blob: 5c1b4a83c30e10991dce1adba2ceac4decba0741 [file] [log] [blame]
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
Ayal Zaks1f58dda2017-08-27 12:55:46 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Eugene Zelenko6cadde72017-10-17 21:27:42 +00009//
Ayal Zaks1f58dda2017-08-27 12:55:46 +000010/// \file
11/// This file contains the declarations of the Vectorization Plan base classes:
12/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
13/// VPBlockBase, together implementing a Hierarchical CFG;
14/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
15/// treated as proper graphs for generic algorithms;
16/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
17/// within VPBasicBlocks;
Gil Rapaport8b9d1f32017-11-20 12:01:47 +000018/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
19/// instruction;
20/// 5. The VPlan class holding a candidate for vectorization;
21/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000022/// These are documented in docs/VectorizationPlan.rst.
Eugene Zelenko6cadde72017-10-17 21:27:42 +000023//
Ayal Zaks1f58dda2017-08-27 12:55:46 +000024//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28
Diego Caballero35871502018-07-31 01:57:29 +000029#include "VPlanLoopInfo.h"
Gil Rapaport8b9d1f32017-11-20 12:01:47 +000030#include "VPlanValue.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000031#include "llvm/ADT/DenseMap.h"
Diego Caballero2a34ac82018-07-30 21:33:31 +000032#include "llvm/ADT/DepthFirstIterator.h"
Ayal Zaks1f58dda2017-08-27 12:55:46 +000033#include "llvm/ADT/GraphTraits.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000034#include "llvm/ADT/Optional.h"
Florian Hahna1cc8482018-06-12 11:16:56 +000035#include "llvm/ADT/SmallPtrSet.h"
Ayal Zaks1f58dda2017-08-27 12:55:46 +000036#include "llvm/ADT/SmallSet.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000037#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Twine.h"
Ayal Zaks1f58dda2017-08-27 12:55:46 +000039#include "llvm/ADT/ilist.h"
40#include "llvm/ADT/ilist_node.h"
Florian Hahna4dc7fe2018-11-13 15:58:18 +000041#include "llvm/Analysis/VectorUtils.h"
Ayal Zaks1f58dda2017-08-27 12:55:46 +000042#include "llvm/IR/IRBuilder.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000043#include <algorithm>
44#include <cassert>
45#include <cstddef>
46#include <map>
47#include <string>
Ayal Zaks1f58dda2017-08-27 12:55:46 +000048
49namespace llvm {
50
Hal Finkel0f1314c2018-01-07 16:02:58 +000051class LoopVectorizationLegality;
52class LoopVectorizationCostModel;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000053class BasicBlock;
Eugene Zelenko6cadde72017-10-17 21:27:42 +000054class DominatorTree;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000055class InnerLoopVectorizer;
Florian Hahna4dc7fe2018-11-13 15:58:18 +000056template <class T> class InterleaveGroup;
57class LoopInfo;
Eugene Zelenko6cadde72017-10-17 21:27:42 +000058class raw_ostream;
59class Value;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000060class VPBasicBlock;
Eugene Zelenko6cadde72017-10-17 21:27:42 +000061class VPRegionBlock;
Florian Hahn45e5d5b2018-06-08 17:30:45 +000062class VPlan;
Florian Hahn09e516c2018-11-14 13:11:49 +000063class VPlanSlp;
Florian Hahn45e5d5b2018-06-08 17:30:45 +000064
65/// A range of powers-of-2 vectorization factors with fixed start and
66/// adjustable end. The range includes start and excludes end, e.g.,:
67/// [1, 9) = {1, 2, 4, 8}
68struct VFRange {
69 // A power of 2.
70 const unsigned Start;
71
72 // Need not be a power of 2. If End <= Start range is empty.
73 unsigned End;
74};
75
76using VPlanPtr = std::unique_ptr<VPlan>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000077
78/// In what follows, the term "input IR" refers to code that is fed into the
79/// vectorizer whereas the term "output IR" refers to code that is generated by
80/// the vectorizer.
81
82/// VPIteration represents a single point in the iteration space of the output
83/// (vectorized and/or unrolled) IR loop.
84struct VPIteration {
Eugene Zelenko6cadde72017-10-17 21:27:42 +000085 /// in [0..UF)
86 unsigned Part;
87
88 /// in [0..VF)
89 unsigned Lane;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000090};
91
92/// This is a helper struct for maintaining vectorization state. It's used for
93/// mapping values from the original loop to their corresponding values in
94/// the new loop. Two mappings are maintained: one for vectorized values and
95/// one for scalarized values. Vectorized values are represented with UF
96/// vector values in the new loop, and scalarized values are represented with
97/// UF x VF scalar values in the new loop. UF and VF are the unroll and
98/// vectorization factors, respectively.
99///
100/// Entries can be added to either map with setVectorValue and setScalarValue,
101/// which assert that an entry was not already added before. If an entry is to
102/// replace an existing one, call resetVectorValue and resetScalarValue. This is
103/// currently needed to modify the mapped values during "fix-up" operations that
104/// occur once the first phase of widening is complete. These operations include
105/// type truncation and the second phase of recurrence widening.
106///
107/// Entries from either map can be retrieved using the getVectorValue and
108/// getScalarValue functions, which assert that the desired value exists.
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000109struct VectorizerValueMap {
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000110 friend struct VPTransformState;
111
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000112private:
113 /// The unroll factor. Each entry in the vector map contains UF vector values.
114 unsigned UF;
115
116 /// The vectorization factor. Each entry in the scalar map contains UF x VF
117 /// scalar values.
118 unsigned VF;
119
120 /// The vector and scalar map storage. We use std::map and not DenseMap
121 /// because insertions to DenseMap invalidate its iterators.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000122 using VectorParts = SmallVector<Value *, 2>;
123 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000124 std::map<Value *, VectorParts> VectorMapStorage;
125 std::map<Value *, ScalarParts> ScalarMapStorage;
126
127public:
128 /// Construct an empty map with the given unroll and vectorization factors.
129 VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
130
131 /// \return True if the map has any vector entry for \p Key.
132 bool hasAnyVectorValue(Value *Key) const {
133 return VectorMapStorage.count(Key);
134 }
135
136 /// \return True if the map has a vector entry for \p Key and \p Part.
137 bool hasVectorValue(Value *Key, unsigned Part) const {
138 assert(Part < UF && "Queried Vector Part is too large.");
139 if (!hasAnyVectorValue(Key))
140 return false;
141 const VectorParts &Entry = VectorMapStorage.find(Key)->second;
142 assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
143 return Entry[Part] != nullptr;
144 }
145
146 /// \return True if the map has any scalar entry for \p Key.
147 bool hasAnyScalarValue(Value *Key) const {
148 return ScalarMapStorage.count(Key);
149 }
150
151 /// \return True if the map has a scalar entry for \p Key and \p Instance.
152 bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
153 assert(Instance.Part < UF && "Queried Scalar Part is too large.");
154 assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
155 if (!hasAnyScalarValue(Key))
156 return false;
157 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
158 assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
159 assert(Entry[Instance.Part].size() == VF &&
160 "ScalarParts has wrong dimensions.");
161 return Entry[Instance.Part][Instance.Lane] != nullptr;
162 }
163
164 /// Retrieve the existing vector value that corresponds to \p Key and
165 /// \p Part.
166 Value *getVectorValue(Value *Key, unsigned Part) {
167 assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
168 return VectorMapStorage[Key][Part];
169 }
170
171 /// Retrieve the existing scalar value that corresponds to \p Key and
172 /// \p Instance.
173 Value *getScalarValue(Value *Key, const VPIteration &Instance) {
174 assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
175 return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
176 }
177
178 /// Set a vector value associated with \p Key and \p Part. Assumes such a
179 /// value is not already set. If it is, use resetVectorValue() instead.
180 void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
181 assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
182 if (!VectorMapStorage.count(Key)) {
183 VectorParts Entry(UF);
184 VectorMapStorage[Key] = Entry;
185 }
186 VectorMapStorage[Key][Part] = Vector;
187 }
188
189 /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
190 /// value is not already set.
191 void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
192 assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
193 if (!ScalarMapStorage.count(Key)) {
194 ScalarParts Entry(UF);
195 // TODO: Consider storing uniform values only per-part, as they occupy
196 // lane 0 only, keeping the other VF-1 redundant entries null.
197 for (unsigned Part = 0; Part < UF; ++Part)
198 Entry[Part].resize(VF, nullptr);
199 ScalarMapStorage[Key] = Entry;
200 }
201 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
202 }
203
204 /// Reset the vector value associated with \p Key for the given \p Part.
205 /// This function can be used to update values that have already been
206 /// vectorized. This is the case for "fix-up" operations including type
207 /// truncation and the second phase of recurrence vectorization.
208 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
209 assert(hasVectorValue(Key, Part) && "Vector value not set for part");
210 VectorMapStorage[Key][Part] = Vector;
211 }
212
213 /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
214 /// This function can be used to update values that have already been
215 /// scalarized. This is the case for "fix-up" operations including scalar phi
216 /// nodes for scalarized and predicated instructions.
217 void resetScalarValue(Value *Key, const VPIteration &Instance,
218 Value *Scalar) {
219 assert(hasScalarValue(Key, Instance) &&
220 "Scalar value not set for part and lane");
221 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
222 }
223};
224
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000225/// This class is used to enable the VPlan to invoke a method of ILV. This is
226/// needed until the method is refactored out of ILV and becomes reusable.
227struct VPCallback {
228 virtual ~VPCallback() {}
229 virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
230};
231
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000232/// VPTransformState holds information passed down when "executing" a VPlan,
233/// needed for generating the output IR.
234struct VPTransformState {
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000235 VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
236 IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000237 InnerLoopVectorizer *ILV, VPCallback &Callback)
238 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
239 ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000240
241 /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
242 unsigned VF;
243 unsigned UF;
244
245 /// Hold the indices to generate specific scalar instructions. Null indicates
246 /// that all instances are to be generated, using either scalar or vector
247 /// instructions.
248 Optional<VPIteration> Instance;
249
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000250 struct DataState {
251 /// A type for vectorized values in the new loop. Each value from the
252 /// original loop, when vectorized, is represented by UF vector values in
253 /// the new unrolled loop, where UF is the unroll factor.
254 typedef SmallVector<Value *, 2> PerPartValuesTy;
255
256 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
257 } Data;
258
259 /// Get the generated Value for a given VPValue and a given Part. Note that
260 /// as some Defs are still created by ILV and managed in its ValueMap, this
261 /// method will delegate the call to ILV in such cases in order to provide
262 /// callers a consistent API.
263 /// \see set.
264 Value *get(VPValue *Def, unsigned Part) {
265 // If Values have been set for this Def return the one relevant for \p Part.
266 if (Data.PerPartOutput.count(Def))
267 return Data.PerPartOutput[Def][Part];
268 // Def is managed by ILV: bring the Values from ValueMap.
269 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
270 }
271
272 /// Set the generated Value for a given VPValue and a given Part.
273 void set(VPValue *Def, Value *V, unsigned Part) {
274 if (!Data.PerPartOutput.count(Def)) {
275 DataState::PerPartValuesTy Entry(UF);
276 Data.PerPartOutput[Def] = Entry;
277 }
278 Data.PerPartOutput[Def][Part] = V;
279 }
280
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000281 /// Hold state information used when constructing the CFG of the output IR,
282 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
283 struct CFGState {
284 /// The previous VPBasicBlock visited. Initially set to null.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000285 VPBasicBlock *PrevVPBB = nullptr;
286
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000287 /// The previous IR BasicBlock created or used. Initially set to the new
288 /// header BasicBlock.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000289 BasicBlock *PrevBB = nullptr;
290
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000291 /// The last IR BasicBlock in the output IR. Set to the new latch
292 /// BasicBlock, used for placing the newly created BasicBlocks.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000293 BasicBlock *LastBB = nullptr;
294
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000295 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
296 /// of replication, maps the BasicBlock of the last replica created.
297 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
298
Hideki Saitoea7f3032018-09-14 00:36:00 +0000299 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
300 /// up at the end of vector code generation.
301 SmallVector<VPBasicBlock *, 8> VPBBsToFix;
302
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000303 CFGState() = default;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000304 } CFG;
305
306 /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000307 LoopInfo *LI;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000308
309 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000310 DominatorTree *DT;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000311
312 /// Hold a reference to the IRBuilder used to generate output IR code.
313 IRBuilder<> &Builder;
314
315 /// Hold a reference to the Value state information used when generating the
316 /// Values of the output IR.
317 VectorizerValueMap &ValueMap;
318
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000319 /// Hold a reference to a mapping between VPValues in VPlan and original
320 /// Values they correspond to.
321 VPValue2ValueTy VPValue2Value;
322
Ayal Zaksb0b53122018-10-18 15:03:15 +0000323 /// Hold the trip count of the scalar loop.
324 Value *TripCount = nullptr;
325
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000326 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000327 InnerLoopVectorizer *ILV;
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000328
329 VPCallback &Callback;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000330};
331
332/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
333/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
334class VPBlockBase {
Diego Caballero168d04d2018-05-21 18:14:23 +0000335 friend class VPBlockUtils;
336
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000337private:
338 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
339
340 /// An optional name for the block.
341 std::string Name;
342
343 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
344 /// it is a topmost VPBlockBase.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000345 VPRegionBlock *Parent = nullptr;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000346
347 /// List of predecessor blocks.
348 SmallVector<VPBlockBase *, 1> Predecessors;
349
350 /// List of successor blocks.
351 SmallVector<VPBlockBase *, 1> Successors;
352
Diego Caballerod0953012018-07-09 15:57:09 +0000353 /// Successor selector, null for zero or single successor blocks.
354 VPValue *CondBit = nullptr;
355
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000356 /// Add \p Successor as the last successor to this block.
357 void appendSuccessor(VPBlockBase *Successor) {
358 assert(Successor && "Cannot add nullptr successor!");
359 Successors.push_back(Successor);
360 }
361
362 /// Add \p Predecessor as the last predecessor to this block.
363 void appendPredecessor(VPBlockBase *Predecessor) {
364 assert(Predecessor && "Cannot add nullptr predecessor!");
365 Predecessors.push_back(Predecessor);
366 }
367
368 /// Remove \p Predecessor from the predecessors of this block.
369 void removePredecessor(VPBlockBase *Predecessor) {
370 auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
371 assert(Pos && "Predecessor does not exist");
372 Predecessors.erase(Pos);
373 }
374
375 /// Remove \p Successor from the successors of this block.
376 void removeSuccessor(VPBlockBase *Successor) {
377 auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
378 assert(Pos && "Successor does not exist");
379 Successors.erase(Pos);
380 }
381
382protected:
383 VPBlockBase(const unsigned char SC, const std::string &N)
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000384 : SubclassID(SC), Name(N) {}
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000385
386public:
387 /// An enumeration for keeping track of the concrete subclass of VPBlockBase
388 /// that are actually instantiated. Values of this enumeration are kept in the
389 /// SubclassID field of the VPBlockBase objects. They are used for concrete
390 /// type identification.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000391 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000392
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000393 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000394
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000395 virtual ~VPBlockBase() = default;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000396
397 const std::string &getName() const { return Name; }
398
399 void setName(const Twine &newName) { Name = newName.str(); }
400
401 /// \return an ID for the concrete type of this object.
402 /// This is used to implement the classof checks. This should not be used
403 /// for any other purpose, as the values may change as LLVM evolves.
404 unsigned getVPBlockID() const { return SubclassID; }
405
Diego Caballero168d04d2018-05-21 18:14:23 +0000406 VPRegionBlock *getParent() { return Parent; }
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000407 const VPRegionBlock *getParent() const { return Parent; }
408
409 void setParent(VPRegionBlock *P) { Parent = P; }
410
411 /// \return the VPBasicBlock that is the entry of this VPBlockBase,
412 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
413 /// VPBlockBase is a VPBasicBlock, it is returned.
414 const VPBasicBlock *getEntryBasicBlock() const;
415 VPBasicBlock *getEntryBasicBlock();
416
417 /// \return the VPBasicBlock that is the exit of this VPBlockBase,
418 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
419 /// VPBlockBase is a VPBasicBlock, it is returned.
420 const VPBasicBlock *getExitBasicBlock() const;
421 VPBasicBlock *getExitBasicBlock();
422
423 const VPBlocksTy &getSuccessors() const { return Successors; }
424 VPBlocksTy &getSuccessors() { return Successors; }
425
426 const VPBlocksTy &getPredecessors() const { return Predecessors; }
427 VPBlocksTy &getPredecessors() { return Predecessors; }
428
429 /// \return the successor of this VPBlockBase if it has a single successor.
430 /// Otherwise return a null pointer.
431 VPBlockBase *getSingleSuccessor() const {
432 return (Successors.size() == 1 ? *Successors.begin() : nullptr);
433 }
434
435 /// \return the predecessor of this VPBlockBase if it has a single
436 /// predecessor. Otherwise return a null pointer.
437 VPBlockBase *getSinglePredecessor() const {
438 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
439 }
440
Diego Caballero168d04d2018-05-21 18:14:23 +0000441 size_t getNumSuccessors() const { return Successors.size(); }
442 size_t getNumPredecessors() const { return Predecessors.size(); }
443
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000444 /// An Enclosing Block of a block B is any block containing B, including B
445 /// itself. \return the closest enclosing block starting from "this", which
446 /// has successors. \return the root enclosing block if all enclosing blocks
447 /// have no successors.
448 VPBlockBase *getEnclosingBlockWithSuccessors();
449
450 /// \return the closest enclosing block starting from "this", which has
451 /// predecessors. \return the root enclosing block if all enclosing blocks
452 /// have no predecessors.
453 VPBlockBase *getEnclosingBlockWithPredecessors();
454
455 /// \return the successors either attached directly to this VPBlockBase or, if
456 /// this VPBlockBase is the exit block of a VPRegionBlock and has no
457 /// successors of its own, search recursively for the first enclosing
458 /// VPRegionBlock that has successors and return them. If no such
459 /// VPRegionBlock exists, return the (empty) successors of the topmost
460 /// VPBlockBase reached.
461 const VPBlocksTy &getHierarchicalSuccessors() {
462 return getEnclosingBlockWithSuccessors()->getSuccessors();
463 }
464
465 /// \return the hierarchical successor of this VPBlockBase if it has a single
466 /// hierarchical successor. Otherwise return a null pointer.
467 VPBlockBase *getSingleHierarchicalSuccessor() {
468 return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
469 }
470
471 /// \return the predecessors either attached directly to this VPBlockBase or,
472 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
473 /// predecessors of its own, search recursively for the first enclosing
474 /// VPRegionBlock that has predecessors and return them. If no such
475 /// VPRegionBlock exists, return the (empty) predecessors of the topmost
476 /// VPBlockBase reached.
477 const VPBlocksTy &getHierarchicalPredecessors() {
478 return getEnclosingBlockWithPredecessors()->getPredecessors();
479 }
480
481 /// \return the hierarchical predecessor of this VPBlockBase if it has a
482 /// single hierarchical predecessor. Otherwise return a null pointer.
483 VPBlockBase *getSingleHierarchicalPredecessor() {
484 return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
485 }
486
Diego Caballerod0953012018-07-09 15:57:09 +0000487 /// \return the condition bit selecting the successor.
488 VPValue *getCondBit() { return CondBit; }
489
490 const VPValue *getCondBit() const { return CondBit; }
491
492 void setCondBit(VPValue *CV) { CondBit = CV; }
493
Diego Caballero168d04d2018-05-21 18:14:23 +0000494 /// Set a given VPBlockBase \p Successor as the single successor of this
495 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
496 /// This VPBlockBase must have no successors.
497 void setOneSuccessor(VPBlockBase *Successor) {
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000498 assert(Successors.empty() && "Setting one successor when others exist.");
499 appendSuccessor(Successor);
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000500 }
501
Diego Caballero168d04d2018-05-21 18:14:23 +0000502 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
Diego Caballerod0953012018-07-09 15:57:09 +0000503 /// successors of this VPBlockBase. \p Condition is set as the successor
504 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
505 /// IfFalse. This VPBlockBase must have no successors.
506 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
507 VPValue *Condition) {
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000508 assert(Successors.empty() && "Setting two successors when others exist.");
Diego Caballerod0953012018-07-09 15:57:09 +0000509 assert(Condition && "Setting two successors without condition!");
510 CondBit = Condition;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000511 appendSuccessor(IfTrue);
512 appendSuccessor(IfFalse);
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000513 }
514
Diego Caballero168d04d2018-05-21 18:14:23 +0000515 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
516 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
517 /// as successor of any VPBasicBlock in \p NewPreds.
518 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
519 assert(Predecessors.empty() && "Block predecessors already set.");
520 for (auto *Pred : NewPreds)
521 appendPredecessor(Pred);
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000522 }
523
524 /// The method which generates the output IR that correspond to this
525 /// VPBlockBase, thereby "executing" the VPlan.
526 virtual void execute(struct VPTransformState *State) = 0;
527
528 /// Delete all blocks reachable from a given VPBlockBase, inclusive.
529 static void deleteCFG(VPBlockBase *Entry);
Diego Caballero2a34ac82018-07-30 21:33:31 +0000530
531 void printAsOperand(raw_ostream &OS, bool PrintType) const {
532 OS << getName();
533 }
534
535 void print(raw_ostream &OS) const {
536 // TODO: Only printing VPBB name for now since we only have dot printing
537 // support for VPInstructions/Recipes.
538 printAsOperand(OS, false);
539 }
Diego Caballero35871502018-07-31 01:57:29 +0000540
541 /// Return true if it is legal to hoist instructions into this block.
542 bool isLegalToHoistInto() {
543 // There are currently no constraints that prevent an instruction to be
544 // hoisted into a VPBlockBase.
545 return true;
546 }
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000547};
548
549/// VPRecipeBase is a base class modeling a sequence of one or more output IR
550/// instructions.
551class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
552 friend VPBasicBlock;
553
554private:
555 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
556
557 /// Each VPRecipe belongs to a single VPBasicBlock.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000558 VPBasicBlock *Parent = nullptr;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000559
560public:
561 /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
562 /// that is actually instantiated. Values of this enumeration are kept in the
563 /// SubclassID field of the VPRecipeBase objects. They are used for concrete
564 /// type identification.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000565 using VPRecipeTy = enum {
Gil Rapaport848581c2017-11-14 12:09:30 +0000566 VPBlendSC,
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000567 VPBranchOnMaskSC,
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000568 VPInstructionSC,
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000569 VPInterleaveSC,
570 VPPredInstPHISC,
571 VPReplicateSC,
572 VPWidenIntOrFpInductionSC,
Gil Rapaport848581c2017-11-14 12:09:30 +0000573 VPWidenMemoryInstructionSC,
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000574 VPWidenPHISC,
575 VPWidenSC,
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000576 };
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000577
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000578 VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
579 virtual ~VPRecipeBase() = default;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000580
581 /// \return an ID for the concrete type of this object.
582 /// This is used to implement the classof checks. This should not be used
583 /// for any other purpose, as the values may change as LLVM evolves.
584 unsigned getVPRecipeID() const { return SubclassID; }
585
586 /// \return the VPBasicBlock which this VPRecipe belongs to.
587 VPBasicBlock *getParent() { return Parent; }
588 const VPBasicBlock *getParent() const { return Parent; }
589
590 /// The method which generates the output IR instructions that correspond to
591 /// this VPRecipe, thereby "executing" the VPlan.
592 virtual void execute(struct VPTransformState &State) = 0;
593
594 /// Each recipe prints itself.
595 virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
Florian Hahn7591e4e2018-06-18 11:34:17 +0000596
597 /// Insert an unlinked recipe into a basic block immediately before
598 /// the specified recipe.
599 void insertBefore(VPRecipeBase *InsertPos);
Florian Hahn63cbcf92018-06-18 15:18:48 +0000600
601 /// This method unlinks 'this' from the containing basic block and deletes it.
602 ///
603 /// \returns an iterator pointing to the element after the erased one
604 iplist<VPRecipeBase>::iterator eraseFromParent();
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000605};
606
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000607/// This is a concrete Recipe that models a single VPlan-level instruction.
608/// While as any Recipe it may generate a sequence of IR instructions when
609/// executed, these instructions would always form a single-def expression as
610/// the VPInstruction is also a single def-use vertex.
611class VPInstruction : public VPUser, public VPRecipeBase {
Florian Hahn3385caa2018-06-18 18:28:49 +0000612 friend class VPlanHCFGTransforms;
Florian Hahn09e516c2018-11-14 13:11:49 +0000613 friend class VPlanSlp;
Florian Hahn3385caa2018-06-18 18:28:49 +0000614
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000615public:
616 /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
Florian Hahn09e516c2018-11-14 13:11:49 +0000617 enum {
618 Not = Instruction::OtherOpsEnd + 1,
619 ICmpULE,
620 SLPLoad,
621 SLPStore,
622 };
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000623
624private:
625 typedef unsigned char OpcodeTy;
626 OpcodeTy Opcode;
627
628 /// Utility method serving execute(): generates a single instance of the
629 /// modeled instruction.
630 void generateInstruction(VPTransformState &State, unsigned Part);
631
Florian Hahn09e516c2018-11-14 13:11:49 +0000632protected:
633 Instruction *getUnderlyingInstr() {
634 return cast_or_null<Instruction>(getUnderlyingValue());
635 }
636
637 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
638
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000639public:
Diego Caballero168d04d2018-05-21 18:14:23 +0000640 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000641 : VPUser(VPValue::VPInstructionSC, Operands),
642 VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
643
Diego Caballero168d04d2018-05-21 18:14:23 +0000644 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
645 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
646
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000647 /// Method to support type inquiry through isa, cast, and dyn_cast.
648 static inline bool classof(const VPValue *V) {
649 return V->getVPValueID() == VPValue::VPInstructionSC;
650 }
651
Florian Hahn09e516c2018-11-14 13:11:49 +0000652 VPInstruction *clone() const {
653 SmallVector<VPValue *, 2> Operands(operands());
654 return new VPInstruction(Opcode, Operands);
655 }
656
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000657 /// Method to support type inquiry through isa, cast, and dyn_cast.
658 static inline bool classof(const VPRecipeBase *R) {
659 return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
660 }
661
662 unsigned getOpcode() const { return Opcode; }
663
664 /// Generate the instruction.
665 /// TODO: We currently execute only per-part unless a specific instance is
666 /// provided.
667 void execute(VPTransformState &State) override;
668
669 /// Print the Recipe.
670 void print(raw_ostream &O, const Twine &Indent) const override;
671
672 /// Print the VPInstruction.
673 void print(raw_ostream &O) const;
Florian Hahn09e516c2018-11-14 13:11:49 +0000674
675 /// Return true if this instruction may modify memory.
676 bool mayWriteToMemory() const {
677 // TODO: we can use attributes of the called function to rule out memory
678 // modifications.
679 return Opcode == Instruction::Store || Opcode == Instruction::Call ||
680 Opcode == Instruction::Invoke || Opcode == SLPStore;
681 }
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000682};
683
Hal Finkel7333aa92017-12-16 01:12:50 +0000684/// VPWidenRecipe is a recipe for producing a copy of vector type for each
685/// Instruction in its ingredients independently, in order. This recipe covers
686/// most of the traditional vectorization cases where each ingredient transforms
687/// into a vectorized version of itself.
688class VPWidenRecipe : public VPRecipeBase {
689private:
690 /// Hold the ingredients by pointing to their original BasicBlock location.
691 BasicBlock::iterator Begin;
692 BasicBlock::iterator End;
693
694public:
695 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
696 End = I->getIterator();
697 Begin = End++;
698 }
699
700 ~VPWidenRecipe() override = default;
701
702 /// Method to support type inquiry through isa, cast, and dyn_cast.
703 static inline bool classof(const VPRecipeBase *V) {
704 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
705 }
706
707 /// Produce widened copies of all Ingredients.
708 void execute(VPTransformState &State) override;
709
710 /// Augment the recipe to include Instr, if it lies at its End.
711 bool appendInstruction(Instruction *Instr) {
712 if (End != Instr->getIterator())
713 return false;
714 End++;
715 return true;
716 }
717
718 /// Print the recipe.
719 void print(raw_ostream &O, const Twine &Indent) const override;
720};
721
722/// A recipe for handling phi nodes of integer and floating-point inductions,
723/// producing their vector and scalar values.
724class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
725private:
726 PHINode *IV;
727 TruncInst *Trunc;
728
729public:
730 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
731 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
732 ~VPWidenIntOrFpInductionRecipe() override = default;
733
734 /// Method to support type inquiry through isa, cast, and dyn_cast.
735 static inline bool classof(const VPRecipeBase *V) {
736 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
737 }
738
739 /// Generate the vectorized and scalarized versions of the phi node as
740 /// needed by their users.
741 void execute(VPTransformState &State) override;
742
743 /// Print the recipe.
744 void print(raw_ostream &O, const Twine &Indent) const override;
745};
746
747/// A recipe for handling all phi nodes except for integer and FP inductions.
748class VPWidenPHIRecipe : public VPRecipeBase {
749private:
750 PHINode *Phi;
751
752public:
753 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
754 ~VPWidenPHIRecipe() override = default;
755
756 /// Method to support type inquiry through isa, cast, and dyn_cast.
757 static inline bool classof(const VPRecipeBase *V) {
758 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
759 }
760
761 /// Generate the phi/select nodes.
762 void execute(VPTransformState &State) override;
763
764 /// Print the recipe.
765 void print(raw_ostream &O, const Twine &Indent) const override;
766};
767
768/// A recipe for vectorizing a phi-node as a sequence of mask-based select
769/// instructions.
770class VPBlendRecipe : public VPRecipeBase {
771private:
772 PHINode *Phi;
773
774 /// The blend operation is a User of a mask, if not null.
775 std::unique_ptr<VPUser> User;
776
777public:
778 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
779 : VPRecipeBase(VPBlendSC), Phi(Phi) {
780 assert((Phi->getNumIncomingValues() == 1 ||
781 Phi->getNumIncomingValues() == Masks.size()) &&
782 "Expected the same number of incoming values and masks");
783 if (!Masks.empty())
784 User.reset(new VPUser(Masks));
785 }
786
787 /// Method to support type inquiry through isa, cast, and dyn_cast.
788 static inline bool classof(const VPRecipeBase *V) {
789 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
790 }
791
792 /// Generate the phi/select nodes.
793 void execute(VPTransformState &State) override;
794
795 /// Print the recipe.
796 void print(raw_ostream &O, const Twine &Indent) const override;
797};
798
799/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
800/// or stores into one wide load/store and shuffles.
801class VPInterleaveRecipe : public VPRecipeBase {
802private:
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000803 const InterleaveGroup<Instruction> *IG;
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000804 std::unique_ptr<VPUser> User;
Hal Finkel7333aa92017-12-16 01:12:50 +0000805
806public:
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000807 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000808 : VPRecipeBase(VPInterleaveSC), IG(IG) {
809 if (Mask) // Create a VPInstruction to register as a user of the mask.
810 User.reset(new VPUser({Mask}));
811 }
Hal Finkel7333aa92017-12-16 01:12:50 +0000812 ~VPInterleaveRecipe() override = default;
813
814 /// Method to support type inquiry through isa, cast, and dyn_cast.
815 static inline bool classof(const VPRecipeBase *V) {
816 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
817 }
818
819 /// Generate the wide load or store, and shuffles.
820 void execute(VPTransformState &State) override;
821
822 /// Print the recipe.
823 void print(raw_ostream &O, const Twine &Indent) const override;
824
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000825 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
Hal Finkel7333aa92017-12-16 01:12:50 +0000826};
827
828/// VPReplicateRecipe replicates a given instruction producing multiple scalar
829/// copies of the original scalar type, one per lane, instead of producing a
830/// single copy of widened type for all lanes. If the instruction is known to be
831/// uniform only one copy, per lane zero, will be generated.
832class VPReplicateRecipe : public VPRecipeBase {
833private:
834 /// The instruction being replicated.
835 Instruction *Ingredient;
836
837 /// Indicator if only a single replica per lane is needed.
838 bool IsUniform;
839
840 /// Indicator if the replicas are also predicated.
841 bool IsPredicated;
842
843 /// Indicator if the scalar values should also be packed into a vector.
844 bool AlsoPack;
845
846public:
847 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
848 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
849 IsPredicated(IsPredicated) {
850 // Retain the previous behavior of predicateInstructions(), where an
851 // insert-element of a predicated instruction got hoisted into the
852 // predicated basic block iff it was its only user. This is achieved by
853 // having predicated instructions also pack their values into a vector by
854 // default unless they have a replicated user which uses their scalar value.
855 AlsoPack = IsPredicated && !I->use_empty();
856 }
857
858 ~VPReplicateRecipe() override = default;
859
860 /// Method to support type inquiry through isa, cast, and dyn_cast.
861 static inline bool classof(const VPRecipeBase *V) {
862 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
863 }
864
865 /// Generate replicas of the desired Ingredient. Replicas will be generated
866 /// for all parts and lanes unless a specific part and lane are specified in
867 /// the \p State.
868 void execute(VPTransformState &State) override;
869
870 void setAlsoPack(bool Pack) { AlsoPack = Pack; }
871
872 /// Print the recipe.
873 void print(raw_ostream &O, const Twine &Indent) const override;
874};
875
876/// A recipe for generating conditional branches on the bits of a mask.
877class VPBranchOnMaskRecipe : public VPRecipeBase {
878private:
879 std::unique_ptr<VPUser> User;
880
881public:
882 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
883 if (BlockInMask) // nullptr means all-one mask.
884 User.reset(new VPUser({BlockInMask}));
885 }
886
887 /// Method to support type inquiry through isa, cast, and dyn_cast.
888 static inline bool classof(const VPRecipeBase *V) {
889 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
890 }
891
892 /// Generate the extraction of the appropriate bit from the block mask and the
893 /// conditional branch.
894 void execute(VPTransformState &State) override;
895
896 /// Print the recipe.
897 void print(raw_ostream &O, const Twine &Indent) const override {
898 O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
899 if (User)
900 O << *User->getOperand(0);
901 else
902 O << " All-One";
903 O << "\\l\"";
904 }
905};
906
907/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
908/// control converges back from a Branch-on-Mask. The phi nodes are needed in
909/// order to merge values that are set under such a branch and feed their uses.
910/// The phi nodes can be scalar or vector depending on the users of the value.
911/// This recipe works in concert with VPBranchOnMaskRecipe.
912class VPPredInstPHIRecipe : public VPRecipeBase {
913private:
914 Instruction *PredInst;
915
916public:
917 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
918 /// nodes after merging back from a Branch-on-Mask.
919 VPPredInstPHIRecipe(Instruction *PredInst)
920 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
921 ~VPPredInstPHIRecipe() override = default;
922
923 /// Method to support type inquiry through isa, cast, and dyn_cast.
924 static inline bool classof(const VPRecipeBase *V) {
925 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
926 }
927
928 /// Generates phi nodes for live-outs as needed to retain SSA form.
929 void execute(VPTransformState &State) override;
930
931 /// Print the recipe.
932 void print(raw_ostream &O, const Twine &Indent) const override;
933};
934
935/// A Recipe for widening load/store operations.
936/// TODO: We currently execute only per-part unless a specific instance is
937/// provided.
938class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
939private:
940 Instruction &Instr;
941 std::unique_ptr<VPUser> User;
942
943public:
944 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
945 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
946 if (Mask) // Create a VPInstruction to register as a user of the mask.
947 User.reset(new VPUser({Mask}));
948 }
949
950 /// Method to support type inquiry through isa, cast, and dyn_cast.
951 static inline bool classof(const VPRecipeBase *V) {
952 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
953 }
954
955 /// Generate the wide load/store.
956 void execute(VPTransformState &State) override;
957
958 /// Print the recipe.
959 void print(raw_ostream &O, const Twine &Indent) const override;
960};
961
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000962/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
963/// holds a sequence of zero or more VPRecipe's each representing a sequence of
964/// output IR instructions.
965class VPBasicBlock : public VPBlockBase {
966public:
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000967 using RecipeListTy = iplist<VPRecipeBase>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000968
969private:
970 /// The VPRecipes held in the order of output instructions to generate.
971 RecipeListTy Recipes;
972
973public:
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000974 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
975 : VPBlockBase(VPBasicBlockSC, Name.str()) {
976 if (Recipe)
977 appendRecipe(Recipe);
978 }
979
980 ~VPBasicBlock() override { Recipes.clear(); }
981
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000982 /// Instruction iterators...
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000983 using iterator = RecipeListTy::iterator;
984 using const_iterator = RecipeListTy::const_iterator;
985 using reverse_iterator = RecipeListTy::reverse_iterator;
986 using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000987
988 //===--------------------------------------------------------------------===//
989 /// Recipe iterator methods
990 ///
991 inline iterator begin() { return Recipes.begin(); }
992 inline const_iterator begin() const { return Recipes.begin(); }
993 inline iterator end() { return Recipes.end(); }
994 inline const_iterator end() const { return Recipes.end(); }
995
996 inline reverse_iterator rbegin() { return Recipes.rbegin(); }
997 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
998 inline reverse_iterator rend() { return Recipes.rend(); }
999 inline const_reverse_iterator rend() const { return Recipes.rend(); }
1000
1001 inline size_t size() const { return Recipes.size(); }
1002 inline bool empty() const { return Recipes.empty(); }
1003 inline const VPRecipeBase &front() const { return Recipes.front(); }
1004 inline VPRecipeBase &front() { return Recipes.front(); }
1005 inline const VPRecipeBase &back() const { return Recipes.back(); }
1006 inline VPRecipeBase &back() { return Recipes.back(); }
1007
Florian Hahn7591e4e2018-06-18 11:34:17 +00001008 /// Returns a reference to the list of recipes.
1009 RecipeListTy &getRecipeList() { return Recipes; }
1010
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001011 /// Returns a pointer to a member of the recipe list.
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001012 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1013 return &VPBasicBlock::Recipes;
1014 }
1015
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001016 /// Method to support type inquiry through isa, cast, and dyn_cast.
1017 static inline bool classof(const VPBlockBase *V) {
1018 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1019 }
1020
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001021 void insert(VPRecipeBase *Recipe, iterator InsertPt) {
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001022 assert(Recipe && "No recipe to append.");
1023 assert(!Recipe->Parent && "Recipe already in VPlan");
1024 Recipe->Parent = this;
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001025 Recipes.insert(InsertPt, Recipe);
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001026 }
1027
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001028 /// Augment the existing recipes of a VPBasicBlock with an additional
1029 /// \p Recipe as the last recipe.
1030 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1031
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001032 /// The method which generates the output IR instructions that correspond to
1033 /// this VPBasicBlock, thereby "executing" the VPlan.
1034 void execute(struct VPTransformState *State) override;
1035
1036private:
1037 /// Create an IR BasicBlock to hold the output instructions generated by this
1038 /// VPBasicBlock, and return it. Update the CFGState accordingly.
1039 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1040};
1041
1042/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1043/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1044/// A VPRegionBlock may indicate that its contents are to be replicated several
1045/// times. This is designed to support predicated scalarization, in which a
1046/// scalar if-then code structure needs to be generated VF * UF times. Having
1047/// this replication indicator helps to keep a single model for multiple
1048/// candidate VF's. The actual replication takes place only once the desired VF
1049/// and UF have been determined.
1050class VPRegionBlock : public VPBlockBase {
1051private:
1052 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1053 VPBlockBase *Entry;
1054
1055 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1056 VPBlockBase *Exit;
1057
1058 /// An indicator whether this region is to generate multiple replicated
1059 /// instances of output IR corresponding to its VPBlockBases.
1060 bool IsReplicator;
1061
1062public:
1063 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1064 const std::string &Name = "", bool IsReplicator = false)
1065 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1066 IsReplicator(IsReplicator) {
1067 assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1068 assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1069 Entry->setParent(this);
1070 Exit->setParent(this);
1071 }
Diego Caballero168d04d2018-05-21 18:14:23 +00001072 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1073 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1074 IsReplicator(IsReplicator) {}
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001075
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001076 ~VPRegionBlock() override {
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001077 if (Entry)
1078 deleteCFG(Entry);
1079 }
1080
1081 /// Method to support type inquiry through isa, cast, and dyn_cast.
1082 static inline bool classof(const VPBlockBase *V) {
1083 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1084 }
1085
1086 const VPBlockBase *getEntry() const { return Entry; }
1087 VPBlockBase *getEntry() { return Entry; }
1088
Diego Caballero168d04d2018-05-21 18:14:23 +00001089 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1090 /// EntryBlock must have no predecessors.
1091 void setEntry(VPBlockBase *EntryBlock) {
1092 assert(EntryBlock->getPredecessors().empty() &&
1093 "Entry block cannot have predecessors.");
1094 Entry = EntryBlock;
1095 EntryBlock->setParent(this);
1096 }
1097
Diego Caballero2a34ac82018-07-30 21:33:31 +00001098 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1099 // specific interface of llvm::Function, instead of using
1100 // GraphTraints::getEntryNode. We should add a new template parameter to
1101 // DominatorTreeBase representing the Graph type.
1102 VPBlockBase &front() const { return *Entry; }
1103
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001104 const VPBlockBase *getExit() const { return Exit; }
1105 VPBlockBase *getExit() { return Exit; }
1106
Diego Caballero168d04d2018-05-21 18:14:23 +00001107 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1108 /// ExitBlock must have no successors.
1109 void setExit(VPBlockBase *ExitBlock) {
1110 assert(ExitBlock->getSuccessors().empty() &&
1111 "Exit block cannot have successors.");
1112 Exit = ExitBlock;
1113 ExitBlock->setParent(this);
1114 }
1115
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001116 /// An indicator whether this region is to generate multiple replicated
1117 /// instances of output IR corresponding to its VPBlockBases.
1118 bool isReplicator() const { return IsReplicator; }
1119
1120 /// The method which generates the output IR instructions that correspond to
1121 /// this VPRegionBlock, thereby "executing" the VPlan.
1122 void execute(struct VPTransformState *State) override;
1123};
1124
1125/// VPlan models a candidate for vectorization, encoding various decisions take
1126/// to produce efficient output IR, including which branches, basic-blocks and
1127/// output IR instructions to generate, and their cost. VPlan holds a
1128/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1129/// VPBlock.
1130class VPlan {
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001131 friend class VPlanPrinter;
1132
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001133private:
1134 /// Hold the single entry to the Hierarchical CFG of the VPlan.
1135 VPBlockBase *Entry;
1136
1137 /// Holds the VFs applicable to this VPlan.
1138 SmallSet<unsigned, 2> VFs;
1139
1140 /// Holds the name of the VPlan, for printing.
1141 std::string Name;
1142
Diego Caballero168d04d2018-05-21 18:14:23 +00001143 /// Holds all the external definitions created for this VPlan.
1144 // TODO: Introduce a specific representation for external definitions in
1145 // VPlan. External definitions must be immutable and hold a pointer to its
1146 // underlying IR that will be used to implement its structural comparison
1147 // (operators '==' and '<').
Craig Topper61998282018-06-09 05:04:20 +00001148 SmallPtrSet<VPValue *, 16> VPExternalDefs;
Diego Caballero168d04d2018-05-21 18:14:23 +00001149
Ayal Zaksb0b53122018-10-18 15:03:15 +00001150 /// Represents the backedge taken count of the original loop, for folding
1151 /// the tail.
1152 VPValue *BackedgeTakenCount = nullptr;
1153
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001154 /// Holds a mapping between Values and their corresponding VPValue inside
1155 /// VPlan.
1156 Value2VPValueTy Value2VPValue;
1157
Diego Caballero35871502018-07-31 01:57:29 +00001158 /// Holds the VPLoopInfo analysis for this VPlan.
1159 VPLoopInfo VPLInfo;
1160
Hideki Saitod19851a2018-09-14 02:02:57 +00001161 /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1162 SmallVector<VPValue *, 4> VPCBVs;
1163
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001164public:
1165 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1166
1167 ~VPlan() {
1168 if (Entry)
1169 VPBlockBase::deleteCFG(Entry);
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001170 for (auto &MapEntry : Value2VPValue)
Ayal Zaksb0b53122018-10-18 15:03:15 +00001171 if (MapEntry.second != BackedgeTakenCount)
1172 delete MapEntry.second;
1173 if (BackedgeTakenCount)
1174 delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
Diego Caballero168d04d2018-05-21 18:14:23 +00001175 for (VPValue *Def : VPExternalDefs)
1176 delete Def;
Hideki Saitod19851a2018-09-14 02:02:57 +00001177 for (VPValue *CBV : VPCBVs)
1178 delete CBV;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001179 }
1180
1181 /// Generate the IR code for this VPlan.
1182 void execute(struct VPTransformState *State);
1183
1184 VPBlockBase *getEntry() { return Entry; }
1185 const VPBlockBase *getEntry() const { return Entry; }
1186
1187 VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1188
Ayal Zaksb0b53122018-10-18 15:03:15 +00001189 /// The backedge taken count of the original loop.
1190 VPValue *getOrCreateBackedgeTakenCount() {
1191 if (!BackedgeTakenCount)
1192 BackedgeTakenCount = new VPValue();
1193 return BackedgeTakenCount;
1194 }
1195
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001196 void addVF(unsigned VF) { VFs.insert(VF); }
1197
1198 bool hasVF(unsigned VF) { return VFs.count(VF); }
1199
1200 const std::string &getName() const { return Name; }
1201
1202 void setName(const Twine &newName) { Name = newName.str(); }
1203
Diego Caballero168d04d2018-05-21 18:14:23 +00001204 /// Add \p VPVal to the pool of external definitions if it's not already
1205 /// in the pool.
1206 void addExternalDef(VPValue *VPVal) {
1207 VPExternalDefs.insert(VPVal);
1208 }
1209
Hideki Saitod19851a2018-09-14 02:02:57 +00001210 /// Add \p CBV to the vector of condition bit values.
1211 void addCBV(VPValue *CBV) {
1212 VPCBVs.push_back(CBV);
1213 }
1214
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001215 void addVPValue(Value *V) {
1216 assert(V && "Trying to add a null Value to VPlan");
1217 assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1218 Value2VPValue[V] = new VPValue();
1219 }
1220
1221 VPValue *getVPValue(Value *V) {
1222 assert(V && "Trying to get the VPValue of a null Value");
1223 assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1224 return Value2VPValue[V];
1225 }
1226
Diego Caballero35871502018-07-31 01:57:29 +00001227 /// Return the VPLoopInfo analysis for this VPlan.
1228 VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1229 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1230
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001231private:
1232 /// Add to the given dominator tree the header block and every new basic block
1233 /// that was created between it and the latch block, inclusive.
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001234 static void updateDominatorTree(DominatorTree *DT,
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001235 BasicBlock *LoopPreHeaderBB,
1236 BasicBlock *LoopLatchBB);
1237};
1238
1239/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1240/// indented and follows the dot format.
1241class VPlanPrinter {
1242 friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1243 friend inline raw_ostream &operator<<(raw_ostream &OS,
1244 const struct VPlanIngredient &I);
1245
1246private:
1247 raw_ostream &OS;
1248 VPlan &Plan;
1249 unsigned Depth;
1250 unsigned TabWidth = 2;
1251 std::string Indent;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001252 unsigned BID = 0;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001253 SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1254
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001255 VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1256
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001257 /// Handle indentation.
1258 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1259
1260 /// Print a given \p Block of the Plan.
1261 void dumpBlock(const VPBlockBase *Block);
1262
1263 /// Print the information related to the CFG edges going out of a given
1264 /// \p Block, followed by printing the successor blocks themselves.
1265 void dumpEdges(const VPBlockBase *Block);
1266
1267 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1268 /// its successor blocks.
1269 void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1270
1271 /// Print a given \p Region of the Plan.
1272 void dumpRegion(const VPRegionBlock *Region);
1273
1274 unsigned getOrCreateBID(const VPBlockBase *Block) {
1275 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1276 }
1277
1278 const Twine getOrCreateName(const VPBlockBase *Block);
1279
1280 const Twine getUID(const VPBlockBase *Block);
1281
1282 /// Print the information related to a CFG edge between two VPBlockBases.
1283 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1284 const Twine &Label);
1285
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001286 void dump();
1287
1288 static void printAsIngredient(raw_ostream &O, Value *V);
1289};
1290
1291struct VPlanIngredient {
1292 Value *V;
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001293
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001294 VPlanIngredient(Value *V) : V(V) {}
1295};
1296
1297inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1298 VPlanPrinter::printAsIngredient(OS, I.V);
1299 return OS;
1300}
1301
1302inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
1303 VPlanPrinter Printer(OS, Plan);
1304 Printer.dump();
1305 return OS;
1306}
1307
Diego Caballero2a34ac82018-07-30 21:33:31 +00001308//===----------------------------------------------------------------------===//
1309// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
1310//===----------------------------------------------------------------------===//
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001311
Diego Caballero2a34ac82018-07-30 21:33:31 +00001312// The following set of template specializations implement GraphTraits to treat
1313// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1314// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1315// VPBlockBase is a VPRegionBlock, this specialization provides access to its
1316// successors/predecessors but not to the blocks inside the region.
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001317
1318template <> struct GraphTraits<VPBlockBase *> {
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001319 using NodeRef = VPBlockBase *;
1320 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001321
1322 static NodeRef getEntryNode(NodeRef N) { return N; }
1323
1324 static inline ChildIteratorType child_begin(NodeRef N) {
1325 return N->getSuccessors().begin();
1326 }
1327
1328 static inline ChildIteratorType child_end(NodeRef N) {
1329 return N->getSuccessors().end();
1330 }
1331};
1332
1333template <> struct GraphTraits<const VPBlockBase *> {
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001334 using NodeRef = const VPBlockBase *;
1335 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001336
1337 static NodeRef getEntryNode(NodeRef N) { return N; }
1338
1339 static inline ChildIteratorType child_begin(NodeRef N) {
1340 return N->getSuccessors().begin();
1341 }
1342
1343 static inline ChildIteratorType child_end(NodeRef N) {
1344 return N->getSuccessors().end();
1345 }
1346};
1347
Diego Caballero2a34ac82018-07-30 21:33:31 +00001348// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1349// of successors for the inverse traversal.
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001350template <> struct GraphTraits<Inverse<VPBlockBase *>> {
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001351 using NodeRef = VPBlockBase *;
1352 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001353
Diego Caballero2a34ac82018-07-30 21:33:31 +00001354 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001355
1356 static inline ChildIteratorType child_begin(NodeRef N) {
1357 return N->getPredecessors().begin();
1358 }
1359
1360 static inline ChildIteratorType child_end(NodeRef N) {
1361 return N->getPredecessors().end();
1362 }
1363};
1364
Diego Caballero2a34ac82018-07-30 21:33:31 +00001365// The following set of template specializations implement GraphTraits to
1366// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1367// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1368// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1369// there won't be automatic recursion into other VPBlockBases that turn to be
1370// VPRegionBlocks.
1371
1372template <>
1373struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1374 using GraphRef = VPRegionBlock *;
1375 using nodes_iterator = df_iterator<NodeRef>;
1376
1377 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1378
1379 static nodes_iterator nodes_begin(GraphRef N) {
1380 return nodes_iterator::begin(N->getEntry());
1381 }
1382
1383 static nodes_iterator nodes_end(GraphRef N) {
1384 // df_iterator::end() returns an empty iterator so the node used doesn't
1385 // matter.
1386 return nodes_iterator::end(N);
1387 }
1388};
1389
1390template <>
1391struct GraphTraits<const VPRegionBlock *>
1392 : public GraphTraits<const VPBlockBase *> {
1393 using GraphRef = const VPRegionBlock *;
1394 using nodes_iterator = df_iterator<NodeRef>;
1395
1396 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1397
1398 static nodes_iterator nodes_begin(GraphRef N) {
1399 return nodes_iterator::begin(N->getEntry());
1400 }
1401
1402 static nodes_iterator nodes_end(GraphRef N) {
1403 // df_iterator::end() returns an empty iterator so the node used doesn't
1404 // matter.
1405 return nodes_iterator::end(N);
1406 }
1407};
1408
1409template <>
1410struct GraphTraits<Inverse<VPRegionBlock *>>
1411 : public GraphTraits<Inverse<VPBlockBase *>> {
1412 using GraphRef = VPRegionBlock *;
1413 using nodes_iterator = df_iterator<NodeRef>;
1414
1415 static NodeRef getEntryNode(Inverse<GraphRef> N) {
1416 return N.Graph->getExit();
1417 }
1418
1419 static nodes_iterator nodes_begin(GraphRef N) {
1420 return nodes_iterator::begin(N->getExit());
1421 }
1422
1423 static nodes_iterator nodes_end(GraphRef N) {
1424 // df_iterator::end() returns an empty iterator so the node used doesn't
1425 // matter.
1426 return nodes_iterator::end(N);
1427 }
1428};
1429
Diego Caballero168d04d2018-05-21 18:14:23 +00001430//===----------------------------------------------------------------------===//
1431// VPlan Utilities
1432//===----------------------------------------------------------------------===//
1433
1434/// Class that provides utilities for VPBlockBases in VPlan.
1435class VPBlockUtils {
1436public:
1437 VPBlockUtils() = delete;
1438
1439 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
Diego Caballerod0953012018-07-09 15:57:09 +00001440 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1441 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1442 /// has more than one successor, its conditional bit is propagated to \p
1443 /// NewBlock. \p NewBlock must have neither successors nor predecessors.
Diego Caballero168d04d2018-05-21 18:14:23 +00001444 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1445 assert(NewBlock->getSuccessors().empty() &&
1446 "Can't insert new block with successors.");
1447 // TODO: move successors from BlockPtr to NewBlock when this functionality
1448 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1449 // already has successors.
1450 BlockPtr->setOneSuccessor(NewBlock);
1451 NewBlock->setPredecessors({BlockPtr});
1452 NewBlock->setParent(BlockPtr->getParent());
1453 }
1454
1455 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1456 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1457 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
Diego Caballerod0953012018-07-09 15:57:09 +00001458 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1459 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1460 /// must have neither successors nor predecessors.
Diego Caballero168d04d2018-05-21 18:14:23 +00001461 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
Diego Caballerod0953012018-07-09 15:57:09 +00001462 VPValue *Condition, VPBlockBase *BlockPtr) {
Diego Caballero168d04d2018-05-21 18:14:23 +00001463 assert(IfTrue->getSuccessors().empty() &&
1464 "Can't insert IfTrue with successors.");
1465 assert(IfFalse->getSuccessors().empty() &&
1466 "Can't insert IfFalse with successors.");
Diego Caballerod0953012018-07-09 15:57:09 +00001467 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
Diego Caballero168d04d2018-05-21 18:14:23 +00001468 IfTrue->setPredecessors({BlockPtr});
1469 IfFalse->setPredecessors({BlockPtr});
1470 IfTrue->setParent(BlockPtr->getParent());
1471 IfFalse->setParent(BlockPtr->getParent());
1472 }
1473
1474 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1475 /// the successors of \p From and \p From to the predecessors of \p To. Both
1476 /// VPBlockBases must have the same parent, which can be null. Both
1477 /// VPBlockBases can be already connected to other VPBlockBases.
1478 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1479 assert((From->getParent() == To->getParent()) &&
1480 "Can't connect two block with different parents");
1481 assert(From->getNumSuccessors() < 2 &&
1482 "Blocks can't have more than two successors.");
1483 From->appendSuccessor(To);
1484 To->appendPredecessor(From);
1485 }
1486
1487 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1488 /// from the successors of \p From and \p From from the predecessors of \p To.
1489 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1490 assert(To && "Successor to disconnect is null.");
1491 From->removeSuccessor(To);
1492 To->removePredecessor(From);
1493 }
1494};
Florian Hahn45e5d5b2018-06-08 17:30:45 +00001495
Florian Hahna4dc7fe2018-11-13 15:58:18 +00001496class VPInterleavedAccessInfo {
1497private:
1498 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
1499 InterleaveGroupMap;
1500
1501 /// Type for mapping of instruction based interleave groups to VPInstruction
1502 /// interleave groups
1503 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
1504 InterleaveGroup<VPInstruction> *>;
1505
1506 /// Recursively \p Region and populate VPlan based interleave groups based on
1507 /// \p IAI.
1508 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
1509 InterleavedAccessInfo &IAI);
1510 /// Recursively traverse \p Block and populate VPlan based interleave groups
1511 /// based on \p IAI.
1512 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1513 InterleavedAccessInfo &IAI);
1514
1515public:
1516 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
1517
1518 ~VPInterleavedAccessInfo() {
1519 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
1520 // Avoid releasing a pointer twice.
1521 for (auto &I : InterleaveGroupMap)
1522 DelSet.insert(I.second);
1523 for (auto *Ptr : DelSet)
1524 delete Ptr;
1525 }
1526
1527 /// Get the interleave group that \p Instr belongs to.
1528 ///
1529 /// \returns nullptr if doesn't have such group.
1530 InterleaveGroup<VPInstruction> *
1531 getInterleaveGroup(VPInstruction *Instr) const {
1532 if (InterleaveGroupMap.count(Instr))
1533 return InterleaveGroupMap.find(Instr)->second;
1534 return nullptr;
1535 }
1536};
1537
Florian Hahn09e516c2018-11-14 13:11:49 +00001538/// Class that maps (parts of) an existing VPlan to trees of combined
1539/// VPInstructions.
1540class VPlanSlp {
1541private:
1542 enum class OpMode { Failed, Load, Opcode };
1543
1544 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
1545 /// DenseMap keys.
1546 struct BundleDenseMapInfo {
1547 static SmallVector<VPValue *, 4> getEmptyKey() {
1548 return {reinterpret_cast<VPValue *>(-1)};
1549 }
1550
1551 static SmallVector<VPValue *, 4> getTombstoneKey() {
1552 return {reinterpret_cast<VPValue *>(-2)};
1553 }
1554
1555 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
1556 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1557 }
1558
1559 static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
1560 const SmallVector<VPValue *, 4> &RHS) {
1561 return LHS == RHS;
1562 }
1563 };
1564
1565 /// Mapping of values in the original VPlan to a combined VPInstruction.
1566 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
1567 BundleToCombined;
1568
1569 VPInterleavedAccessInfo &IAI;
1570
1571 /// Basic block to operate on. For now, only instructions in a single BB are
1572 /// considered.
1573 const VPBasicBlock &BB;
1574
1575 /// Indicates whether we managed to combine all visited instructions or not.
1576 bool CompletelySLP = true;
1577
1578 /// Width of the widest combined bundle in bits.
1579 unsigned WidestBundleBits = 0;
1580
1581 using MultiNodeOpTy =
1582 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
1583
1584 // Input operand bundles for the current multi node. Each multi node operand
1585 // bundle contains values not matching the multi node's opcode. They will
1586 // be reordered in reorderMultiNodeOps, once we completed building a
1587 // multi node.
1588 SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
1589
1590 /// Indicates whether we are building a multi node currently.
1591 bool MultiNodeActive = false;
1592
1593 /// Check if we can vectorize Operands together.
1594 bool areVectorizable(ArrayRef<VPValue *> Operands) const;
1595
1596 /// Add combined instruction \p New for the bundle \p Operands.
1597 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
1598
1599 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
1600 VPInstruction *markFailed();
1601
1602 /// Reorder operands in the multi node to maximize sequential memory access
1603 /// and commutative operations.
1604 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
1605
1606 /// Choose the best candidate to use for the lane after \p Last. The set of
1607 /// candidates to choose from are values with an opcode matching \p Last's
1608 /// or loads consecutive to \p Last.
1609 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
Florian Hahn6df11862018-11-14 15:58:40 +00001610 SmallPtrSetImpl<VPValue *> &Candidates,
Florian Hahn09e516c2018-11-14 13:11:49 +00001611 VPInterleavedAccessInfo &IAI);
1612
1613 /// Print bundle \p Values to dbgs().
1614 void dumpBundle(ArrayRef<VPValue *> Values);
1615
1616public:
1617 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
1618
1619 ~VPlanSlp() {
1620 for (auto &KV : BundleToCombined)
1621 delete KV.second;
1622 }
1623
1624 /// Tries to build an SLP tree rooted at \p Operands and returns a
1625 /// VPInstruction combining \p Operands, if they can be combined.
1626 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
1627
1628 /// Return the width of the widest combined bundle in bits.
1629 unsigned getWidestBundleBits() const { return WidestBundleBits; }
1630
1631 /// Return true if all visited instruction can be combined.
1632 bool isCompletelySLP() const { return CompletelySLP; }
1633};
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001634} // end namespace llvm
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001635
1636#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H