blob: 89de35ac74b4fc2b089379eac7635fae7314ab49 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000153
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
468A variable may be defined as a global "constant," which indicates that
469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
472initialization cannot be marked "constant" as there is a store to the
473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
504An explicit alignment may be specified for a global, which must be a
505power of 2. If not present, or if the alignment is set to zero, the
506alignment of the global is set by the target to whatever it feels
507convenient. If an explicit alignment is specified, the global is forced
508to have exactly that alignment. Targets and optimizers are not allowed
509to over-align the global if the global has an assigned section. In this
510case, the extra alignment could be observable: for example, code could
511assume that the globals are densely packed in their section and try to
512iterate over them as an array, alignment padding would break this
513iteration.
514
515For example, the following defines a global in a numbered address space
516with an initializer, section, and alignment:
517
518.. code-block:: llvm
519
520 @G = addrspace(5) constant float 1.0, section "foo", align 4
521
522The following example defines a thread-local global with the
523``initialexec`` TLS model:
524
525.. code-block:: llvm
526
527 @G = thread_local(initialexec) global i32 0, align 4
528
529.. _functionstructure:
530
531Functions
532---------
533
534LLVM function definitions consist of the "``define``" keyword, an
535optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
536style <visibility>`, an optional :ref:`calling convention <callingconv>`,
537an optional ``unnamed_addr`` attribute, a return type, an optional
538:ref:`parameter attribute <paramattrs>` for the return type, a function
539name, a (possibly empty) argument list (each with optional :ref:`parameter
540attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
541an optional section, an optional alignment, an optional :ref:`garbage
542collector name <gc>`, an opening curly brace, a list of basic blocks,
543and a closing curly brace.
544
545LLVM function declarations consist of the "``declare``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a possibly empty list of arguments, an optional alignment, and an
551optional :ref:`garbage collector name <gc>`.
552
553A function definition contains a list of basic blocks, forming the CFG
554(Control Flow Graph) for the function. Each basic block may optionally
555start with a label (giving the basic block a symbol table entry),
556contains a list of instructions, and ends with a
557:ref:`terminator <terminators>` instruction (such as a branch or function
558return).
559
560The first basic block in a function is special in two ways: it is
561immediately executed on entrance to the function, and it is not allowed
562to have predecessor basic blocks (i.e. there can not be any branches to
563the entry block of a function). Because the block can have no
564predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
565
566LLVM allows an explicit section to be specified for functions. If the
567target supports it, it will emit functions to the section specified.
568
569An explicit alignment may be specified for a function. If not present,
570or if the alignment is set to zero, the alignment of the function is set
571by the target to whatever it feels convenient. If an explicit alignment
572is specified, the function is forced to have at least that much
573alignment. All alignments must be a power of 2.
574
575If the ``unnamed_addr`` attribute is given, the address is know to not
576be significant and two identical functions can be merged.
577
578Syntax::
579
580 define [linkage] [visibility]
581 [cconv] [ret attrs]
582 <ResultType> @<FunctionName> ([argument list])
583 [fn Attrs] [section "name"] [align N]
584 [gc] { ... }
585
586Aliases
587-------
588
589Aliases act as "second name" for the aliasee value (which can be either
590function, global variable, another alias or bitcast of global value).
591Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
592:ref:`visibility style <visibility>`.
593
594Syntax::
595
596 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
597
598.. _namedmetadatastructure:
599
600Named Metadata
601--------------
602
603Named metadata is a collection of metadata. :ref:`Metadata
604nodes <metadata>` (but not metadata strings) are the only valid
605operands for a named metadata.
606
607Syntax::
608
609 ; Some unnamed metadata nodes, which are referenced by the named metadata.
610 !0 = metadata !{metadata !"zero"}
611 !1 = metadata !{metadata !"one"}
612 !2 = metadata !{metadata !"two"}
613 ; A named metadata.
614 !name = !{!0, !1, !2}
615
616.. _paramattrs:
617
618Parameter Attributes
619--------------------
620
621The return type and each parameter of a function type may have a set of
622*parameter attributes* associated with them. Parameter attributes are
623used to communicate additional information about the result or
624parameters of a function. Parameter attributes are considered to be part
625of the function, not of the function type, so functions with different
626parameter attributes can have the same function type.
627
628Parameter attributes are simple keywords that follow the type specified.
629If multiple parameter attributes are needed, they are space separated.
630For example:
631
632.. code-block:: llvm
633
634 declare i32 @printf(i8* noalias nocapture, ...)
635 declare i32 @atoi(i8 zeroext)
636 declare signext i8 @returns_signed_char()
637
638Note that any attributes for the function result (``nounwind``,
639``readonly``) come immediately after the argument list.
640
641Currently, only the following parameter attributes are defined:
642
643``zeroext``
644 This indicates to the code generator that the parameter or return
645 value should be zero-extended to the extent required by the target's
646 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
647 the caller (for a parameter) or the callee (for a return value).
648``signext``
649 This indicates to the code generator that the parameter or return
650 value should be sign-extended to the extent required by the target's
651 ABI (which is usually 32-bits) by the caller (for a parameter) or
652 the callee (for a return value).
653``inreg``
654 This indicates that this parameter or return value should be treated
655 in a special target-dependent fashion during while emitting code for
656 a function call or return (usually, by putting it in a register as
657 opposed to memory, though some targets use it to distinguish between
658 two different kinds of registers). Use of this attribute is
659 target-specific.
660``byval``
661 This indicates that the pointer parameter should really be passed by
662 value to the function. The attribute implies that a hidden copy of
663 the pointee is made between the caller and the callee, so the callee
664 is unable to modify the value in the caller. This attribute is only
665 valid on LLVM pointer arguments. It is generally used to pass
666 structs and arrays by value, but is also valid on pointers to
667 scalars. The copy is considered to belong to the caller not the
668 callee (for example, ``readonly`` functions should not write to
669 ``byval`` parameters). This is not a valid attribute for return
670 values.
671
672 The byval attribute also supports specifying an alignment with the
673 align attribute. It indicates the alignment of the stack slot to
674 form and the known alignment of the pointer specified to the call
675 site. If the alignment is not specified, then the code generator
676 makes a target-specific assumption.
677
678``sret``
679 This indicates that the pointer parameter specifies the address of a
680 structure that is the return value of the function in the source
681 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000682 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000683 not to trap and to be properly aligned. This may only be applied to
684 the first parameter. This is not a valid attribute for return
685 values.
686``noalias``
687 This indicates that pointer values `*based* <pointeraliasing>` on
688 the argument or return value do not alias pointer values which are
689 not *based* on it, ignoring certain "irrelevant" dependencies. For a
690 call to the parent function, dependencies between memory references
691 from before or after the call and from those during the call are
692 "irrelevant" to the ``noalias`` keyword for the arguments and return
693 value used in that call. The caller shares the responsibility with
694 the callee for ensuring that these requirements are met. For further
695 details, please see the discussion of the NoAlias response in `alias
696 analysis <AliasAnalysis.html#MustMayNo>`_.
697
698 Note that this definition of ``noalias`` is intentionally similar
699 to the definition of ``restrict`` in C99 for function arguments,
700 though it is slightly weaker.
701
702 For function return values, C99's ``restrict`` is not meaningful,
703 while LLVM's ``noalias`` is.
704``nocapture``
705 This indicates that the callee does not make any copies of the
706 pointer that outlive the callee itself. This is not a valid
707 attribute for return values.
708
709.. _nest:
710
711``nest``
712 This indicates that the pointer parameter can be excised using the
713 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
714 attribute for return values.
715
716.. _gc:
717
718Garbage Collector Names
719-----------------------
720
721Each function may specify a garbage collector name, which is simply a
722string:
723
724.. code-block:: llvm
725
726 define void @f() gc "name" { ... }
727
728The compiler declares the supported values of *name*. Specifying a
729collector which will cause the compiler to alter its output in order to
730support the named garbage collection algorithm.
731
732.. _fnattrs:
733
734Function Attributes
735-------------------
736
737Function attributes are set to communicate additional information about
738a function. Function attributes are considered to be part of the
739function, not of the function type, so functions with different function
740attributes can have the same function type.
741
742Function attributes are simple keywords that follow the type specified.
743If multiple attributes are needed, they are space separated. For
744example:
745
746.. code-block:: llvm
747
748 define void @f() noinline { ... }
749 define void @f() alwaysinline { ... }
750 define void @f() alwaysinline optsize { ... }
751 define void @f() optsize { ... }
752
753``address_safety``
754 This attribute indicates that the address safety analysis is enabled
755 for this function.
756``alignstack(<n>)``
757 This attribute indicates that, when emitting the prologue and
758 epilogue, the backend should forcibly align the stack pointer.
759 Specify the desired alignment, which must be a power of two, in
760 parentheses.
761``alwaysinline``
762 This attribute indicates that the inliner should attempt to inline
763 this function into callers whenever possible, ignoring any active
764 inlining size threshold for this caller.
765``nonlazybind``
766 This attribute suppresses lazy symbol binding for the function. This
767 may make calls to the function faster, at the cost of extra program
768 startup time if the function is not called during program startup.
769``inlinehint``
770 This attribute indicates that the source code contained a hint that
771 inlining this function is desirable (such as the "inline" keyword in
772 C/C++). It is just a hint; it imposes no requirements on the
773 inliner.
774``naked``
775 This attribute disables prologue / epilogue emission for the
776 function. This can have very system-specific consequences.
777``noimplicitfloat``
778 This attributes disables implicit floating point instructions.
779``noinline``
780 This attribute indicates that the inliner should never inline this
781 function in any situation. This attribute may not be used together
782 with the ``alwaysinline`` attribute.
783``noredzone``
784 This attribute indicates that the code generator should not use a
785 red zone, even if the target-specific ABI normally permits it.
786``noreturn``
787 This function attribute indicates that the function never returns
788 normally. This produces undefined behavior at runtime if the
789 function ever does dynamically return.
790``nounwind``
791 This function attribute indicates that the function never returns
792 with an unwind or exceptional control flow. If the function does
793 unwind, its runtime behavior is undefined.
794``optsize``
795 This attribute suggests that optimization passes and code generator
796 passes make choices that keep the code size of this function low,
797 and otherwise do optimizations specifically to reduce code size.
798``readnone``
799 This attribute indicates that the function computes its result (or
800 decides to unwind an exception) based strictly on its arguments,
801 without dereferencing any pointer arguments or otherwise accessing
802 any mutable state (e.g. memory, control registers, etc) visible to
803 caller functions. It does not write through any pointer arguments
804 (including ``byval`` arguments) and never changes any state visible
805 to callers. This means that it cannot unwind exceptions by calling
806 the ``C++`` exception throwing methods.
807``readonly``
808 This attribute indicates that the function does not write through
809 any pointer arguments (including ``byval`` arguments) or otherwise
810 modify any state (e.g. memory, control registers, etc) visible to
811 caller functions. It may dereference pointer arguments and read
812 state that may be set in the caller. A readonly function always
813 returns the same value (or unwinds an exception identically) when
814 called with the same set of arguments and global state. It cannot
815 unwind an exception by calling the ``C++`` exception throwing
816 methods.
817``returns_twice``
818 This attribute indicates that this function can return twice. The C
819 ``setjmp`` is an example of such a function. The compiler disables
820 some optimizations (like tail calls) in the caller of these
821 functions.
822``ssp``
823 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000824 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000825 placed on the stack before the local variables that's checked upon
826 return from the function to see if it has been overwritten. A
827 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000828 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000829
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000830 - Character arrays larger than ``ssp-buffer-size`` (default 8).
831 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
832 - Calls to alloca() with variable sizes or constant sizes greater than
833 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +0000834
835 If a function that has an ``ssp`` attribute is inlined into a
836 function that doesn't have an ``ssp`` attribute, then the resulting
837 function will have an ``ssp`` attribute.
838``sspreq``
839 This attribute indicates that the function should *always* emit a
840 stack smashing protector. This overrides the ``ssp`` function
841 attribute.
842
843 If a function that has an ``sspreq`` attribute is inlined into a
844 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +0000845 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
846 an ``sspreq`` attribute.
847``sspstrong``
848 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000849 protector. This attribute causes a strong heuristic to be used when
850 determining if a function needs stack protectors. The strong heuristic
851 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000852
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000853 - Arrays of any size and type
854 - Aggregates containing an array of any size and type.
855 - Calls to alloca().
856 - Local variables that have had their address taken.
857
858 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +0000859
860 If a function that has an ``sspstrong`` attribute is inlined into a
861 function that doesn't have an ``sspstrong`` attribute, then the
862 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +0000863``uwtable``
864 This attribute indicates that the ABI being targeted requires that
865 an unwind table entry be produce for this function even if we can
866 show that no exceptions passes by it. This is normally the case for
867 the ELF x86-64 abi, but it can be disabled for some compilation
868 units.
James Molloy4f6fb952012-12-20 16:04:27 +0000869``noduplicate``
870 This attribute indicates that calls to the function cannot be
871 duplicated. A call to a ``noduplicate`` function may be moved
872 within its parent function, but may not be duplicated within
873 its parent function.
874
875 A function containing a ``noduplicate`` call may still
876 be an inlining candidate, provided that the call is not
877 duplicated by inlining. That implies that the function has
878 internal linkage and only has one call site, so the original
879 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000880
881.. _moduleasm:
882
883Module-Level Inline Assembly
884----------------------------
885
886Modules may contain "module-level inline asm" blocks, which corresponds
887to the GCC "file scope inline asm" blocks. These blocks are internally
888concatenated by LLVM and treated as a single unit, but may be separated
889in the ``.ll`` file if desired. The syntax is very simple:
890
891.. code-block:: llvm
892
893 module asm "inline asm code goes here"
894 module asm "more can go here"
895
896The strings can contain any character by escaping non-printable
897characters. The escape sequence used is simply "\\xx" where "xx" is the
898two digit hex code for the number.
899
900The inline asm code is simply printed to the machine code .s file when
901assembly code is generated.
902
903Data Layout
904-----------
905
906A module may specify a target specific data layout string that specifies
907how data is to be laid out in memory. The syntax for the data layout is
908simply:
909
910.. code-block:: llvm
911
912 target datalayout = "layout specification"
913
914The *layout specification* consists of a list of specifications
915separated by the minus sign character ('-'). Each specification starts
916with a letter and may include other information after the letter to
917define some aspect of the data layout. The specifications accepted are
918as follows:
919
920``E``
921 Specifies that the target lays out data in big-endian form. That is,
922 the bits with the most significance have the lowest address
923 location.
924``e``
925 Specifies that the target lays out data in little-endian form. That
926 is, the bits with the least significance have the lowest address
927 location.
928``S<size>``
929 Specifies the natural alignment of the stack in bits. Alignment
930 promotion of stack variables is limited to the natural stack
931 alignment to avoid dynamic stack realignment. The stack alignment
932 must be a multiple of 8-bits. If omitted, the natural stack
933 alignment defaults to "unspecified", which does not prevent any
934 alignment promotions.
935``p[n]:<size>:<abi>:<pref>``
936 This specifies the *size* of a pointer and its ``<abi>`` and
937 ``<pref>``\erred alignments for address space ``n``. All sizes are in
938 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
939 preceding ``:`` should be omitted too. The address space, ``n`` is
940 optional, and if not specified, denotes the default address space 0.
941 The value of ``n`` must be in the range [1,2^23).
942``i<size>:<abi>:<pref>``
943 This specifies the alignment for an integer type of a given bit
944 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
945``v<size>:<abi>:<pref>``
946 This specifies the alignment for a vector type of a given bit
947 ``<size>``.
948``f<size>:<abi>:<pref>``
949 This specifies the alignment for a floating point type of a given bit
950 ``<size>``. Only values of ``<size>`` that are supported by the target
951 will work. 32 (float) and 64 (double) are supported on all targets; 80
952 or 128 (different flavors of long double) are also supported on some
953 targets.
954``a<size>:<abi>:<pref>``
955 This specifies the alignment for an aggregate type of a given bit
956 ``<size>``.
957``s<size>:<abi>:<pref>``
958 This specifies the alignment for a stack object of a given bit
959 ``<size>``.
960``n<size1>:<size2>:<size3>...``
961 This specifies a set of native integer widths for the target CPU in
962 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
963 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
964 this set are considered to support most general arithmetic operations
965 efficiently.
966
967When constructing the data layout for a given target, LLVM starts with a
968default set of specifications which are then (possibly) overridden by
969the specifications in the ``datalayout`` keyword. The default
970specifications are given in this list:
971
972- ``E`` - big endian
973- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
974- ``p1:32:32:32`` - 32-bit pointers with 32-bit alignment for address
975 space 1
976- ``p2:16:32:32`` - 16-bit pointers with 32-bit alignment for address
977 space 2
978- ``i1:8:8`` - i1 is 8-bit (byte) aligned
979- ``i8:8:8`` - i8 is 8-bit (byte) aligned
980- ``i16:16:16`` - i16 is 16-bit aligned
981- ``i32:32:32`` - i32 is 32-bit aligned
982- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
983 alignment of 64-bits
984- ``f32:32:32`` - float is 32-bit aligned
985- ``f64:64:64`` - double is 64-bit aligned
986- ``v64:64:64`` - 64-bit vector is 64-bit aligned
987- ``v128:128:128`` - 128-bit vector is 128-bit aligned
988- ``a0:0:1`` - aggregates are 8-bit aligned
989- ``s0:64:64`` - stack objects are 64-bit aligned
990
991When LLVM is determining the alignment for a given type, it uses the
992following rules:
993
994#. If the type sought is an exact match for one of the specifications,
995 that specification is used.
996#. If no match is found, and the type sought is an integer type, then
997 the smallest integer type that is larger than the bitwidth of the
998 sought type is used. If none of the specifications are larger than
999 the bitwidth then the largest integer type is used. For example,
1000 given the default specifications above, the i7 type will use the
1001 alignment of i8 (next largest) while both i65 and i256 will use the
1002 alignment of i64 (largest specified).
1003#. If no match is found, and the type sought is a vector type, then the
1004 largest vector type that is smaller than the sought vector type will
1005 be used as a fall back. This happens because <128 x double> can be
1006 implemented in terms of 64 <2 x double>, for example.
1007
1008The function of the data layout string may not be what you expect.
1009Notably, this is not a specification from the frontend of what alignment
1010the code generator should use.
1011
1012Instead, if specified, the target data layout is required to match what
1013the ultimate *code generator* expects. This string is used by the
1014mid-level optimizers to improve code, and this only works if it matches
1015what the ultimate code generator uses. If you would like to generate IR
1016that does not embed this target-specific detail into the IR, then you
1017don't have to specify the string. This will disable some optimizations
1018that require precise layout information, but this also prevents those
1019optimizations from introducing target specificity into the IR.
1020
1021.. _pointeraliasing:
1022
1023Pointer Aliasing Rules
1024----------------------
1025
1026Any memory access must be done through a pointer value associated with
1027an address range of the memory access, otherwise the behavior is
1028undefined. Pointer values are associated with address ranges according
1029to the following rules:
1030
1031- A pointer value is associated with the addresses associated with any
1032 value it is *based* on.
1033- An address of a global variable is associated with the address range
1034 of the variable's storage.
1035- The result value of an allocation instruction is associated with the
1036 address range of the allocated storage.
1037- A null pointer in the default address-space is associated with no
1038 address.
1039- An integer constant other than zero or a pointer value returned from
1040 a function not defined within LLVM may be associated with address
1041 ranges allocated through mechanisms other than those provided by
1042 LLVM. Such ranges shall not overlap with any ranges of addresses
1043 allocated by mechanisms provided by LLVM.
1044
1045A pointer value is *based* on another pointer value according to the
1046following rules:
1047
1048- A pointer value formed from a ``getelementptr`` operation is *based*
1049 on the first operand of the ``getelementptr``.
1050- The result value of a ``bitcast`` is *based* on the operand of the
1051 ``bitcast``.
1052- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1053 values that contribute (directly or indirectly) to the computation of
1054 the pointer's value.
1055- The "*based* on" relationship is transitive.
1056
1057Note that this definition of *"based"* is intentionally similar to the
1058definition of *"based"* in C99, though it is slightly weaker.
1059
1060LLVM IR does not associate types with memory. The result type of a
1061``load`` merely indicates the size and alignment of the memory from
1062which to load, as well as the interpretation of the value. The first
1063operand type of a ``store`` similarly only indicates the size and
1064alignment of the store.
1065
1066Consequently, type-based alias analysis, aka TBAA, aka
1067``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1068:ref:`Metadata <metadata>` may be used to encode additional information
1069which specialized optimization passes may use to implement type-based
1070alias analysis.
1071
1072.. _volatile:
1073
1074Volatile Memory Accesses
1075------------------------
1076
1077Certain memory accesses, such as :ref:`load <i_load>`'s,
1078:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1079marked ``volatile``. The optimizers must not change the number of
1080volatile operations or change their order of execution relative to other
1081volatile operations. The optimizers *may* change the order of volatile
1082operations relative to non-volatile operations. This is not Java's
1083"volatile" and has no cross-thread synchronization behavior.
1084
1085.. _memmodel:
1086
1087Memory Model for Concurrent Operations
1088--------------------------------------
1089
1090The LLVM IR does not define any way to start parallel threads of
1091execution or to register signal handlers. Nonetheless, there are
1092platform-specific ways to create them, and we define LLVM IR's behavior
1093in their presence. This model is inspired by the C++0x memory model.
1094
1095For a more informal introduction to this model, see the :doc:`Atomics`.
1096
1097We define a *happens-before* partial order as the least partial order
1098that
1099
1100- Is a superset of single-thread program order, and
1101- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1102 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1103 techniques, like pthread locks, thread creation, thread joining,
1104 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1105 Constraints <ordering>`).
1106
1107Note that program order does not introduce *happens-before* edges
1108between a thread and signals executing inside that thread.
1109
1110Every (defined) read operation (load instructions, memcpy, atomic
1111loads/read-modify-writes, etc.) R reads a series of bytes written by
1112(defined) write operations (store instructions, atomic
1113stores/read-modify-writes, memcpy, etc.). For the purposes of this
1114section, initialized globals are considered to have a write of the
1115initializer which is atomic and happens before any other read or write
1116of the memory in question. For each byte of a read R, R\ :sub:`byte`
1117may see any write to the same byte, except:
1118
1119- If write\ :sub:`1` happens before write\ :sub:`2`, and
1120 write\ :sub:`2` happens before R\ :sub:`byte`, then
1121 R\ :sub:`byte` does not see write\ :sub:`1`.
1122- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1123 R\ :sub:`byte` does not see write\ :sub:`3`.
1124
1125Given that definition, R\ :sub:`byte` is defined as follows:
1126
1127- If R is volatile, the result is target-dependent. (Volatile is
1128 supposed to give guarantees which can support ``sig_atomic_t`` in
1129 C/C++, and may be used for accesses to addresses which do not behave
1130 like normal memory. It does not generally provide cross-thread
1131 synchronization.)
1132- Otherwise, if there is no write to the same byte that happens before
1133 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1134- Otherwise, if R\ :sub:`byte` may see exactly one write,
1135 R\ :sub:`byte` returns the value written by that write.
1136- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1137 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1138 Memory Ordering Constraints <ordering>` section for additional
1139 constraints on how the choice is made.
1140- Otherwise R\ :sub:`byte` returns ``undef``.
1141
1142R returns the value composed of the series of bytes it read. This
1143implies that some bytes within the value may be ``undef`` **without**
1144the entire value being ``undef``. Note that this only defines the
1145semantics of the operation; it doesn't mean that targets will emit more
1146than one instruction to read the series of bytes.
1147
1148Note that in cases where none of the atomic intrinsics are used, this
1149model places only one restriction on IR transformations on top of what
1150is required for single-threaded execution: introducing a store to a byte
1151which might not otherwise be stored is not allowed in general.
1152(Specifically, in the case where another thread might write to and read
1153from an address, introducing a store can change a load that may see
1154exactly one write into a load that may see multiple writes.)
1155
1156.. _ordering:
1157
1158Atomic Memory Ordering Constraints
1159----------------------------------
1160
1161Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1162:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1163:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1164an ordering parameter that determines which other atomic instructions on
1165the same address they *synchronize with*. These semantics are borrowed
1166from Java and C++0x, but are somewhat more colloquial. If these
1167descriptions aren't precise enough, check those specs (see spec
1168references in the :doc:`atomics guide <Atomics>`).
1169:ref:`fence <i_fence>` instructions treat these orderings somewhat
1170differently since they don't take an address. See that instruction's
1171documentation for details.
1172
1173For a simpler introduction to the ordering constraints, see the
1174:doc:`Atomics`.
1175
1176``unordered``
1177 The set of values that can be read is governed by the happens-before
1178 partial order. A value cannot be read unless some operation wrote
1179 it. This is intended to provide a guarantee strong enough to model
1180 Java's non-volatile shared variables. This ordering cannot be
1181 specified for read-modify-write operations; it is not strong enough
1182 to make them atomic in any interesting way.
1183``monotonic``
1184 In addition to the guarantees of ``unordered``, there is a single
1185 total order for modifications by ``monotonic`` operations on each
1186 address. All modification orders must be compatible with the
1187 happens-before order. There is no guarantee that the modification
1188 orders can be combined to a global total order for the whole program
1189 (and this often will not be possible). The read in an atomic
1190 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1191 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1192 order immediately before the value it writes. If one atomic read
1193 happens before another atomic read of the same address, the later
1194 read must see the same value or a later value in the address's
1195 modification order. This disallows reordering of ``monotonic`` (or
1196 stronger) operations on the same address. If an address is written
1197 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1198 read that address repeatedly, the other threads must eventually see
1199 the write. This corresponds to the C++0x/C1x
1200 ``memory_order_relaxed``.
1201``acquire``
1202 In addition to the guarantees of ``monotonic``, a
1203 *synchronizes-with* edge may be formed with a ``release`` operation.
1204 This is intended to model C++'s ``memory_order_acquire``.
1205``release``
1206 In addition to the guarantees of ``monotonic``, if this operation
1207 writes a value which is subsequently read by an ``acquire``
1208 operation, it *synchronizes-with* that operation. (This isn't a
1209 complete description; see the C++0x definition of a release
1210 sequence.) This corresponds to the C++0x/C1x
1211 ``memory_order_release``.
1212``acq_rel`` (acquire+release)
1213 Acts as both an ``acquire`` and ``release`` operation on its
1214 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1215``seq_cst`` (sequentially consistent)
1216 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1217 operation which only reads, ``release`` for an operation which only
1218 writes), there is a global total order on all
1219 sequentially-consistent operations on all addresses, which is
1220 consistent with the *happens-before* partial order and with the
1221 modification orders of all the affected addresses. Each
1222 sequentially-consistent read sees the last preceding write to the
1223 same address in this global order. This corresponds to the C++0x/C1x
1224 ``memory_order_seq_cst`` and Java volatile.
1225
1226.. _singlethread:
1227
1228If an atomic operation is marked ``singlethread``, it only *synchronizes
1229with* or participates in modification and seq\_cst total orderings with
1230other operations running in the same thread (for example, in signal
1231handlers).
1232
1233.. _fastmath:
1234
1235Fast-Math Flags
1236---------------
1237
1238LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1239:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1240:ref:`frem <i_frem>`) have the following flags that can set to enable
1241otherwise unsafe floating point operations
1242
1243``nnan``
1244 No NaNs - Allow optimizations to assume the arguments and result are not
1245 NaN. Such optimizations are required to retain defined behavior over
1246 NaNs, but the value of the result is undefined.
1247
1248``ninf``
1249 No Infs - Allow optimizations to assume the arguments and result are not
1250 +/-Inf. Such optimizations are required to retain defined behavior over
1251 +/-Inf, but the value of the result is undefined.
1252
1253``nsz``
1254 No Signed Zeros - Allow optimizations to treat the sign of a zero
1255 argument or result as insignificant.
1256
1257``arcp``
1258 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1259 argument rather than perform division.
1260
1261``fast``
1262 Fast - Allow algebraically equivalent transformations that may
1263 dramatically change results in floating point (e.g. reassociate). This
1264 flag implies all the others.
1265
1266.. _typesystem:
1267
1268Type System
1269===========
1270
1271The LLVM type system is one of the most important features of the
1272intermediate representation. Being typed enables a number of
1273optimizations to be performed on the intermediate representation
1274directly, without having to do extra analyses on the side before the
1275transformation. A strong type system makes it easier to read the
1276generated code and enables novel analyses and transformations that are
1277not feasible to perform on normal three address code representations.
1278
1279Type Classifications
1280--------------------
1281
1282The types fall into a few useful classifications:
1283
1284
1285.. list-table::
1286 :header-rows: 1
1287
1288 * - Classification
1289 - Types
1290
1291 * - :ref:`integer <t_integer>`
1292 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1293 ``i64``, ...
1294
1295 * - :ref:`floating point <t_floating>`
1296 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1297 ``ppc_fp128``
1298
1299
1300 * - first class
1301
1302 .. _t_firstclass:
1303
1304 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1305 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1306 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1307 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1308
1309 * - :ref:`primitive <t_primitive>`
1310 - :ref:`label <t_label>`,
1311 :ref:`void <t_void>`,
1312 :ref:`integer <t_integer>`,
1313 :ref:`floating point <t_floating>`,
1314 :ref:`x86mmx <t_x86mmx>`,
1315 :ref:`metadata <t_metadata>`.
1316
1317 * - :ref:`derived <t_derived>`
1318 - :ref:`array <t_array>`,
1319 :ref:`function <t_function>`,
1320 :ref:`pointer <t_pointer>`,
1321 :ref:`structure <t_struct>`,
1322 :ref:`vector <t_vector>`,
1323 :ref:`opaque <t_opaque>`.
1324
1325The :ref:`first class <t_firstclass>` types are perhaps the most important.
1326Values of these types are the only ones which can be produced by
1327instructions.
1328
1329.. _t_primitive:
1330
1331Primitive Types
1332---------------
1333
1334The primitive types are the fundamental building blocks of the LLVM
1335system.
1336
1337.. _t_integer:
1338
1339Integer Type
1340^^^^^^^^^^^^
1341
1342Overview:
1343"""""""""
1344
1345The integer type is a very simple type that simply specifies an
1346arbitrary bit width for the integer type desired. Any bit width from 1
1347bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1348
1349Syntax:
1350"""""""
1351
1352::
1353
1354 iN
1355
1356The number of bits the integer will occupy is specified by the ``N``
1357value.
1358
1359Examples:
1360"""""""""
1361
1362+----------------+------------------------------------------------+
1363| ``i1`` | a single-bit integer. |
1364+----------------+------------------------------------------------+
1365| ``i32`` | a 32-bit integer. |
1366+----------------+------------------------------------------------+
1367| ``i1942652`` | a really big integer of over 1 million bits. |
1368+----------------+------------------------------------------------+
1369
1370.. _t_floating:
1371
1372Floating Point Types
1373^^^^^^^^^^^^^^^^^^^^
1374
1375.. list-table::
1376 :header-rows: 1
1377
1378 * - Type
1379 - Description
1380
1381 * - ``half``
1382 - 16-bit floating point value
1383
1384 * - ``float``
1385 - 32-bit floating point value
1386
1387 * - ``double``
1388 - 64-bit floating point value
1389
1390 * - ``fp128``
1391 - 128-bit floating point value (112-bit mantissa)
1392
1393 * - ``x86_fp80``
1394 - 80-bit floating point value (X87)
1395
1396 * - ``ppc_fp128``
1397 - 128-bit floating point value (two 64-bits)
1398
1399.. _t_x86mmx:
1400
1401X86mmx Type
1402^^^^^^^^^^^
1403
1404Overview:
1405"""""""""
1406
1407The x86mmx type represents a value held in an MMX register on an x86
1408machine. The operations allowed on it are quite limited: parameters and
1409return values, load and store, and bitcast. User-specified MMX
1410instructions are represented as intrinsic or asm calls with arguments
1411and/or results of this type. There are no arrays, vectors or constants
1412of this type.
1413
1414Syntax:
1415"""""""
1416
1417::
1418
1419 x86mmx
1420
1421.. _t_void:
1422
1423Void Type
1424^^^^^^^^^
1425
1426Overview:
1427"""""""""
1428
1429The void type does not represent any value and has no size.
1430
1431Syntax:
1432"""""""
1433
1434::
1435
1436 void
1437
1438.. _t_label:
1439
1440Label Type
1441^^^^^^^^^^
1442
1443Overview:
1444"""""""""
1445
1446The label type represents code labels.
1447
1448Syntax:
1449"""""""
1450
1451::
1452
1453 label
1454
1455.. _t_metadata:
1456
1457Metadata Type
1458^^^^^^^^^^^^^
1459
1460Overview:
1461"""""""""
1462
1463The metadata type represents embedded metadata. No derived types may be
1464created from metadata except for :ref:`function <t_function>` arguments.
1465
1466Syntax:
1467"""""""
1468
1469::
1470
1471 metadata
1472
1473.. _t_derived:
1474
1475Derived Types
1476-------------
1477
1478The real power in LLVM comes from the derived types in the system. This
1479is what allows a programmer to represent arrays, functions, pointers,
1480and other useful types. Each of these types contain one or more element
1481types which may be a primitive type, or another derived type. For
1482example, it is possible to have a two dimensional array, using an array
1483as the element type of another array.
1484
1485.. _t_aggregate:
1486
1487Aggregate Types
1488^^^^^^^^^^^^^^^
1489
1490Aggregate Types are a subset of derived types that can contain multiple
1491member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1492aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1493aggregate types.
1494
1495.. _t_array:
1496
1497Array Type
1498^^^^^^^^^^
1499
1500Overview:
1501"""""""""
1502
1503The array type is a very simple derived type that arranges elements
1504sequentially in memory. The array type requires a size (number of
1505elements) and an underlying data type.
1506
1507Syntax:
1508"""""""
1509
1510::
1511
1512 [<# elements> x <elementtype>]
1513
1514The number of elements is a constant integer value; ``elementtype`` may
1515be any type with a size.
1516
1517Examples:
1518"""""""""
1519
1520+------------------+--------------------------------------+
1521| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1522+------------------+--------------------------------------+
1523| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1524+------------------+--------------------------------------+
1525| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1526+------------------+--------------------------------------+
1527
1528Here are some examples of multidimensional arrays:
1529
1530+-----------------------------+----------------------------------------------------------+
1531| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1532+-----------------------------+----------------------------------------------------------+
1533| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1534+-----------------------------+----------------------------------------------------------+
1535| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1536+-----------------------------+----------------------------------------------------------+
1537
1538There is no restriction on indexing beyond the end of the array implied
1539by a static type (though there are restrictions on indexing beyond the
1540bounds of an allocated object in some cases). This means that
1541single-dimension 'variable sized array' addressing can be implemented in
1542LLVM with a zero length array type. An implementation of 'pascal style
1543arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1544example.
1545
1546.. _t_function:
1547
1548Function Type
1549^^^^^^^^^^^^^
1550
1551Overview:
1552"""""""""
1553
1554The function type can be thought of as a function signature. It consists
1555of a return type and a list of formal parameter types. The return type
1556of a function type is a first class type or a void type.
1557
1558Syntax:
1559"""""""
1560
1561::
1562
1563 <returntype> (<parameter list>)
1564
1565...where '``<parameter list>``' is a comma-separated list of type
1566specifiers. Optionally, the parameter list may include a type ``...``,
1567which indicates that the function takes a variable number of arguments.
1568Variable argument functions can access their arguments with the
1569:ref:`variable argument handling intrinsic <int_varargs>` functions.
1570'``<returntype>``' is any type except :ref:`label <t_label>`.
1571
1572Examples:
1573"""""""""
1574
1575+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1576| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1577+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001578| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvab084af42012-12-07 10:36:55 +00001579+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1580| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1581+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1582| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1583+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1584
1585.. _t_struct:
1586
1587Structure Type
1588^^^^^^^^^^^^^^
1589
1590Overview:
1591"""""""""
1592
1593The structure type is used to represent a collection of data members
1594together in memory. The elements of a structure may be any type that has
1595a size.
1596
1597Structures in memory are accessed using '``load``' and '``store``' by
1598getting a pointer to a field with the '``getelementptr``' instruction.
1599Structures in registers are accessed using the '``extractvalue``' and
1600'``insertvalue``' instructions.
1601
1602Structures may optionally be "packed" structures, which indicate that
1603the alignment of the struct is one byte, and that there is no padding
1604between the elements. In non-packed structs, padding between field types
1605is inserted as defined by the DataLayout string in the module, which is
1606required to match what the underlying code generator expects.
1607
1608Structures can either be "literal" or "identified". A literal structure
1609is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1610identified types are always defined at the top level with a name.
1611Literal types are uniqued by their contents and can never be recursive
1612or opaque since there is no way to write one. Identified types can be
1613recursive, can be opaqued, and are never uniqued.
1614
1615Syntax:
1616"""""""
1617
1618::
1619
1620 %T1 = type { <type list> } ; Identified normal struct type
1621 %T2 = type <{ <type list> }> ; Identified packed struct type
1622
1623Examples:
1624"""""""""
1625
1626+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1627| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1628+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001629| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001630+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1631| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1632+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1633
1634.. _t_opaque:
1635
1636Opaque Structure Types
1637^^^^^^^^^^^^^^^^^^^^^^
1638
1639Overview:
1640"""""""""
1641
1642Opaque structure types are used to represent named structure types that
1643do not have a body specified. This corresponds (for example) to the C
1644notion of a forward declared structure.
1645
1646Syntax:
1647"""""""
1648
1649::
1650
1651 %X = type opaque
1652 %52 = type opaque
1653
1654Examples:
1655"""""""""
1656
1657+--------------+-------------------+
1658| ``opaque`` | An opaque type. |
1659+--------------+-------------------+
1660
1661.. _t_pointer:
1662
1663Pointer Type
1664^^^^^^^^^^^^
1665
1666Overview:
1667"""""""""
1668
1669The pointer type is used to specify memory locations. Pointers are
1670commonly used to reference objects in memory.
1671
1672Pointer types may have an optional address space attribute defining the
1673numbered address space where the pointed-to object resides. The default
1674address space is number zero. The semantics of non-zero address spaces
1675are target-specific.
1676
1677Note that LLVM does not permit pointers to void (``void*``) nor does it
1678permit pointers to labels (``label*``). Use ``i8*`` instead.
1679
1680Syntax:
1681"""""""
1682
1683::
1684
1685 <type> *
1686
1687Examples:
1688"""""""""
1689
1690+-------------------------+--------------------------------------------------------------------------------------------------------------+
1691| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1692+-------------------------+--------------------------------------------------------------------------------------------------------------+
1693| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1694+-------------------------+--------------------------------------------------------------------------------------------------------------+
1695| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1696+-------------------------+--------------------------------------------------------------------------------------------------------------+
1697
1698.. _t_vector:
1699
1700Vector Type
1701^^^^^^^^^^^
1702
1703Overview:
1704"""""""""
1705
1706A vector type is a simple derived type that represents a vector of
1707elements. Vector types are used when multiple primitive data are
1708operated in parallel using a single instruction (SIMD). A vector type
1709requires a size (number of elements) and an underlying primitive data
1710type. Vector types are considered :ref:`first class <t_firstclass>`.
1711
1712Syntax:
1713"""""""
1714
1715::
1716
1717 < <# elements> x <elementtype> >
1718
1719The number of elements is a constant integer value larger than 0;
1720elementtype may be any integer or floating point type, or a pointer to
1721these types. Vectors of size zero are not allowed.
1722
1723Examples:
1724"""""""""
1725
1726+-------------------+--------------------------------------------------+
1727| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1728+-------------------+--------------------------------------------------+
1729| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1730+-------------------+--------------------------------------------------+
1731| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1732+-------------------+--------------------------------------------------+
1733| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1734+-------------------+--------------------------------------------------+
1735
1736Constants
1737=========
1738
1739LLVM has several different basic types of constants. This section
1740describes them all and their syntax.
1741
1742Simple Constants
1743----------------
1744
1745**Boolean constants**
1746 The two strings '``true``' and '``false``' are both valid constants
1747 of the ``i1`` type.
1748**Integer constants**
1749 Standard integers (such as '4') are constants of the
1750 :ref:`integer <t_integer>` type. Negative numbers may be used with
1751 integer types.
1752**Floating point constants**
1753 Floating point constants use standard decimal notation (e.g.
1754 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1755 hexadecimal notation (see below). The assembler requires the exact
1756 decimal value of a floating-point constant. For example, the
1757 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1758 decimal in binary. Floating point constants must have a :ref:`floating
1759 point <t_floating>` type.
1760**Null pointer constants**
1761 The identifier '``null``' is recognized as a null pointer constant
1762 and must be of :ref:`pointer type <t_pointer>`.
1763
1764The one non-intuitive notation for constants is the hexadecimal form of
1765floating point constants. For example, the form
1766'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1767than) '``double 4.5e+15``'. The only time hexadecimal floating point
1768constants are required (and the only time that they are generated by the
1769disassembler) is when a floating point constant must be emitted but it
1770cannot be represented as a decimal floating point number in a reasonable
1771number of digits. For example, NaN's, infinities, and other special
1772values are represented in their IEEE hexadecimal format so that assembly
1773and disassembly do not cause any bits to change in the constants.
1774
1775When using the hexadecimal form, constants of types half, float, and
1776double are represented using the 16-digit form shown above (which
1777matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001778must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001779precision, respectively. Hexadecimal format is always used for long
1780double, and there are three forms of long double. The 80-bit format used
1781by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1782128-bit format used by PowerPC (two adjacent doubles) is represented by
1783``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1784represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1785supported target uses this format. Long doubles will only work if they
1786match the long double format on your target. The IEEE 16-bit format
1787(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1788digits. All hexadecimal formats are big-endian (sign bit at the left).
1789
1790There are no constants of type x86mmx.
1791
1792Complex Constants
1793-----------------
1794
1795Complex constants are a (potentially recursive) combination of simple
1796constants and smaller complex constants.
1797
1798**Structure constants**
1799 Structure constants are represented with notation similar to
1800 structure type definitions (a comma separated list of elements,
1801 surrounded by braces (``{}``)). For example:
1802 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1803 "``@G = external global i32``". Structure constants must have
1804 :ref:`structure type <t_struct>`, and the number and types of elements
1805 must match those specified by the type.
1806**Array constants**
1807 Array constants are represented with notation similar to array type
1808 definitions (a comma separated list of elements, surrounded by
1809 square brackets (``[]``)). For example:
1810 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1811 :ref:`array type <t_array>`, and the number and types of elements must
1812 match those specified by the type.
1813**Vector constants**
1814 Vector constants are represented with notation similar to vector
1815 type definitions (a comma separated list of elements, surrounded by
1816 less-than/greater-than's (``<>``)). For example:
1817 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1818 must have :ref:`vector type <t_vector>`, and the number and types of
1819 elements must match those specified by the type.
1820**Zero initialization**
1821 The string '``zeroinitializer``' can be used to zero initialize a
1822 value to zero of *any* type, including scalar and
1823 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1824 having to print large zero initializers (e.g. for large arrays) and
1825 is always exactly equivalent to using explicit zero initializers.
1826**Metadata node**
1827 A metadata node is a structure-like constant with :ref:`metadata
1828 type <t_metadata>`. For example:
1829 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1830 constants that are meant to be interpreted as part of the
1831 instruction stream, metadata is a place to attach additional
1832 information such as debug info.
1833
1834Global Variable and Function Addresses
1835--------------------------------------
1836
1837The addresses of :ref:`global variables <globalvars>` and
1838:ref:`functions <functionstructure>` are always implicitly valid
1839(link-time) constants. These constants are explicitly referenced when
1840the :ref:`identifier for the global <identifiers>` is used and always have
1841:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1842file:
1843
1844.. code-block:: llvm
1845
1846 @X = global i32 17
1847 @Y = global i32 42
1848 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1849
1850.. _undefvalues:
1851
1852Undefined Values
1853----------------
1854
1855The string '``undef``' can be used anywhere a constant is expected, and
1856indicates that the user of the value may receive an unspecified
1857bit-pattern. Undefined values may be of any type (other than '``label``'
1858or '``void``') and be used anywhere a constant is permitted.
1859
1860Undefined values are useful because they indicate to the compiler that
1861the program is well defined no matter what value is used. This gives the
1862compiler more freedom to optimize. Here are some examples of
1863(potentially surprising) transformations that are valid (in pseudo IR):
1864
1865.. code-block:: llvm
1866
1867 %A = add %X, undef
1868 %B = sub %X, undef
1869 %C = xor %X, undef
1870 Safe:
1871 %A = undef
1872 %B = undef
1873 %C = undef
1874
1875This is safe because all of the output bits are affected by the undef
1876bits. Any output bit can have a zero or one depending on the input bits.
1877
1878.. code-block:: llvm
1879
1880 %A = or %X, undef
1881 %B = and %X, undef
1882 Safe:
1883 %A = -1
1884 %B = 0
1885 Unsafe:
1886 %A = undef
1887 %B = undef
1888
1889These logical operations have bits that are not always affected by the
1890input. For example, if ``%X`` has a zero bit, then the output of the
1891'``and``' operation will always be a zero for that bit, no matter what
1892the corresponding bit from the '``undef``' is. As such, it is unsafe to
1893optimize or assume that the result of the '``and``' is '``undef``'.
1894However, it is safe to assume that all bits of the '``undef``' could be
18950, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1896all the bits of the '``undef``' operand to the '``or``' could be set,
1897allowing the '``or``' to be folded to -1.
1898
1899.. code-block:: llvm
1900
1901 %A = select undef, %X, %Y
1902 %B = select undef, 42, %Y
1903 %C = select %X, %Y, undef
1904 Safe:
1905 %A = %X (or %Y)
1906 %B = 42 (or %Y)
1907 %C = %Y
1908 Unsafe:
1909 %A = undef
1910 %B = undef
1911 %C = undef
1912
1913This set of examples shows that undefined '``select``' (and conditional
1914branch) conditions can go *either way*, but they have to come from one
1915of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1916both known to have a clear low bit, then ``%A`` would have to have a
1917cleared low bit. However, in the ``%C`` example, the optimizer is
1918allowed to assume that the '``undef``' operand could be the same as
1919``%Y``, allowing the whole '``select``' to be eliminated.
1920
1921.. code-block:: llvm
1922
1923 %A = xor undef, undef
1924
1925 %B = undef
1926 %C = xor %B, %B
1927
1928 %D = undef
1929 %E = icmp lt %D, 4
1930 %F = icmp gte %D, 4
1931
1932 Safe:
1933 %A = undef
1934 %B = undef
1935 %C = undef
1936 %D = undef
1937 %E = undef
1938 %F = undef
1939
1940This example points out that two '``undef``' operands are not
1941necessarily the same. This can be surprising to people (and also matches
1942C semantics) where they assume that "``X^X``" is always zero, even if
1943``X`` is undefined. This isn't true for a number of reasons, but the
1944short answer is that an '``undef``' "variable" can arbitrarily change
1945its value over its "live range". This is true because the variable
1946doesn't actually *have a live range*. Instead, the value is logically
1947read from arbitrary registers that happen to be around when needed, so
1948the value is not necessarily consistent over time. In fact, ``%A`` and
1949``%C`` need to have the same semantics or the core LLVM "replace all
1950uses with" concept would not hold.
1951
1952.. code-block:: llvm
1953
1954 %A = fdiv undef, %X
1955 %B = fdiv %X, undef
1956 Safe:
1957 %A = undef
1958 b: unreachable
1959
1960These examples show the crucial difference between an *undefined value*
1961and *undefined behavior*. An undefined value (like '``undef``') is
1962allowed to have an arbitrary bit-pattern. This means that the ``%A``
1963operation can be constant folded to '``undef``', because the '``undef``'
1964could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1965However, in the second example, we can make a more aggressive
1966assumption: because the ``undef`` is allowed to be an arbitrary value,
1967we are allowed to assume that it could be zero. Since a divide by zero
1968has *undefined behavior*, we are allowed to assume that the operation
1969does not execute at all. This allows us to delete the divide and all
1970code after it. Because the undefined operation "can't happen", the
1971optimizer can assume that it occurs in dead code.
1972
1973.. code-block:: llvm
1974
1975 a: store undef -> %X
1976 b: store %X -> undef
1977 Safe:
1978 a: <deleted>
1979 b: unreachable
1980
1981These examples reiterate the ``fdiv`` example: a store *of* an undefined
1982value can be assumed to not have any effect; we can assume that the
1983value is overwritten with bits that happen to match what was already
1984there. However, a store *to* an undefined location could clobber
1985arbitrary memory, therefore, it has undefined behavior.
1986
1987.. _poisonvalues:
1988
1989Poison Values
1990-------------
1991
1992Poison values are similar to :ref:`undef values <undefvalues>`, however
1993they also represent the fact that an instruction or constant expression
1994which cannot evoke side effects has nevertheless detected a condition
1995which results in undefined behavior.
1996
1997There is currently no way of representing a poison value in the IR; they
1998only exist when produced by operations such as :ref:`add <i_add>` with
1999the ``nsw`` flag.
2000
2001Poison value behavior is defined in terms of value *dependence*:
2002
2003- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2004- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2005 their dynamic predecessor basic block.
2006- Function arguments depend on the corresponding actual argument values
2007 in the dynamic callers of their functions.
2008- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2009 instructions that dynamically transfer control back to them.
2010- :ref:`Invoke <i_invoke>` instructions depend on the
2011 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2012 call instructions that dynamically transfer control back to them.
2013- Non-volatile loads and stores depend on the most recent stores to all
2014 of the referenced memory addresses, following the order in the IR
2015 (including loads and stores implied by intrinsics such as
2016 :ref:`@llvm.memcpy <int_memcpy>`.)
2017- An instruction with externally visible side effects depends on the
2018 most recent preceding instruction with externally visible side
2019 effects, following the order in the IR. (This includes :ref:`volatile
2020 operations <volatile>`.)
2021- An instruction *control-depends* on a :ref:`terminator
2022 instruction <terminators>` if the terminator instruction has
2023 multiple successors and the instruction is always executed when
2024 control transfers to one of the successors, and may not be executed
2025 when control is transferred to another.
2026- Additionally, an instruction also *control-depends* on a terminator
2027 instruction if the set of instructions it otherwise depends on would
2028 be different if the terminator had transferred control to a different
2029 successor.
2030- Dependence is transitive.
2031
2032Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2033with the additional affect that any instruction which has a *dependence*
2034on a poison value has undefined behavior.
2035
2036Here are some examples:
2037
2038.. code-block:: llvm
2039
2040 entry:
2041 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2042 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2043 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2044 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2045
2046 store i32 %poison, i32* @g ; Poison value stored to memory.
2047 %poison2 = load i32* @g ; Poison value loaded back from memory.
2048
2049 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2050
2051 %narrowaddr = bitcast i32* @g to i16*
2052 %wideaddr = bitcast i32* @g to i64*
2053 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2054 %poison4 = load i64* %wideaddr ; Returns a poison value.
2055
2056 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2057 br i1 %cmp, label %true, label %end ; Branch to either destination.
2058
2059 true:
2060 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2061 ; it has undefined behavior.
2062 br label %end
2063
2064 end:
2065 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2066 ; Both edges into this PHI are
2067 ; control-dependent on %cmp, so this
2068 ; always results in a poison value.
2069
2070 store volatile i32 0, i32* @g ; This would depend on the store in %true
2071 ; if %cmp is true, or the store in %entry
2072 ; otherwise, so this is undefined behavior.
2073
2074 br i1 %cmp, label %second_true, label %second_end
2075 ; The same branch again, but this time the
2076 ; true block doesn't have side effects.
2077
2078 second_true:
2079 ; No side effects!
2080 ret void
2081
2082 second_end:
2083 store volatile i32 0, i32* @g ; This time, the instruction always depends
2084 ; on the store in %end. Also, it is
2085 ; control-equivalent to %end, so this is
2086 ; well-defined (ignoring earlier undefined
2087 ; behavior in this example).
2088
2089.. _blockaddress:
2090
2091Addresses of Basic Blocks
2092-------------------------
2093
2094``blockaddress(@function, %block)``
2095
2096The '``blockaddress``' constant computes the address of the specified
2097basic block in the specified function, and always has an ``i8*`` type.
2098Taking the address of the entry block is illegal.
2099
2100This value only has defined behavior when used as an operand to the
2101':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2102against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002103undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002104no label is equal to the null pointer. This may be passed around as an
2105opaque pointer sized value as long as the bits are not inspected. This
2106allows ``ptrtoint`` and arithmetic to be performed on these values so
2107long as the original value is reconstituted before the ``indirectbr``
2108instruction.
2109
2110Finally, some targets may provide defined semantics when using the value
2111as the operand to an inline assembly, but that is target specific.
2112
2113Constant Expressions
2114--------------------
2115
2116Constant expressions are used to allow expressions involving other
2117constants to be used as constants. Constant expressions may be of any
2118:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2119that does not have side effects (e.g. load and call are not supported).
2120The following is the syntax for constant expressions:
2121
2122``trunc (CST to TYPE)``
2123 Truncate a constant to another type. The bit size of CST must be
2124 larger than the bit size of TYPE. Both types must be integers.
2125``zext (CST to TYPE)``
2126 Zero extend a constant to another type. The bit size of CST must be
2127 smaller than the bit size of TYPE. Both types must be integers.
2128``sext (CST to TYPE)``
2129 Sign extend a constant to another type. The bit size of CST must be
2130 smaller than the bit size of TYPE. Both types must be integers.
2131``fptrunc (CST to TYPE)``
2132 Truncate a floating point constant to another floating point type.
2133 The size of CST must be larger than the size of TYPE. Both types
2134 must be floating point.
2135``fpext (CST to TYPE)``
2136 Floating point extend a constant to another type. The size of CST
2137 must be smaller or equal to the size of TYPE. Both types must be
2138 floating point.
2139``fptoui (CST to TYPE)``
2140 Convert a floating point constant to the corresponding unsigned
2141 integer constant. TYPE must be a scalar or vector integer type. CST
2142 must be of scalar or vector floating point type. Both CST and TYPE
2143 must be scalars, or vectors of the same number of elements. If the
2144 value won't fit in the integer type, the results are undefined.
2145``fptosi (CST to TYPE)``
2146 Convert a floating point constant to the corresponding signed
2147 integer constant. TYPE must be a scalar or vector integer type. CST
2148 must be of scalar or vector floating point type. Both CST and TYPE
2149 must be scalars, or vectors of the same number of elements. If the
2150 value won't fit in the integer type, the results are undefined.
2151``uitofp (CST to TYPE)``
2152 Convert an unsigned integer constant to the corresponding floating
2153 point constant. TYPE must be a scalar or vector floating point type.
2154 CST must be of scalar or vector integer type. Both CST and TYPE must
2155 be scalars, or vectors of the same number of elements. If the value
2156 won't fit in the floating point type, the results are undefined.
2157``sitofp (CST to TYPE)``
2158 Convert a signed integer constant to the corresponding floating
2159 point constant. TYPE must be a scalar or vector floating point type.
2160 CST must be of scalar or vector integer type. Both CST and TYPE must
2161 be scalars, or vectors of the same number of elements. If the value
2162 won't fit in the floating point type, the results are undefined.
2163``ptrtoint (CST to TYPE)``
2164 Convert a pointer typed constant to the corresponding integer
2165 constant ``TYPE`` must be an integer type. ``CST`` must be of
2166 pointer type. The ``CST`` value is zero extended, truncated, or
2167 unchanged to make it fit in ``TYPE``.
2168``inttoptr (CST to TYPE)``
2169 Convert an integer constant to a pointer constant. TYPE must be a
2170 pointer type. CST must be of integer type. The CST value is zero
2171 extended, truncated, or unchanged to make it fit in a pointer size.
2172 This one is *really* dangerous!
2173``bitcast (CST to TYPE)``
2174 Convert a constant, CST, to another TYPE. The constraints of the
2175 operands are the same as those for the :ref:`bitcast
2176 instruction <i_bitcast>`.
2177``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2178 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2179 constants. As with the :ref:`getelementptr <i_getelementptr>`
2180 instruction, the index list may have zero or more indexes, which are
2181 required to make sense for the type of "CSTPTR".
2182``select (COND, VAL1, VAL2)``
2183 Perform the :ref:`select operation <i_select>` on constants.
2184``icmp COND (VAL1, VAL2)``
2185 Performs the :ref:`icmp operation <i_icmp>` on constants.
2186``fcmp COND (VAL1, VAL2)``
2187 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2188``extractelement (VAL, IDX)``
2189 Perform the :ref:`extractelement operation <i_extractelement>` on
2190 constants.
2191``insertelement (VAL, ELT, IDX)``
2192 Perform the :ref:`insertelement operation <i_insertelement>` on
2193 constants.
2194``shufflevector (VEC1, VEC2, IDXMASK)``
2195 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2196 constants.
2197``extractvalue (VAL, IDX0, IDX1, ...)``
2198 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2199 constants. The index list is interpreted in a similar manner as
2200 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2201 least one index value must be specified.
2202``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2203 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2204 The index list is interpreted in a similar manner as indices in a
2205 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2206 value must be specified.
2207``OPCODE (LHS, RHS)``
2208 Perform the specified operation of the LHS and RHS constants. OPCODE
2209 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2210 binary <bitwiseops>` operations. The constraints on operands are
2211 the same as those for the corresponding instruction (e.g. no bitwise
2212 operations on floating point values are allowed).
2213
2214Other Values
2215============
2216
2217Inline Assembler Expressions
2218----------------------------
2219
2220LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2221Inline Assembly <moduleasm>`) through the use of a special value. This
2222value represents the inline assembler as a string (containing the
2223instructions to emit), a list of operand constraints (stored as a
2224string), a flag that indicates whether or not the inline asm expression
2225has side effects, and a flag indicating whether the function containing
2226the asm needs to align its stack conservatively. An example inline
2227assembler expression is:
2228
2229.. code-block:: llvm
2230
2231 i32 (i32) asm "bswap $0", "=r,r"
2232
2233Inline assembler expressions may **only** be used as the callee operand
2234of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2235Thus, typically we have:
2236
2237.. code-block:: llvm
2238
2239 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2240
2241Inline asms with side effects not visible in the constraint list must be
2242marked as having side effects. This is done through the use of the
2243'``sideeffect``' keyword, like so:
2244
2245.. code-block:: llvm
2246
2247 call void asm sideeffect "eieio", ""()
2248
2249In some cases inline asms will contain code that will not work unless
2250the stack is aligned in some way, such as calls or SSE instructions on
2251x86, yet will not contain code that does that alignment within the asm.
2252The compiler should make conservative assumptions about what the asm
2253might contain and should generate its usual stack alignment code in the
2254prologue if the '``alignstack``' keyword is present:
2255
2256.. code-block:: llvm
2257
2258 call void asm alignstack "eieio", ""()
2259
2260Inline asms also support using non-standard assembly dialects. The
2261assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2262the inline asm is using the Intel dialect. Currently, ATT and Intel are
2263the only supported dialects. An example is:
2264
2265.. code-block:: llvm
2266
2267 call void asm inteldialect "eieio", ""()
2268
2269If multiple keywords appear the '``sideeffect``' keyword must come
2270first, the '``alignstack``' keyword second and the '``inteldialect``'
2271keyword last.
2272
2273Inline Asm Metadata
2274^^^^^^^^^^^^^^^^^^^
2275
2276The call instructions that wrap inline asm nodes may have a
2277"``!srcloc``" MDNode attached to it that contains a list of constant
2278integers. If present, the code generator will use the integer as the
2279location cookie value when report errors through the ``LLVMContext``
2280error reporting mechanisms. This allows a front-end to correlate backend
2281errors that occur with inline asm back to the source code that produced
2282it. For example:
2283
2284.. code-block:: llvm
2285
2286 call void asm sideeffect "something bad", ""(), !srcloc !42
2287 ...
2288 !42 = !{ i32 1234567 }
2289
2290It is up to the front-end to make sense of the magic numbers it places
2291in the IR. If the MDNode contains multiple constants, the code generator
2292will use the one that corresponds to the line of the asm that the error
2293occurs on.
2294
2295.. _metadata:
2296
2297Metadata Nodes and Metadata Strings
2298-----------------------------------
2299
2300LLVM IR allows metadata to be attached to instructions in the program
2301that can convey extra information about the code to the optimizers and
2302code generator. One example application of metadata is source-level
2303debug information. There are two metadata primitives: strings and nodes.
2304All metadata has the ``metadata`` type and is identified in syntax by a
2305preceding exclamation point ('``!``').
2306
2307A metadata string is a string surrounded by double quotes. It can
2308contain any character by escaping non-printable characters with
2309"``\xx``" where "``xx``" is the two digit hex code. For example:
2310"``!"test\00"``".
2311
2312Metadata nodes are represented with notation similar to structure
2313constants (a comma separated list of elements, surrounded by braces and
2314preceded by an exclamation point). Metadata nodes can have any values as
2315their operand. For example:
2316
2317.. code-block:: llvm
2318
2319 !{ metadata !"test\00", i32 10}
2320
2321A :ref:`named metadata <namedmetadatastructure>` is a collection of
2322metadata nodes, which can be looked up in the module symbol table. For
2323example:
2324
2325.. code-block:: llvm
2326
2327 !foo = metadata !{!4, !3}
2328
2329Metadata can be used as function arguments. Here ``llvm.dbg.value``
2330function is using two metadata arguments:
2331
2332.. code-block:: llvm
2333
2334 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2335
2336Metadata can be attached with an instruction. Here metadata ``!21`` is
2337attached to the ``add`` instruction using the ``!dbg`` identifier:
2338
2339.. code-block:: llvm
2340
2341 %indvar.next = add i64 %indvar, 1, !dbg !21
2342
2343More information about specific metadata nodes recognized by the
2344optimizers and code generator is found below.
2345
2346'``tbaa``' Metadata
2347^^^^^^^^^^^^^^^^^^^
2348
2349In LLVM IR, memory does not have types, so LLVM's own type system is not
2350suitable for doing TBAA. Instead, metadata is added to the IR to
2351describe a type system of a higher level language. This can be used to
2352implement typical C/C++ TBAA, but it can also be used to implement
2353custom alias analysis behavior for other languages.
2354
2355The current metadata format is very simple. TBAA metadata nodes have up
2356to three fields, e.g.:
2357
2358.. code-block:: llvm
2359
2360 !0 = metadata !{ metadata !"an example type tree" }
2361 !1 = metadata !{ metadata !"int", metadata !0 }
2362 !2 = metadata !{ metadata !"float", metadata !0 }
2363 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2364
2365The first field is an identity field. It can be any value, usually a
2366metadata string, which uniquely identifies the type. The most important
2367name in the tree is the name of the root node. Two trees with different
2368root node names are entirely disjoint, even if they have leaves with
2369common names.
2370
2371The second field identifies the type's parent node in the tree, or is
2372null or omitted for a root node. A type is considered to alias all of
2373its descendants and all of its ancestors in the tree. Also, a type is
2374considered to alias all types in other trees, so that bitcode produced
2375from multiple front-ends is handled conservatively.
2376
2377If the third field is present, it's an integer which if equal to 1
2378indicates that the type is "constant" (meaning
2379``pointsToConstantMemory`` should return true; see `other useful
2380AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2381
2382'``tbaa.struct``' Metadata
2383^^^^^^^^^^^^^^^^^^^^^^^^^^
2384
2385The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2386aggregate assignment operations in C and similar languages, however it
2387is defined to copy a contiguous region of memory, which is more than
2388strictly necessary for aggregate types which contain holes due to
2389padding. Also, it doesn't contain any TBAA information about the fields
2390of the aggregate.
2391
2392``!tbaa.struct`` metadata can describe which memory subregions in a
2393memcpy are padding and what the TBAA tags of the struct are.
2394
2395The current metadata format is very simple. ``!tbaa.struct`` metadata
2396nodes are a list of operands which are in conceptual groups of three.
2397For each group of three, the first operand gives the byte offset of a
2398field in bytes, the second gives its size in bytes, and the third gives
2399its tbaa tag. e.g.:
2400
2401.. code-block:: llvm
2402
2403 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2404
2405This describes a struct with two fields. The first is at offset 0 bytes
2406with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2407and has size 4 bytes and has tbaa tag !2.
2408
2409Note that the fields need not be contiguous. In this example, there is a
24104 byte gap between the two fields. This gap represents padding which
2411does not carry useful data and need not be preserved.
2412
2413'``fpmath``' Metadata
2414^^^^^^^^^^^^^^^^^^^^^
2415
2416``fpmath`` metadata may be attached to any instruction of floating point
2417type. It can be used to express the maximum acceptable error in the
2418result of that instruction, in ULPs, thus potentially allowing the
2419compiler to use a more efficient but less accurate method of computing
2420it. ULP is defined as follows:
2421
2422 If ``x`` is a real number that lies between two finite consecutive
2423 floating-point numbers ``a`` and ``b``, without being equal to one
2424 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2425 distance between the two non-equal finite floating-point numbers
2426 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2427
2428The metadata node shall consist of a single positive floating point
2429number representing the maximum relative error, for example:
2430
2431.. code-block:: llvm
2432
2433 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2434
2435'``range``' Metadata
2436^^^^^^^^^^^^^^^^^^^^
2437
2438``range`` metadata may be attached only to loads of integer types. It
2439expresses the possible ranges the loaded value is in. The ranges are
2440represented with a flattened list of integers. The loaded value is known
2441to be in the union of the ranges defined by each consecutive pair. Each
2442pair has the following properties:
2443
2444- The type must match the type loaded by the instruction.
2445- The pair ``a,b`` represents the range ``[a,b)``.
2446- Both ``a`` and ``b`` are constants.
2447- The range is allowed to wrap.
2448- The range should not represent the full or empty set. That is,
2449 ``a!=b``.
2450
2451In addition, the pairs must be in signed order of the lower bound and
2452they must be non-contiguous.
2453
2454Examples:
2455
2456.. code-block:: llvm
2457
2458 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2459 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2460 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2461 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2462 ...
2463 !0 = metadata !{ i8 0, i8 2 }
2464 !1 = metadata !{ i8 255, i8 2 }
2465 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2466 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2467
2468Module Flags Metadata
2469=====================
2470
2471Information about the module as a whole is difficult to convey to LLVM's
2472subsystems. The LLVM IR isn't sufficient to transmit this information.
2473The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002474this. These flags are in the form of key / value pairs --- much like a
2475dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002476look it up.
2477
2478The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2479Each triplet has the following form:
2480
2481- The first element is a *behavior* flag, which specifies the behavior
2482 when two (or more) modules are merged together, and it encounters two
2483 (or more) metadata with the same ID. The supported behaviors are
2484 described below.
2485- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002486 metadata. Each module may only have one flag entry for each unique ID (not
2487 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002488- The third element is the value of the flag.
2489
2490When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002491``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2492each unique metadata ID string, there will be exactly one entry in the merged
2493modules ``llvm.module.flags`` metadata table, and the value for that entry will
2494be determined by the merge behavior flag, as described below. The only exception
2495is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002496
2497The following behaviors are supported:
2498
2499.. list-table::
2500 :header-rows: 1
2501 :widths: 10 90
2502
2503 * - Value
2504 - Behavior
2505
2506 * - 1
2507 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002508 Emits an error if two values disagree, otherwise the resulting value
2509 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511 * - 2
2512 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002513 Emits a warning if two values disagree. The result value will be the
2514 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002515
2516 * - 3
2517 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002518 Adds a requirement that another module flag be present and have a
2519 specified value after linking is performed. The value must be a
2520 metadata pair, where the first element of the pair is the ID of the
2521 module flag to be restricted, and the second element of the pair is
2522 the value the module flag should be restricted to. This behavior can
2523 be used to restrict the allowable results (via triggering of an
2524 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002525
2526 * - 4
2527 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002528 Uses the specified value, regardless of the behavior or value of the
2529 other module. If both modules specify **Override**, but the values
2530 differ, an error will be emitted.
2531
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002532 * - 5
2533 - **Append**
2534 Appends the two values, which are required to be metadata nodes.
2535
2536 * - 6
2537 - **AppendUnique**
2538 Appends the two values, which are required to be metadata
2539 nodes. However, duplicate entries in the second list are dropped
2540 during the append operation.
2541
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002542It is an error for a particular unique flag ID to have multiple behaviors,
2543except in the case of **Require** (which adds restrictions on another metadata
2544value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002545
2546An example of module flags:
2547
2548.. code-block:: llvm
2549
2550 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2551 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2552 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2553 !3 = metadata !{ i32 3, metadata !"qux",
2554 metadata !{
2555 metadata !"foo", i32 1
2556 }
2557 }
2558 !llvm.module.flags = !{ !0, !1, !2, !3 }
2559
2560- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2561 if two or more ``!"foo"`` flags are seen is to emit an error if their
2562 values are not equal.
2563
2564- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2565 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002566 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2569 behavior if two or more ``!"qux"`` flags are seen is to emit a
2570 warning if their values are not equal.
2571
2572- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2573
2574 ::
2575
2576 metadata !{ metadata !"foo", i32 1 }
2577
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002578 The behavior is to emit an error if the ``llvm.module.flags`` does not
2579 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2580 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582Objective-C Garbage Collection Module Flags Metadata
2583----------------------------------------------------
2584
2585On the Mach-O platform, Objective-C stores metadata about garbage
2586collection in a special section called "image info". The metadata
2587consists of a version number and a bitmask specifying what types of
2588garbage collection are supported (if any) by the file. If two or more
2589modules are linked together their garbage collection metadata needs to
2590be merged rather than appended together.
2591
2592The Objective-C garbage collection module flags metadata consists of the
2593following key-value pairs:
2594
2595.. list-table::
2596 :header-rows: 1
2597 :widths: 30 70
2598
2599 * - Key
2600 - Value
2601
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002602 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002603 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002604
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002605 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002606 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002607 always 0.
2608
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002609 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002610 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002611 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2612 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2613 Objective-C ABI version 2.
2614
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002615 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002616 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002617 not. Valid values are 0, for no garbage collection, and 2, for garbage
2618 collection supported.
2619
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002620 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002621 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002622 If present, its value must be 6. This flag requires that the
2623 ``Objective-C Garbage Collection`` flag have the value 2.
2624
2625Some important flag interactions:
2626
2627- If a module with ``Objective-C Garbage Collection`` set to 0 is
2628 merged with a module with ``Objective-C Garbage Collection`` set to
2629 2, then the resulting module has the
2630 ``Objective-C Garbage Collection`` flag set to 0.
2631- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2632 merged with a module with ``Objective-C GC Only`` set to 6.
2633
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002634Automatic Linker Flags Module Flags Metadata
2635--------------------------------------------
2636
2637Some targets support embedding flags to the linker inside individual object
2638files. Typically this is used in conjunction with language extensions which
2639allow source files to explicitly declare the libraries they depend on, and have
2640these automatically be transmitted to the linker via object files.
2641
2642These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002643using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002644to be ``AppendUnique``, and the value for the key is expected to be a metadata
2645node which should be a list of other metadata nodes, each of which should be a
2646list of metadata strings defining linker options.
2647
2648For example, the following metadata section specifies two separate sets of
2649linker options, presumably to link against ``libz`` and the ``Cocoa``
2650framework::
2651
Daniel Dunbar95856122013-01-18 19:37:00 +00002652 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002653 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002654 metadata !{ metadata !"-lz" },
2655 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002656 !llvm.module.flags = !{ !0 }
2657
2658The metadata encoding as lists of lists of options, as opposed to a collapsed
2659list of options, is chosen so that the IR encoding can use multiple option
2660strings to specify e.g., a single library, while still having that specifier be
2661preserved as an atomic element that can be recognized by a target specific
2662assembly writer or object file emitter.
2663
2664Each individual option is required to be either a valid option for the target's
2665linker, or an option that is reserved by the target specific assembly writer or
2666object file emitter. No other aspect of these options is defined by the IR.
2667
Sean Silvab084af42012-12-07 10:36:55 +00002668Intrinsic Global Variables
2669==========================
2670
2671LLVM has a number of "magic" global variables that contain data that
2672affect code generation or other IR semantics. These are documented here.
2673All globals of this sort should have a section specified as
2674"``llvm.metadata``". This section and all globals that start with
2675"``llvm.``" are reserved for use by LLVM.
2676
2677The '``llvm.used``' Global Variable
2678-----------------------------------
2679
2680The ``@llvm.used`` global is an array with i8\* element type which has
2681:ref:`appending linkage <linkage_appending>`. This array contains a list of
2682pointers to global variables and functions which may optionally have a
2683pointer cast formed of bitcast or getelementptr. For example, a legal
2684use of it is:
2685
2686.. code-block:: llvm
2687
2688 @X = global i8 4
2689 @Y = global i32 123
2690
2691 @llvm.used = appending global [2 x i8*] [
2692 i8* @X,
2693 i8* bitcast (i32* @Y to i8*)
2694 ], section "llvm.metadata"
2695
2696If a global variable appears in the ``@llvm.used`` list, then the
2697compiler, assembler, and linker are required to treat the symbol as if
2698there is a reference to the global that it cannot see. For example, if a
2699variable has internal linkage and no references other than that from the
2700``@llvm.used`` list, it cannot be deleted. This is commonly used to
2701represent references from inline asms and other things the compiler
2702cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2703
2704On some targets, the code generator must emit a directive to the
2705assembler or object file to prevent the assembler and linker from
2706molesting the symbol.
2707
2708The '``llvm.compiler.used``' Global Variable
2709--------------------------------------------
2710
2711The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2712directive, except that it only prevents the compiler from touching the
2713symbol. On targets that support it, this allows an intelligent linker to
2714optimize references to the symbol without being impeded as it would be
2715by ``@llvm.used``.
2716
2717This is a rare construct that should only be used in rare circumstances,
2718and should not be exposed to source languages.
2719
2720The '``llvm.global_ctors``' Global Variable
2721-------------------------------------------
2722
2723.. code-block:: llvm
2724
2725 %0 = type { i32, void ()* }
2726 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2727
2728The ``@llvm.global_ctors`` array contains a list of constructor
2729functions and associated priorities. The functions referenced by this
2730array will be called in ascending order of priority (i.e. lowest first)
2731when the module is loaded. The order of functions with the same priority
2732is not defined.
2733
2734The '``llvm.global_dtors``' Global Variable
2735-------------------------------------------
2736
2737.. code-block:: llvm
2738
2739 %0 = type { i32, void ()* }
2740 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2741
2742The ``@llvm.global_dtors`` array contains a list of destructor functions
2743and associated priorities. The functions referenced by this array will
2744be called in descending order of priority (i.e. highest first) when the
2745module is loaded. The order of functions with the same priority is not
2746defined.
2747
2748Instruction Reference
2749=====================
2750
2751The LLVM instruction set consists of several different classifications
2752of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2753instructions <binaryops>`, :ref:`bitwise binary
2754instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2755:ref:`other instructions <otherops>`.
2756
2757.. _terminators:
2758
2759Terminator Instructions
2760-----------------------
2761
2762As mentioned :ref:`previously <functionstructure>`, every basic block in a
2763program ends with a "Terminator" instruction, which indicates which
2764block should be executed after the current block is finished. These
2765terminator instructions typically yield a '``void``' value: they produce
2766control flow, not values (the one exception being the
2767':ref:`invoke <i_invoke>`' instruction).
2768
2769The terminator instructions are: ':ref:`ret <i_ret>`',
2770':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2771':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2772':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2773
2774.. _i_ret:
2775
2776'``ret``' Instruction
2777^^^^^^^^^^^^^^^^^^^^^
2778
2779Syntax:
2780"""""""
2781
2782::
2783
2784 ret <type> <value> ; Return a value from a non-void function
2785 ret void ; Return from void function
2786
2787Overview:
2788"""""""""
2789
2790The '``ret``' instruction is used to return control flow (and optionally
2791a value) from a function back to the caller.
2792
2793There are two forms of the '``ret``' instruction: one that returns a
2794value and then causes control flow, and one that just causes control
2795flow to occur.
2796
2797Arguments:
2798""""""""""
2799
2800The '``ret``' instruction optionally accepts a single argument, the
2801return value. The type of the return value must be a ':ref:`first
2802class <t_firstclass>`' type.
2803
2804A function is not :ref:`well formed <wellformed>` if it it has a non-void
2805return type and contains a '``ret``' instruction with no return value or
2806a return value with a type that does not match its type, or if it has a
2807void return type and contains a '``ret``' instruction with a return
2808value.
2809
2810Semantics:
2811""""""""""
2812
2813When the '``ret``' instruction is executed, control flow returns back to
2814the calling function's context. If the caller is a
2815":ref:`call <i_call>`" instruction, execution continues at the
2816instruction after the call. If the caller was an
2817":ref:`invoke <i_invoke>`" instruction, execution continues at the
2818beginning of the "normal" destination block. If the instruction returns
2819a value, that value shall set the call or invoke instruction's return
2820value.
2821
2822Example:
2823""""""""
2824
2825.. code-block:: llvm
2826
2827 ret i32 5 ; Return an integer value of 5
2828 ret void ; Return from a void function
2829 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2830
2831.. _i_br:
2832
2833'``br``' Instruction
2834^^^^^^^^^^^^^^^^^^^^
2835
2836Syntax:
2837"""""""
2838
2839::
2840
2841 br i1 <cond>, label <iftrue>, label <iffalse>
2842 br label <dest> ; Unconditional branch
2843
2844Overview:
2845"""""""""
2846
2847The '``br``' instruction is used to cause control flow to transfer to a
2848different basic block in the current function. There are two forms of
2849this instruction, corresponding to a conditional branch and an
2850unconditional branch.
2851
2852Arguments:
2853""""""""""
2854
2855The conditional branch form of the '``br``' instruction takes a single
2856'``i1``' value and two '``label``' values. The unconditional form of the
2857'``br``' instruction takes a single '``label``' value as a target.
2858
2859Semantics:
2860""""""""""
2861
2862Upon execution of a conditional '``br``' instruction, the '``i1``'
2863argument is evaluated. If the value is ``true``, control flows to the
2864'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2865to the '``iffalse``' ``label`` argument.
2866
2867Example:
2868""""""""
2869
2870.. code-block:: llvm
2871
2872 Test:
2873 %cond = icmp eq i32 %a, %b
2874 br i1 %cond, label %IfEqual, label %IfUnequal
2875 IfEqual:
2876 ret i32 1
2877 IfUnequal:
2878 ret i32 0
2879
2880.. _i_switch:
2881
2882'``switch``' Instruction
2883^^^^^^^^^^^^^^^^^^^^^^^^
2884
2885Syntax:
2886"""""""
2887
2888::
2889
2890 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2891
2892Overview:
2893"""""""""
2894
2895The '``switch``' instruction is used to transfer control flow to one of
2896several different places. It is a generalization of the '``br``'
2897instruction, allowing a branch to occur to one of many possible
2898destinations.
2899
2900Arguments:
2901""""""""""
2902
2903The '``switch``' instruction uses three parameters: an integer
2904comparison value '``value``', a default '``label``' destination, and an
2905array of pairs of comparison value constants and '``label``'s. The table
2906is not allowed to contain duplicate constant entries.
2907
2908Semantics:
2909""""""""""
2910
2911The ``switch`` instruction specifies a table of values and destinations.
2912When the '``switch``' instruction is executed, this table is searched
2913for the given value. If the value is found, control flow is transferred
2914to the corresponding destination; otherwise, control flow is transferred
2915to the default destination.
2916
2917Implementation:
2918"""""""""""""""
2919
2920Depending on properties of the target machine and the particular
2921``switch`` instruction, this instruction may be code generated in
2922different ways. For example, it could be generated as a series of
2923chained conditional branches or with a lookup table.
2924
2925Example:
2926""""""""
2927
2928.. code-block:: llvm
2929
2930 ; Emulate a conditional br instruction
2931 %Val = zext i1 %value to i32
2932 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2933
2934 ; Emulate an unconditional br instruction
2935 switch i32 0, label %dest [ ]
2936
2937 ; Implement a jump table:
2938 switch i32 %val, label %otherwise [ i32 0, label %onzero
2939 i32 1, label %onone
2940 i32 2, label %ontwo ]
2941
2942.. _i_indirectbr:
2943
2944'``indirectbr``' Instruction
2945^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2946
2947Syntax:
2948"""""""
2949
2950::
2951
2952 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2953
2954Overview:
2955"""""""""
2956
2957The '``indirectbr``' instruction implements an indirect branch to a
2958label within the current function, whose address is specified by
2959"``address``". Address must be derived from a
2960:ref:`blockaddress <blockaddress>` constant.
2961
2962Arguments:
2963""""""""""
2964
2965The '``address``' argument is the address of the label to jump to. The
2966rest of the arguments indicate the full set of possible destinations
2967that the address may point to. Blocks are allowed to occur multiple
2968times in the destination list, though this isn't particularly useful.
2969
2970This destination list is required so that dataflow analysis has an
2971accurate understanding of the CFG.
2972
2973Semantics:
2974""""""""""
2975
2976Control transfers to the block specified in the address argument. All
2977possible destination blocks must be listed in the label list, otherwise
2978this instruction has undefined behavior. This implies that jumps to
2979labels defined in other functions have undefined behavior as well.
2980
2981Implementation:
2982"""""""""""""""
2983
2984This is typically implemented with a jump through a register.
2985
2986Example:
2987""""""""
2988
2989.. code-block:: llvm
2990
2991 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
2992
2993.. _i_invoke:
2994
2995'``invoke``' Instruction
2996^^^^^^^^^^^^^^^^^^^^^^^^
2997
2998Syntax:
2999"""""""
3000
3001::
3002
3003 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3004 to label <normal label> unwind label <exception label>
3005
3006Overview:
3007"""""""""
3008
3009The '``invoke``' instruction causes control to transfer to a specified
3010function, with the possibility of control flow transfer to either the
3011'``normal``' label or the '``exception``' label. If the callee function
3012returns with the "``ret``" instruction, control flow will return to the
3013"normal" label. If the callee (or any indirect callees) returns via the
3014":ref:`resume <i_resume>`" instruction or other exception handling
3015mechanism, control is interrupted and continued at the dynamically
3016nearest "exception" label.
3017
3018The '``exception``' label is a `landing
3019pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3020'``exception``' label is required to have the
3021":ref:`landingpad <i_landingpad>`" instruction, which contains the
3022information about the behavior of the program after unwinding happens,
3023as its first non-PHI instruction. The restrictions on the
3024"``landingpad``" instruction's tightly couples it to the "``invoke``"
3025instruction, so that the important information contained within the
3026"``landingpad``" instruction can't be lost through normal code motion.
3027
3028Arguments:
3029""""""""""
3030
3031This instruction requires several arguments:
3032
3033#. The optional "cconv" marker indicates which :ref:`calling
3034 convention <callingconv>` the call should use. If none is
3035 specified, the call defaults to using C calling conventions.
3036#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3037 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3038 are valid here.
3039#. '``ptr to function ty``': shall be the signature of the pointer to
3040 function value being invoked. In most cases, this is a direct
3041 function invocation, but indirect ``invoke``'s are just as possible,
3042 branching off an arbitrary pointer to function value.
3043#. '``function ptr val``': An LLVM value containing a pointer to a
3044 function to be invoked.
3045#. '``function args``': argument list whose types match the function
3046 signature argument types and parameter attributes. All arguments must
3047 be of :ref:`first class <t_firstclass>` type. If the function signature
3048 indicates the function accepts a variable number of arguments, the
3049 extra arguments can be specified.
3050#. '``normal label``': the label reached when the called function
3051 executes a '``ret``' instruction.
3052#. '``exception label``': the label reached when a callee returns via
3053 the :ref:`resume <i_resume>` instruction or other exception handling
3054 mechanism.
3055#. The optional :ref:`function attributes <fnattrs>` list. Only
3056 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3057 attributes are valid here.
3058
3059Semantics:
3060""""""""""
3061
3062This instruction is designed to operate as a standard '``call``'
3063instruction in most regards. The primary difference is that it
3064establishes an association with a label, which is used by the runtime
3065library to unwind the stack.
3066
3067This instruction is used in languages with destructors to ensure that
3068proper cleanup is performed in the case of either a ``longjmp`` or a
3069thrown exception. Additionally, this is important for implementation of
3070'``catch``' clauses in high-level languages that support them.
3071
3072For the purposes of the SSA form, the definition of the value returned
3073by the '``invoke``' instruction is deemed to occur on the edge from the
3074current block to the "normal" label. If the callee unwinds then no
3075return value is available.
3076
3077Example:
3078""""""""
3079
3080.. code-block:: llvm
3081
3082 %retval = invoke i32 @Test(i32 15) to label %Continue
3083 unwind label %TestCleanup ; {i32}:retval set
3084 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3085 unwind label %TestCleanup ; {i32}:retval set
3086
3087.. _i_resume:
3088
3089'``resume``' Instruction
3090^^^^^^^^^^^^^^^^^^^^^^^^
3091
3092Syntax:
3093"""""""
3094
3095::
3096
3097 resume <type> <value>
3098
3099Overview:
3100"""""""""
3101
3102The '``resume``' instruction is a terminator instruction that has no
3103successors.
3104
3105Arguments:
3106""""""""""
3107
3108The '``resume``' instruction requires one argument, which must have the
3109same type as the result of any '``landingpad``' instruction in the same
3110function.
3111
3112Semantics:
3113""""""""""
3114
3115The '``resume``' instruction resumes propagation of an existing
3116(in-flight) exception whose unwinding was interrupted with a
3117:ref:`landingpad <i_landingpad>` instruction.
3118
3119Example:
3120""""""""
3121
3122.. code-block:: llvm
3123
3124 resume { i8*, i32 } %exn
3125
3126.. _i_unreachable:
3127
3128'``unreachable``' Instruction
3129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3130
3131Syntax:
3132"""""""
3133
3134::
3135
3136 unreachable
3137
3138Overview:
3139"""""""""
3140
3141The '``unreachable``' instruction has no defined semantics. This
3142instruction is used to inform the optimizer that a particular portion of
3143the code is not reachable. This can be used to indicate that the code
3144after a no-return function cannot be reached, and other facts.
3145
3146Semantics:
3147""""""""""
3148
3149The '``unreachable``' instruction has no defined semantics.
3150
3151.. _binaryops:
3152
3153Binary Operations
3154-----------------
3155
3156Binary operators are used to do most of the computation in a program.
3157They require two operands of the same type, execute an operation on
3158them, and produce a single value. The operands might represent multiple
3159data, as is the case with the :ref:`vector <t_vector>` data type. The
3160result value has the same type as its operands.
3161
3162There are several different binary operators:
3163
3164.. _i_add:
3165
3166'``add``' Instruction
3167^^^^^^^^^^^^^^^^^^^^^
3168
3169Syntax:
3170"""""""
3171
3172::
3173
3174 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3175 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3176 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3177 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3178
3179Overview:
3180"""""""""
3181
3182The '``add``' instruction returns the sum of its two operands.
3183
3184Arguments:
3185""""""""""
3186
3187The two arguments to the '``add``' instruction must be
3188:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3189arguments must have identical types.
3190
3191Semantics:
3192""""""""""
3193
3194The value produced is the integer sum of the two operands.
3195
3196If the sum has unsigned overflow, the result returned is the
3197mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3198the result.
3199
3200Because LLVM integers use a two's complement representation, this
3201instruction is appropriate for both signed and unsigned integers.
3202
3203``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3204respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3205result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3206unsigned and/or signed overflow, respectively, occurs.
3207
3208Example:
3209""""""""
3210
3211.. code-block:: llvm
3212
3213 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3214
3215.. _i_fadd:
3216
3217'``fadd``' Instruction
3218^^^^^^^^^^^^^^^^^^^^^^
3219
3220Syntax:
3221"""""""
3222
3223::
3224
3225 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3226
3227Overview:
3228"""""""""
3229
3230The '``fadd``' instruction returns the sum of its two operands.
3231
3232Arguments:
3233""""""""""
3234
3235The two arguments to the '``fadd``' instruction must be :ref:`floating
3236point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3237Both arguments must have identical types.
3238
3239Semantics:
3240""""""""""
3241
3242The value produced is the floating point sum of the two operands. This
3243instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3244which are optimization hints to enable otherwise unsafe floating point
3245optimizations:
3246
3247Example:
3248""""""""
3249
3250.. code-block:: llvm
3251
3252 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3253
3254'``sub``' Instruction
3255^^^^^^^^^^^^^^^^^^^^^
3256
3257Syntax:
3258"""""""
3259
3260::
3261
3262 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3263 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3264 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3265 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3266
3267Overview:
3268"""""""""
3269
3270The '``sub``' instruction returns the difference of its two operands.
3271
3272Note that the '``sub``' instruction is used to represent the '``neg``'
3273instruction present in most other intermediate representations.
3274
3275Arguments:
3276""""""""""
3277
3278The two arguments to the '``sub``' instruction must be
3279:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3280arguments must have identical types.
3281
3282Semantics:
3283""""""""""
3284
3285The value produced is the integer difference of the two operands.
3286
3287If the difference has unsigned overflow, the result returned is the
3288mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3289the result.
3290
3291Because LLVM integers use a two's complement representation, this
3292instruction is appropriate for both signed and unsigned integers.
3293
3294``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3295respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3296result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3297unsigned and/or signed overflow, respectively, occurs.
3298
3299Example:
3300""""""""
3301
3302.. code-block:: llvm
3303
3304 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3305 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3306
3307.. _i_fsub:
3308
3309'``fsub``' Instruction
3310^^^^^^^^^^^^^^^^^^^^^^
3311
3312Syntax:
3313"""""""
3314
3315::
3316
3317 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3318
3319Overview:
3320"""""""""
3321
3322The '``fsub``' instruction returns the difference of its two operands.
3323
3324Note that the '``fsub``' instruction is used to represent the '``fneg``'
3325instruction present in most other intermediate representations.
3326
3327Arguments:
3328""""""""""
3329
3330The two arguments to the '``fsub``' instruction must be :ref:`floating
3331point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3332Both arguments must have identical types.
3333
3334Semantics:
3335""""""""""
3336
3337The value produced is the floating point difference of the two operands.
3338This instruction can also take any number of :ref:`fast-math
3339flags <fastmath>`, which are optimization hints to enable otherwise
3340unsafe floating point optimizations:
3341
3342Example:
3343""""""""
3344
3345.. code-block:: llvm
3346
3347 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3348 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3349
3350'``mul``' Instruction
3351^^^^^^^^^^^^^^^^^^^^^
3352
3353Syntax:
3354"""""""
3355
3356::
3357
3358 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3359 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3360 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3361 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3362
3363Overview:
3364"""""""""
3365
3366The '``mul``' instruction returns the product of its two operands.
3367
3368Arguments:
3369""""""""""
3370
3371The two arguments to the '``mul``' instruction must be
3372:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3373arguments must have identical types.
3374
3375Semantics:
3376""""""""""
3377
3378The value produced is the integer product of the two operands.
3379
3380If the result of the multiplication has unsigned overflow, the result
3381returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3382bit width of the result.
3383
3384Because LLVM integers use a two's complement representation, and the
3385result is the same width as the operands, this instruction returns the
3386correct result for both signed and unsigned integers. If a full product
3387(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3388sign-extended or zero-extended as appropriate to the width of the full
3389product.
3390
3391``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3392respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3393result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3394unsigned and/or signed overflow, respectively, occurs.
3395
3396Example:
3397""""""""
3398
3399.. code-block:: llvm
3400
3401 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3402
3403.. _i_fmul:
3404
3405'``fmul``' Instruction
3406^^^^^^^^^^^^^^^^^^^^^^
3407
3408Syntax:
3409"""""""
3410
3411::
3412
3413 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3414
3415Overview:
3416"""""""""
3417
3418The '``fmul``' instruction returns the product of its two operands.
3419
3420Arguments:
3421""""""""""
3422
3423The two arguments to the '``fmul``' instruction must be :ref:`floating
3424point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3425Both arguments must have identical types.
3426
3427Semantics:
3428""""""""""
3429
3430The value produced is the floating point product of the two operands.
3431This instruction can also take any number of :ref:`fast-math
3432flags <fastmath>`, which are optimization hints to enable otherwise
3433unsafe floating point optimizations:
3434
3435Example:
3436""""""""
3437
3438.. code-block:: llvm
3439
3440 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3441
3442'``udiv``' Instruction
3443^^^^^^^^^^^^^^^^^^^^^^
3444
3445Syntax:
3446"""""""
3447
3448::
3449
3450 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3451 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3452
3453Overview:
3454"""""""""
3455
3456The '``udiv``' instruction returns the quotient of its two operands.
3457
3458Arguments:
3459""""""""""
3460
3461The two arguments to the '``udiv``' instruction must be
3462:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3463arguments must have identical types.
3464
3465Semantics:
3466""""""""""
3467
3468The value produced is the unsigned integer quotient of the two operands.
3469
3470Note that unsigned integer division and signed integer division are
3471distinct operations; for signed integer division, use '``sdiv``'.
3472
3473Division by zero leads to undefined behavior.
3474
3475If the ``exact`` keyword is present, the result value of the ``udiv`` is
3476a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3477such, "((a udiv exact b) mul b) == a").
3478
3479Example:
3480""""""""
3481
3482.. code-block:: llvm
3483
3484 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3485
3486'``sdiv``' Instruction
3487^^^^^^^^^^^^^^^^^^^^^^
3488
3489Syntax:
3490"""""""
3491
3492::
3493
3494 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3495 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3496
3497Overview:
3498"""""""""
3499
3500The '``sdiv``' instruction returns the quotient of its two operands.
3501
3502Arguments:
3503""""""""""
3504
3505The two arguments to the '``sdiv``' instruction must be
3506:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3507arguments must have identical types.
3508
3509Semantics:
3510""""""""""
3511
3512The value produced is the signed integer quotient of the two operands
3513rounded towards zero.
3514
3515Note that signed integer division and unsigned integer division are
3516distinct operations; for unsigned integer division, use '``udiv``'.
3517
3518Division by zero leads to undefined behavior. Overflow also leads to
3519undefined behavior; this is a rare case, but can occur, for example, by
3520doing a 32-bit division of -2147483648 by -1.
3521
3522If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3523a :ref:`poison value <poisonvalues>` if the result would be rounded.
3524
3525Example:
3526""""""""
3527
3528.. code-block:: llvm
3529
3530 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3531
3532.. _i_fdiv:
3533
3534'``fdiv``' Instruction
3535^^^^^^^^^^^^^^^^^^^^^^
3536
3537Syntax:
3538"""""""
3539
3540::
3541
3542 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3543
3544Overview:
3545"""""""""
3546
3547The '``fdiv``' instruction returns the quotient of its two operands.
3548
3549Arguments:
3550""""""""""
3551
3552The two arguments to the '``fdiv``' instruction must be :ref:`floating
3553point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3554Both arguments must have identical types.
3555
3556Semantics:
3557""""""""""
3558
3559The value produced is the floating point quotient of the two operands.
3560This instruction can also take any number of :ref:`fast-math
3561flags <fastmath>`, which are optimization hints to enable otherwise
3562unsafe floating point optimizations:
3563
3564Example:
3565""""""""
3566
3567.. code-block:: llvm
3568
3569 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3570
3571'``urem``' Instruction
3572^^^^^^^^^^^^^^^^^^^^^^
3573
3574Syntax:
3575"""""""
3576
3577::
3578
3579 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3580
3581Overview:
3582"""""""""
3583
3584The '``urem``' instruction returns the remainder from the unsigned
3585division of its two arguments.
3586
3587Arguments:
3588""""""""""
3589
3590The two arguments to the '``urem``' instruction must be
3591:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3592arguments must have identical types.
3593
3594Semantics:
3595""""""""""
3596
3597This instruction returns the unsigned integer *remainder* of a division.
3598This instruction always performs an unsigned division to get the
3599remainder.
3600
3601Note that unsigned integer remainder and signed integer remainder are
3602distinct operations; for signed integer remainder, use '``srem``'.
3603
3604Taking the remainder of a division by zero leads to undefined behavior.
3605
3606Example:
3607""""""""
3608
3609.. code-block:: llvm
3610
3611 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3612
3613'``srem``' Instruction
3614^^^^^^^^^^^^^^^^^^^^^^
3615
3616Syntax:
3617"""""""
3618
3619::
3620
3621 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3622
3623Overview:
3624"""""""""
3625
3626The '``srem``' instruction returns the remainder from the signed
3627division of its two operands. This instruction can also take
3628:ref:`vector <t_vector>` versions of the values in which case the elements
3629must be integers.
3630
3631Arguments:
3632""""""""""
3633
3634The two arguments to the '``srem``' instruction must be
3635:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3636arguments must have identical types.
3637
3638Semantics:
3639""""""""""
3640
3641This instruction returns the *remainder* of a division (where the result
3642is either zero or has the same sign as the dividend, ``op1``), not the
3643*modulo* operator (where the result is either zero or has the same sign
3644as the divisor, ``op2``) of a value. For more information about the
3645difference, see `The Math
3646Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3647table of how this is implemented in various languages, please see
3648`Wikipedia: modulo
3649operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3650
3651Note that signed integer remainder and unsigned integer remainder are
3652distinct operations; for unsigned integer remainder, use '``urem``'.
3653
3654Taking the remainder of a division by zero leads to undefined behavior.
3655Overflow also leads to undefined behavior; this is a rare case, but can
3656occur, for example, by taking the remainder of a 32-bit division of
3657-2147483648 by -1. (The remainder doesn't actually overflow, but this
3658rule lets srem be implemented using instructions that return both the
3659result of the division and the remainder.)
3660
3661Example:
3662""""""""
3663
3664.. code-block:: llvm
3665
3666 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3667
3668.. _i_frem:
3669
3670'``frem``' Instruction
3671^^^^^^^^^^^^^^^^^^^^^^
3672
3673Syntax:
3674"""""""
3675
3676::
3677
3678 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3679
3680Overview:
3681"""""""""
3682
3683The '``frem``' instruction returns the remainder from the division of
3684its two operands.
3685
3686Arguments:
3687""""""""""
3688
3689The two arguments to the '``frem``' instruction must be :ref:`floating
3690point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3691Both arguments must have identical types.
3692
3693Semantics:
3694""""""""""
3695
3696This instruction returns the *remainder* of a division. The remainder
3697has the same sign as the dividend. This instruction can also take any
3698number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3699to enable otherwise unsafe floating point optimizations:
3700
3701Example:
3702""""""""
3703
3704.. code-block:: llvm
3705
3706 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3707
3708.. _bitwiseops:
3709
3710Bitwise Binary Operations
3711-------------------------
3712
3713Bitwise binary operators are used to do various forms of bit-twiddling
3714in a program. They are generally very efficient instructions and can
3715commonly be strength reduced from other instructions. They require two
3716operands of the same type, execute an operation on them, and produce a
3717single value. The resulting value is the same type as its operands.
3718
3719'``shl``' Instruction
3720^^^^^^^^^^^^^^^^^^^^^
3721
3722Syntax:
3723"""""""
3724
3725::
3726
3727 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3728 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3729 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3730 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3731
3732Overview:
3733"""""""""
3734
3735The '``shl``' instruction returns the first operand shifted to the left
3736a specified number of bits.
3737
3738Arguments:
3739""""""""""
3740
3741Both arguments to the '``shl``' instruction must be the same
3742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3743'``op2``' is treated as an unsigned value.
3744
3745Semantics:
3746""""""""""
3747
3748The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3749where ``n`` is the width of the result. If ``op2`` is (statically or
3750dynamically) negative or equal to or larger than the number of bits in
3751``op1``, the result is undefined. If the arguments are vectors, each
3752vector element of ``op1`` is shifted by the corresponding shift amount
3753in ``op2``.
3754
3755If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3756value <poisonvalues>` if it shifts out any non-zero bits. If the
3757``nsw`` keyword is present, then the shift produces a :ref:`poison
3758value <poisonvalues>` if it shifts out any bits that disagree with the
3759resultant sign bit. As such, NUW/NSW have the same semantics as they
3760would if the shift were expressed as a mul instruction with the same
3761nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3762
3763Example:
3764""""""""
3765
3766.. code-block:: llvm
3767
3768 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3769 <result> = shl i32 4, 2 ; yields {i32}: 16
3770 <result> = shl i32 1, 10 ; yields {i32}: 1024
3771 <result> = shl i32 1, 32 ; undefined
3772 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3773
3774'``lshr``' Instruction
3775^^^^^^^^^^^^^^^^^^^^^^
3776
3777Syntax:
3778"""""""
3779
3780::
3781
3782 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3783 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3784
3785Overview:
3786"""""""""
3787
3788The '``lshr``' instruction (logical shift right) returns the first
3789operand shifted to the right a specified number of bits with zero fill.
3790
3791Arguments:
3792""""""""""
3793
3794Both arguments to the '``lshr``' instruction must be the same
3795:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3796'``op2``' is treated as an unsigned value.
3797
3798Semantics:
3799""""""""""
3800
3801This instruction always performs a logical shift right operation. The
3802most significant bits of the result will be filled with zero bits after
3803the shift. If ``op2`` is (statically or dynamically) equal to or larger
3804than the number of bits in ``op1``, the result is undefined. If the
3805arguments are vectors, each vector element of ``op1`` is shifted by the
3806corresponding shift amount in ``op2``.
3807
3808If the ``exact`` keyword is present, the result value of the ``lshr`` is
3809a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3810non-zero.
3811
3812Example:
3813""""""""
3814
3815.. code-block:: llvm
3816
3817 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3818 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3819 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3820 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3821 <result> = lshr i32 1, 32 ; undefined
3822 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3823
3824'``ashr``' Instruction
3825^^^^^^^^^^^^^^^^^^^^^^
3826
3827Syntax:
3828"""""""
3829
3830::
3831
3832 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3833 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3834
3835Overview:
3836"""""""""
3837
3838The '``ashr``' instruction (arithmetic shift right) returns the first
3839operand shifted to the right a specified number of bits with sign
3840extension.
3841
3842Arguments:
3843""""""""""
3844
3845Both arguments to the '``ashr``' instruction must be the same
3846:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3847'``op2``' is treated as an unsigned value.
3848
3849Semantics:
3850""""""""""
3851
3852This instruction always performs an arithmetic shift right operation,
3853The most significant bits of the result will be filled with the sign bit
3854of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3855than the number of bits in ``op1``, the result is undefined. If the
3856arguments are vectors, each vector element of ``op1`` is shifted by the
3857corresponding shift amount in ``op2``.
3858
3859If the ``exact`` keyword is present, the result value of the ``ashr`` is
3860a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3861non-zero.
3862
3863Example:
3864""""""""
3865
3866.. code-block:: llvm
3867
3868 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3869 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3870 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3871 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3872 <result> = ashr i32 1, 32 ; undefined
3873 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3874
3875'``and``' Instruction
3876^^^^^^^^^^^^^^^^^^^^^
3877
3878Syntax:
3879"""""""
3880
3881::
3882
3883 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3884
3885Overview:
3886"""""""""
3887
3888The '``and``' instruction returns the bitwise logical and of its two
3889operands.
3890
3891Arguments:
3892""""""""""
3893
3894The two arguments to the '``and``' instruction must be
3895:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3896arguments must have identical types.
3897
3898Semantics:
3899""""""""""
3900
3901The truth table used for the '``and``' instruction is:
3902
3903+-----+-----+-----+
3904| In0 | In1 | Out |
3905+-----+-----+-----+
3906| 0 | 0 | 0 |
3907+-----+-----+-----+
3908| 0 | 1 | 0 |
3909+-----+-----+-----+
3910| 1 | 0 | 0 |
3911+-----+-----+-----+
3912| 1 | 1 | 1 |
3913+-----+-----+-----+
3914
3915Example:
3916""""""""
3917
3918.. code-block:: llvm
3919
3920 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3921 <result> = and i32 15, 40 ; yields {i32}:result = 8
3922 <result> = and i32 4, 8 ; yields {i32}:result = 0
3923
3924'``or``' Instruction
3925^^^^^^^^^^^^^^^^^^^^
3926
3927Syntax:
3928"""""""
3929
3930::
3931
3932 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3933
3934Overview:
3935"""""""""
3936
3937The '``or``' instruction returns the bitwise logical inclusive or of its
3938two operands.
3939
3940Arguments:
3941""""""""""
3942
3943The two arguments to the '``or``' instruction must be
3944:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3945arguments must have identical types.
3946
3947Semantics:
3948""""""""""
3949
3950The truth table used for the '``or``' instruction is:
3951
3952+-----+-----+-----+
3953| In0 | In1 | Out |
3954+-----+-----+-----+
3955| 0 | 0 | 0 |
3956+-----+-----+-----+
3957| 0 | 1 | 1 |
3958+-----+-----+-----+
3959| 1 | 0 | 1 |
3960+-----+-----+-----+
3961| 1 | 1 | 1 |
3962+-----+-----+-----+
3963
3964Example:
3965""""""""
3966
3967::
3968
3969 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3970 <result> = or i32 15, 40 ; yields {i32}:result = 47
3971 <result> = or i32 4, 8 ; yields {i32}:result = 12
3972
3973'``xor``' Instruction
3974^^^^^^^^^^^^^^^^^^^^^
3975
3976Syntax:
3977"""""""
3978
3979::
3980
3981 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
3982
3983Overview:
3984"""""""""
3985
3986The '``xor``' instruction returns the bitwise logical exclusive or of
3987its two operands. The ``xor`` is used to implement the "one's
3988complement" operation, which is the "~" operator in C.
3989
3990Arguments:
3991""""""""""
3992
3993The two arguments to the '``xor``' instruction must be
3994:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3995arguments must have identical types.
3996
3997Semantics:
3998""""""""""
3999
4000The truth table used for the '``xor``' instruction is:
4001
4002+-----+-----+-----+
4003| In0 | In1 | Out |
4004+-----+-----+-----+
4005| 0 | 0 | 0 |
4006+-----+-----+-----+
4007| 0 | 1 | 1 |
4008+-----+-----+-----+
4009| 1 | 0 | 1 |
4010+-----+-----+-----+
4011| 1 | 1 | 0 |
4012+-----+-----+-----+
4013
4014Example:
4015""""""""
4016
4017.. code-block:: llvm
4018
4019 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4020 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4021 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4022 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4023
4024Vector Operations
4025-----------------
4026
4027LLVM supports several instructions to represent vector operations in a
4028target-independent manner. These instructions cover the element-access
4029and vector-specific operations needed to process vectors effectively.
4030While LLVM does directly support these vector operations, many
4031sophisticated algorithms will want to use target-specific intrinsics to
4032take full advantage of a specific target.
4033
4034.. _i_extractelement:
4035
4036'``extractelement``' Instruction
4037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4038
4039Syntax:
4040"""""""
4041
4042::
4043
4044 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4045
4046Overview:
4047"""""""""
4048
4049The '``extractelement``' instruction extracts a single scalar element
4050from a vector at a specified index.
4051
4052Arguments:
4053""""""""""
4054
4055The first operand of an '``extractelement``' instruction is a value of
4056:ref:`vector <t_vector>` type. The second operand is an index indicating
4057the position from which to extract the element. The index may be a
4058variable.
4059
4060Semantics:
4061""""""""""
4062
4063The result is a scalar of the same type as the element type of ``val``.
4064Its value is the value at position ``idx`` of ``val``. If ``idx``
4065exceeds the length of ``val``, the results are undefined.
4066
4067Example:
4068""""""""
4069
4070.. code-block:: llvm
4071
4072 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4073
4074.. _i_insertelement:
4075
4076'``insertelement``' Instruction
4077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4078
4079Syntax:
4080"""""""
4081
4082::
4083
4084 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4085
4086Overview:
4087"""""""""
4088
4089The '``insertelement``' instruction inserts a scalar element into a
4090vector at a specified index.
4091
4092Arguments:
4093""""""""""
4094
4095The first operand of an '``insertelement``' instruction is a value of
4096:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4097type must equal the element type of the first operand. The third operand
4098is an index indicating the position at which to insert the value. The
4099index may be a variable.
4100
4101Semantics:
4102""""""""""
4103
4104The result is a vector of the same type as ``val``. Its element values
4105are those of ``val`` except at position ``idx``, where it gets the value
4106``elt``. If ``idx`` exceeds the length of ``val``, the results are
4107undefined.
4108
4109Example:
4110""""""""
4111
4112.. code-block:: llvm
4113
4114 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4115
4116.. _i_shufflevector:
4117
4118'``shufflevector``' Instruction
4119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4120
4121Syntax:
4122"""""""
4123
4124::
4125
4126 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4127
4128Overview:
4129"""""""""
4130
4131The '``shufflevector``' instruction constructs a permutation of elements
4132from two input vectors, returning a vector with the same element type as
4133the input and length that is the same as the shuffle mask.
4134
4135Arguments:
4136""""""""""
4137
4138The first two operands of a '``shufflevector``' instruction are vectors
4139with the same type. The third argument is a shuffle mask whose element
4140type is always 'i32'. The result of the instruction is a vector whose
4141length is the same as the shuffle mask and whose element type is the
4142same as the element type of the first two operands.
4143
4144The shuffle mask operand is required to be a constant vector with either
4145constant integer or undef values.
4146
4147Semantics:
4148""""""""""
4149
4150The elements of the two input vectors are numbered from left to right
4151across both of the vectors. The shuffle mask operand specifies, for each
4152element of the result vector, which element of the two input vectors the
4153result element gets. The element selector may be undef (meaning "don't
4154care") and the second operand may be undef if performing a shuffle from
4155only one vector.
4156
4157Example:
4158""""""""
4159
4160.. code-block:: llvm
4161
4162 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4163 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4164 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4165 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4166 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4167 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4168 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4169 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4170
4171Aggregate Operations
4172--------------------
4173
4174LLVM supports several instructions for working with
4175:ref:`aggregate <t_aggregate>` values.
4176
4177.. _i_extractvalue:
4178
4179'``extractvalue``' Instruction
4180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4181
4182Syntax:
4183"""""""
4184
4185::
4186
4187 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4188
4189Overview:
4190"""""""""
4191
4192The '``extractvalue``' instruction extracts the value of a member field
4193from an :ref:`aggregate <t_aggregate>` value.
4194
4195Arguments:
4196""""""""""
4197
4198The first operand of an '``extractvalue``' instruction is a value of
4199:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4200constant indices to specify which value to extract in a similar manner
4201as indices in a '``getelementptr``' instruction.
4202
4203The major differences to ``getelementptr`` indexing are:
4204
4205- Since the value being indexed is not a pointer, the first index is
4206 omitted and assumed to be zero.
4207- At least one index must be specified.
4208- Not only struct indices but also array indices must be in bounds.
4209
4210Semantics:
4211""""""""""
4212
4213The result is the value at the position in the aggregate specified by
4214the index operands.
4215
4216Example:
4217""""""""
4218
4219.. code-block:: llvm
4220
4221 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4222
4223.. _i_insertvalue:
4224
4225'``insertvalue``' Instruction
4226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4227
4228Syntax:
4229"""""""
4230
4231::
4232
4233 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4234
4235Overview:
4236"""""""""
4237
4238The '``insertvalue``' instruction inserts a value into a member field in
4239an :ref:`aggregate <t_aggregate>` value.
4240
4241Arguments:
4242""""""""""
4243
4244The first operand of an '``insertvalue``' instruction is a value of
4245:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4246a first-class value to insert. The following operands are constant
4247indices indicating the position at which to insert the value in a
4248similar manner as indices in a '``extractvalue``' instruction. The value
4249to insert must have the same type as the value identified by the
4250indices.
4251
4252Semantics:
4253""""""""""
4254
4255The result is an aggregate of the same type as ``val``. Its value is
4256that of ``val`` except that the value at the position specified by the
4257indices is that of ``elt``.
4258
4259Example:
4260""""""""
4261
4262.. code-block:: llvm
4263
4264 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4265 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4266 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4267
4268.. _memoryops:
4269
4270Memory Access and Addressing Operations
4271---------------------------------------
4272
4273A key design point of an SSA-based representation is how it represents
4274memory. In LLVM, no memory locations are in SSA form, which makes things
4275very simple. This section describes how to read, write, and allocate
4276memory in LLVM.
4277
4278.. _i_alloca:
4279
4280'``alloca``' Instruction
4281^^^^^^^^^^^^^^^^^^^^^^^^
4282
4283Syntax:
4284"""""""
4285
4286::
4287
4288 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4289
4290Overview:
4291"""""""""
4292
4293The '``alloca``' instruction allocates memory on the stack frame of the
4294currently executing function, to be automatically released when this
4295function returns to its caller. The object is always allocated in the
4296generic address space (address space zero).
4297
4298Arguments:
4299""""""""""
4300
4301The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4302bytes of memory on the runtime stack, returning a pointer of the
4303appropriate type to the program. If "NumElements" is specified, it is
4304the number of elements allocated, otherwise "NumElements" is defaulted
4305to be one. If a constant alignment is specified, the value result of the
4306allocation is guaranteed to be aligned to at least that boundary. If not
4307specified, or if zero, the target can choose to align the allocation on
4308any convenient boundary compatible with the type.
4309
4310'``type``' may be any sized type.
4311
4312Semantics:
4313""""""""""
4314
4315Memory is allocated; a pointer is returned. The operation is undefined
4316if there is insufficient stack space for the allocation. '``alloca``'d
4317memory is automatically released when the function returns. The
4318'``alloca``' instruction is commonly used to represent automatic
4319variables that must have an address available. When the function returns
4320(either with the ``ret`` or ``resume`` instructions), the memory is
4321reclaimed. Allocating zero bytes is legal, but the result is undefined.
4322The order in which memory is allocated (ie., which way the stack grows)
4323is not specified.
4324
4325Example:
4326""""""""
4327
4328.. code-block:: llvm
4329
4330 %ptr = alloca i32 ; yields {i32*}:ptr
4331 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4332 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4333 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4334
4335.. _i_load:
4336
4337'``load``' Instruction
4338^^^^^^^^^^^^^^^^^^^^^^
4339
4340Syntax:
4341"""""""
4342
4343::
4344
4345 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4346 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4347 !<index> = !{ i32 1 }
4348
4349Overview:
4350"""""""""
4351
4352The '``load``' instruction is used to read from memory.
4353
4354Arguments:
4355""""""""""
4356
4357The argument to the '``load``' instruction specifies the memory address
4358from which to load. The pointer must point to a :ref:`first
4359class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4360then the optimizer is not allowed to modify the number or order of
4361execution of this ``load`` with other :ref:`volatile
4362operations <volatile>`.
4363
4364If the ``load`` is marked as ``atomic``, it takes an extra
4365:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4366``release`` and ``acq_rel`` orderings are not valid on ``load``
4367instructions. Atomic loads produce :ref:`defined <memmodel>` results
4368when they may see multiple atomic stores. The type of the pointee must
4369be an integer type whose bit width is a power of two greater than or
4370equal to eight and less than or equal to a target-specific size limit.
4371``align`` must be explicitly specified on atomic loads, and the load has
4372undefined behavior if the alignment is not set to a value which is at
4373least the size in bytes of the pointee. ``!nontemporal`` does not have
4374any defined semantics for atomic loads.
4375
4376The optional constant ``align`` argument specifies the alignment of the
4377operation (that is, the alignment of the memory address). A value of 0
4378or an omitted ``align`` argument means that the operation has the abi
4379alignment for the target. It is the responsibility of the code emitter
4380to ensure that the alignment information is correct. Overestimating the
4381alignment results in undefined behavior. Underestimating the alignment
4382may produce less efficient code. An alignment of 1 is always safe.
4383
4384The optional ``!nontemporal`` metadata must reference a single
4385metatadata name <index> corresponding to a metadata node with one
4386``i32`` entry of value 1. The existence of the ``!nontemporal``
4387metatadata on the instruction tells the optimizer and code generator
4388that this load is not expected to be reused in the cache. The code
4389generator may select special instructions to save cache bandwidth, such
4390as the ``MOVNT`` instruction on x86.
4391
4392The optional ``!invariant.load`` metadata must reference a single
4393metatadata name <index> corresponding to a metadata node with no
4394entries. The existence of the ``!invariant.load`` metatadata on the
4395instruction tells the optimizer and code generator that this load
4396address points to memory which does not change value during program
4397execution. The optimizer may then move this load around, for example, by
4398hoisting it out of loops using loop invariant code motion.
4399
4400Semantics:
4401""""""""""
4402
4403The location of memory pointed to is loaded. If the value being loaded
4404is of scalar type then the number of bytes read does not exceed the
4405minimum number of bytes needed to hold all bits of the type. For
4406example, loading an ``i24`` reads at most three bytes. When loading a
4407value of a type like ``i20`` with a size that is not an integral number
4408of bytes, the result is undefined if the value was not originally
4409written using a store of the same type.
4410
4411Examples:
4412"""""""""
4413
4414.. code-block:: llvm
4415
4416 %ptr = alloca i32 ; yields {i32*}:ptr
4417 store i32 3, i32* %ptr ; yields {void}
4418 %val = load i32* %ptr ; yields {i32}:val = i32 3
4419
4420.. _i_store:
4421
4422'``store``' Instruction
4423^^^^^^^^^^^^^^^^^^^^^^^
4424
4425Syntax:
4426"""""""
4427
4428::
4429
4430 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4431 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4432
4433Overview:
4434"""""""""
4435
4436The '``store``' instruction is used to write to memory.
4437
4438Arguments:
4439""""""""""
4440
4441There are two arguments to the '``store``' instruction: a value to store
4442and an address at which to store it. The type of the '``<pointer>``'
4443operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4444the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4445then the optimizer is not allowed to modify the number or order of
4446execution of this ``store`` with other :ref:`volatile
4447operations <volatile>`.
4448
4449If the ``store`` is marked as ``atomic``, it takes an extra
4450:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4451``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4452instructions. Atomic loads produce :ref:`defined <memmodel>` results
4453when they may see multiple atomic stores. The type of the pointee must
4454be an integer type whose bit width is a power of two greater than or
4455equal to eight and less than or equal to a target-specific size limit.
4456``align`` must be explicitly specified on atomic stores, and the store
4457has undefined behavior if the alignment is not set to a value which is
4458at least the size in bytes of the pointee. ``!nontemporal`` does not
4459have any defined semantics for atomic stores.
4460
4461The optional constant "align" argument specifies the alignment of the
4462operation (that is, the alignment of the memory address). A value of 0
4463or an omitted "align" argument means that the operation has the abi
4464alignment for the target. It is the responsibility of the code emitter
4465to ensure that the alignment information is correct. Overestimating the
4466alignment results in an undefined behavior. Underestimating the
4467alignment may produce less efficient code. An alignment of 1 is always
4468safe.
4469
4470The optional !nontemporal metadata must reference a single metatadata
4471name <index> corresponding to a metadata node with one i32 entry of
4472value 1. The existence of the !nontemporal metatadata on the instruction
4473tells the optimizer and code generator that this load is not expected to
4474be reused in the cache. The code generator may select special
4475instructions to save cache bandwidth, such as the MOVNT instruction on
4476x86.
4477
4478Semantics:
4479""""""""""
4480
4481The contents of memory are updated to contain '``<value>``' at the
4482location specified by the '``<pointer>``' operand. If '``<value>``' is
4483of scalar type then the number of bytes written does not exceed the
4484minimum number of bytes needed to hold all bits of the type. For
4485example, storing an ``i24`` writes at most three bytes. When writing a
4486value of a type like ``i20`` with a size that is not an integral number
4487of bytes, it is unspecified what happens to the extra bits that do not
4488belong to the type, but they will typically be overwritten.
4489
4490Example:
4491""""""""
4492
4493.. code-block:: llvm
4494
4495 %ptr = alloca i32 ; yields {i32*}:ptr
4496 store i32 3, i32* %ptr ; yields {void}
4497 %val = load i32* %ptr ; yields {i32}:val = i32 3
4498
4499.. _i_fence:
4500
4501'``fence``' Instruction
4502^^^^^^^^^^^^^^^^^^^^^^^
4503
4504Syntax:
4505"""""""
4506
4507::
4508
4509 fence [singlethread] <ordering> ; yields {void}
4510
4511Overview:
4512"""""""""
4513
4514The '``fence``' instruction is used to introduce happens-before edges
4515between operations.
4516
4517Arguments:
4518""""""""""
4519
4520'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4521defines what *synchronizes-with* edges they add. They can only be given
4522``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4523
4524Semantics:
4525""""""""""
4526
4527A fence A which has (at least) ``release`` ordering semantics
4528*synchronizes with* a fence B with (at least) ``acquire`` ordering
4529semantics if and only if there exist atomic operations X and Y, both
4530operating on some atomic object M, such that A is sequenced before X, X
4531modifies M (either directly or through some side effect of a sequence
4532headed by X), Y is sequenced before B, and Y observes M. This provides a
4533*happens-before* dependency between A and B. Rather than an explicit
4534``fence``, one (but not both) of the atomic operations X or Y might
4535provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4536still *synchronize-with* the explicit ``fence`` and establish the
4537*happens-before* edge.
4538
4539A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4540``acquire`` and ``release`` semantics specified above, participates in
4541the global program order of other ``seq_cst`` operations and/or fences.
4542
4543The optional ":ref:`singlethread <singlethread>`" argument specifies
4544that the fence only synchronizes with other fences in the same thread.
4545(This is useful for interacting with signal handlers.)
4546
4547Example:
4548""""""""
4549
4550.. code-block:: llvm
4551
4552 fence acquire ; yields {void}
4553 fence singlethread seq_cst ; yields {void}
4554
4555.. _i_cmpxchg:
4556
4557'``cmpxchg``' Instruction
4558^^^^^^^^^^^^^^^^^^^^^^^^^
4559
4560Syntax:
4561"""""""
4562
4563::
4564
4565 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4566
4567Overview:
4568"""""""""
4569
4570The '``cmpxchg``' instruction is used to atomically modify memory. It
4571loads a value in memory and compares it to a given value. If they are
4572equal, it stores a new value into the memory.
4573
4574Arguments:
4575""""""""""
4576
4577There are three arguments to the '``cmpxchg``' instruction: an address
4578to operate on, a value to compare to the value currently be at that
4579address, and a new value to place at that address if the compared values
4580are equal. The type of '<cmp>' must be an integer type whose bit width
4581is a power of two greater than or equal to eight and less than or equal
4582to a target-specific size limit. '<cmp>' and '<new>' must have the same
4583type, and the type of '<pointer>' must be a pointer to that type. If the
4584``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4585to modify the number or order of execution of this ``cmpxchg`` with
4586other :ref:`volatile operations <volatile>`.
4587
4588The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4589synchronizes with other atomic operations.
4590
4591The optional "``singlethread``" argument declares that the ``cmpxchg``
4592is only atomic with respect to code (usually signal handlers) running in
4593the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4594respect to all other code in the system.
4595
4596The pointer passed into cmpxchg must have alignment greater than or
4597equal to the size in memory of the operand.
4598
4599Semantics:
4600""""""""""
4601
4602The contents of memory at the location specified by the '``<pointer>``'
4603operand is read and compared to '``<cmp>``'; if the read value is the
4604equal, '``<new>``' is written. The original value at the location is
4605returned.
4606
4607A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4608of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4609atomic load with an ordering parameter determined by dropping any
4610``release`` part of the ``cmpxchg``'s ordering.
4611
4612Example:
4613""""""""
4614
4615.. code-block:: llvm
4616
4617 entry:
4618 %orig = atomic load i32* %ptr unordered ; yields {i32}
4619 br label %loop
4620
4621 loop:
4622 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4623 %squared = mul i32 %cmp, %cmp
4624 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4625 %success = icmp eq i32 %cmp, %old
4626 br i1 %success, label %done, label %loop
4627
4628 done:
4629 ...
4630
4631.. _i_atomicrmw:
4632
4633'``atomicrmw``' Instruction
4634^^^^^^^^^^^^^^^^^^^^^^^^^^^
4635
4636Syntax:
4637"""""""
4638
4639::
4640
4641 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4642
4643Overview:
4644"""""""""
4645
4646The '``atomicrmw``' instruction is used to atomically modify memory.
4647
4648Arguments:
4649""""""""""
4650
4651There are three arguments to the '``atomicrmw``' instruction: an
4652operation to apply, an address whose value to modify, an argument to the
4653operation. The operation must be one of the following keywords:
4654
4655- xchg
4656- add
4657- sub
4658- and
4659- nand
4660- or
4661- xor
4662- max
4663- min
4664- umax
4665- umin
4666
4667The type of '<value>' must be an integer type whose bit width is a power
4668of two greater than or equal to eight and less than or equal to a
4669target-specific size limit. The type of the '``<pointer>``' operand must
4670be a pointer to that type. If the ``atomicrmw`` is marked as
4671``volatile``, then the optimizer is not allowed to modify the number or
4672order of execution of this ``atomicrmw`` with other :ref:`volatile
4673operations <volatile>`.
4674
4675Semantics:
4676""""""""""
4677
4678The contents of memory at the location specified by the '``<pointer>``'
4679operand are atomically read, modified, and written back. The original
4680value at the location is returned. The modification is specified by the
4681operation argument:
4682
4683- xchg: ``*ptr = val``
4684- add: ``*ptr = *ptr + val``
4685- sub: ``*ptr = *ptr - val``
4686- and: ``*ptr = *ptr & val``
4687- nand: ``*ptr = ~(*ptr & val)``
4688- or: ``*ptr = *ptr | val``
4689- xor: ``*ptr = *ptr ^ val``
4690- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4691- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4692- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4693 comparison)
4694- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4695 comparison)
4696
4697Example:
4698""""""""
4699
4700.. code-block:: llvm
4701
4702 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4703
4704.. _i_getelementptr:
4705
4706'``getelementptr``' Instruction
4707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4708
4709Syntax:
4710"""""""
4711
4712::
4713
4714 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4715 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4716 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4717
4718Overview:
4719"""""""""
4720
4721The '``getelementptr``' instruction is used to get the address of a
4722subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4723address calculation only and does not access memory.
4724
4725Arguments:
4726""""""""""
4727
4728The first argument is always a pointer or a vector of pointers, and
4729forms the basis of the calculation. The remaining arguments are indices
4730that indicate which of the elements of the aggregate object are indexed.
4731The interpretation of each index is dependent on the type being indexed
4732into. The first index always indexes the pointer value given as the
4733first argument, the second index indexes a value of the type pointed to
4734(not necessarily the value directly pointed to, since the first index
4735can be non-zero), etc. The first type indexed into must be a pointer
4736value, subsequent types can be arrays, vectors, and structs. Note that
4737subsequent types being indexed into can never be pointers, since that
4738would require loading the pointer before continuing calculation.
4739
4740The type of each index argument depends on the type it is indexing into.
4741When indexing into a (optionally packed) structure, only ``i32`` integer
4742**constants** are allowed (when using a vector of indices they must all
4743be the **same** ``i32`` integer constant). When indexing into an array,
4744pointer or vector, integers of any width are allowed, and they are not
4745required to be constant. These integers are treated as signed values
4746where relevant.
4747
4748For example, let's consider a C code fragment and how it gets compiled
4749to LLVM:
4750
4751.. code-block:: c
4752
4753 struct RT {
4754 char A;
4755 int B[10][20];
4756 char C;
4757 };
4758 struct ST {
4759 int X;
4760 double Y;
4761 struct RT Z;
4762 };
4763
4764 int *foo(struct ST *s) {
4765 return &s[1].Z.B[5][13];
4766 }
4767
4768The LLVM code generated by Clang is:
4769
4770.. code-block:: llvm
4771
4772 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4773 %struct.ST = type { i32, double, %struct.RT }
4774
4775 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4776 entry:
4777 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4778 ret i32* %arrayidx
4779 }
4780
4781Semantics:
4782""""""""""
4783
4784In the example above, the first index is indexing into the
4785'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4786= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4787indexes into the third element of the structure, yielding a
4788'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4789structure. The third index indexes into the second element of the
4790structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4791dimensions of the array are subscripted into, yielding an '``i32``'
4792type. The '``getelementptr``' instruction returns a pointer to this
4793element, thus computing a value of '``i32*``' type.
4794
4795Note that it is perfectly legal to index partially through a structure,
4796returning a pointer to an inner element. Because of this, the LLVM code
4797for the given testcase is equivalent to:
4798
4799.. code-block:: llvm
4800
4801 define i32* @foo(%struct.ST* %s) {
4802 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4803 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4804 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4805 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4806 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4807 ret i32* %t5
4808 }
4809
4810If the ``inbounds`` keyword is present, the result value of the
4811``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4812pointer is not an *in bounds* address of an allocated object, or if any
4813of the addresses that would be formed by successive addition of the
4814offsets implied by the indices to the base address with infinitely
4815precise signed arithmetic are not an *in bounds* address of that
4816allocated object. The *in bounds* addresses for an allocated object are
4817all the addresses that point into the object, plus the address one byte
4818past the end. In cases where the base is a vector of pointers the
4819``inbounds`` keyword applies to each of the computations element-wise.
4820
4821If the ``inbounds`` keyword is not present, the offsets are added to the
4822base address with silently-wrapping two's complement arithmetic. If the
4823offsets have a different width from the pointer, they are sign-extended
4824or truncated to the width of the pointer. The result value of the
4825``getelementptr`` may be outside the object pointed to by the base
4826pointer. The result value may not necessarily be used to access memory
4827though, even if it happens to point into allocated storage. See the
4828:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4829information.
4830
4831The getelementptr instruction is often confusing. For some more insight
4832into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4833
4834Example:
4835""""""""
4836
4837.. code-block:: llvm
4838
4839 ; yields [12 x i8]*:aptr
4840 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4841 ; yields i8*:vptr
4842 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4843 ; yields i8*:eptr
4844 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4845 ; yields i32*:iptr
4846 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4847
4848In cases where the pointer argument is a vector of pointers, each index
4849must be a vector with the same number of elements. For example:
4850
4851.. code-block:: llvm
4852
4853 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4854
4855Conversion Operations
4856---------------------
4857
4858The instructions in this category are the conversion instructions
4859(casting) which all take a single operand and a type. They perform
4860various bit conversions on the operand.
4861
4862'``trunc .. to``' Instruction
4863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4864
4865Syntax:
4866"""""""
4867
4868::
4869
4870 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4871
4872Overview:
4873"""""""""
4874
4875The '``trunc``' instruction truncates its operand to the type ``ty2``.
4876
4877Arguments:
4878""""""""""
4879
4880The '``trunc``' instruction takes a value to trunc, and a type to trunc
4881it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4882of the same number of integers. The bit size of the ``value`` must be
4883larger than the bit size of the destination type, ``ty2``. Equal sized
4884types are not allowed.
4885
4886Semantics:
4887""""""""""
4888
4889The '``trunc``' instruction truncates the high order bits in ``value``
4890and converts the remaining bits to ``ty2``. Since the source size must
4891be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4892It will always truncate bits.
4893
4894Example:
4895""""""""
4896
4897.. code-block:: llvm
4898
4899 %X = trunc i32 257 to i8 ; yields i8:1
4900 %Y = trunc i32 123 to i1 ; yields i1:true
4901 %Z = trunc i32 122 to i1 ; yields i1:false
4902 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4903
4904'``zext .. to``' Instruction
4905^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4906
4907Syntax:
4908"""""""
4909
4910::
4911
4912 <result> = zext <ty> <value> to <ty2> ; yields ty2
4913
4914Overview:
4915"""""""""
4916
4917The '``zext``' instruction zero extends its operand to type ``ty2``.
4918
4919Arguments:
4920""""""""""
4921
4922The '``zext``' instruction takes a value to cast, and a type to cast it
4923to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4924the same number of integers. The bit size of the ``value`` must be
4925smaller than the bit size of the destination type, ``ty2``.
4926
4927Semantics:
4928""""""""""
4929
4930The ``zext`` fills the high order bits of the ``value`` with zero bits
4931until it reaches the size of the destination type, ``ty2``.
4932
4933When zero extending from i1, the result will always be either 0 or 1.
4934
4935Example:
4936""""""""
4937
4938.. code-block:: llvm
4939
4940 %X = zext i32 257 to i64 ; yields i64:257
4941 %Y = zext i1 true to i32 ; yields i32:1
4942 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4943
4944'``sext .. to``' Instruction
4945^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4946
4947Syntax:
4948"""""""
4949
4950::
4951
4952 <result> = sext <ty> <value> to <ty2> ; yields ty2
4953
4954Overview:
4955"""""""""
4956
4957The '``sext``' sign extends ``value`` to the type ``ty2``.
4958
4959Arguments:
4960""""""""""
4961
4962The '``sext``' instruction takes a value to cast, and a type to cast it
4963to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4964the same number of integers. The bit size of the ``value`` must be
4965smaller than the bit size of the destination type, ``ty2``.
4966
4967Semantics:
4968""""""""""
4969
4970The '``sext``' instruction performs a sign extension by copying the sign
4971bit (highest order bit) of the ``value`` until it reaches the bit size
4972of the type ``ty2``.
4973
4974When sign extending from i1, the extension always results in -1 or 0.
4975
4976Example:
4977""""""""
4978
4979.. code-block:: llvm
4980
4981 %X = sext i8 -1 to i16 ; yields i16 :65535
4982 %Y = sext i1 true to i32 ; yields i32:-1
4983 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4984
4985'``fptrunc .. to``' Instruction
4986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4987
4988Syntax:
4989"""""""
4990
4991::
4992
4993 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
4994
4995Overview:
4996"""""""""
4997
4998The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
4999
5000Arguments:
5001""""""""""
5002
5003The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5004value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5005The size of ``value`` must be larger than the size of ``ty2``. This
5006implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5007
5008Semantics:
5009""""""""""
5010
5011The '``fptrunc``' instruction truncates a ``value`` from a larger
5012:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5013point <t_floating>` type. If the value cannot fit within the
5014destination type, ``ty2``, then the results are undefined.
5015
5016Example:
5017""""""""
5018
5019.. code-block:: llvm
5020
5021 %X = fptrunc double 123.0 to float ; yields float:123.0
5022 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5023
5024'``fpext .. to``' Instruction
5025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5026
5027Syntax:
5028"""""""
5029
5030::
5031
5032 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5033
5034Overview:
5035"""""""""
5036
5037The '``fpext``' extends a floating point ``value`` to a larger floating
5038point value.
5039
5040Arguments:
5041""""""""""
5042
5043The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5044``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5045to. The source type must be smaller than the destination type.
5046
5047Semantics:
5048""""""""""
5049
5050The '``fpext``' instruction extends the ``value`` from a smaller
5051:ref:`floating point <t_floating>` type to a larger :ref:`floating
5052point <t_floating>` type. The ``fpext`` cannot be used to make a
5053*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5054*no-op cast* for a floating point cast.
5055
5056Example:
5057""""""""
5058
5059.. code-block:: llvm
5060
5061 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5062 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5063
5064'``fptoui .. to``' Instruction
5065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5066
5067Syntax:
5068"""""""
5069
5070::
5071
5072 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5073
5074Overview:
5075"""""""""
5076
5077The '``fptoui``' converts a floating point ``value`` to its unsigned
5078integer equivalent of type ``ty2``.
5079
5080Arguments:
5081""""""""""
5082
5083The '``fptoui``' instruction takes a value to cast, which must be a
5084scalar or vector :ref:`floating point <t_floating>` value, and a type to
5085cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5086``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5087type with the same number of elements as ``ty``
5088
5089Semantics:
5090""""""""""
5091
5092The '``fptoui``' instruction converts its :ref:`floating
5093point <t_floating>` operand into the nearest (rounding towards zero)
5094unsigned integer value. If the value cannot fit in ``ty2``, the results
5095are undefined.
5096
5097Example:
5098""""""""
5099
5100.. code-block:: llvm
5101
5102 %X = fptoui double 123.0 to i32 ; yields i32:123
5103 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5104 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5105
5106'``fptosi .. to``' Instruction
5107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5108
5109Syntax:
5110"""""""
5111
5112::
5113
5114 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5115
5116Overview:
5117"""""""""
5118
5119The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5120``value`` to type ``ty2``.
5121
5122Arguments:
5123""""""""""
5124
5125The '``fptosi``' instruction takes a value to cast, which must be a
5126scalar or vector :ref:`floating point <t_floating>` value, and a type to
5127cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5128``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5129type with the same number of elements as ``ty``
5130
5131Semantics:
5132""""""""""
5133
5134The '``fptosi``' instruction converts its :ref:`floating
5135point <t_floating>` operand into the nearest (rounding towards zero)
5136signed integer value. If the value cannot fit in ``ty2``, the results
5137are undefined.
5138
5139Example:
5140""""""""
5141
5142.. code-block:: llvm
5143
5144 %X = fptosi double -123.0 to i32 ; yields i32:-123
5145 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5146 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5147
5148'``uitofp .. to``' Instruction
5149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5150
5151Syntax:
5152"""""""
5153
5154::
5155
5156 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5157
5158Overview:
5159"""""""""
5160
5161The '``uitofp``' instruction regards ``value`` as an unsigned integer
5162and converts that value to the ``ty2`` type.
5163
5164Arguments:
5165""""""""""
5166
5167The '``uitofp``' instruction takes a value to cast, which must be a
5168scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5169``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5170``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5171type with the same number of elements as ``ty``
5172
5173Semantics:
5174""""""""""
5175
5176The '``uitofp``' instruction interprets its operand as an unsigned
5177integer quantity and converts it to the corresponding floating point
5178value. If the value cannot fit in the floating point value, the results
5179are undefined.
5180
5181Example:
5182""""""""
5183
5184.. code-block:: llvm
5185
5186 %X = uitofp i32 257 to float ; yields float:257.0
5187 %Y = uitofp i8 -1 to double ; yields double:255.0
5188
5189'``sitofp .. to``' Instruction
5190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5191
5192Syntax:
5193"""""""
5194
5195::
5196
5197 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5198
5199Overview:
5200"""""""""
5201
5202The '``sitofp``' instruction regards ``value`` as a signed integer and
5203converts that value to the ``ty2`` type.
5204
5205Arguments:
5206""""""""""
5207
5208The '``sitofp``' instruction takes a value to cast, which must be a
5209scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5210``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5211``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5212type with the same number of elements as ``ty``
5213
5214Semantics:
5215""""""""""
5216
5217The '``sitofp``' instruction interprets its operand as a signed integer
5218quantity and converts it to the corresponding floating point value. If
5219the value cannot fit in the floating point value, the results are
5220undefined.
5221
5222Example:
5223""""""""
5224
5225.. code-block:: llvm
5226
5227 %X = sitofp i32 257 to float ; yields float:257.0
5228 %Y = sitofp i8 -1 to double ; yields double:-1.0
5229
5230.. _i_ptrtoint:
5231
5232'``ptrtoint .. to``' Instruction
5233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5234
5235Syntax:
5236"""""""
5237
5238::
5239
5240 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5241
5242Overview:
5243"""""""""
5244
5245The '``ptrtoint``' instruction converts the pointer or a vector of
5246pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5247
5248Arguments:
5249""""""""""
5250
5251The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5252a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5253type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5254a vector of integers type.
5255
5256Semantics:
5257""""""""""
5258
5259The '``ptrtoint``' instruction converts ``value`` to integer type
5260``ty2`` by interpreting the pointer value as an integer and either
5261truncating or zero extending that value to the size of the integer type.
5262If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5263``value`` is larger than ``ty2`` then a truncation is done. If they are
5264the same size, then nothing is done (*no-op cast*) other than a type
5265change.
5266
5267Example:
5268""""""""
5269
5270.. code-block:: llvm
5271
5272 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5273 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5274 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5275
5276.. _i_inttoptr:
5277
5278'``inttoptr .. to``' Instruction
5279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5280
5281Syntax:
5282"""""""
5283
5284::
5285
5286 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5287
5288Overview:
5289"""""""""
5290
5291The '``inttoptr``' instruction converts an integer ``value`` to a
5292pointer type, ``ty2``.
5293
5294Arguments:
5295""""""""""
5296
5297The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5298cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5299type.
5300
5301Semantics:
5302""""""""""
5303
5304The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5305applying either a zero extension or a truncation depending on the size
5306of the integer ``value``. If ``value`` is larger than the size of a
5307pointer then a truncation is done. If ``value`` is smaller than the size
5308of a pointer then a zero extension is done. If they are the same size,
5309nothing is done (*no-op cast*).
5310
5311Example:
5312""""""""
5313
5314.. code-block:: llvm
5315
5316 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5317 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5318 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5319 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5320
5321.. _i_bitcast:
5322
5323'``bitcast .. to``' Instruction
5324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5325
5326Syntax:
5327"""""""
5328
5329::
5330
5331 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5332
5333Overview:
5334"""""""""
5335
5336The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5337changing any bits.
5338
5339Arguments:
5340""""""""""
5341
5342The '``bitcast``' instruction takes a value to cast, which must be a
5343non-aggregate first class value, and a type to cast it to, which must
5344also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5345sizes of ``value`` and the destination type, ``ty2``, must be identical.
5346If the source type is a pointer, the destination type must also be a
5347pointer. This instruction supports bitwise conversion of vectors to
5348integers and to vectors of other types (as long as they have the same
5349size).
5350
5351Semantics:
5352""""""""""
5353
5354The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5355always a *no-op cast* because no bits change with this conversion. The
5356conversion is done as if the ``value`` had been stored to memory and
5357read back as type ``ty2``. Pointer (or vector of pointers) types may
5358only be converted to other pointer (or vector of pointers) types with
5359this instruction. To convert pointers to other types, use the
5360:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5361first.
5362
5363Example:
5364""""""""
5365
5366.. code-block:: llvm
5367
5368 %X = bitcast i8 255 to i8 ; yields i8 :-1
5369 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5370 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5371 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5372
5373.. _otherops:
5374
5375Other Operations
5376----------------
5377
5378The instructions in this category are the "miscellaneous" instructions,
5379which defy better classification.
5380
5381.. _i_icmp:
5382
5383'``icmp``' Instruction
5384^^^^^^^^^^^^^^^^^^^^^^
5385
5386Syntax:
5387"""""""
5388
5389::
5390
5391 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5392
5393Overview:
5394"""""""""
5395
5396The '``icmp``' instruction returns a boolean value or a vector of
5397boolean values based on comparison of its two integer, integer vector,
5398pointer, or pointer vector operands.
5399
5400Arguments:
5401""""""""""
5402
5403The '``icmp``' instruction takes three operands. The first operand is
5404the condition code indicating the kind of comparison to perform. It is
5405not a value, just a keyword. The possible condition code are:
5406
5407#. ``eq``: equal
5408#. ``ne``: not equal
5409#. ``ugt``: unsigned greater than
5410#. ``uge``: unsigned greater or equal
5411#. ``ult``: unsigned less than
5412#. ``ule``: unsigned less or equal
5413#. ``sgt``: signed greater than
5414#. ``sge``: signed greater or equal
5415#. ``slt``: signed less than
5416#. ``sle``: signed less or equal
5417
5418The remaining two arguments must be :ref:`integer <t_integer>` or
5419:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5420must also be identical types.
5421
5422Semantics:
5423""""""""""
5424
5425The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5426code given as ``cond``. The comparison performed always yields either an
5427:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5428
5429#. ``eq``: yields ``true`` if the operands are equal, ``false``
5430 otherwise. No sign interpretation is necessary or performed.
5431#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5432 otherwise. No sign interpretation is necessary or performed.
5433#. ``ugt``: interprets the operands as unsigned values and yields
5434 ``true`` if ``op1`` is greater than ``op2``.
5435#. ``uge``: interprets the operands as unsigned values and yields
5436 ``true`` if ``op1`` is greater than or equal to ``op2``.
5437#. ``ult``: interprets the operands as unsigned values and yields
5438 ``true`` if ``op1`` is less than ``op2``.
5439#. ``ule``: interprets the operands as unsigned values and yields
5440 ``true`` if ``op1`` is less than or equal to ``op2``.
5441#. ``sgt``: interprets the operands as signed values and yields ``true``
5442 if ``op1`` is greater than ``op2``.
5443#. ``sge``: interprets the operands as signed values and yields ``true``
5444 if ``op1`` is greater than or equal to ``op2``.
5445#. ``slt``: interprets the operands as signed values and yields ``true``
5446 if ``op1`` is less than ``op2``.
5447#. ``sle``: interprets the operands as signed values and yields ``true``
5448 if ``op1`` is less than or equal to ``op2``.
5449
5450If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5451are compared as if they were integers.
5452
5453If the operands are integer vectors, then they are compared element by
5454element. The result is an ``i1`` vector with the same number of elements
5455as the values being compared. Otherwise, the result is an ``i1``.
5456
5457Example:
5458""""""""
5459
5460.. code-block:: llvm
5461
5462 <result> = icmp eq i32 4, 5 ; yields: result=false
5463 <result> = icmp ne float* %X, %X ; yields: result=false
5464 <result> = icmp ult i16 4, 5 ; yields: result=true
5465 <result> = icmp sgt i16 4, 5 ; yields: result=false
5466 <result> = icmp ule i16 -4, 5 ; yields: result=false
5467 <result> = icmp sge i16 4, 5 ; yields: result=false
5468
5469Note that the code generator does not yet support vector types with the
5470``icmp`` instruction.
5471
5472.. _i_fcmp:
5473
5474'``fcmp``' Instruction
5475^^^^^^^^^^^^^^^^^^^^^^
5476
5477Syntax:
5478"""""""
5479
5480::
5481
5482 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5483
5484Overview:
5485"""""""""
5486
5487The '``fcmp``' instruction returns a boolean value or vector of boolean
5488values based on comparison of its operands.
5489
5490If the operands are floating point scalars, then the result type is a
5491boolean (:ref:`i1 <t_integer>`).
5492
5493If the operands are floating point vectors, then the result type is a
5494vector of boolean with the same number of elements as the operands being
5495compared.
5496
5497Arguments:
5498""""""""""
5499
5500The '``fcmp``' instruction takes three operands. The first operand is
5501the condition code indicating the kind of comparison to perform. It is
5502not a value, just a keyword. The possible condition code are:
5503
5504#. ``false``: no comparison, always returns false
5505#. ``oeq``: ordered and equal
5506#. ``ogt``: ordered and greater than
5507#. ``oge``: ordered and greater than or equal
5508#. ``olt``: ordered and less than
5509#. ``ole``: ordered and less than or equal
5510#. ``one``: ordered and not equal
5511#. ``ord``: ordered (no nans)
5512#. ``ueq``: unordered or equal
5513#. ``ugt``: unordered or greater than
5514#. ``uge``: unordered or greater than or equal
5515#. ``ult``: unordered or less than
5516#. ``ule``: unordered or less than or equal
5517#. ``une``: unordered or not equal
5518#. ``uno``: unordered (either nans)
5519#. ``true``: no comparison, always returns true
5520
5521*Ordered* means that neither operand is a QNAN while *unordered* means
5522that either operand may be a QNAN.
5523
5524Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5525point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5526type. They must have identical types.
5527
5528Semantics:
5529""""""""""
5530
5531The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5532condition code given as ``cond``. If the operands are vectors, then the
5533vectors are compared element by element. Each comparison performed
5534always yields an :ref:`i1 <t_integer>` result, as follows:
5535
5536#. ``false``: always yields ``false``, regardless of operands.
5537#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5538 is equal to ``op2``.
5539#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5540 is greater than ``op2``.
5541#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5542 is greater than or equal to ``op2``.
5543#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5544 is less than ``op2``.
5545#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5546 is less than or equal to ``op2``.
5547#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5548 is not equal to ``op2``.
5549#. ``ord``: yields ``true`` if both operands are not a QNAN.
5550#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5551 equal to ``op2``.
5552#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5553 greater than ``op2``.
5554#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5555 greater than or equal to ``op2``.
5556#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5557 less than ``op2``.
5558#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5559 less than or equal to ``op2``.
5560#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5561 not equal to ``op2``.
5562#. ``uno``: yields ``true`` if either operand is a QNAN.
5563#. ``true``: always yields ``true``, regardless of operands.
5564
5565Example:
5566""""""""
5567
5568.. code-block:: llvm
5569
5570 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5571 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5572 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5573 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5574
5575Note that the code generator does not yet support vector types with the
5576``fcmp`` instruction.
5577
5578.. _i_phi:
5579
5580'``phi``' Instruction
5581^^^^^^^^^^^^^^^^^^^^^
5582
5583Syntax:
5584"""""""
5585
5586::
5587
5588 <result> = phi <ty> [ <val0>, <label0>], ...
5589
5590Overview:
5591"""""""""
5592
5593The '``phi``' instruction is used to implement the φ node in the SSA
5594graph representing the function.
5595
5596Arguments:
5597""""""""""
5598
5599The type of the incoming values is specified with the first type field.
5600After this, the '``phi``' instruction takes a list of pairs as
5601arguments, with one pair for each predecessor basic block of the current
5602block. Only values of :ref:`first class <t_firstclass>` type may be used as
5603the value arguments to the PHI node. Only labels may be used as the
5604label arguments.
5605
5606There must be no non-phi instructions between the start of a basic block
5607and the PHI instructions: i.e. PHI instructions must be first in a basic
5608block.
5609
5610For the purposes of the SSA form, the use of each incoming value is
5611deemed to occur on the edge from the corresponding predecessor block to
5612the current block (but after any definition of an '``invoke``'
5613instruction's return value on the same edge).
5614
5615Semantics:
5616""""""""""
5617
5618At runtime, the '``phi``' instruction logically takes on the value
5619specified by the pair corresponding to the predecessor basic block that
5620executed just prior to the current block.
5621
5622Example:
5623""""""""
5624
5625.. code-block:: llvm
5626
5627 Loop: ; Infinite loop that counts from 0 on up...
5628 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5629 %nextindvar = add i32 %indvar, 1
5630 br label %Loop
5631
5632.. _i_select:
5633
5634'``select``' Instruction
5635^^^^^^^^^^^^^^^^^^^^^^^^
5636
5637Syntax:
5638"""""""
5639
5640::
5641
5642 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5643
5644 selty is either i1 or {<N x i1>}
5645
5646Overview:
5647"""""""""
5648
5649The '``select``' instruction is used to choose one value based on a
5650condition, without branching.
5651
5652Arguments:
5653""""""""""
5654
5655The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5656values indicating the condition, and two values of the same :ref:`first
5657class <t_firstclass>` type. If the val1/val2 are vectors and the
5658condition is a scalar, then entire vectors are selected, not individual
5659elements.
5660
5661Semantics:
5662""""""""""
5663
5664If the condition is an i1 and it evaluates to 1, the instruction returns
5665the first value argument; otherwise, it returns the second value
5666argument.
5667
5668If the condition is a vector of i1, then the value arguments must be
5669vectors of the same size, and the selection is done element by element.
5670
5671Example:
5672""""""""
5673
5674.. code-block:: llvm
5675
5676 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5677
5678.. _i_call:
5679
5680'``call``' Instruction
5681^^^^^^^^^^^^^^^^^^^^^^
5682
5683Syntax:
5684"""""""
5685
5686::
5687
5688 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5689
5690Overview:
5691"""""""""
5692
5693The '``call``' instruction represents a simple function call.
5694
5695Arguments:
5696""""""""""
5697
5698This instruction requires several arguments:
5699
5700#. The optional "tail" marker indicates that the callee function does
5701 not access any allocas or varargs in the caller. Note that calls may
5702 be marked "tail" even if they do not occur before a
5703 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5704 function call is eligible for tail call optimization, but `might not
5705 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5706 The code generator may optimize calls marked "tail" with either 1)
5707 automatic `sibling call
5708 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5709 callee have matching signatures, or 2) forced tail call optimization
5710 when the following extra requirements are met:
5711
5712 - Caller and callee both have the calling convention ``fastcc``.
5713 - The call is in tail position (ret immediately follows call and ret
5714 uses value of call or is void).
5715 - Option ``-tailcallopt`` is enabled, or
5716 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5717 - `Platform specific constraints are
5718 met. <CodeGenerator.html#tailcallopt>`_
5719
5720#. The optional "cconv" marker indicates which :ref:`calling
5721 convention <callingconv>` the call should use. If none is
5722 specified, the call defaults to using C calling conventions. The
5723 calling convention of the call must match the calling convention of
5724 the target function, or else the behavior is undefined.
5725#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5726 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5727 are valid here.
5728#. '``ty``': the type of the call instruction itself which is also the
5729 type of the return value. Functions that return no value are marked
5730 ``void``.
5731#. '``fnty``': shall be the signature of the pointer to function value
5732 being invoked. The argument types must match the types implied by
5733 this signature. This type can be omitted if the function is not
5734 varargs and if the function type does not return a pointer to a
5735 function.
5736#. '``fnptrval``': An LLVM value containing a pointer to a function to
5737 be invoked. In most cases, this is a direct function invocation, but
5738 indirect ``call``'s are just as possible, calling an arbitrary pointer
5739 to function value.
5740#. '``function args``': argument list whose types match the function
5741 signature argument types and parameter attributes. All arguments must
5742 be of :ref:`first class <t_firstclass>` type. If the function signature
5743 indicates the function accepts a variable number of arguments, the
5744 extra arguments can be specified.
5745#. The optional :ref:`function attributes <fnattrs>` list. Only
5746 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5747 attributes are valid here.
5748
5749Semantics:
5750""""""""""
5751
5752The '``call``' instruction is used to cause control flow to transfer to
5753a specified function, with its incoming arguments bound to the specified
5754values. Upon a '``ret``' instruction in the called function, control
5755flow continues with the instruction after the function call, and the
5756return value of the function is bound to the result argument.
5757
5758Example:
5759""""""""
5760
5761.. code-block:: llvm
5762
5763 %retval = call i32 @test(i32 %argc)
5764 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5765 %X = tail call i32 @foo() ; yields i32
5766 %Y = tail call fastcc i32 @foo() ; yields i32
5767 call void %foo(i8 97 signext)
5768
5769 %struct.A = type { i32, i8 }
5770 %r = call %struct.A @foo() ; yields { 32, i8 }
5771 %gr = extractvalue %struct.A %r, 0 ; yields i32
5772 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5773 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5774 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5775
5776llvm treats calls to some functions with names and arguments that match
5777the standard C99 library as being the C99 library functions, and may
5778perform optimizations or generate code for them under that assumption.
5779This is something we'd like to change in the future to provide better
5780support for freestanding environments and non-C-based languages.
5781
5782.. _i_va_arg:
5783
5784'``va_arg``' Instruction
5785^^^^^^^^^^^^^^^^^^^^^^^^
5786
5787Syntax:
5788"""""""
5789
5790::
5791
5792 <resultval> = va_arg <va_list*> <arglist>, <argty>
5793
5794Overview:
5795"""""""""
5796
5797The '``va_arg``' instruction is used to access arguments passed through
5798the "variable argument" area of a function call. It is used to implement
5799the ``va_arg`` macro in C.
5800
5801Arguments:
5802""""""""""
5803
5804This instruction takes a ``va_list*`` value and the type of the
5805argument. It returns a value of the specified argument type and
5806increments the ``va_list`` to point to the next argument. The actual
5807type of ``va_list`` is target specific.
5808
5809Semantics:
5810""""""""""
5811
5812The '``va_arg``' instruction loads an argument of the specified type
5813from the specified ``va_list`` and causes the ``va_list`` to point to
5814the next argument. For more information, see the variable argument
5815handling :ref:`Intrinsic Functions <int_varargs>`.
5816
5817It is legal for this instruction to be called in a function which does
5818not take a variable number of arguments, for example, the ``vfprintf``
5819function.
5820
5821``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5822function <intrinsics>` because it takes a type as an argument.
5823
5824Example:
5825""""""""
5826
5827See the :ref:`variable argument processing <int_varargs>` section.
5828
5829Note that the code generator does not yet fully support va\_arg on many
5830targets. Also, it does not currently support va\_arg with aggregate
5831types on any target.
5832
5833.. _i_landingpad:
5834
5835'``landingpad``' Instruction
5836^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5837
5838Syntax:
5839"""""""
5840
5841::
5842
5843 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5844 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5845
5846 <clause> := catch <type> <value>
5847 <clause> := filter <array constant type> <array constant>
5848
5849Overview:
5850"""""""""
5851
5852The '``landingpad``' instruction is used by `LLVM's exception handling
5853system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005854is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00005855code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5856defines values supplied by the personality function (``pers_fn``) upon
5857re-entry to the function. The ``resultval`` has the type ``resultty``.
5858
5859Arguments:
5860""""""""""
5861
5862This instruction takes a ``pers_fn`` value. This is the personality
5863function associated with the unwinding mechanism. The optional
5864``cleanup`` flag indicates that the landing pad block is a cleanup.
5865
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005866A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00005867contains the global variable representing the "type" that may be caught
5868or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5869clause takes an array constant as its argument. Use
5870"``[0 x i8**] undef``" for a filter which cannot throw. The
5871'``landingpad``' instruction must contain *at least* one ``clause`` or
5872the ``cleanup`` flag.
5873
5874Semantics:
5875""""""""""
5876
5877The '``landingpad``' instruction defines the values which are set by the
5878personality function (``pers_fn``) upon re-entry to the function, and
5879therefore the "result type" of the ``landingpad`` instruction. As with
5880calling conventions, how the personality function results are
5881represented in LLVM IR is target specific.
5882
5883The clauses are applied in order from top to bottom. If two
5884``landingpad`` instructions are merged together through inlining, the
5885clauses from the calling function are appended to the list of clauses.
5886When the call stack is being unwound due to an exception being thrown,
5887the exception is compared against each ``clause`` in turn. If it doesn't
5888match any of the clauses, and the ``cleanup`` flag is not set, then
5889unwinding continues further up the call stack.
5890
5891The ``landingpad`` instruction has several restrictions:
5892
5893- A landing pad block is a basic block which is the unwind destination
5894 of an '``invoke``' instruction.
5895- A landing pad block must have a '``landingpad``' instruction as its
5896 first non-PHI instruction.
5897- There can be only one '``landingpad``' instruction within the landing
5898 pad block.
5899- A basic block that is not a landing pad block may not include a
5900 '``landingpad``' instruction.
5901- All '``landingpad``' instructions in a function must have the same
5902 personality function.
5903
5904Example:
5905""""""""
5906
5907.. code-block:: llvm
5908
5909 ;; A landing pad which can catch an integer.
5910 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5911 catch i8** @_ZTIi
5912 ;; A landing pad that is a cleanup.
5913 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5914 cleanup
5915 ;; A landing pad which can catch an integer and can only throw a double.
5916 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5917 catch i8** @_ZTIi
5918 filter [1 x i8**] [@_ZTId]
5919
5920.. _intrinsics:
5921
5922Intrinsic Functions
5923===================
5924
5925LLVM supports the notion of an "intrinsic function". These functions
5926have well known names and semantics and are required to follow certain
5927restrictions. Overall, these intrinsics represent an extension mechanism
5928for the LLVM language that does not require changing all of the
5929transformations in LLVM when adding to the language (or the bitcode
5930reader/writer, the parser, etc...).
5931
5932Intrinsic function names must all start with an "``llvm.``" prefix. This
5933prefix is reserved in LLVM for intrinsic names; thus, function names may
5934not begin with this prefix. Intrinsic functions must always be external
5935functions: you cannot define the body of intrinsic functions. Intrinsic
5936functions may only be used in call or invoke instructions: it is illegal
5937to take the address of an intrinsic function. Additionally, because
5938intrinsic functions are part of the LLVM language, it is required if any
5939are added that they be documented here.
5940
5941Some intrinsic functions can be overloaded, i.e., the intrinsic
5942represents a family of functions that perform the same operation but on
5943different data types. Because LLVM can represent over 8 million
5944different integer types, overloading is used commonly to allow an
5945intrinsic function to operate on any integer type. One or more of the
5946argument types or the result type can be overloaded to accept any
5947integer type. Argument types may also be defined as exactly matching a
5948previous argument's type or the result type. This allows an intrinsic
5949function which accepts multiple arguments, but needs all of them to be
5950of the same type, to only be overloaded with respect to a single
5951argument or the result.
5952
5953Overloaded intrinsics will have the names of its overloaded argument
5954types encoded into its function name, each preceded by a period. Only
5955those types which are overloaded result in a name suffix. Arguments
5956whose type is matched against another type do not. For example, the
5957``llvm.ctpop`` function can take an integer of any width and returns an
5958integer of exactly the same integer width. This leads to a family of
5959functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5960``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5961overloaded, and only one type suffix is required. Because the argument's
5962type is matched against the return type, it does not require its own
5963name suffix.
5964
5965To learn how to add an intrinsic function, please see the `Extending
5966LLVM Guide <ExtendingLLVM.html>`_.
5967
5968.. _int_varargs:
5969
5970Variable Argument Handling Intrinsics
5971-------------------------------------
5972
5973Variable argument support is defined in LLVM with the
5974:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5975functions. These functions are related to the similarly named macros
5976defined in the ``<stdarg.h>`` header file.
5977
5978All of these functions operate on arguments that use a target-specific
5979value type "``va_list``". The LLVM assembly language reference manual
5980does not define what this type is, so all transformations should be
5981prepared to handle these functions regardless of the type used.
5982
5983This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
5984variable argument handling intrinsic functions are used.
5985
5986.. code-block:: llvm
5987
5988 define i32 @test(i32 %X, ...) {
5989 ; Initialize variable argument processing
5990 %ap = alloca i8*
5991 %ap2 = bitcast i8** %ap to i8*
5992 call void @llvm.va_start(i8* %ap2)
5993
5994 ; Read a single integer argument
5995 %tmp = va_arg i8** %ap, i32
5996
5997 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5998 %aq = alloca i8*
5999 %aq2 = bitcast i8** %aq to i8*
6000 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6001 call void @llvm.va_end(i8* %aq2)
6002
6003 ; Stop processing of arguments.
6004 call void @llvm.va_end(i8* %ap2)
6005 ret i32 %tmp
6006 }
6007
6008 declare void @llvm.va_start(i8*)
6009 declare void @llvm.va_copy(i8*, i8*)
6010 declare void @llvm.va_end(i8*)
6011
6012.. _int_va_start:
6013
6014'``llvm.va_start``' Intrinsic
6015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6016
6017Syntax:
6018"""""""
6019
6020::
6021
6022 declare void %llvm.va_start(i8* <arglist>)
6023
6024Overview:
6025"""""""""
6026
6027The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6028subsequent use by ``va_arg``.
6029
6030Arguments:
6031""""""""""
6032
6033The argument is a pointer to a ``va_list`` element to initialize.
6034
6035Semantics:
6036""""""""""
6037
6038The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6039available in C. In a target-dependent way, it initializes the
6040``va_list`` element to which the argument points, so that the next call
6041to ``va_arg`` will produce the first variable argument passed to the
6042function. Unlike the C ``va_start`` macro, this intrinsic does not need
6043to know the last argument of the function as the compiler can figure
6044that out.
6045
6046'``llvm.va_end``' Intrinsic
6047^^^^^^^^^^^^^^^^^^^^^^^^^^^
6048
6049Syntax:
6050"""""""
6051
6052::
6053
6054 declare void @llvm.va_end(i8* <arglist>)
6055
6056Overview:
6057"""""""""
6058
6059The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6060initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6061
6062Arguments:
6063""""""""""
6064
6065The argument is a pointer to a ``va_list`` to destroy.
6066
6067Semantics:
6068""""""""""
6069
6070The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6071available in C. In a target-dependent way, it destroys the ``va_list``
6072element to which the argument points. Calls to
6073:ref:`llvm.va_start <int_va_start>` and
6074:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6075``llvm.va_end``.
6076
6077.. _int_va_copy:
6078
6079'``llvm.va_copy``' Intrinsic
6080^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6081
6082Syntax:
6083"""""""
6084
6085::
6086
6087 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6088
6089Overview:
6090"""""""""
6091
6092The '``llvm.va_copy``' intrinsic copies the current argument position
6093from the source argument list to the destination argument list.
6094
6095Arguments:
6096""""""""""
6097
6098The first argument is a pointer to a ``va_list`` element to initialize.
6099The second argument is a pointer to a ``va_list`` element to copy from.
6100
6101Semantics:
6102""""""""""
6103
6104The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6105available in C. In a target-dependent way, it copies the source
6106``va_list`` element into the destination ``va_list`` element. This
6107intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6108arbitrarily complex and require, for example, memory allocation.
6109
6110Accurate Garbage Collection Intrinsics
6111--------------------------------------
6112
6113LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6114(GC) requires the implementation and generation of these intrinsics.
6115These intrinsics allow identification of :ref:`GC roots on the
6116stack <int_gcroot>`, as well as garbage collector implementations that
6117require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6118Front-ends for type-safe garbage collected languages should generate
6119these intrinsics to make use of the LLVM garbage collectors. For more
6120details, see `Accurate Garbage Collection with
6121LLVM <GarbageCollection.html>`_.
6122
6123The garbage collection intrinsics only operate on objects in the generic
6124address space (address space zero).
6125
6126.. _int_gcroot:
6127
6128'``llvm.gcroot``' Intrinsic
6129^^^^^^^^^^^^^^^^^^^^^^^^^^^
6130
6131Syntax:
6132"""""""
6133
6134::
6135
6136 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6137
6138Overview:
6139"""""""""
6140
6141The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6142the code generator, and allows some metadata to be associated with it.
6143
6144Arguments:
6145""""""""""
6146
6147The first argument specifies the address of a stack object that contains
6148the root pointer. The second pointer (which must be either a constant or
6149a global value address) contains the meta-data to be associated with the
6150root.
6151
6152Semantics:
6153""""""""""
6154
6155At runtime, a call to this intrinsic stores a null pointer into the
6156"ptrloc" location. At compile-time, the code generator generates
6157information to allow the runtime to find the pointer at GC safe points.
6158The '``llvm.gcroot``' intrinsic may only be used in a function which
6159:ref:`specifies a GC algorithm <gc>`.
6160
6161.. _int_gcread:
6162
6163'``llvm.gcread``' Intrinsic
6164^^^^^^^^^^^^^^^^^^^^^^^^^^^
6165
6166Syntax:
6167"""""""
6168
6169::
6170
6171 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6172
6173Overview:
6174"""""""""
6175
6176The '``llvm.gcread``' intrinsic identifies reads of references from heap
6177locations, allowing garbage collector implementations that require read
6178barriers.
6179
6180Arguments:
6181""""""""""
6182
6183The second argument is the address to read from, which should be an
6184address allocated from the garbage collector. The first object is a
6185pointer to the start of the referenced object, if needed by the language
6186runtime (otherwise null).
6187
6188Semantics:
6189""""""""""
6190
6191The '``llvm.gcread``' intrinsic has the same semantics as a load
6192instruction, but may be replaced with substantially more complex code by
6193the garbage collector runtime, as needed. The '``llvm.gcread``'
6194intrinsic may only be used in a function which :ref:`specifies a GC
6195algorithm <gc>`.
6196
6197.. _int_gcwrite:
6198
6199'``llvm.gcwrite``' Intrinsic
6200^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6201
6202Syntax:
6203"""""""
6204
6205::
6206
6207 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6208
6209Overview:
6210"""""""""
6211
6212The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6213locations, allowing garbage collector implementations that require write
6214barriers (such as generational or reference counting collectors).
6215
6216Arguments:
6217""""""""""
6218
6219The first argument is the reference to store, the second is the start of
6220the object to store it to, and the third is the address of the field of
6221Obj to store to. If the runtime does not require a pointer to the
6222object, Obj may be null.
6223
6224Semantics:
6225""""""""""
6226
6227The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6228instruction, but may be replaced with substantially more complex code by
6229the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6230intrinsic may only be used in a function which :ref:`specifies a GC
6231algorithm <gc>`.
6232
6233Code Generator Intrinsics
6234-------------------------
6235
6236These intrinsics are provided by LLVM to expose special features that
6237may only be implemented with code generator support.
6238
6239'``llvm.returnaddress``' Intrinsic
6240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6241
6242Syntax:
6243"""""""
6244
6245::
6246
6247 declare i8 *@llvm.returnaddress(i32 <level>)
6248
6249Overview:
6250"""""""""
6251
6252The '``llvm.returnaddress``' intrinsic attempts to compute a
6253target-specific value indicating the return address of the current
6254function or one of its callers.
6255
6256Arguments:
6257""""""""""
6258
6259The argument to this intrinsic indicates which function to return the
6260address for. Zero indicates the calling function, one indicates its
6261caller, etc. The argument is **required** to be a constant integer
6262value.
6263
6264Semantics:
6265""""""""""
6266
6267The '``llvm.returnaddress``' intrinsic either returns a pointer
6268indicating the return address of the specified call frame, or zero if it
6269cannot be identified. The value returned by this intrinsic is likely to
6270be incorrect or 0 for arguments other than zero, so it should only be
6271used for debugging purposes.
6272
6273Note that calling this intrinsic does not prevent function inlining or
6274other aggressive transformations, so the value returned may not be that
6275of the obvious source-language caller.
6276
6277'``llvm.frameaddress``' Intrinsic
6278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6279
6280Syntax:
6281"""""""
6282
6283::
6284
6285 declare i8* @llvm.frameaddress(i32 <level>)
6286
6287Overview:
6288"""""""""
6289
6290The '``llvm.frameaddress``' intrinsic attempts to return the
6291target-specific frame pointer value for the specified stack frame.
6292
6293Arguments:
6294""""""""""
6295
6296The argument to this intrinsic indicates which function to return the
6297frame pointer for. Zero indicates the calling function, one indicates
6298its caller, etc. The argument is **required** to be a constant integer
6299value.
6300
6301Semantics:
6302""""""""""
6303
6304The '``llvm.frameaddress``' intrinsic either returns a pointer
6305indicating the frame address of the specified call frame, or zero if it
6306cannot be identified. The value returned by this intrinsic is likely to
6307be incorrect or 0 for arguments other than zero, so it should only be
6308used for debugging purposes.
6309
6310Note that calling this intrinsic does not prevent function inlining or
6311other aggressive transformations, so the value returned may not be that
6312of the obvious source-language caller.
6313
6314.. _int_stacksave:
6315
6316'``llvm.stacksave``' Intrinsic
6317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6318
6319Syntax:
6320"""""""
6321
6322::
6323
6324 declare i8* @llvm.stacksave()
6325
6326Overview:
6327"""""""""
6328
6329The '``llvm.stacksave``' intrinsic is used to remember the current state
6330of the function stack, for use with
6331:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6332implementing language features like scoped automatic variable sized
6333arrays in C99.
6334
6335Semantics:
6336""""""""""
6337
6338This intrinsic returns a opaque pointer value that can be passed to
6339:ref:`llvm.stackrestore <int_stackrestore>`. When an
6340``llvm.stackrestore`` intrinsic is executed with a value saved from
6341``llvm.stacksave``, it effectively restores the state of the stack to
6342the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6343practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6344were allocated after the ``llvm.stacksave`` was executed.
6345
6346.. _int_stackrestore:
6347
6348'``llvm.stackrestore``' Intrinsic
6349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6350
6351Syntax:
6352"""""""
6353
6354::
6355
6356 declare void @llvm.stackrestore(i8* %ptr)
6357
6358Overview:
6359"""""""""
6360
6361The '``llvm.stackrestore``' intrinsic is used to restore the state of
6362the function stack to the state it was in when the corresponding
6363:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6364useful for implementing language features like scoped automatic variable
6365sized arrays in C99.
6366
6367Semantics:
6368""""""""""
6369
6370See the description for :ref:`llvm.stacksave <int_stacksave>`.
6371
6372'``llvm.prefetch``' Intrinsic
6373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6374
6375Syntax:
6376"""""""
6377
6378::
6379
6380 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6381
6382Overview:
6383"""""""""
6384
6385The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6386insert a prefetch instruction if supported; otherwise, it is a noop.
6387Prefetches have no effect on the behavior of the program but can change
6388its performance characteristics.
6389
6390Arguments:
6391""""""""""
6392
6393``address`` is the address to be prefetched, ``rw`` is the specifier
6394determining if the fetch should be for a read (0) or write (1), and
6395``locality`` is a temporal locality specifier ranging from (0) - no
6396locality, to (3) - extremely local keep in cache. The ``cache type``
6397specifies whether the prefetch is performed on the data (1) or
6398instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6399arguments must be constant integers.
6400
6401Semantics:
6402""""""""""
6403
6404This intrinsic does not modify the behavior of the program. In
6405particular, prefetches cannot trap and do not produce a value. On
6406targets that support this intrinsic, the prefetch can provide hints to
6407the processor cache for better performance.
6408
6409'``llvm.pcmarker``' Intrinsic
6410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6411
6412Syntax:
6413"""""""
6414
6415::
6416
6417 declare void @llvm.pcmarker(i32 <id>)
6418
6419Overview:
6420"""""""""
6421
6422The '``llvm.pcmarker``' intrinsic is a method to export a Program
6423Counter (PC) in a region of code to simulators and other tools. The
6424method is target specific, but it is expected that the marker will use
6425exported symbols to transmit the PC of the marker. The marker makes no
6426guarantees that it will remain with any specific instruction after
6427optimizations. It is possible that the presence of a marker will inhibit
6428optimizations. The intended use is to be inserted after optimizations to
6429allow correlations of simulation runs.
6430
6431Arguments:
6432""""""""""
6433
6434``id`` is a numerical id identifying the marker.
6435
6436Semantics:
6437""""""""""
6438
6439This intrinsic does not modify the behavior of the program. Backends
6440that do not support this intrinsic may ignore it.
6441
6442'``llvm.readcyclecounter``' Intrinsic
6443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6444
6445Syntax:
6446"""""""
6447
6448::
6449
6450 declare i64 @llvm.readcyclecounter()
6451
6452Overview:
6453"""""""""
6454
6455The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6456counter register (or similar low latency, high accuracy clocks) on those
6457targets that support it. On X86, it should map to RDTSC. On Alpha, it
6458should map to RPCC. As the backing counters overflow quickly (on the
6459order of 9 seconds on alpha), this should only be used for small
6460timings.
6461
6462Semantics:
6463""""""""""
6464
6465When directly supported, reading the cycle counter should not modify any
6466memory. Implementations are allowed to either return a application
6467specific value or a system wide value. On backends without support, this
6468is lowered to a constant 0.
6469
6470Standard C Library Intrinsics
6471-----------------------------
6472
6473LLVM provides intrinsics for a few important standard C library
6474functions. These intrinsics allow source-language front-ends to pass
6475information about the alignment of the pointer arguments to the code
6476generator, providing opportunity for more efficient code generation.
6477
6478.. _int_memcpy:
6479
6480'``llvm.memcpy``' Intrinsic
6481^^^^^^^^^^^^^^^^^^^^^^^^^^^
6482
6483Syntax:
6484"""""""
6485
6486This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6487integer bit width and for different address spaces. Not all targets
6488support all bit widths however.
6489
6490::
6491
6492 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6493 i32 <len>, i32 <align>, i1 <isvolatile>)
6494 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6495 i64 <len>, i32 <align>, i1 <isvolatile>)
6496
6497Overview:
6498"""""""""
6499
6500The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6501source location to the destination location.
6502
6503Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6504intrinsics do not return a value, takes extra alignment/isvolatile
6505arguments and the pointers can be in specified address spaces.
6506
6507Arguments:
6508""""""""""
6509
6510The first argument is a pointer to the destination, the second is a
6511pointer to the source. The third argument is an integer argument
6512specifying the number of bytes to copy, the fourth argument is the
6513alignment of the source and destination locations, and the fifth is a
6514boolean indicating a volatile access.
6515
6516If the call to this intrinsic has an alignment value that is not 0 or 1,
6517then the caller guarantees that both the source and destination pointers
6518are aligned to that boundary.
6519
6520If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6521a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6522very cleanly specified and it is unwise to depend on it.
6523
6524Semantics:
6525""""""""""
6526
6527The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6528source location to the destination location, which are not allowed to
6529overlap. It copies "len" bytes of memory over. If the argument is known
6530to be aligned to some boundary, this can be specified as the fourth
6531argument, otherwise it should be set to 0 or 1.
6532
6533'``llvm.memmove``' Intrinsic
6534^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6535
6536Syntax:
6537"""""""
6538
6539This is an overloaded intrinsic. You can use llvm.memmove on any integer
6540bit width and for different address space. Not all targets support all
6541bit widths however.
6542
6543::
6544
6545 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6546 i32 <len>, i32 <align>, i1 <isvolatile>)
6547 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6548 i64 <len>, i32 <align>, i1 <isvolatile>)
6549
6550Overview:
6551"""""""""
6552
6553The '``llvm.memmove.*``' intrinsics move a block of memory from the
6554source location to the destination location. It is similar to the
6555'``llvm.memcpy``' intrinsic but allows the two memory locations to
6556overlap.
6557
6558Note that, unlike the standard libc function, the ``llvm.memmove.*``
6559intrinsics do not return a value, takes extra alignment/isvolatile
6560arguments and the pointers can be in specified address spaces.
6561
6562Arguments:
6563""""""""""
6564
6565The first argument is a pointer to the destination, the second is a
6566pointer to the source. The third argument is an integer argument
6567specifying the number of bytes to copy, the fourth argument is the
6568alignment of the source and destination locations, and the fifth is a
6569boolean indicating a volatile access.
6570
6571If the call to this intrinsic has an alignment value that is not 0 or 1,
6572then the caller guarantees that the source and destination pointers are
6573aligned to that boundary.
6574
6575If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6576is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6577not very cleanly specified and it is unwise to depend on it.
6578
6579Semantics:
6580""""""""""
6581
6582The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6583source location to the destination location, which may overlap. It
6584copies "len" bytes of memory over. If the argument is known to be
6585aligned to some boundary, this can be specified as the fourth argument,
6586otherwise it should be set to 0 or 1.
6587
6588'``llvm.memset.*``' Intrinsics
6589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6590
6591Syntax:
6592"""""""
6593
6594This is an overloaded intrinsic. You can use llvm.memset on any integer
6595bit width and for different address spaces. However, not all targets
6596support all bit widths.
6597
6598::
6599
6600 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6601 i32 <len>, i32 <align>, i1 <isvolatile>)
6602 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6603 i64 <len>, i32 <align>, i1 <isvolatile>)
6604
6605Overview:
6606"""""""""
6607
6608The '``llvm.memset.*``' intrinsics fill a block of memory with a
6609particular byte value.
6610
6611Note that, unlike the standard libc function, the ``llvm.memset``
6612intrinsic does not return a value and takes extra alignment/volatile
6613arguments. Also, the destination can be in an arbitrary address space.
6614
6615Arguments:
6616""""""""""
6617
6618The first argument is a pointer to the destination to fill, the second
6619is the byte value with which to fill it, the third argument is an
6620integer argument specifying the number of bytes to fill, and the fourth
6621argument is the known alignment of the destination location.
6622
6623If the call to this intrinsic has an alignment value that is not 0 or 1,
6624then the caller guarantees that the destination pointer is aligned to
6625that boundary.
6626
6627If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6628a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6629very cleanly specified and it is unwise to depend on it.
6630
6631Semantics:
6632""""""""""
6633
6634The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6635at the destination location. If the argument is known to be aligned to
6636some boundary, this can be specified as the fourth argument, otherwise
6637it should be set to 0 or 1.
6638
6639'``llvm.sqrt.*``' Intrinsic
6640^^^^^^^^^^^^^^^^^^^^^^^^^^^
6641
6642Syntax:
6643"""""""
6644
6645This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6646floating point or vector of floating point type. Not all targets support
6647all types however.
6648
6649::
6650
6651 declare float @llvm.sqrt.f32(float %Val)
6652 declare double @llvm.sqrt.f64(double %Val)
6653 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6654 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6655 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6656
6657Overview:
6658"""""""""
6659
6660The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6661returning the same value as the libm '``sqrt``' functions would. Unlike
6662``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6663negative numbers other than -0.0 (which allows for better optimization,
6664because there is no need to worry about errno being set).
6665``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6666
6667Arguments:
6668""""""""""
6669
6670The argument and return value are floating point numbers of the same
6671type.
6672
6673Semantics:
6674""""""""""
6675
6676This function returns the sqrt of the specified operand if it is a
6677nonnegative floating point number.
6678
6679'``llvm.powi.*``' Intrinsic
6680^^^^^^^^^^^^^^^^^^^^^^^^^^^
6681
6682Syntax:
6683"""""""
6684
6685This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6686floating point or vector of floating point type. Not all targets support
6687all types however.
6688
6689::
6690
6691 declare float @llvm.powi.f32(float %Val, i32 %power)
6692 declare double @llvm.powi.f64(double %Val, i32 %power)
6693 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6694 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6695 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6696
6697Overview:
6698"""""""""
6699
6700The '``llvm.powi.*``' intrinsics return the first operand raised to the
6701specified (positive or negative) power. The order of evaluation of
6702multiplications is not defined. When a vector of floating point type is
6703used, the second argument remains a scalar integer value.
6704
6705Arguments:
6706""""""""""
6707
6708The second argument is an integer power, and the first is a value to
6709raise to that power.
6710
6711Semantics:
6712""""""""""
6713
6714This function returns the first value raised to the second power with an
6715unspecified sequence of rounding operations.
6716
6717'``llvm.sin.*``' Intrinsic
6718^^^^^^^^^^^^^^^^^^^^^^^^^^
6719
6720Syntax:
6721"""""""
6722
6723This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6724floating point or vector of floating point type. Not all targets support
6725all types however.
6726
6727::
6728
6729 declare float @llvm.sin.f32(float %Val)
6730 declare double @llvm.sin.f64(double %Val)
6731 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6732 declare fp128 @llvm.sin.f128(fp128 %Val)
6733 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6734
6735Overview:
6736"""""""""
6737
6738The '``llvm.sin.*``' intrinsics return the sine of the operand.
6739
6740Arguments:
6741""""""""""
6742
6743The argument and return value are floating point numbers of the same
6744type.
6745
6746Semantics:
6747""""""""""
6748
6749This function returns the sine of the specified operand, returning the
6750same values as the libm ``sin`` functions would, and handles error
6751conditions in the same way.
6752
6753'``llvm.cos.*``' Intrinsic
6754^^^^^^^^^^^^^^^^^^^^^^^^^^
6755
6756Syntax:
6757"""""""
6758
6759This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6760floating point or vector of floating point type. Not all targets support
6761all types however.
6762
6763::
6764
6765 declare float @llvm.cos.f32(float %Val)
6766 declare double @llvm.cos.f64(double %Val)
6767 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6768 declare fp128 @llvm.cos.f128(fp128 %Val)
6769 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6770
6771Overview:
6772"""""""""
6773
6774The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6775
6776Arguments:
6777""""""""""
6778
6779The argument and return value are floating point numbers of the same
6780type.
6781
6782Semantics:
6783""""""""""
6784
6785This function returns the cosine of the specified operand, returning the
6786same values as the libm ``cos`` functions would, and handles error
6787conditions in the same way.
6788
6789'``llvm.pow.*``' Intrinsic
6790^^^^^^^^^^^^^^^^^^^^^^^^^^
6791
6792Syntax:
6793"""""""
6794
6795This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6796floating point or vector of floating point type. Not all targets support
6797all types however.
6798
6799::
6800
6801 declare float @llvm.pow.f32(float %Val, float %Power)
6802 declare double @llvm.pow.f64(double %Val, double %Power)
6803 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6804 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6805 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6806
6807Overview:
6808"""""""""
6809
6810The '``llvm.pow.*``' intrinsics return the first operand raised to the
6811specified (positive or negative) power.
6812
6813Arguments:
6814""""""""""
6815
6816The second argument is a floating point power, and the first is a value
6817to raise to that power.
6818
6819Semantics:
6820""""""""""
6821
6822This function returns the first value raised to the second power,
6823returning the same values as the libm ``pow`` functions would, and
6824handles error conditions in the same way.
6825
6826'``llvm.exp.*``' Intrinsic
6827^^^^^^^^^^^^^^^^^^^^^^^^^^
6828
6829Syntax:
6830"""""""
6831
6832This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6833floating point or vector of floating point type. Not all targets support
6834all types however.
6835
6836::
6837
6838 declare float @llvm.exp.f32(float %Val)
6839 declare double @llvm.exp.f64(double %Val)
6840 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6841 declare fp128 @llvm.exp.f128(fp128 %Val)
6842 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6843
6844Overview:
6845"""""""""
6846
6847The '``llvm.exp.*``' intrinsics perform the exp function.
6848
6849Arguments:
6850""""""""""
6851
6852The argument and return value are floating point numbers of the same
6853type.
6854
6855Semantics:
6856""""""""""
6857
6858This function returns the same values as the libm ``exp`` functions
6859would, and handles error conditions in the same way.
6860
6861'``llvm.exp2.*``' Intrinsic
6862^^^^^^^^^^^^^^^^^^^^^^^^^^^
6863
6864Syntax:
6865"""""""
6866
6867This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6868floating point or vector of floating point type. Not all targets support
6869all types however.
6870
6871::
6872
6873 declare float @llvm.exp2.f32(float %Val)
6874 declare double @llvm.exp2.f64(double %Val)
6875 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6876 declare fp128 @llvm.exp2.f128(fp128 %Val)
6877 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6878
6879Overview:
6880"""""""""
6881
6882The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6883
6884Arguments:
6885""""""""""
6886
6887The argument and return value are floating point numbers of the same
6888type.
6889
6890Semantics:
6891""""""""""
6892
6893This function returns the same values as the libm ``exp2`` functions
6894would, and handles error conditions in the same way.
6895
6896'``llvm.log.*``' Intrinsic
6897^^^^^^^^^^^^^^^^^^^^^^^^^^
6898
6899Syntax:
6900"""""""
6901
6902This is an overloaded intrinsic. You can use ``llvm.log`` on any
6903floating point or vector of floating point type. Not all targets support
6904all types however.
6905
6906::
6907
6908 declare float @llvm.log.f32(float %Val)
6909 declare double @llvm.log.f64(double %Val)
6910 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6911 declare fp128 @llvm.log.f128(fp128 %Val)
6912 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6913
6914Overview:
6915"""""""""
6916
6917The '``llvm.log.*``' intrinsics perform the log function.
6918
6919Arguments:
6920""""""""""
6921
6922The argument and return value are floating point numbers of the same
6923type.
6924
6925Semantics:
6926""""""""""
6927
6928This function returns the same values as the libm ``log`` functions
6929would, and handles error conditions in the same way.
6930
6931'``llvm.log10.*``' Intrinsic
6932^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6933
6934Syntax:
6935"""""""
6936
6937This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6938floating point or vector of floating point type. Not all targets support
6939all types however.
6940
6941::
6942
6943 declare float @llvm.log10.f32(float %Val)
6944 declare double @llvm.log10.f64(double %Val)
6945 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6946 declare fp128 @llvm.log10.f128(fp128 %Val)
6947 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6948
6949Overview:
6950"""""""""
6951
6952The '``llvm.log10.*``' intrinsics perform the log10 function.
6953
6954Arguments:
6955""""""""""
6956
6957The argument and return value are floating point numbers of the same
6958type.
6959
6960Semantics:
6961""""""""""
6962
6963This function returns the same values as the libm ``log10`` functions
6964would, and handles error conditions in the same way.
6965
6966'``llvm.log2.*``' Intrinsic
6967^^^^^^^^^^^^^^^^^^^^^^^^^^^
6968
6969Syntax:
6970"""""""
6971
6972This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6973floating point or vector of floating point type. Not all targets support
6974all types however.
6975
6976::
6977
6978 declare float @llvm.log2.f32(float %Val)
6979 declare double @llvm.log2.f64(double %Val)
6980 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
6981 declare fp128 @llvm.log2.f128(fp128 %Val)
6982 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
6983
6984Overview:
6985"""""""""
6986
6987The '``llvm.log2.*``' intrinsics perform the log2 function.
6988
6989Arguments:
6990""""""""""
6991
6992The argument and return value are floating point numbers of the same
6993type.
6994
6995Semantics:
6996""""""""""
6997
6998This function returns the same values as the libm ``log2`` functions
6999would, and handles error conditions in the same way.
7000
7001'``llvm.fma.*``' Intrinsic
7002^^^^^^^^^^^^^^^^^^^^^^^^^^
7003
7004Syntax:
7005"""""""
7006
7007This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7008floating point or vector of floating point type. Not all targets support
7009all types however.
7010
7011::
7012
7013 declare float @llvm.fma.f32(float %a, float %b, float %c)
7014 declare double @llvm.fma.f64(double %a, double %b, double %c)
7015 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7016 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7017 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7018
7019Overview:
7020"""""""""
7021
7022The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7023operation.
7024
7025Arguments:
7026""""""""""
7027
7028The argument and return value are floating point numbers of the same
7029type.
7030
7031Semantics:
7032""""""""""
7033
7034This function returns the same values as the libm ``fma`` functions
7035would.
7036
7037'``llvm.fabs.*``' Intrinsic
7038^^^^^^^^^^^^^^^^^^^^^^^^^^^
7039
7040Syntax:
7041"""""""
7042
7043This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7044floating point or vector of floating point type. Not all targets support
7045all types however.
7046
7047::
7048
7049 declare float @llvm.fabs.f32(float %Val)
7050 declare double @llvm.fabs.f64(double %Val)
7051 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7052 declare fp128 @llvm.fabs.f128(fp128 %Val)
7053 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7054
7055Overview:
7056"""""""""
7057
7058The '``llvm.fabs.*``' intrinsics return the absolute value of the
7059operand.
7060
7061Arguments:
7062""""""""""
7063
7064The argument and return value are floating point numbers of the same
7065type.
7066
7067Semantics:
7068""""""""""
7069
7070This function returns the same values as the libm ``fabs`` functions
7071would, and handles error conditions in the same way.
7072
7073'``llvm.floor.*``' Intrinsic
7074^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7075
7076Syntax:
7077"""""""
7078
7079This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7080floating point or vector of floating point type. Not all targets support
7081all types however.
7082
7083::
7084
7085 declare float @llvm.floor.f32(float %Val)
7086 declare double @llvm.floor.f64(double %Val)
7087 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7088 declare fp128 @llvm.floor.f128(fp128 %Val)
7089 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7090
7091Overview:
7092"""""""""
7093
7094The '``llvm.floor.*``' intrinsics return the floor of the operand.
7095
7096Arguments:
7097""""""""""
7098
7099The argument and return value are floating point numbers of the same
7100type.
7101
7102Semantics:
7103""""""""""
7104
7105This function returns the same values as the libm ``floor`` functions
7106would, and handles error conditions in the same way.
7107
7108'``llvm.ceil.*``' Intrinsic
7109^^^^^^^^^^^^^^^^^^^^^^^^^^^
7110
7111Syntax:
7112"""""""
7113
7114This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7115floating point or vector of floating point type. Not all targets support
7116all types however.
7117
7118::
7119
7120 declare float @llvm.ceil.f32(float %Val)
7121 declare double @llvm.ceil.f64(double %Val)
7122 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7123 declare fp128 @llvm.ceil.f128(fp128 %Val)
7124 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7125
7126Overview:
7127"""""""""
7128
7129The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7130
7131Arguments:
7132""""""""""
7133
7134The argument and return value are floating point numbers of the same
7135type.
7136
7137Semantics:
7138""""""""""
7139
7140This function returns the same values as the libm ``ceil`` functions
7141would, and handles error conditions in the same way.
7142
7143'``llvm.trunc.*``' Intrinsic
7144^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7145
7146Syntax:
7147"""""""
7148
7149This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7150floating point or vector of floating point type. Not all targets support
7151all types however.
7152
7153::
7154
7155 declare float @llvm.trunc.f32(float %Val)
7156 declare double @llvm.trunc.f64(double %Val)
7157 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7158 declare fp128 @llvm.trunc.f128(fp128 %Val)
7159 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7160
7161Overview:
7162"""""""""
7163
7164The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7165nearest integer not larger in magnitude than the operand.
7166
7167Arguments:
7168""""""""""
7169
7170The argument and return value are floating point numbers of the same
7171type.
7172
7173Semantics:
7174""""""""""
7175
7176This function returns the same values as the libm ``trunc`` functions
7177would, and handles error conditions in the same way.
7178
7179'``llvm.rint.*``' Intrinsic
7180^^^^^^^^^^^^^^^^^^^^^^^^^^^
7181
7182Syntax:
7183"""""""
7184
7185This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7186floating point or vector of floating point type. Not all targets support
7187all types however.
7188
7189::
7190
7191 declare float @llvm.rint.f32(float %Val)
7192 declare double @llvm.rint.f64(double %Val)
7193 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7194 declare fp128 @llvm.rint.f128(fp128 %Val)
7195 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7196
7197Overview:
7198"""""""""
7199
7200The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7201nearest integer. It may raise an inexact floating-point exception if the
7202operand isn't an integer.
7203
7204Arguments:
7205""""""""""
7206
7207The argument and return value are floating point numbers of the same
7208type.
7209
7210Semantics:
7211""""""""""
7212
7213This function returns the same values as the libm ``rint`` functions
7214would, and handles error conditions in the same way.
7215
7216'``llvm.nearbyint.*``' Intrinsic
7217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7218
7219Syntax:
7220"""""""
7221
7222This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7223floating point or vector of floating point type. Not all targets support
7224all types however.
7225
7226::
7227
7228 declare float @llvm.nearbyint.f32(float %Val)
7229 declare double @llvm.nearbyint.f64(double %Val)
7230 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7231 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7232 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7233
7234Overview:
7235"""""""""
7236
7237The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7238nearest integer.
7239
7240Arguments:
7241""""""""""
7242
7243The argument and return value are floating point numbers of the same
7244type.
7245
7246Semantics:
7247""""""""""
7248
7249This function returns the same values as the libm ``nearbyint``
7250functions would, and handles error conditions in the same way.
7251
7252Bit Manipulation Intrinsics
7253---------------------------
7254
7255LLVM provides intrinsics for a few important bit manipulation
7256operations. These allow efficient code generation for some algorithms.
7257
7258'``llvm.bswap.*``' Intrinsics
7259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7260
7261Syntax:
7262"""""""
7263
7264This is an overloaded intrinsic function. You can use bswap on any
7265integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7266
7267::
7268
7269 declare i16 @llvm.bswap.i16(i16 <id>)
7270 declare i32 @llvm.bswap.i32(i32 <id>)
7271 declare i64 @llvm.bswap.i64(i64 <id>)
7272
7273Overview:
7274"""""""""
7275
7276The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7277values with an even number of bytes (positive multiple of 16 bits).
7278These are useful for performing operations on data that is not in the
7279target's native byte order.
7280
7281Semantics:
7282""""""""""
7283
7284The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7285and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7286intrinsic returns an i32 value that has the four bytes of the input i32
7287swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7288returned i32 will have its bytes in 3, 2, 1, 0 order. The
7289``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7290concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7291respectively).
7292
7293'``llvm.ctpop.*``' Intrinsic
7294^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7295
7296Syntax:
7297"""""""
7298
7299This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7300bit width, or on any vector with integer elements. Not all targets
7301support all bit widths or vector types, however.
7302
7303::
7304
7305 declare i8 @llvm.ctpop.i8(i8 <src>)
7306 declare i16 @llvm.ctpop.i16(i16 <src>)
7307 declare i32 @llvm.ctpop.i32(i32 <src>)
7308 declare i64 @llvm.ctpop.i64(i64 <src>)
7309 declare i256 @llvm.ctpop.i256(i256 <src>)
7310 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7311
7312Overview:
7313"""""""""
7314
7315The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7316in a value.
7317
7318Arguments:
7319""""""""""
7320
7321The only argument is the value to be counted. The argument may be of any
7322integer type, or a vector with integer elements. The return type must
7323match the argument type.
7324
7325Semantics:
7326""""""""""
7327
7328The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7329each element of a vector.
7330
7331'``llvm.ctlz.*``' Intrinsic
7332^^^^^^^^^^^^^^^^^^^^^^^^^^^
7333
7334Syntax:
7335"""""""
7336
7337This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7338integer bit width, or any vector whose elements are integers. Not all
7339targets support all bit widths or vector types, however.
7340
7341::
7342
7343 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7344 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7345 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7346 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7347 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7348 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7349
7350Overview:
7351"""""""""
7352
7353The '``llvm.ctlz``' family of intrinsic functions counts the number of
7354leading zeros in a variable.
7355
7356Arguments:
7357""""""""""
7358
7359The first argument is the value to be counted. This argument may be of
7360any integer type, or a vectory with integer element type. The return
7361type must match the first argument type.
7362
7363The second argument must be a constant and is a flag to indicate whether
7364the intrinsic should ensure that a zero as the first argument produces a
7365defined result. Historically some architectures did not provide a
7366defined result for zero values as efficiently, and many algorithms are
7367now predicated on avoiding zero-value inputs.
7368
7369Semantics:
7370""""""""""
7371
7372The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7373zeros in a variable, or within each element of the vector. If
7374``src == 0`` then the result is the size in bits of the type of ``src``
7375if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7376``llvm.ctlz(i32 2) = 30``.
7377
7378'``llvm.cttz.*``' Intrinsic
7379^^^^^^^^^^^^^^^^^^^^^^^^^^^
7380
7381Syntax:
7382"""""""
7383
7384This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7385integer bit width, or any vector of integer elements. Not all targets
7386support all bit widths or vector types, however.
7387
7388::
7389
7390 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7391 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7392 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7393 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7394 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7395 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7396
7397Overview:
7398"""""""""
7399
7400The '``llvm.cttz``' family of intrinsic functions counts the number of
7401trailing zeros.
7402
7403Arguments:
7404""""""""""
7405
7406The first argument is the value to be counted. This argument may be of
7407any integer type, or a vectory with integer element type. The return
7408type must match the first argument type.
7409
7410The second argument must be a constant and is a flag to indicate whether
7411the intrinsic should ensure that a zero as the first argument produces a
7412defined result. Historically some architectures did not provide a
7413defined result for zero values as efficiently, and many algorithms are
7414now predicated on avoiding zero-value inputs.
7415
7416Semantics:
7417""""""""""
7418
7419The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7420zeros in a variable, or within each element of a vector. If ``src == 0``
7421then the result is the size in bits of the type of ``src`` if
7422``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7423``llvm.cttz(2) = 1``.
7424
7425Arithmetic with Overflow Intrinsics
7426-----------------------------------
7427
7428LLVM provides intrinsics for some arithmetic with overflow operations.
7429
7430'``llvm.sadd.with.overflow.*``' Intrinsics
7431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7432
7433Syntax:
7434"""""""
7435
7436This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7437on any integer bit width.
7438
7439::
7440
7441 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7442 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7443 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7444
7445Overview:
7446"""""""""
7447
7448The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7449a signed addition of the two arguments, and indicate whether an overflow
7450occurred during the signed summation.
7451
7452Arguments:
7453""""""""""
7454
7455The arguments (%a and %b) and the first element of the result structure
7456may be of integer types of any bit width, but they must have the same
7457bit width. The second element of the result structure must be of type
7458``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7459addition.
7460
7461Semantics:
7462""""""""""
7463
7464The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007465a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007466first element of which is the signed summation, and the second element
7467of which is a bit specifying if the signed summation resulted in an
7468overflow.
7469
7470Examples:
7471"""""""""
7472
7473.. code-block:: llvm
7474
7475 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7476 %sum = extractvalue {i32, i1} %res, 0
7477 %obit = extractvalue {i32, i1} %res, 1
7478 br i1 %obit, label %overflow, label %normal
7479
7480'``llvm.uadd.with.overflow.*``' Intrinsics
7481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7482
7483Syntax:
7484"""""""
7485
7486This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7487on any integer bit width.
7488
7489::
7490
7491 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7492 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7493 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7494
7495Overview:
7496"""""""""
7497
7498The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7499an unsigned addition of the two arguments, and indicate whether a carry
7500occurred during the unsigned summation.
7501
7502Arguments:
7503""""""""""
7504
7505The arguments (%a and %b) and the first element of the result structure
7506may be of integer types of any bit width, but they must have the same
7507bit width. The second element of the result structure must be of type
7508``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7509addition.
7510
7511Semantics:
7512""""""""""
7513
7514The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007515an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007516first element of which is the sum, and the second element of which is a
7517bit specifying if the unsigned summation resulted in a carry.
7518
7519Examples:
7520"""""""""
7521
7522.. code-block:: llvm
7523
7524 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7525 %sum = extractvalue {i32, i1} %res, 0
7526 %obit = extractvalue {i32, i1} %res, 1
7527 br i1 %obit, label %carry, label %normal
7528
7529'``llvm.ssub.with.overflow.*``' Intrinsics
7530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7531
7532Syntax:
7533"""""""
7534
7535This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7536on any integer bit width.
7537
7538::
7539
7540 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7541 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7542 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7543
7544Overview:
7545"""""""""
7546
7547The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7548a signed subtraction of the two arguments, and indicate whether an
7549overflow occurred during the signed subtraction.
7550
7551Arguments:
7552""""""""""
7553
7554The arguments (%a and %b) and the first element of the result structure
7555may be of integer types of any bit width, but they must have the same
7556bit width. The second element of the result structure must be of type
7557``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7558subtraction.
7559
7560Semantics:
7561""""""""""
7562
7563The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007564a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007565first element of which is the subtraction, and the second element of
7566which is a bit specifying if the signed subtraction resulted in an
7567overflow.
7568
7569Examples:
7570"""""""""
7571
7572.. code-block:: llvm
7573
7574 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7575 %sum = extractvalue {i32, i1} %res, 0
7576 %obit = extractvalue {i32, i1} %res, 1
7577 br i1 %obit, label %overflow, label %normal
7578
7579'``llvm.usub.with.overflow.*``' Intrinsics
7580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7581
7582Syntax:
7583"""""""
7584
7585This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7586on any integer bit width.
7587
7588::
7589
7590 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7591 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7592 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7593
7594Overview:
7595"""""""""
7596
7597The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7598an unsigned subtraction of the two arguments, and indicate whether an
7599overflow occurred during the unsigned subtraction.
7600
7601Arguments:
7602""""""""""
7603
7604The arguments (%a and %b) and the first element of the result structure
7605may be of integer types of any bit width, but they must have the same
7606bit width. The second element of the result structure must be of type
7607``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7608subtraction.
7609
7610Semantics:
7611""""""""""
7612
7613The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007614an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007615the first element of which is the subtraction, and the second element of
7616which is a bit specifying if the unsigned subtraction resulted in an
7617overflow.
7618
7619Examples:
7620"""""""""
7621
7622.. code-block:: llvm
7623
7624 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7625 %sum = extractvalue {i32, i1} %res, 0
7626 %obit = extractvalue {i32, i1} %res, 1
7627 br i1 %obit, label %overflow, label %normal
7628
7629'``llvm.smul.with.overflow.*``' Intrinsics
7630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7631
7632Syntax:
7633"""""""
7634
7635This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7636on any integer bit width.
7637
7638::
7639
7640 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7641 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7642 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7643
7644Overview:
7645"""""""""
7646
7647The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7648a signed multiplication of the two arguments, and indicate whether an
7649overflow occurred during the signed multiplication.
7650
7651Arguments:
7652""""""""""
7653
7654The arguments (%a and %b) and the first element of the result structure
7655may be of integer types of any bit width, but they must have the same
7656bit width. The second element of the result structure must be of type
7657``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7658multiplication.
7659
7660Semantics:
7661""""""""""
7662
7663The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007664a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007665the first element of which is the multiplication, and the second element
7666of which is a bit specifying if the signed multiplication resulted in an
7667overflow.
7668
7669Examples:
7670"""""""""
7671
7672.. code-block:: llvm
7673
7674 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7675 %sum = extractvalue {i32, i1} %res, 0
7676 %obit = extractvalue {i32, i1} %res, 1
7677 br i1 %obit, label %overflow, label %normal
7678
7679'``llvm.umul.with.overflow.*``' Intrinsics
7680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7681
7682Syntax:
7683"""""""
7684
7685This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7686on any integer bit width.
7687
7688::
7689
7690 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7691 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7692 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7693
7694Overview:
7695"""""""""
7696
7697The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7698a unsigned multiplication of the two arguments, and indicate whether an
7699overflow occurred during the unsigned multiplication.
7700
7701Arguments:
7702""""""""""
7703
7704The arguments (%a and %b) and the first element of the result structure
7705may be of integer types of any bit width, but they must have the same
7706bit width. The second element of the result structure must be of type
7707``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7708multiplication.
7709
7710Semantics:
7711""""""""""
7712
7713The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007714an unsigned multiplication of the two arguments. They return a structure ---
7715the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00007716element of which is a bit specifying if the unsigned multiplication
7717resulted in an overflow.
7718
7719Examples:
7720"""""""""
7721
7722.. code-block:: llvm
7723
7724 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7725 %sum = extractvalue {i32, i1} %res, 0
7726 %obit = extractvalue {i32, i1} %res, 1
7727 br i1 %obit, label %overflow, label %normal
7728
7729Specialised Arithmetic Intrinsics
7730---------------------------------
7731
7732'``llvm.fmuladd.*``' Intrinsic
7733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7734
7735Syntax:
7736"""""""
7737
7738::
7739
7740 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7741 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7742
7743Overview:
7744"""""""""
7745
7746The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00007747expressions that can be fused if the code generator determines that (a) the
7748target instruction set has support for a fused operation, and (b) that the
7749fused operation is more efficient than the equivalent, separate pair of mul
7750and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00007751
7752Arguments:
7753""""""""""
7754
7755The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7756multiplicands, a and b, and an addend c.
7757
7758Semantics:
7759""""""""""
7760
7761The expression:
7762
7763::
7764
7765 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7766
7767is equivalent to the expression a \* b + c, except that rounding will
7768not be performed between the multiplication and addition steps if the
7769code generator fuses the operations. Fusion is not guaranteed, even if
7770the target platform supports it. If a fused multiply-add is required the
7771corresponding llvm.fma.\* intrinsic function should be used instead.
7772
7773Examples:
7774"""""""""
7775
7776.. code-block:: llvm
7777
7778 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7779
7780Half Precision Floating Point Intrinsics
7781----------------------------------------
7782
7783For most target platforms, half precision floating point is a
7784storage-only format. This means that it is a dense encoding (in memory)
7785but does not support computation in the format.
7786
7787This means that code must first load the half-precision floating point
7788value as an i16, then convert it to float with
7789:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7790then be performed on the float value (including extending to double
7791etc). To store the value back to memory, it is first converted to float
7792if needed, then converted to i16 with
7793:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7794i16 value.
7795
7796.. _int_convert_to_fp16:
7797
7798'``llvm.convert.to.fp16``' Intrinsic
7799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7800
7801Syntax:
7802"""""""
7803
7804::
7805
7806 declare i16 @llvm.convert.to.fp16(f32 %a)
7807
7808Overview:
7809"""""""""
7810
7811The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7812from single precision floating point format to half precision floating
7813point format.
7814
7815Arguments:
7816""""""""""
7817
7818The intrinsic function contains single argument - the value to be
7819converted.
7820
7821Semantics:
7822""""""""""
7823
7824The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7825from single precision floating point format to half precision floating
7826point format. The return value is an ``i16`` which contains the
7827converted number.
7828
7829Examples:
7830"""""""""
7831
7832.. code-block:: llvm
7833
7834 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7835 store i16 %res, i16* @x, align 2
7836
7837.. _int_convert_from_fp16:
7838
7839'``llvm.convert.from.fp16``' Intrinsic
7840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7841
7842Syntax:
7843"""""""
7844
7845::
7846
7847 declare f32 @llvm.convert.from.fp16(i16 %a)
7848
7849Overview:
7850"""""""""
7851
7852The '``llvm.convert.from.fp16``' intrinsic function performs a
7853conversion from half precision floating point format to single precision
7854floating point format.
7855
7856Arguments:
7857""""""""""
7858
7859The intrinsic function contains single argument - the value to be
7860converted.
7861
7862Semantics:
7863""""""""""
7864
7865The '``llvm.convert.from.fp16``' intrinsic function performs a
7866conversion from half single precision floating point format to single
7867precision floating point format. The input half-float value is
7868represented by an ``i16`` value.
7869
7870Examples:
7871"""""""""
7872
7873.. code-block:: llvm
7874
7875 %a = load i16* @x, align 2
7876 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7877
7878Debugger Intrinsics
7879-------------------
7880
7881The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7882prefix), are described in the `LLVM Source Level
7883Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7884document.
7885
7886Exception Handling Intrinsics
7887-----------------------------
7888
7889The LLVM exception handling intrinsics (which all start with
7890``llvm.eh.`` prefix), are described in the `LLVM Exception
7891Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7892
7893.. _int_trampoline:
7894
7895Trampoline Intrinsics
7896---------------------
7897
7898These intrinsics make it possible to excise one parameter, marked with
7899the :ref:`nest <nest>` attribute, from a function. The result is a
7900callable function pointer lacking the nest parameter - the caller does
7901not need to provide a value for it. Instead, the value to use is stored
7902in advance in a "trampoline", a block of memory usually allocated on the
7903stack, which also contains code to splice the nest value into the
7904argument list. This is used to implement the GCC nested function address
7905extension.
7906
7907For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7908then the resulting function pointer has signature ``i32 (i32, i32)*``.
7909It can be created as follows:
7910
7911.. code-block:: llvm
7912
7913 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7914 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7915 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7916 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7917 %fp = bitcast i8* %p to i32 (i32, i32)*
7918
7919The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7920``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7921
7922.. _int_it:
7923
7924'``llvm.init.trampoline``' Intrinsic
7925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930::
7931
7932 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7933
7934Overview:
7935"""""""""
7936
7937This fills the memory pointed to by ``tramp`` with executable code,
7938turning it into a trampoline.
7939
7940Arguments:
7941""""""""""
7942
7943The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7944pointers. The ``tramp`` argument must point to a sufficiently large and
7945sufficiently aligned block of memory; this memory is written to by the
7946intrinsic. Note that the size and the alignment are target-specific -
7947LLVM currently provides no portable way of determining them, so a
7948front-end that generates this intrinsic needs to have some
7949target-specific knowledge. The ``func`` argument must hold a function
7950bitcast to an ``i8*``.
7951
7952Semantics:
7953""""""""""
7954
7955The block of memory pointed to by ``tramp`` is filled with target
7956dependent code, turning it into a function. Then ``tramp`` needs to be
7957passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7958be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7959function's signature is the same as that of ``func`` with any arguments
7960marked with the ``nest`` attribute removed. At most one such ``nest``
7961argument is allowed, and it must be of pointer type. Calling the new
7962function is equivalent to calling ``func`` with the same argument list,
7963but with ``nval`` used for the missing ``nest`` argument. If, after
7964calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7965modified, then the effect of any later call to the returned function
7966pointer is undefined.
7967
7968.. _int_at:
7969
7970'``llvm.adjust.trampoline``' Intrinsic
7971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7972
7973Syntax:
7974"""""""
7975
7976::
7977
7978 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7979
7980Overview:
7981"""""""""
7982
7983This performs any required machine-specific adjustment to the address of
7984a trampoline (passed as ``tramp``).
7985
7986Arguments:
7987""""""""""
7988
7989``tramp`` must point to a block of memory which already has trampoline
7990code filled in by a previous call to
7991:ref:`llvm.init.trampoline <int_it>`.
7992
7993Semantics:
7994""""""""""
7995
7996On some architectures the address of the code to be executed needs to be
7997different to the address where the trampoline is actually stored. This
7998intrinsic returns the executable address corresponding to ``tramp``
7999after performing the required machine specific adjustments. The pointer
8000returned can then be :ref:`bitcast and executed <int_trampoline>`.
8001
8002Memory Use Markers
8003------------------
8004
8005This class of intrinsics exists to information about the lifetime of
8006memory objects and ranges where variables are immutable.
8007
8008'``llvm.lifetime.start``' Intrinsic
8009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8010
8011Syntax:
8012"""""""
8013
8014::
8015
8016 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8017
8018Overview:
8019"""""""""
8020
8021The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8022object's lifetime.
8023
8024Arguments:
8025""""""""""
8026
8027The first argument is a constant integer representing the size of the
8028object, or -1 if it is variable sized. The second argument is a pointer
8029to the object.
8030
8031Semantics:
8032""""""""""
8033
8034This intrinsic indicates that before this point in the code, the value
8035of the memory pointed to by ``ptr`` is dead. This means that it is known
8036to never be used and has an undefined value. A load from the pointer
8037that precedes this intrinsic can be replaced with ``'undef'``.
8038
8039'``llvm.lifetime.end``' Intrinsic
8040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8041
8042Syntax:
8043"""""""
8044
8045::
8046
8047 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8048
8049Overview:
8050"""""""""
8051
8052The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8053object's lifetime.
8054
8055Arguments:
8056""""""""""
8057
8058The first argument is a constant integer representing the size of the
8059object, or -1 if it is variable sized. The second argument is a pointer
8060to the object.
8061
8062Semantics:
8063""""""""""
8064
8065This intrinsic indicates that after this point in the code, the value of
8066the memory pointed to by ``ptr`` is dead. This means that it is known to
8067never be used and has an undefined value. Any stores into the memory
8068object following this intrinsic may be removed as dead.
8069
8070'``llvm.invariant.start``' Intrinsic
8071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8072
8073Syntax:
8074"""""""
8075
8076::
8077
8078 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8079
8080Overview:
8081"""""""""
8082
8083The '``llvm.invariant.start``' intrinsic specifies that the contents of
8084a memory object will not change.
8085
8086Arguments:
8087""""""""""
8088
8089The first argument is a constant integer representing the size of the
8090object, or -1 if it is variable sized. The second argument is a pointer
8091to the object.
8092
8093Semantics:
8094""""""""""
8095
8096This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8097the return value, the referenced memory location is constant and
8098unchanging.
8099
8100'``llvm.invariant.end``' Intrinsic
8101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8102
8103Syntax:
8104"""""""
8105
8106::
8107
8108 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8109
8110Overview:
8111"""""""""
8112
8113The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8114memory object are mutable.
8115
8116Arguments:
8117""""""""""
8118
8119The first argument is the matching ``llvm.invariant.start`` intrinsic.
8120The second argument is a constant integer representing the size of the
8121object, or -1 if it is variable sized and the third argument is a
8122pointer to the object.
8123
8124Semantics:
8125""""""""""
8126
8127This intrinsic indicates that the memory is mutable again.
8128
8129General Intrinsics
8130------------------
8131
8132This class of intrinsics is designed to be generic and has no specific
8133purpose.
8134
8135'``llvm.var.annotation``' Intrinsic
8136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8137
8138Syntax:
8139"""""""
8140
8141::
8142
8143 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8144
8145Overview:
8146"""""""""
8147
8148The '``llvm.var.annotation``' intrinsic.
8149
8150Arguments:
8151""""""""""
8152
8153The first argument is a pointer to a value, the second is a pointer to a
8154global string, the third is a pointer to a global string which is the
8155source file name, and the last argument is the line number.
8156
8157Semantics:
8158""""""""""
8159
8160This intrinsic allows annotation of local variables with arbitrary
8161strings. This can be useful for special purpose optimizations that want
8162to look for these annotations. These have no other defined use; they are
8163ignored by code generation and optimization.
8164
8165'``llvm.annotation.*``' Intrinsic
8166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8167
8168Syntax:
8169"""""""
8170
8171This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8172any integer bit width.
8173
8174::
8175
8176 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8177 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8178 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8179 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8180 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8181
8182Overview:
8183"""""""""
8184
8185The '``llvm.annotation``' intrinsic.
8186
8187Arguments:
8188""""""""""
8189
8190The first argument is an integer value (result of some expression), the
8191second is a pointer to a global string, the third is a pointer to a
8192global string which is the source file name, and the last argument is
8193the line number. It returns the value of the first argument.
8194
8195Semantics:
8196""""""""""
8197
8198This intrinsic allows annotations to be put on arbitrary expressions
8199with arbitrary strings. This can be useful for special purpose
8200optimizations that want to look for these annotations. These have no
8201other defined use; they are ignored by code generation and optimization.
8202
8203'``llvm.trap``' Intrinsic
8204^^^^^^^^^^^^^^^^^^^^^^^^^
8205
8206Syntax:
8207"""""""
8208
8209::
8210
8211 declare void @llvm.trap() noreturn nounwind
8212
8213Overview:
8214"""""""""
8215
8216The '``llvm.trap``' intrinsic.
8217
8218Arguments:
8219""""""""""
8220
8221None.
8222
8223Semantics:
8224""""""""""
8225
8226This intrinsic is lowered to the target dependent trap instruction. If
8227the target does not have a trap instruction, this intrinsic will be
8228lowered to a call of the ``abort()`` function.
8229
8230'``llvm.debugtrap``' Intrinsic
8231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8232
8233Syntax:
8234"""""""
8235
8236::
8237
8238 declare void @llvm.debugtrap() nounwind
8239
8240Overview:
8241"""""""""
8242
8243The '``llvm.debugtrap``' intrinsic.
8244
8245Arguments:
8246""""""""""
8247
8248None.
8249
8250Semantics:
8251""""""""""
8252
8253This intrinsic is lowered to code which is intended to cause an
8254execution trap with the intention of requesting the attention of a
8255debugger.
8256
8257'``llvm.stackprotector``' Intrinsic
8258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
8265 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8266
8267Overview:
8268"""""""""
8269
8270The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8271onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8272is placed on the stack before local variables.
8273
8274Arguments:
8275""""""""""
8276
8277The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8278The first argument is the value loaded from the stack guard
8279``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8280enough space to hold the value of the guard.
8281
8282Semantics:
8283""""""""""
8284
8285This intrinsic causes the prologue/epilogue inserter to force the
8286position of the ``AllocaInst`` stack slot to be before local variables
8287on the stack. This is to ensure that if a local variable on the stack is
8288overwritten, it will destroy the value of the guard. When the function
8289exits, the guard on the stack is checked against the original guard. If
8290they are different, then the program aborts by calling the
8291``__stack_chk_fail()`` function.
8292
8293'``llvm.objectsize``' Intrinsic
8294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8295
8296Syntax:
8297"""""""
8298
8299::
8300
8301 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8302 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8303
8304Overview:
8305"""""""""
8306
8307The ``llvm.objectsize`` intrinsic is designed to provide information to
8308the optimizers to determine at compile time whether a) an operation
8309(like memcpy) will overflow a buffer that corresponds to an object, or
8310b) that a runtime check for overflow isn't necessary. An object in this
8311context means an allocation of a specific class, structure, array, or
8312other object.
8313
8314Arguments:
8315""""""""""
8316
8317The ``llvm.objectsize`` intrinsic takes two arguments. The first
8318argument is a pointer to or into the ``object``. The second argument is
8319a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8320or -1 (if false) when the object size is unknown. The second argument
8321only accepts constants.
8322
8323Semantics:
8324""""""""""
8325
8326The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8327the size of the object concerned. If the size cannot be determined at
8328compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8329on the ``min`` argument).
8330
8331'``llvm.expect``' Intrinsic
8332^^^^^^^^^^^^^^^^^^^^^^^^^^^
8333
8334Syntax:
8335"""""""
8336
8337::
8338
8339 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8340 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8341
8342Overview:
8343"""""""""
8344
8345The ``llvm.expect`` intrinsic provides information about expected (the
8346most probable) value of ``val``, which can be used by optimizers.
8347
8348Arguments:
8349""""""""""
8350
8351The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8352a value. The second argument is an expected value, this needs to be a
8353constant value, variables are not allowed.
8354
8355Semantics:
8356""""""""""
8357
8358This intrinsic is lowered to the ``val``.
8359
8360'``llvm.donothing``' Intrinsic
8361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8362
8363Syntax:
8364"""""""
8365
8366::
8367
8368 declare void @llvm.donothing() nounwind readnone
8369
8370Overview:
8371"""""""""
8372
8373The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8374only intrinsic that can be called with an invoke instruction.
8375
8376Arguments:
8377""""""""""
8378
8379None.
8380
8381Semantics:
8382""""""""""
8383
8384This intrinsic does nothing, and it's removed by optimizers and ignored
8385by codegen.