()) { // ... & 0 -> 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000544 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000545 return CstVal;
Chris Lattnere1850b82005-05-08 00:19:31 +0000546 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
547 Ops.pop_back();
548 }
549 break;
550 case Instruction::Mul:
551 if (CstVal->isNullValue()) { // ... * 0 -> 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000552 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000553 return CstVal;
Reid Spencere0fc4df2006-10-20 07:07:24 +0000554 } else if (cast<ConstantInt>(CstVal)->getZExtValue() == 1) {
Chris Lattnere1850b82005-05-08 00:19:31 +0000555 Ops.pop_back(); // ... * 1 -> ...
556 }
557 break;
558 case Instruction::Or:
559 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner5847e5e2005-05-08 18:59:37 +0000560 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000561 return CstVal;
Chris Lattnere1850b82005-05-08 00:19:31 +0000562 }
563 // FALLTHROUGH!
564 case Instruction::Add:
565 case Instruction::Xor:
566 if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
567 Ops.pop_back();
568 break;
569 }
Chris Lattner4c065092006-03-04 09:31:13 +0000570 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattnere1850b82005-05-08 00:19:31 +0000571
572 // Handle destructive annihilation do to identities between elements in the
573 // argument list here.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000574 switch (Opcode) {
575 default: break;
576 case Instruction::And:
577 case Instruction::Or:
578 case Instruction::Xor:
579 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
580 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
581 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
582 // First, check for X and ~X in the operand list.
Chris Lattnerd1325da2005-09-02 05:23:22 +0000583 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000584 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
585 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
586 unsigned FoundX = FindInOperandList(Ops, i, X);
587 if (FoundX != i) {
588 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000589 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000590 return Constant::getNullValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000591 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner5847e5e2005-05-08 18:59:37 +0000592 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000593 return ConstantIntegral::getAllOnesValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000594 }
595 }
596 }
597
598 // Next, check for duplicate pairs of values, which we assume are next to
599 // each other, due to our sorting criteria.
Chris Lattnerd1325da2005-09-02 05:23:22 +0000600 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000601 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
602 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
603 // Drop duplicate values.
604 Ops.erase(Ops.begin()+i);
605 --i; --e;
606 IterateOptimization = true;
607 ++NumAnnihil;
608 } else {
609 assert(Opcode == Instruction::Xor);
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000610 if (e == 2) {
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000611 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000612 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000613 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000614 // ... X^X -> ...
615 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000616 i -= 1; e -= 2;
Chris Lattner5847e5e2005-05-08 18:59:37 +0000617 IterateOptimization = true;
618 ++NumAnnihil;
619 }
620 }
621 }
622 break;
623
624 case Instruction::Add:
625 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner4c065092006-03-04 09:31:13 +0000626 // can simplify the expression. X+-X == 0.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000627 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattnerd1325da2005-09-02 05:23:22 +0000628 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000629 // Check for X and -X in the operand list.
630 if (BinaryOperator::isNeg(Ops[i].Op)) {
631 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
632 unsigned FoundX = FindInOperandList(Ops, i, X);
633 if (FoundX != i) {
634 // Remove X and -X from the operand list.
635 if (Ops.size() == 2) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000636 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000637 return Constant::getNullValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000638 } else {
639 Ops.erase(Ops.begin()+i);
Chris Lattnerd1325da2005-09-02 05:23:22 +0000640 if (i < FoundX)
641 --FoundX;
642 else
643 --i; // Need to back up an extra one.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000644 Ops.erase(Ops.begin()+FoundX);
645 IterateOptimization = true;
646 ++NumAnnihil;
Chris Lattnerd1325da2005-09-02 05:23:22 +0000647 --i; // Revisit element.
648 e -= 2; // Removed two elements.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000649 }
650 }
651 }
652 }
Chris Lattner4c065092006-03-04 09:31:13 +0000653
654
655 // Scan the operand list, checking to see if there are any common factors
656 // between operands. Consider something like A*A+A*B*C+D. We would like to
657 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
658 // To efficiently find this, we count the number of times a factor occurs
659 // for any ADD operands that are MULs.
660 std::map<Value*, unsigned> FactorOccurrences;
661 unsigned MaxOcc = 0;
662 Value *MaxOccVal = 0;
663 if (!I->getType()->isFloatingPoint()) {
664 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
665 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000666 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
Chris Lattner4c065092006-03-04 09:31:13 +0000667 // Compute all of the factors of this added value.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000668 std::vector<Value*> Factors;
669 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner4c065092006-03-04 09:31:13 +0000670 assert(Factors.size() > 1 && "Bad linearize!");
671
672 // Add one to FactorOccurrences for each unique factor in this op.
673 if (Factors.size() == 2) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000674 unsigned Occ = ++FactorOccurrences[Factors[0]];
675 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
676 if (Factors[0] != Factors[1]) { // Don't double count A*A.
677 Occ = ++FactorOccurrences[Factors[1]];
678 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
Chris Lattner4c065092006-03-04 09:31:13 +0000679 }
680 } else {
681 std::set<Value*> Duplicates;
682 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000683 if (Duplicates.insert(Factors[i]).second) {
684 unsigned Occ = ++FactorOccurrences[Factors[i]];
685 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Chris Lattner4c065092006-03-04 09:31:13 +0000686 }
687 }
688 }
689 }
690 }
691
692 // If any factor occurred more than one time, we can pull it out.
693 if (MaxOcc > 1) {
694 DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
695 << *MaxOccVal << "\n");
696
697 // Create a new instruction that uses the MaxOccVal twice. If we don't do
698 // this, we could otherwise run into situations where removing a factor
699 // from an expression will drop a use of maxocc, and this can cause
700 // RemoveFactorFromExpression on successive values to behave differently.
701 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
702 std::vector<Value*> NewMulOps;
703 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
704 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
705 NewMulOps.push_back(V);
706 Ops.erase(Ops.begin()+i);
707 --i; --e;
708 }
709 }
710
711 // No need for extra uses anymore.
712 delete DummyInst;
713
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000714 unsigned NumAddedValues = NewMulOps.size();
Chris Lattner4c065092006-03-04 09:31:13 +0000715 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000716 Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
Chris Lattner4c065092006-03-04 09:31:13 +0000717
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000718 // Now that we have inserted V and its sole use, optimize it. This allows
719 // us to handle cases that require multiple factoring steps, such as this:
720 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
721 if (NumAddedValues > 1)
722 ReassociateExpression(cast<BinaryOperator>(V));
723
Chris Lattner4c065092006-03-04 09:31:13 +0000724 ++NumFactor;
725
726 if (Ops.size() == 0)
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000727 return V2;
Chris Lattner4c065092006-03-04 09:31:13 +0000728
729 // Add the new value to the list of things being added.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000730 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
Chris Lattner4c065092006-03-04 09:31:13 +0000731
732 // Rewrite the tree so that there is now a use of V.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000733 RewriteExprTree(I, Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000734 return OptimizeExpression(I, Ops);
735 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000736 break;
737 //case Instruction::Mul:
738 }
739
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000740 if (IterateOptimization)
Chris Lattner4c065092006-03-04 09:31:13 +0000741 return OptimizeExpression(I, Ops);
742 return 0;
Chris Lattnere1850b82005-05-08 00:19:31 +0000743}
744
Chris Lattner7bc532d2002-05-16 04:37:07 +0000745
Chris Lattnerf43e9742005-05-07 04:08:02 +0000746/// ReassociateBB - Inspect all of the instructions in this basic block,
747/// reassociating them as we go.
Chris Lattner1e506502005-05-07 21:59:39 +0000748void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattner4c065092006-03-04 09:31:13 +0000749 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
750 Instruction *BI = BBI++;
Chris Lattner31c667e2005-05-10 03:39:25 +0000751 if (BI->getOpcode() == Instruction::Shl &&
752 isa<ConstantInt>(BI->getOperand(1)))
753 if (Instruction *NI = ConvertShiftToMul(BI)) {
754 MadeChange = true;
755 BI = NI;
756 }
757
Chris Lattnerc4f8e2b2005-05-08 21:33:47 +0000758 // Reject cases where it is pointless to do this.
Chris Lattnere63d8082006-04-28 04:14:49 +0000759 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
760 isa<PackedType>(BI->getType()))
Chris Lattnerc4f8e2b2005-05-08 21:33:47 +0000761 continue; // Floating point ops are not associative.
762
Chris Lattnerf43e9742005-05-07 04:08:02 +0000763 // If this is a subtract instruction which is not already in negate form,
764 // see if we can convert it to X+-Y.
Chris Lattner877b1142005-05-08 21:28:52 +0000765 if (BI->getOpcode() == Instruction::Sub) {
766 if (!BinaryOperator::isNeg(BI)) {
767 if (Instruction *NI = BreakUpSubtract(BI)) {
768 MadeChange = true;
769 BI = NI;
770 }
771 } else {
772 // Otherwise, this is a negation. See if the operand is a multiply tree
773 // and if this is not an inner node of a multiply tree.
774 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
775 (!BI->hasOneUse() ||
776 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
777 BI = LowerNegateToMultiply(BI);
778 MadeChange = true;
779 }
Chris Lattnerf43e9742005-05-07 04:08:02 +0000780 }
Chris Lattner877b1142005-05-08 21:28:52 +0000781 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000782
Chris Lattner1e506502005-05-07 21:59:39 +0000783 // If this instruction is a commutative binary operator, process it.
784 if (!BI->isAssociative()) continue;
785 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000786
Chris Lattner1e506502005-05-07 21:59:39 +0000787 // If this is an interior node of a reassociable tree, ignore it until we
788 // get to the root of the tree, to avoid N^2 analysis.
789 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
790 continue;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000791
Chris Lattnerb5e381a2005-09-02 07:07:58 +0000792 // If this is an add tree that is used by a sub instruction, ignore it
793 // until we process the subtract.
794 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
795 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
796 continue;
797
Chris Lattner2fc319d2006-03-14 07:11:11 +0000798 ReassociateExpression(I);
799 }
800}
Chris Lattner1e506502005-05-07 21:59:39 +0000801
Chris Lattner2fc319d2006-03-14 07:11:11 +0000802void Reassociate::ReassociateExpression(BinaryOperator *I) {
803
804 // First, walk the expression tree, linearizing the tree, collecting
805 std::vector<ValueEntry> Ops;
806 LinearizeExprTree(I, Ops);
807
808 DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
809 std::cerr << "\n");
810
811 // Now that we have linearized the tree to a list and have gathered all of
812 // the operands and their ranks, sort the operands by their rank. Use a
813 // stable_sort so that values with equal ranks will have their relative
814 // positions maintained (and so the compiler is deterministic). Note that
815 // this sorts so that the highest ranking values end up at the beginning of
816 // the vector.
817 std::stable_sort(Ops.begin(), Ops.end());
818
819 // OptimizeExpression - Now that we have the expression tree in a convenient
820 // sorted form, optimize it globally if possible.
821 if (Value *V = OptimizeExpression(I, Ops)) {
822 // This expression tree simplified to something that isn't a tree,
823 // eliminate it.
824 DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
825 I->replaceAllUsesWith(V);
826 RemoveDeadBinaryOp(I);
827 return;
828 }
829
830 // We want to sink immediates as deeply as possible except in the case where
831 // this is a multiply tree used only by an add, and the immediate is a -1.
832 // In this case we reassociate to put the negation on the outside so that we
833 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
834 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
835 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
836 isa<ConstantInt>(Ops.back().Op) &&
837 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
838 Ops.insert(Ops.begin(), Ops.back());
839 Ops.pop_back();
840 }
841
842 DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
843 std::cerr << "\n");
844
845 if (Ops.size() == 1) {
846 // This expression tree simplified to something that isn't a tree,
847 // eliminate it.
848 I->replaceAllUsesWith(Ops[0].Op);
849 RemoveDeadBinaryOp(I);
850 } else {
851 // Now that we ordered and optimized the expressions, splat them back into
852 // the expression tree, removing any unneeded nodes.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000853 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000854 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000855}
856
857
Chris Lattner113f4f42002-06-25 16:13:24 +0000858bool Reassociate::runOnFunction(Function &F) {
Chris Lattnerc0f58002002-05-08 22:19:27 +0000859 // Recalculate the rank map for F
860 BuildRankMap(F);
861
Chris Lattner1e506502005-05-07 21:59:39 +0000862 MadeChange = false;
Chris Lattner113f4f42002-06-25 16:13:24 +0000863 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattner1e506502005-05-07 21:59:39 +0000864 ReassociateBB(FI);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000865
866 // We are done with the rank map...
867 RankMap.clear();
Chris Lattner8ac196d2003-08-13 16:16:26 +0000868 ValueRankMap.clear();
Chris Lattner1e506502005-05-07 21:59:39 +0000869 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000870}
Brian Gaeke960707c2003-11-11 22:41:34 +0000871