blob: 96bfac4263d248abaebd1e25caa62b55f71d6baf [file] [log] [blame]
Michael Kruse138a3fb2017-08-04 22:51:23 +00001//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Derive information about array elements between statements ("Zones").
11//
12// The algorithms here work on the scatter space - the image space of the
13// schedule returned by Scop::getSchedule(). We call an element in that space a
14// "timepoint". Timepoints are lexicographically ordered such that we can
15// defined ranges in the scatter space. We use two flavors of such ranges:
16// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
17// space and is directly stored as isl_set.
18//
19// Zones are used to describe the space between timepoints as open sets, i.e.
20// they do not contain the extrema. Using isl rational sets to express these
21// would be overkill. We also cannot store them as the integer timepoints they
22// contain; the (nonempty) zone between 1 and 2 would be empty and
23// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
24// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
25// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
26// Instead, we store the "half-open" integer extrema, including the lower bound,
27// but excluding the upper bound. Examples:
28//
29// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
30// integer points 1 and 2, but not 0 or 3)
31//
32// * { [1] } represents the zone ]0,1[
33//
34// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35//
36// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
37// speaking the integer points never belong to the zone. However, depending an
38// the interpretation, one might want to include them. Part of the
39// interpretation may not be known when the zone is constructed.
40//
41// Reads are assumed to always take place before writes, hence we can think of
42// reads taking place at the beginning of a timepoint and writes at the end.
43//
44// Let's assume that the zone represents the lifetime of a variable. That is,
45// the zone begins with a write that defines the value during its lifetime and
46// ends with the last read of that value. In the following we consider whether a
47// read/write at the beginning/ending of the lifetime zone should be within the
48// zone or outside of it.
49//
50// * A read at the timepoint that starts the live-range loads the previous
51// value. Hence, exclude the timepoint starting the zone.
52//
53// * A write at the timepoint that starts the live-range is not defined whether
54// it occurs before or after the write that starts the lifetime. We do not
55// allow this situation to occur. Hence, we include the timepoint starting the
56// zone to determine whether they are conflicting.
57//
58// * A read at the timepoint that ends the live-range reads the same variable.
59// We include the timepoint at the end of the zone to include that read into
60// the live-range. Doing otherwise would mean that the two reads access
61// different values, which would mean that the value they read are both alive
62// at the same time but occupy the same variable.
63//
64// * A write at the timepoint that ends the live-range starts a new live-range.
65// It must not be included in the live-range of the previous definition.
66//
67// All combinations of reads and writes at the endpoints are possible, but most
68// of the time only the write->read (for instance, a live-range from definition
69// to last use) and read->write (for instance, an unused range from last use to
70// overwrite) and combinations are interesting (half-open ranges). write->write
71// zones might be useful as well in some context to represent
72// output-dependencies.
73//
74// @see convertZoneToTimepoints
75//
76//
77// The code makes use of maps and sets in many different spaces. To not loose
78// track in which space a set or map is expected to be in, variables holding an
79// isl reference are usually annotated in the comments. They roughly follow isl
80// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
81// meaning as follows:
82//
83// * Space[] - An unspecified tuple. Used for function parameters such that the
84// function caller can use it for anything they like.
85//
86// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
87// isl_id_get_name: Stmt_<NameOfBasicBlock>
88// isl_id_get_user: Pointer to ScopStmt
89//
90// * Element[] - An array element as in the range part of
91// MemoryAccess::getAccessRelation()
92// isl_id_get_name: MemRef_<NameOfArrayVariable>
93// isl_id_get_user: Pointer to ScopArrayInfo
94//
95// * Scatter[] - Scatter space or space of timepoints
96// Has no tuple id
97//
98// * Zone[] - Range between timepoints as described above
99// Has no tuple id
100//
101// * ValInst[] - An llvm::Value as defined at a specific timepoint.
102//
103// A ValInst[] itself can be structured as one of:
104//
105// * [] - An unknown value.
106// Always zero dimensions
107// Has no tuple id
108//
109// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
110// runtime content does not depend on the timepoint.
111// Always zero dimensions
112// isl_id_get_name: Val_<NameOfValue>
113// isl_id_get_user: A pointer to an llvm::Value
114//
115// * SCEV[...] - A synthesizable llvm::SCEV Expression.
116// In contrast to a Value[] is has at least one dimension per
117// SCEVAddRecExpr in the SCEV.
118//
119// * [Domain[] -> Value[]] - An llvm::Value that may change during the
120// Scop's execution.
121// The tuple itself has no id, but it wraps a map space holding a
122// statement instance which defines the llvm::Value as the map's domain
123// and llvm::Value itself as range.
124//
125// @see makeValInst()
126//
127// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
128// statement instance to a timepoint, aka a schedule. There is only one scatter
129// space, but most of the time multiple statements are processed in one set.
130// This is why most of the time isl_union_map has to be used.
131//
132// The basic algorithm works as follows:
133// At first we verify that the SCoP is compatible with this technique. For
134// instance, two writes cannot write to the same location at the same statement
135// instance because we cannot determine within the polyhedral model which one
136// comes first. Once this was verified, we compute zones at which an array
137// element is unused. This computation can fail if it takes too long. Then the
138// main algorithm is executed. Because every store potentially trails an unused
139// zone, we start at stores. We search for a scalar (MemoryKind::Value or
140// MemoryKind::PHI) that we can map to the array element overwritten by the
141// store, preferably one that is used by the store or at least the ScopStmt.
142// When it does not conflict with the lifetime of the values in the array
143// element, the map is applied and the unused zone updated as it is now used. We
144// continue to try to map scalars to the array element until there are no more
145// candidates to map. The algorithm is greedy in the sense that the first scalar
146// not conflicting will be mapped. Other scalars processed later that could have
147// fit the same unused zone will be rejected. As such the result depends on the
148// processing order.
149//
150//===----------------------------------------------------------------------===//
151
152#include "polly/ZoneAlgo.h"
153#include "polly/ScopInfo.h"
154#include "polly/Support/GICHelper.h"
155#include "polly/Support/ISLTools.h"
156#include "polly/Support/VirtualInstruction.h"
Michael Kruse47281842017-08-28 20:39:07 +0000157#include "llvm/ADT/Statistic.h"
Michael Kruse138a3fb2017-08-04 22:51:23 +0000158
159#define DEBUG_TYPE "polly-zone"
160
Michael Kruse47281842017-08-28 20:39:07 +0000161STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
162STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
Michael Kruse68821a82017-10-31 16:11:46 +0000163STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
164STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
165STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
Michael Kruse47281842017-08-28 20:39:07 +0000166
Michael Kruse138a3fb2017-08-04 22:51:23 +0000167using namespace polly;
168using namespace llvm;
169
170static isl::union_map computeReachingDefinition(isl::union_map Schedule,
171 isl::union_map Writes,
172 bool InclDef, bool InclRedef) {
173 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
174}
175
176/// Compute the reaching definition of a scalar.
177///
178/// Compared to computeReachingDefinition, there is just one element which is
179/// accessed and therefore only a set if instances that accesses that element is
180/// required.
181///
182/// @param Schedule { DomainWrite[] -> Scatter[] }
183/// @param Writes { DomainWrite[] }
184/// @param InclDef Include the timepoint of the definition to the result.
185/// @param InclRedef Include the timepoint of the overwrite into the result.
186///
187/// @return { Scatter[] -> DomainWrite[] }
188static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
189 isl::union_set Writes,
190 bool InclDef,
191 bool InclRedef) {
Michael Kruse138a3fb2017-08-04 22:51:23 +0000192 // { DomainWrite[] -> Element[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000193 isl::union_map Defs = isl::union_map::from_domain(Writes);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000194
195 // { [Element[] -> Scatter[]] -> DomainWrite[] }
196 auto ReachDefs =
197 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
198
199 // { Scatter[] -> DomainWrite[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000200 return ReachDefs.curry().range().unwrap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000201}
202
203/// Compute the reaching definition of a scalar.
204///
205/// This overload accepts only a single writing statement as an isl_map,
206/// consequently the result also is only a single isl_map.
207///
208/// @param Schedule { DomainWrite[] -> Scatter[] }
209/// @param Writes { DomainWrite[] }
210/// @param InclDef Include the timepoint of the definition to the result.
211/// @param InclRedef Include the timepoint of the overwrite into the result.
212///
213/// @return { Scatter[] -> DomainWrite[] }
214static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
215 isl::set Writes, bool InclDef,
216 bool InclRedef) {
Tobias Grosser0dd42512017-08-21 14:19:40 +0000217 isl::space DomainSpace = Writes.get_space();
218 isl::space ScatterSpace = getScatterSpace(Schedule);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000219
220 // { Scatter[] -> DomainWrite[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000221 isl::union_map UMap = computeScalarReachingDefinition(
222 Schedule, isl::union_set(Writes), InclDef, InclRedef);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000223
Tobias Grosser0dd42512017-08-21 14:19:40 +0000224 isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000225 return singleton(UMap, ResultSpace);
226}
227
228isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
229 return give(isl_union_map_from_domain(Domain.take()));
230}
231
232/// Create a domain-to-unknown value mapping.
233///
234/// @see makeUnknownForDomain(isl::union_set)
235///
236/// @param Domain { Domain[] }
237///
238/// @return { Domain[] -> ValInst[] }
239static isl::map makeUnknownForDomain(isl::set Domain) {
240 return give(isl_map_from_domain(Domain.take()));
241}
242
Michael Kruse70af4f52017-08-07 18:40:29 +0000243/// Return whether @p Map maps to an unknown value.
244///
245/// @param { [] -> ValInst[] }
246static bool isMapToUnknown(const isl::map &Map) {
247 isl::space Space = Map.get_space().range();
248 return Space.has_tuple_id(isl::dim::set).is_false() &&
249 Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
250}
251
Michael Krusece673582017-08-08 17:00:27 +0000252isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
Michael Kruse70af4f52017-08-07 18:40:29 +0000253 isl::union_map Result = isl::union_map::empty(UMap.get_space());
Michael Kruse630fc7b2017-08-09 11:21:40 +0000254 isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
Michael Kruse70af4f52017-08-07 18:40:29 +0000255 if (!isMapToUnknown(Map))
256 Result = Result.add_map(Map);
257 return isl::stat::ok;
258 });
Michael Kruse630fc7b2017-08-09 11:21:40 +0000259 if (Success != isl::stat::ok)
260 return {};
Michael Kruse70af4f52017-08-07 18:40:29 +0000261 return Result;
262}
263
Michael Kruse138a3fb2017-08-04 22:51:23 +0000264ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
265 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Tobias Grosser61bd3a42017-08-06 21:42:38 +0000266 Schedule(S->getSchedule()) {
Tobias Grosser31df6f32017-08-06 21:42:25 +0000267 auto Domains = S->getDomains();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000268
269 Schedule =
270 give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
271 ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
272 ScatterSpace = getScatterSpace(Schedule);
273}
274
Tobias Grosser2ef37812017-08-07 22:01:29 +0000275/// Check if all stores in @p Stmt store the very same value.
276///
Michael Kruse8756b3f2017-08-09 09:29:15 +0000277/// This covers a special situation occurring in Polybench's
278/// covariance/correlation (which is typical for algorithms that cover symmetric
279/// matrices):
280///
281/// for (int i = 0; i < n; i += 1)
282/// for (int j = 0; j <= i; j += 1) {
283/// double x = ...;
284/// C[i][j] = x;
285/// C[j][i] = x;
286/// }
287///
288/// For i == j, the same value is written twice to the same element.Double
289/// writes to the same element are not allowed in DeLICM because its algorithm
290/// does not see which of the writes is effective.But if its the same value
291/// anyway, it doesn't matter.
292///
293/// LLVM passes, however, cannot simplify this because the write is necessary
294/// for i != j (unless it would add a condition for one of the writes to occur
295/// only if i != j).
296///
Tobias Grosser2ef37812017-08-07 22:01:29 +0000297/// TODO: In the future we may want to extent this to make the checks
298/// specific to different memory locations.
299static bool onlySameValueWrites(ScopStmt *Stmt) {
300 Value *V = nullptr;
301
302 for (auto *MA : *Stmt) {
303 if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
304 !MA->isOriginalArrayKind())
305 continue;
306
307 if (!V) {
308 V = MA->getAccessValue();
309 continue;
310 }
311
312 if (V != MA->getAccessValue())
313 return false;
314 }
315 return true;
316}
317
Michael Kruse47281842017-08-28 20:39:07 +0000318void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
319 isl::union_set &IncompatibleElts,
320 isl::union_set &AllElts) {
Michael Kruse138a3fb2017-08-04 22:51:23 +0000321 auto Stores = makeEmptyUnionMap();
322 auto Loads = makeEmptyUnionMap();
323
324 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
325 // order.
326 for (auto *MA : *Stmt) {
Michael Kruseff426d92017-10-31 12:50:25 +0000327 if (!MA->isOriginalArrayKind())
Michael Kruse138a3fb2017-08-04 22:51:23 +0000328 continue;
329
Michael Kruse47281842017-08-28 20:39:07 +0000330 isl::map AccRelMap = getAccessRelationFor(MA);
331 isl::union_map AccRel = AccRelMap;
332
333 // To avoid solving any ILP problems, always add entire arrays instead of
334 // just the elements that are accessed.
335 auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
336 AllElts = AllElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000337
338 if (MA->isRead()) {
339 // Reject load after store to same location.
340 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
Michael Krusee983e6b2017-08-28 11:22:23 +0000341 DEBUG(dbgs() << "Load after store of same element in same statement\n");
Michael Kruse138a3fb2017-08-04 22:51:23 +0000342 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
343 MA->getAccessInstruction());
344 R << "load after store of same element in same statement";
345 R << " (previous stores: " << Stores;
346 R << ", loading: " << AccRel << ")";
347 S->getFunction().getContext().diagnose(R);
Michael Kruse47281842017-08-28 20:39:07 +0000348
349 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000350 }
351
352 Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
353
354 continue;
355 }
356
Michael Kruse138a3fb2017-08-04 22:51:23 +0000357 // In region statements the order is less clear, eg. the load and store
358 // might be in a boxed loop.
359 if (Stmt->isRegionStmt() &&
360 !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
Michael Krusee983e6b2017-08-28 11:22:23 +0000361 DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
Michael Kruse138a3fb2017-08-04 22:51:23 +0000362 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
363 MA->getAccessInstruction());
364 R << "store is in a non-affine subregion";
365 S->getFunction().getContext().diagnose(R);
Michael Kruse47281842017-08-28 20:39:07 +0000366
367 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000368 }
369
370 // Do not allow more than one store to the same location.
Michael Krusea9033aa2017-08-09 09:29:09 +0000371 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep()) &&
372 !onlySameValueWrites(Stmt)) {
Michael Krusee983e6b2017-08-28 11:22:23 +0000373 DEBUG(dbgs() << "WRITE after WRITE to same element\n");
Michael Kruse138a3fb2017-08-04 22:51:23 +0000374 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
375 MA->getAccessInstruction());
Michael Krusea9033aa2017-08-09 09:29:09 +0000376 R << "store after store of same element in same statement";
377 R << " (previous stores: " << Stores;
378 R << ", storing: " << AccRel << ")";
379 S->getFunction().getContext().diagnose(R);
Michael Kruse47281842017-08-28 20:39:07 +0000380
381 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000382 }
383
384 Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
385 }
Michael Kruse138a3fb2017-08-04 22:51:23 +0000386}
387
388void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
389 assert(MA->isLatestArrayKind());
390 assert(MA->isRead());
Michael Kruse70af4f52017-08-07 18:40:29 +0000391 ScopStmt *Stmt = MA->getStatement();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000392
393 // { DomainRead[] -> Element[] }
Michael Kruse47281842017-08-28 20:39:07 +0000394 auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000395 AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
Michael Kruse70af4f52017-08-07 18:40:29 +0000396
397 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
398 // { DomainRead[] -> ValInst[] }
399 isl::map LoadValInst = makeValInst(
400 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
401
402 // { DomainRead[] -> [Element[] -> DomainRead[]] }
403 isl::map IncludeElement =
404 give(isl_map_curry(isl_map_domain_map(AccRel.take())));
405
406 // { [Element[] -> DomainRead[]] -> ValInst[] }
407 isl::map EltLoadValInst =
408 give(isl_map_apply_domain(LoadValInst.take(), IncludeElement.take()));
409
410 AllReadValInst = give(
411 isl_union_map_add_map(AllReadValInst.take(), EltLoadValInst.take()));
412 }
Michael Kruse138a3fb2017-08-04 22:51:23 +0000413}
414
Michael Kruse68821a82017-10-31 16:11:46 +0000415isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
416 isl::map AccRel) {
Michael Krusebd84ce82017-09-06 12:40:55 +0000417 if (!MA->isMustWrite())
418 return {};
419
420 Value *AccVal = MA->getAccessValue();
421 ScopStmt *Stmt = MA->getStatement();
422 Instruction *AccInst = MA->getAccessInstruction();
423
424 // Write a value to a single element.
425 auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
426 : Stmt->getSurroundingLoop();
427 if (AccVal &&
428 AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
Michael Kruseef8325b2017-09-18 17:43:50 +0000429 AccRel.is_single_valued().is_true())
Michael Kruse68821a82017-10-31 16:11:46 +0000430 return makeNormalizedValInst(AccVal, Stmt, L);
Michael Krusebd84ce82017-09-06 12:40:55 +0000431
432 // memset(_, '0', ) is equivalent to writing the null value to all touched
433 // elements. isMustWrite() ensures that all of an element's bytes are
434 // overwritten.
435 if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
436 auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
437 Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
438 if (WrittenConstant && WrittenConstant->isZeroValue()) {
439 Constant *Zero = Constant::getNullValue(Ty);
Michael Kruse68821a82017-10-31 16:11:46 +0000440 return makeNormalizedValInst(Zero, Stmt, L);
Michael Krusebd84ce82017-09-06 12:40:55 +0000441 }
442 }
443
444 return {};
445}
446
Michael Kruse138a3fb2017-08-04 22:51:23 +0000447void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
448 assert(MA->isLatestArrayKind());
449 assert(MA->isWrite());
450 auto *Stmt = MA->getStatement();
451
452 // { Domain[] -> Element[] }
Michael Kruse983fa9b2017-10-24 16:40:34 +0000453 isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000454
455 if (MA->isMustWrite())
Michael Kruse983fa9b2017-10-24 16:40:34 +0000456 AllMustWrites = AllMustWrites.add_map(AccRel);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000457
458 if (MA->isMayWrite())
Michael Kruse983fa9b2017-10-24 16:40:34 +0000459 AllMayWrites = AllMayWrites.add_map(AccRel);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000460
461 // { Domain[] -> ValInst[] }
Michael Kruse68821a82017-10-31 16:11:46 +0000462 isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
Michael Krusebd84ce82017-09-06 12:40:55 +0000463 if (!WriteValInstance)
464 WriteValInstance = makeUnknownForDomain(Stmt);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000465
466 // { Domain[] -> [Element[] -> Domain[]] }
Michael Kruse983fa9b2017-10-24 16:40:34 +0000467 isl::map IncludeElement = AccRel.domain_map().curry();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000468
469 // { [Element[] -> DomainWrite[]] -> ValInst[] }
Michael Kruse68821a82017-10-31 16:11:46 +0000470 isl::union_map EltWriteValInst =
471 WriteValInstance.apply_domain(IncludeElement);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000472
Michael Kruse68821a82017-10-31 16:11:46 +0000473 AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
474}
475
476/// Return whether @p PHI refers (also transitively through other PHIs) to
477/// itself.
478///
479/// loop:
480/// %phi1 = phi [0, %preheader], [%phi1, %loop]
481/// br i1 %c, label %loop, label %exit
482///
483/// exit:
484/// %phi2 = phi [%phi1, %bb]
485///
486/// In this example, %phi1 is recursive, but %phi2 is not.
487static bool isRecursivePHI(const PHINode *PHI) {
488 SmallVector<const PHINode *, 8> Worklist;
489 SmallPtrSet<const PHINode *, 8> Visited;
490 Worklist.push_back(PHI);
491
492 while (!Worklist.empty()) {
493 const PHINode *Cur = Worklist.pop_back_val();
494
495 if (Visited.count(Cur))
496 continue;
497 Visited.insert(Cur);
498
499 for (const Use &Incoming : Cur->incoming_values()) {
500 Value *IncomingVal = Incoming.get();
501 auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
502 if (!IncomingPHI)
503 continue;
504
505 if (IncomingPHI == PHI)
506 return true;
507 Worklist.push_back(IncomingPHI);
508 }
509 }
510 return false;
511}
512
513isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
514 // TODO: If the PHI has an incoming block from before the SCoP, it is not
515 // represented in any ScopStmt.
516
517 auto *PHI = cast<PHINode>(SAI->getBasePtr());
518 auto It = PerPHIMaps.find(PHI);
519 if (It != PerPHIMaps.end())
520 return It->second;
521
522 assert(SAI->isPHIKind());
523
524 // { DomainPHIWrite[] -> Scatter[] }
525 isl::union_map PHIWriteScatter = makeEmptyUnionMap();
526
527 // Collect all incoming block timepoints.
528 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
529 isl::map Scatter = getScatterFor(MA);
530 PHIWriteScatter = PHIWriteScatter.add_map(Scatter);
531 }
532
533 // { DomainPHIRead[] -> Scatter[] }
534 isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
535
536 // { DomainPHIRead[] -> Scatter[] }
537 isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
538
539 // { Scatter[] }
540 isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
541
542 // { DomainPHIRead[] -> Scatter[] }
543 isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
544 isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
545
546 // { DomainPHIRead[] -> DomainPHIWrite[] }
547 isl::union_map Result =
548 isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
549 assert(!Result.is_single_valued().is_false());
550 assert(!Result.is_injective().is_false());
551
552 PerPHIMaps.insert({PHI, Result});
553 return Result;
Michael Kruse138a3fb2017-08-04 22:51:23 +0000554}
555
556isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
557 return give(isl_union_set_empty(ParamSpace.copy()));
558}
559
560isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
561 return give(isl_union_map_empty(ParamSpace.copy()));
562}
563
Michael Kruse47281842017-08-28 20:39:07 +0000564void ZoneAlgorithm::collectCompatibleElts() {
565 // First find all the incompatible elements, then take the complement.
566 // We compile the list of compatible (rather than incompatible) elements so
567 // users can intersect with the list, not requiring a subtract operation. It
568 // also allows us to define a 'universe' of all elements and makes it more
569 // explicit in which array elements can be used.
570 isl::union_set AllElts = makeEmptyUnionSet();
571 isl::union_set IncompatibleElts = makeEmptyUnionSet();
572
573 for (auto &Stmt : *S)
574 collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
575
576 NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.keep());
577 CompatibleElts = AllElts.subtract(IncompatibleElts);
578 NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.keep());
Michael Kruse138a3fb2017-08-04 22:51:23 +0000579}
580
581isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000582 isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
583 Stmt->getDomainSpace().release(), ScatterSpace.copy()));
Michael Kruse138a3fb2017-08-04 22:51:23 +0000584 return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
585}
586
587isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
588 return getScatterFor(MA->getStatement());
589}
590
591isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
592 return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
593}
594
595isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
596 auto ResultSpace = give(isl_space_map_from_domain_and_range(
597 isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
598 auto UDomain = give(isl_union_set_from_set(Domain.copy()));
599 auto UResult = getScatterFor(std::move(UDomain));
600 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
601 assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
602 Domain.keep()) == isl_bool_true);
603 return Result;
604}
605
606isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000607 return Stmt->getDomain().remove_redundancies();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000608}
609
610isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
611 return getDomainFor(MA->getStatement());
612}
613
614isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
615 auto Domain = getDomainFor(MA);
616 auto AccRel = MA->getLatestAccessRelation();
617 return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
618}
619
620isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
621 auto &Result = ScalarReachDefZone[Stmt];
622 if (Result)
623 return Result;
624
625 auto Domain = getDomainFor(Stmt);
626 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
627 simplify(Result);
628
629 return Result;
630}
631
632isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
633 auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
634 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
635
636 auto StmtResult = getScalarReachingDefinition(Stmt);
637
638 return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
639}
640
641isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
642 return ::makeUnknownForDomain(getDomainFor(Stmt));
643}
644
645isl::id ZoneAlgorithm::makeValueId(Value *V) {
646 if (!V)
647 return nullptr;
648
649 auto &Id = ValueIds[V];
650 if (Id.is_null()) {
651 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
652 std::string(), UseInstructionNames);
653 Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
654 }
655 return Id;
656}
657
658isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
659 auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
660 return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
661 makeValueId(V).take()));
662}
663
664isl::set ZoneAlgorithm::makeValueSet(Value *V) {
665 auto Space = makeValueSpace(V);
666 return give(isl_set_universe(Space.take()));
667}
668
669isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
670 bool IsCertain) {
671 // If the definition/write is conditional, the value at the location could
672 // be either the written value or the old value. Since we cannot know which
673 // one, consider the value to be unknown.
674 if (!IsCertain)
675 return makeUnknownForDomain(UserStmt);
676
677 auto DomainUse = getDomainFor(UserStmt);
678 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
679 switch (VUse.getKind()) {
680 case VirtualUse::Constant:
681 case VirtualUse::Block:
682 case VirtualUse::Hoisted:
683 case VirtualUse::ReadOnly: {
684 // The definition does not depend on the statement which uses it.
685 auto ValSet = makeValueSet(Val);
686 return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
687 }
688
689 case VirtualUse::Synthesizable: {
690 auto *ScevExpr = VUse.getScevExpr();
691 auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
692
693 // Construct the SCEV space.
694 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
695 // expressions, not just all of them.
696 auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
697 const_cast<SCEV *>(ScevExpr)));
698 auto ScevSpace =
699 give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
700 ScevSpace = give(
701 isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
702
703 // { DomainUse[] -> ScevExpr[] }
704 auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
705 UseDomainSpace.copy(), ScevSpace.copy())));
706 return ValInst;
707 }
708
709 case VirtualUse::Intra: {
710 // Definition and use is in the same statement. We do not need to compute
711 // a reaching definition.
712
713 // { llvm::Value }
714 auto ValSet = makeValueSet(Val);
715
716 // { UserDomain[] -> llvm::Value }
717 auto ValInstSet =
718 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
719
720 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
721 auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
722 simplify(Result);
723 return Result;
724 }
725
726 case VirtualUse::Inter: {
727 // The value is defined in a different statement.
728
729 auto *Inst = cast<Instruction>(Val);
730 auto *ValStmt = S->getStmtFor(Inst);
731
732 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
733 // domain. We could use an arbitrary statement, but this could result in
734 // different ValInst[] for the same llvm::Value.
735 if (!ValStmt)
736 return ::makeUnknownForDomain(DomainUse);
737
738 // { DomainDef[] }
739 auto DomainDef = getDomainFor(ValStmt);
740
741 // { Scatter[] -> DomainDef[] }
742 auto ReachDef = getScalarReachingDefinition(DomainDef);
743
744 // { DomainUse[] -> Scatter[] }
745 auto UserSched = getScatterFor(DomainUse);
746
747 // { DomainUse[] -> DomainDef[] }
748 auto UsedInstance =
749 give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
750
751 // { llvm::Value }
752 auto ValSet = makeValueSet(Val);
753
754 // { DomainUse[] -> llvm::Value[] }
755 auto ValInstSet =
756 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
757
758 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
759 auto Result =
760 give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
761
762 simplify(Result);
763 return Result;
764 }
765 }
766 llvm_unreachable("Unhandled use type");
767}
768
Michael Kruse68821a82017-10-31 16:11:46 +0000769/// Remove all computed PHIs out of @p Input and replace by their incoming
770/// value.
771///
772/// @param Input { [] -> ValInst[] }
773/// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
774/// on the LHS of @p NormalizeMap.
775/// @param NormalizeMap { ValInst[] -> ValInst[] }
776static isl::union_map normalizeValInst(isl::union_map Input,
777 const DenseSet<PHINode *> &ComputedPHIs,
778 isl::union_map NormalizeMap) {
779 isl::union_map Result = isl::union_map::empty(Input.get_space());
780 Input.foreach_map(
781 [&Result, &ComputedPHIs, &NormalizeMap](isl::map Map) -> isl::stat {
782 isl::space Space = Map.get_space();
783 isl::space RangeSpace = Space.range();
784
785 // Instructions within the SCoP are always wrapped. Non-wrapped tuples
786 // are therefore invariant in the SCoP and don't need normalization.
787 if (!RangeSpace.is_wrapping()) {
788 Result = Result.add_map(Map);
789 return isl::stat::ok;
790 }
791
792 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
793 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
794
795 // If no normalization is necessary, then the ValInst stands for itself.
796 if (!ComputedPHIs.count(PHI)) {
797 Result = Result.add_map(Map);
798 return isl::stat::ok;
799 }
800
801 // Otherwise, apply the normalization.
802 isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
803 Result = Result.unite(Mapped);
804 NumPHINormialization++;
805 return isl::stat::ok;
806 });
807 return Result;
808}
809
810isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
811 ScopStmt *UserStmt,
812 llvm::Loop *Scope,
813 bool IsCertain) {
814 isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
815 isl::union_map Normalized =
816 normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
817 return Normalized;
818}
819
Michael Kruse47281842017-08-28 20:39:07 +0000820bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
821 if (!MA)
822 return false;
823 if (!MA->isLatestArrayKind())
824 return false;
825 Instruction *AccInst = MA->getAccessInstruction();
826 return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
827}
828
Michael Kruse68821a82017-10-31 16:11:46 +0000829bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
830 assert(MA->isRead());
831
832 // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
833 // MemoryAccess.
834 if (!MA->isOriginalPHIKind())
835 return false;
836
837 // Exclude recursive PHIs, normalizing them would require a transitive
838 // closure.
839 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
840 if (RecursivePHIs.count(PHI))
841 return false;
842
843 // Ensure that each incoming value can be represented by a ValInst[].
844 // We do represent values from statements associated to multiple incoming
845 // value by the PHI itself, but we do not handle this case yet (especially
846 // isNormalized()) when normalizing.
847 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
848 auto Incomings = S->getPHIIncomings(SAI);
849 for (MemoryAccess *Incoming : Incomings) {
850 if (Incoming->getIncoming().size() != 1)
851 return false;
852 }
853
854 return true;
855}
856
857bool ZoneAlgorithm::isNormalized(isl::map Map) {
858 isl::space Space = Map.get_space();
859 isl::space RangeSpace = Space.range();
860
861 if (!RangeSpace.is_wrapping())
862 return true;
863
864 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
865 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
866 if (!PHI)
867 return true;
868
869 auto *IncomingStmt = static_cast<ScopStmt *>(
870 RangeSpace.unwrap().get_tuple_id(isl::dim::in).get_user());
871 MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
872 if (!isNormalizable(PHIRead))
873 return true;
874
875 return false;
876}
877
878bool ZoneAlgorithm::isNormalized(isl::union_map UMap) {
879 auto Result = UMap.foreach_map([this](isl::map Map) -> isl::stat {
880 if (isNormalized(Map))
881 return isl::stat::ok;
882 return isl::stat::error;
883 });
884 return Result == isl::stat::ok;
885}
886
Michael Kruse138a3fb2017-08-04 22:51:23 +0000887void ZoneAlgorithm::computeCommon() {
888 AllReads = makeEmptyUnionMap();
889 AllMayWrites = makeEmptyUnionMap();
890 AllMustWrites = makeEmptyUnionMap();
891 AllWriteValInst = makeEmptyUnionMap();
Michael Kruse70af4f52017-08-07 18:40:29 +0000892 AllReadValInst = makeEmptyUnionMap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000893
Michael Kruse68821a82017-10-31 16:11:46 +0000894 // Default to empty, i.e. no normalization/replacement is taking place. Call
895 // computeNormalizedPHIs() to initialize.
896 NormalizeMap = makeEmptyUnionMap();
897 ComputedPHIs.clear();
898
Michael Kruse138a3fb2017-08-04 22:51:23 +0000899 for (auto &Stmt : *S) {
900 for (auto *MA : Stmt) {
901 if (!MA->isLatestArrayKind())
902 continue;
903
904 if (MA->isRead())
905 addArrayReadAccess(MA);
906
907 if (MA->isWrite())
908 addArrayWriteAccess(MA);
909 }
910 }
911
912 // { DomainWrite[] -> Element[] }
Michael Kruse70af4f52017-08-07 18:40:29 +0000913 AllWrites =
Michael Kruse138a3fb2017-08-04 22:51:23 +0000914 give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
915
916 // { [Element[] -> Zone[]] -> DomainWrite[] }
917 WriteReachDefZone =
918 computeReachingDefinition(Schedule, AllWrites, false, true);
919 simplify(WriteReachDefZone);
920}
921
Michael Kruse68821a82017-10-31 16:11:46 +0000922void ZoneAlgorithm::computeNormalizedPHIs() {
923 // Determine which PHIs can reference themselves. They are excluded from
924 // normalization to avoid problems with transitive closures.
925 for (ScopStmt &Stmt : *S) {
926 for (MemoryAccess *MA : Stmt) {
927 if (!MA->isPHIKind())
928 continue;
929 if (!MA->isRead())
930 continue;
931
932 // TODO: Can be more efficient since isRecursivePHI can theoretically
933 // determine recursiveness for multiple values and/or cache results.
934 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
935 if (isRecursivePHI(PHI)) {
936 NumRecursivePHIs++;
937 RecursivePHIs.insert(PHI);
938 }
939 }
940 }
941
942 // { PHIValInst[] -> IncomingValInst[] }
943 isl::union_map AllPHIMaps = makeEmptyUnionMap();
944
945 // Discover new PHIs and try to normalize them.
946 DenseSet<PHINode *> AllPHIs;
947 for (ScopStmt &Stmt : *S) {
948 for (MemoryAccess *MA : Stmt) {
949 if (!MA->isOriginalPHIKind())
950 continue;
951 if (!MA->isRead())
952 continue;
953 if (!isNormalizable(MA))
954 continue;
955
956 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
957 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
958
959 // { PHIDomain[] -> PHIValInst[] }
960 isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
961
962 // { IncomingDomain[] -> IncomingValInst[] }
963 isl::union_map IncomingValInsts = makeEmptyUnionMap();
964
965 // Get all incoming values.
966 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
967 ScopStmt *IncomingStmt = MA->getStatement();
968
969 auto Incoming = MA->getIncoming();
970 assert(Incoming.size() == 1 && "The incoming value must be "
971 "representable by something else than "
972 "the PHI itself");
973 Value *IncomingVal = Incoming[0].second;
974
975 // { IncomingDomain[] -> IncomingValInst[] }
976 isl::map IncomingValInst = makeValInst(
977 IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
978
979 IncomingValInsts = IncomingValInsts.add_map(IncomingValInst);
980 }
981
982 // Determine which instance of the PHI statement corresponds to which
983 // incoming value.
984 // { PHIDomain[] -> IncomingDomain[] }
985 isl::union_map PerPHI = computePerPHI(SAI);
986
987 // { PHIValInst[] -> IncomingValInst[] }
988 isl::union_map PHIMap =
989 PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
990 assert(!PHIMap.is_single_valued().is_false());
991
992 // Resolve transitiveness: The incoming value of the newly discovered PHI
993 // may reference a previously normalized PHI. At the same time, already
994 // normalized PHIs might be normalized to the new PHI. At the end, none of
995 // the PHIs may appear on the right-hand-side of the normalization map.
996 PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
997 AllPHIs.insert(PHI);
998 AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
999
1000 AllPHIMaps = AllPHIMaps.unite(PHIMap);
1001 NumNormalizablePHIs++;
1002 }
1003 }
1004 simplify(AllPHIMaps);
1005
1006 // Apply the normalization.
1007 ComputedPHIs = AllPHIs;
1008 NormalizeMap = AllPHIMaps;
1009
1010 assert(!NormalizeMap || isNormalized(NormalizeMap));
1011}
1012
Michael Kruse138a3fb2017-08-04 22:51:23 +00001013void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
1014 OS.indent(Indent) << "After accesses {\n";
1015 for (auto &Stmt : *S) {
1016 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
1017 for (auto *MA : Stmt)
1018 MA->print(OS);
1019 }
1020 OS.indent(Indent) << "}\n";
1021}
Michael Kruse70af4f52017-08-07 18:40:29 +00001022
1023isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
1024 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
1025 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
1026
1027 // { [Element[] -> DomainWrite[]] -> ValInst[] }
1028 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
1029
1030 // { [Element[] -> Zone[]] -> ValInst[] }
1031 return EltReachdDef.apply_range(AllKnownWriteValInst);
1032}
1033
1034isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
1035 // { Element[] }
1036 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
1037
1038 // { Element[] -> Scatter[] }
1039 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
1040 AllAccessedElts, isl::set::universe(ScatterSpace));
1041
1042 // This assumes there are no "holes" in
1043 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
1044 // before the first write or that are not written at all.
1045 // { Element[] -> Scatter[] }
1046 isl::union_set NonReachDef =
1047 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
1048
1049 // { [Element[] -> Zone[]] -> ReachDefId[] }
1050 isl::union_map DefZone =
1051 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
1052
1053 // { [Element[] -> Scatter[]] -> Element[] }
1054 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
1055
1056 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
1057 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
1058
1059 // { Element[] -> [Zone[] -> ReachDefId[]] }
1060 isl::union_map EltDefZone = DefZone.curry();
1061
1062 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
1063 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
1064
1065 // { [Element[] -> Scatter[]] -> DomainRead[] }
1066 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
1067
1068 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
1069 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
1070
1071 // { [Element[] -> Scatter[]] -> ValInst[] }
1072 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
1073
1074 // { [Element[] -> ReachDefId[]] -> ValInst[] }
1075 isl::union_map DefidKnown =
1076 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
1077
1078 // { [Element[] -> Zone[]] -> ValInst[] }
1079 return DefZoneEltDefId.apply_range(DefidKnown);
1080}
1081
1082isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
1083 bool FromRead) const {
1084 isl::union_map Result = makeEmptyUnionMap();
1085
1086 if (FromWrite)
1087 Result = Result.unite(computeKnownFromMustWrites());
1088
1089 if (FromRead)
1090 Result = Result.unite(computeKnownFromLoad());
1091
1092 simplify(Result);
1093 return Result;
1094}