blob: 6fdf4afebc2bf97f0958d837f5daf17433cb45cc [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Hal Finkel60db0582014-09-07 18:57:58 +000016#include "llvm/Analysis/AssumptionTracker.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
Sanjay Patelaee84212014-11-04 16:27:42 +000042/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
43/// 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
Benjamin Kramercfd8d902014-09-12 08:56:53 +000061namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000062// Simplifying using an assume can only be done in a particular control-flow
63// context (the context instruction provides that context). If an assume and
64// the context instruction are not in the same block then the DT helps in
65// figuring out if we can use it.
66struct Query {
67 ExclInvsSet ExclInvs;
68 AssumptionTracker *AT;
69 const Instruction *CxtI;
70 const DominatorTree *DT;
71
72 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr,
73 const DominatorTree *DT = nullptr)
74 : AT(AT), CxtI(CxtI), DT(DT) {}
75
76 Query(const Query &Q, const Value *NewExcl)
77 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) {
78 ExclInvs.insert(NewExcl);
79 }
80};
Benjamin Kramercfd8d902014-09-12 08:56:53 +000081} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +000082
Sanjay Patel547e9752014-11-04 16:09:50 +000083// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +000084// the preferred context instruction (if any).
85static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
86 // If we've been provided with a context instruction, then use that (provided
87 // it has been inserted).
88 if (CxtI && CxtI->getParent())
89 return CxtI;
90
91 // If the value is really an already-inserted instruction, then use that.
92 CxtI = dyn_cast<Instruction>(V);
93 if (CxtI && CxtI->getParent())
94 return CxtI;
95
96 return nullptr;
97}
98
99static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
100 const DataLayout *TD, unsigned Depth,
101 const Query &Q);
102
103void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
104 const DataLayout *TD, unsigned Depth,
105 AssumptionTracker *AT, const Instruction *CxtI,
106 const DominatorTree *DT) {
107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
108 Query(AT, safeCxtI(V, CxtI), DT));
109}
110
111static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
112 const DataLayout *TD, unsigned Depth,
113 const Query &Q);
114
115void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
116 const DataLayout *TD, unsigned Depth,
117 AssumptionTracker *AT, const Instruction *CxtI,
118 const DominatorTree *DT) {
119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
120 Query(AT, safeCxtI(V, CxtI), DT));
121}
122
123static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
124 const Query &Q);
125
126bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
127 AssumptionTracker *AT,
128 const Instruction *CxtI,
129 const DominatorTree *DT) {
130 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
131 Query(AT, safeCxtI(V, CxtI), DT));
132}
133
134static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
135 const Query &Q);
136
137bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
138 AssumptionTracker *AT, const Instruction *CxtI,
139 const DominatorTree *DT) {
140 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
141}
142
143static bool MaskedValueIsZero(Value *V, const APInt &Mask,
144 const DataLayout *TD, unsigned Depth,
145 const Query &Q);
146
147bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
148 const DataLayout *TD, unsigned Depth,
149 AssumptionTracker *AT, const Instruction *CxtI,
150 const DominatorTree *DT) {
151 return ::MaskedValueIsZero(V, Mask, TD, Depth,
152 Query(AT, safeCxtI(V, CxtI), DT));
153}
154
155static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
156 unsigned Depth, const Query &Q);
157
158unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
159 unsigned Depth, AssumptionTracker *AT,
160 const Instruction *CxtI,
161 const DominatorTree *DT) {
162 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
163}
164
Jay Foada0653a32014-05-14 21:14:37 +0000165static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
166 APInt &KnownZero, APInt &KnownOne,
167 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000168 const DataLayout *TD, unsigned Depth,
169 const Query &Q) {
170 if (!Add) {
171 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
172 // We know that the top bits of C-X are clear if X contains less bits
173 // than C (i.e. no wrap-around can happen). For example, 20-X is
174 // positive if we can prove that X is >= 0 and < 16.
175 if (!CLHS->getValue().isNegative()) {
176 unsigned BitWidth = KnownZero.getBitWidth();
177 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
178 // NLZ can't be BitWidth with no sign bit
179 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
180 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
181
182 // If all of the MaskV bits are known to be zero, then we know the
183 // output top bits are zero, because we now know that the output is
184 // from [0-C].
185 if ((KnownZero2 & MaskV) == MaskV) {
186 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
187 // Top bits known zero.
188 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
189 }
190 }
191 }
192 }
193
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000194 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000195
David Majnemer97ddca32014-08-22 00:40:43 +0000196 // If an initial sequence of bits in the result is not needed, the
197 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000199 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
200 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000201
David Majnemer97ddca32014-08-22 00:40:43 +0000202 // Carry in a 1 for a subtract, rather than a 0.
203 APInt CarryIn(BitWidth, 0);
204 if (!Add) {
205 // Sum = LHS + ~RHS + 1
206 std::swap(KnownZero2, KnownOne2);
207 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000208 }
209
David Majnemer97ddca32014-08-22 00:40:43 +0000210 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
211 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
212
213 // Compute known bits of the carry.
214 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
215 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
216
217 // Compute set of known bits (where all three relevant bits are known).
218 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
219 APInt RHSKnown = KnownZero2 | KnownOne2;
220 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
221 APInt Known = LHSKnown & RHSKnown & CarryKnown;
222
223 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
224 "known bits of sum differ");
225
226 // Compute known bits of the result.
227 KnownZero = ~PossibleSumOne & Known;
228 KnownOne = PossibleSumOne & Known;
229
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000231 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000232 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000233 // Adding two non-negative numbers, or subtracting a negative number from
234 // a non-negative one, can't wrap into negative.
235 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
236 KnownZero |= APInt::getSignBit(BitWidth);
237 // Adding two negative numbers, or subtracting a non-negative number from
238 // a negative one, can't wrap into non-negative.
239 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
240 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000241 }
242 }
243}
244
Jay Foada0653a32014-05-14 21:14:37 +0000245static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
246 APInt &KnownZero, APInt &KnownOne,
247 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000248 const DataLayout *TD, unsigned Depth,
249 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000250 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000251 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
252 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000253
254 bool isKnownNegative = false;
255 bool isKnownNonNegative = false;
256 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000257 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000258 if (Op0 == Op1) {
259 // The product of a number with itself is non-negative.
260 isKnownNonNegative = true;
261 } else {
262 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
263 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
264 bool isKnownNegativeOp1 = KnownOne.isNegative();
265 bool isKnownNegativeOp0 = KnownOne2.isNegative();
266 // The product of two numbers with the same sign is non-negative.
267 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
268 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
269 // The product of a negative number and a non-negative number is either
270 // negative or zero.
271 if (!isKnownNonNegative)
272 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000275 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000276 }
277 }
278
279 // If low bits are zero in either operand, output low known-0 bits.
280 // Also compute a conserative estimate for high known-0 bits.
281 // More trickiness is possible, but this is sufficient for the
282 // interesting case of alignment computation.
283 KnownOne.clearAllBits();
284 unsigned TrailZ = KnownZero.countTrailingOnes() +
285 KnownZero2.countTrailingOnes();
286 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
287 KnownZero2.countLeadingOnes(),
288 BitWidth) - BitWidth;
289
290 TrailZ = std::min(TrailZ, BitWidth);
291 LeadZ = std::min(LeadZ, BitWidth);
292 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
293 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000294
295 // Only make use of no-wrap flags if we failed to compute the sign bit
296 // directly. This matters if the multiplication always overflows, in
297 // which case we prefer to follow the result of the direct computation,
298 // though as the program is invoking undefined behaviour we can choose
299 // whatever we like here.
300 if (isKnownNonNegative && !KnownOne.isNegative())
301 KnownZero.setBit(BitWidth - 1);
302 else if (isKnownNegative && !KnownZero.isNegative())
303 KnownOne.setBit(BitWidth - 1);
304}
305
Jingyue Wu37fcb592014-06-19 16:50:16 +0000306void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
307 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000309 unsigned NumRanges = Ranges.getNumOperands() / 2;
310 assert(NumRanges >= 1);
311
312 // Use the high end of the ranges to find leading zeros.
313 unsigned MinLeadingZeros = BitWidth;
314 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000315 ConstantInt *Lower =
316 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
317 ConstantInt *Upper =
318 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000319 ConstantRange Range(Lower->getValue(), Upper->getValue());
320 if (Range.isWrappedSet())
321 MinLeadingZeros = 0; // -1 has no zeros
322 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
323 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
324 }
325
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000326 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000327}
Jay Foad5a29c362014-05-15 12:12:55 +0000328
Hal Finkel60db0582014-09-07 18:57:58 +0000329static bool isEphemeralValueOf(Instruction *I, const Value *E) {
330 SmallVector<const Value *, 16> WorkSet(1, I);
331 SmallPtrSet<const Value *, 32> Visited;
332 SmallPtrSet<const Value *, 16> EphValues;
333
334 while (!WorkSet.empty()) {
335 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000336 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000337 continue;
338
339 // If all uses of this value are ephemeral, then so is this value.
340 bool FoundNEUse = false;
341 for (const User *I : V->users())
342 if (!EphValues.count(I)) {
343 FoundNEUse = true;
344 break;
345 }
346
347 if (!FoundNEUse) {
348 if (V == E)
349 return true;
350
351 EphValues.insert(V);
352 if (const User *U = dyn_cast<User>(V))
353 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
354 J != JE; ++J) {
355 if (isSafeToSpeculativelyExecute(*J))
356 WorkSet.push_back(*J);
357 }
358 }
359 }
360
361 return false;
362}
363
364// Is this an intrinsic that cannot be speculated but also cannot trap?
365static bool isAssumeLikeIntrinsic(const Instruction *I) {
366 if (const CallInst *CI = dyn_cast<CallInst>(I))
367 if (Function *F = CI->getCalledFunction())
368 switch (F->getIntrinsicID()) {
369 default: break;
370 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
371 case Intrinsic::assume:
372 case Intrinsic::dbg_declare:
373 case Intrinsic::dbg_value:
374 case Intrinsic::invariant_start:
375 case Intrinsic::invariant_end:
376 case Intrinsic::lifetime_start:
377 case Intrinsic::lifetime_end:
378 case Intrinsic::objectsize:
379 case Intrinsic::ptr_annotation:
380 case Intrinsic::var_annotation:
381 return true;
382 }
383
384 return false;
385}
386
387static bool isValidAssumeForContext(Value *V, const Query &Q,
388 const DataLayout *DL) {
389 Instruction *Inv = cast<Instruction>(V);
390
391 // There are two restrictions on the use of an assume:
392 // 1. The assume must dominate the context (or the control flow must
393 // reach the assume whenever it reaches the context).
394 // 2. The context must not be in the assume's set of ephemeral values
395 // (otherwise we will use the assume to prove that the condition
396 // feeding the assume is trivially true, thus causing the removal of
397 // the assume).
398
399 if (Q.DT) {
400 if (Q.DT->dominates(Inv, Q.CxtI)) {
401 return true;
402 } else if (Inv->getParent() == Q.CxtI->getParent()) {
403 // The context comes first, but they're both in the same block. Make sure
404 // there is nothing in between that might interrupt the control flow.
405 for (BasicBlock::const_iterator I =
406 std::next(BasicBlock::const_iterator(Q.CxtI)),
407 IE(Inv); I != IE; ++I)
408 if (!isSafeToSpeculativelyExecute(I, DL) &&
409 !isAssumeLikeIntrinsic(I))
410 return false;
411
412 return !isEphemeralValueOf(Inv, Q.CxtI);
413 }
414
415 return false;
416 }
417
418 // When we don't have a DT, we do a limited search...
419 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
420 return true;
421 } else if (Inv->getParent() == Q.CxtI->getParent()) {
422 // Search forward from the assume until we reach the context (or the end
423 // of the block); the common case is that the assume will come first.
424 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
425 IE = Inv->getParent()->end(); I != IE; ++I)
426 if (I == Q.CxtI)
427 return true;
428
429 // The context must come first...
430 for (BasicBlock::const_iterator I =
431 std::next(BasicBlock::const_iterator(Q.CxtI)),
432 IE(Inv); I != IE; ++I)
433 if (!isSafeToSpeculativelyExecute(I, DL) &&
434 !isAssumeLikeIntrinsic(I))
435 return false;
436
437 return !isEphemeralValueOf(Inv, Q.CxtI);
438 }
439
440 return false;
441}
442
443bool llvm::isValidAssumeForContext(const Instruction *I,
444 const Instruction *CxtI,
445 const DataLayout *DL,
446 const DominatorTree *DT) {
447 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
448 Query(nullptr, CxtI, DT), DL);
449}
450
451template<typename LHS, typename RHS>
452inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
453 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
454m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
455 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
456}
457
458template<typename LHS, typename RHS>
459inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
460 BinaryOp_match<RHS, LHS, Instruction::And>>
461m_c_And(const LHS &L, const RHS &R) {
462 return m_CombineOr(m_And(L, R), m_And(R, L));
463}
464
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000465template<typename LHS, typename RHS>
466inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
467 BinaryOp_match<RHS, LHS, Instruction::Or>>
468m_c_Or(const LHS &L, const RHS &R) {
469 return m_CombineOr(m_Or(L, R), m_Or(R, L));
470}
471
472template<typename LHS, typename RHS>
473inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
474 BinaryOp_match<RHS, LHS, Instruction::Xor>>
475m_c_Xor(const LHS &L, const RHS &R) {
476 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
477}
478
Hal Finkel60db0582014-09-07 18:57:58 +0000479static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
480 APInt &KnownOne,
481 const DataLayout *DL,
482 unsigned Depth, const Query &Q) {
483 // Use of assumptions is context-sensitive. If we don't have a context, we
484 // cannot use them!
485 if (!Q.AT || !Q.CxtI)
486 return;
487
488 unsigned BitWidth = KnownZero.getBitWidth();
489
490 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent());
491 for (auto &CI : Q.AT->assumptions(F)) {
492 CallInst *I = CI;
493 if (Q.ExclInvs.count(I))
494 continue;
495
Philip Reames00d3b272014-11-24 23:44:28 +0000496 // Warning: This loop can end up being somewhat performance sensetive.
497 // We're running this loop for once for each value queried resulting in a
498 // runtime of ~O(#assumes * #values).
499
500 assert(isa<IntrinsicInst>(I) &&
501 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
502 "must be an assume intrinsic");
503
504 Value *Arg = I->getArgOperand(0);
505
506 if (Arg == V &&
Hal Finkel60db0582014-09-07 18:57:58 +0000507 isValidAssumeForContext(I, Q, DL)) {
508 assert(BitWidth == 1 && "assume operand is not i1?");
509 KnownZero.clearAllBits();
510 KnownOne.setAllBits();
511 return;
512 }
513
David Majnemer9b609752014-12-12 23:59:29 +0000514 // The remaining tests are all recursive, so bail out if we hit the limit.
515 if (Depth == MaxDepth)
516 continue;
517
Hal Finkel60db0582014-09-07 18:57:58 +0000518 Value *A, *B;
519 auto m_V = m_CombineOr(m_Specific(V),
520 m_CombineOr(m_PtrToInt(m_Specific(V)),
521 m_BitCast(m_Specific(V))));
522
523 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000524 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000525 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000526 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000527 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
528 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
529 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
530 KnownZero |= RHSKnownZero;
531 KnownOne |= RHSKnownOne;
532 // assume(v & b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000533 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
534 m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000535 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
536 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
537 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
538 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
539 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
540
541 // For those bits in the mask that are known to be one, we can propagate
542 // known bits from the RHS to V.
543 KnownZero |= RHSKnownZero & MaskKnownOne;
544 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000545 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000546 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
547 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000548 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
549 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
550 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
551 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
552 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
553
554 // For those bits in the mask that are known to be one, we can propagate
555 // inverted known bits from the RHS to V.
556 KnownZero |= RHSKnownOne & MaskKnownOne;
557 KnownOne |= RHSKnownZero & MaskKnownOne;
558 // assume(v | b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000559 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
560 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
564 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
565 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
566
567 // For those bits in B that are known to be zero, we can propagate known
568 // bits from the RHS to V.
569 KnownZero |= RHSKnownZero & BKnownZero;
570 KnownOne |= RHSKnownOne & BKnownZero;
571 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000572 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
573 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000574 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
575 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
576 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
577 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
578 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
579
580 // For those bits in B that are known to be zero, we can propagate
581 // inverted known bits from the RHS to V.
582 KnownZero |= RHSKnownOne & BKnownZero;
583 KnownOne |= RHSKnownZero & BKnownZero;
584 // assume(v ^ b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000585 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
586 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
588 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
589 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
590 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
591 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
592
593 // For those bits in B that are known to be zero, we can propagate known
594 // bits from the RHS to V. For those bits in B that are known to be one,
595 // we can propagate inverted known bits from the RHS to V.
596 KnownZero |= RHSKnownZero & BKnownZero;
597 KnownOne |= RHSKnownOne & BKnownZero;
598 KnownZero |= RHSKnownOne & BKnownOne;
599 KnownOne |= RHSKnownZero & BKnownOne;
600 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000601 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
602 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000603 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
604 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
605 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
606 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
607 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
608
609 // For those bits in B that are known to be zero, we can propagate
610 // inverted known bits from the RHS to V. For those bits in B that are
611 // known to be one, we can propagate known bits from the RHS to V.
612 KnownZero |= RHSKnownOne & BKnownZero;
613 KnownOne |= RHSKnownZero & BKnownZero;
614 KnownZero |= RHSKnownZero & BKnownOne;
615 KnownOne |= RHSKnownOne & BKnownOne;
616 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000617 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
618 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
620 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
621 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
622 // For those bits in RHS that are known, we can propagate them to known
623 // bits in V shifted to the right by C.
624 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
625 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
626 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000627 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
628 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
630 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
631 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
632 // For those bits in RHS that are known, we can propagate them inverted
633 // to known bits in V shifted to the right by C.
634 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
635 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
636 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000637 } else if (match(Arg,
638 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639 m_AShr(m_V,
640 m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000641 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000642 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
645 // For those bits in RHS that are known, we can propagate them to known
646 // bits in V shifted to the right by C.
647 KnownZero |= RHSKnownZero << C->getZExtValue();
648 KnownOne |= RHSKnownOne << C->getZExtValue();
649 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000650 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000651 m_LShr(m_V, m_ConstantInt(C)),
652 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000653 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
655 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
656 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
657 // For those bits in RHS that are known, we can propagate them inverted
658 // to known bits in V shifted to the right by C.
659 KnownZero |= RHSKnownOne << C->getZExtValue();
660 KnownOne |= RHSKnownZero << C->getZExtValue();
661 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000663 Pred == ICmpInst::ICMP_SGE &&
664 isValidAssumeForContext(I, Q, DL)) {
665 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
666 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
667
668 if (RHSKnownZero.isNegative()) {
669 // We know that the sign bit is zero.
670 KnownZero |= APInt::getSignBit(BitWidth);
671 }
672 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000673 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 Pred == ICmpInst::ICMP_SGT &&
675 isValidAssumeForContext(I, Q, DL)) {
676 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
677 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
678
679 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
680 // We know that the sign bit is zero.
681 KnownZero |= APInt::getSignBit(BitWidth);
682 }
683 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000684 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000685 Pred == ICmpInst::ICMP_SLE &&
686 isValidAssumeForContext(I, Q, DL)) {
687 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
688 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
689
690 if (RHSKnownOne.isNegative()) {
691 // We know that the sign bit is one.
692 KnownOne |= APInt::getSignBit(BitWidth);
693 }
694 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000695 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000696 Pred == ICmpInst::ICMP_SLT &&
697 isValidAssumeForContext(I, Q, DL)) {
698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
700
701 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
702 // We know that the sign bit is one.
703 KnownOne |= APInt::getSignBit(BitWidth);
704 }
705 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000706 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 Pred == ICmpInst::ICMP_ULE &&
708 isValidAssumeForContext(I, Q, DL)) {
709 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
710 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
711
712 // Whatever high bits in c are zero are known to be zero.
713 KnownZero |=
714 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
715 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000717 Pred == ICmpInst::ICMP_ULT &&
718 isValidAssumeForContext(I, Q, DL)) {
719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
721
722 // Whatever high bits in c are zero are known to be zero (if c is a power
723 // of 2, then one more).
724 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
725 KnownZero |=
726 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
727 else
728 KnownZero |=
729 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000730 }
731 }
732}
733
Jay Foada0653a32014-05-14 21:14:37 +0000734/// Determine which bits of V are known to be either zero or one and return
735/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000736///
Chris Lattner965c7692008-06-02 01:18:21 +0000737/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
738/// we cannot optimize based on the assumption that it is zero without changing
739/// it to be an explicit zero. If we don't change it to zero, other code could
740/// optimized based on the contradictory assumption that it is non-zero.
741/// Because instcombine aggressively folds operations with undef args anyway,
742/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000743///
744/// This function is defined on values with integer type, values with pointer
745/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000746/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000747/// same width as the vector element, and the bit is set only if it is true
748/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000749void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
750 const DataLayout *TD, unsigned Depth,
751 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000752 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000753 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000754 unsigned BitWidth = KnownZero.getBitWidth();
755
Nadav Rotem3924cb02011-12-05 06:29:09 +0000756 assert((V->getType()->isIntOrIntVectorTy() ||
757 V->getType()->getScalarType()->isPointerTy()) &&
758 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000759 assert((!TD ||
760 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000761 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000762 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000763 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000764 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000765 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000766
767 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
768 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000769 KnownOne = CI->getValue();
770 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000771 return;
772 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000773 // Null and aggregate-zero are all-zeros.
774 if (isa<ConstantPointerNull>(V) ||
775 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000776 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000777 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000778 return;
779 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000780 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000781 // each element. There is no real need to handle ConstantVector here, because
782 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000783 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
784 // We know that CDS must be a vector of integers. Take the intersection of
785 // each element.
786 KnownZero.setAllBits(); KnownOne.setAllBits();
787 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000788 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000789 Elt = CDS->getElementAsInteger(i);
790 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000791 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000792 }
793 return;
794 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000795
Chris Lattner965c7692008-06-02 01:18:21 +0000796 // The address of an aligned GlobalValue has trailing zeros.
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000797 if (auto *GO = dyn_cast<GlobalObject>(V)) {
798 unsigned Align = GO->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000799 if (Align == 0 && TD) {
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000800 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000801 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000802 if (ObjectType->isSized()) {
803 // If the object is defined in the current Module, we'll be giving
804 // it the preferred alignment. Otherwise, we have to assume that it
805 // may only have the minimum ABI alignment.
806 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
807 Align = TD->getPreferredAlignment(GVar);
808 else
809 Align = TD->getABITypeAlignment(ObjectType);
810 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000811 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000812 }
Chris Lattner965c7692008-06-02 01:18:21 +0000813 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000814 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000815 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000816 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000819 return;
820 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000821
Chris Lattner83791ce2011-05-23 00:03:39 +0000822 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000823 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000824
Hal Finkelccc70902014-07-22 16:58:55 +0000825 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000826 // An sret parameter has at least the ABI alignment of the return type.
827 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
828 if (EltTy->isSized())
829 Align = TD->getABITypeAlignment(EltTy);
830 }
831
832 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000833 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
David Majnemer8df46c92015-01-03 02:33:25 +0000834 else
835 KnownZero.clearAllBits();
836 KnownOne.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000837
838 // Don't give up yet... there might be an assumption that provides more
839 // information...
840 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000841 return;
842 }
Chris Lattner965c7692008-06-02 01:18:21 +0000843
Chris Lattner83791ce2011-05-23 00:03:39 +0000844 // Start out not knowing anything.
845 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000846
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000847 // Limit search depth.
848 // All recursive calls that increase depth must come after this.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000849 if (Depth == MaxDepth)
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000850 return;
851
852 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
853 // the bits of its aliasee.
854 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
855 if (!GA->mayBeOverridden())
856 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
857 return;
858 }
Chris Lattner965c7692008-06-02 01:18:21 +0000859
Hal Finkel60db0582014-09-07 18:57:58 +0000860 // Check whether a nearby assume intrinsic can determine some known bits.
861 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
862
Dan Gohman80ca01c2009-07-17 20:47:02 +0000863 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000864 if (!I) return;
865
866 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000867 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000868 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000869 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000870 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000871 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000872 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000873 case Instruction::And: {
874 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000875 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
876 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000877
Chris Lattner965c7692008-06-02 01:18:21 +0000878 // Output known-1 bits are only known if set in both the LHS & RHS.
879 KnownOne &= KnownOne2;
880 // Output known-0 are known to be clear if zero in either the LHS | RHS.
881 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000882 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000883 }
884 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000885 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
886 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000887
Chris Lattner965c7692008-06-02 01:18:21 +0000888 // Output known-0 bits are only known if clear in both the LHS & RHS.
889 KnownZero &= KnownZero2;
890 // Output known-1 are known to be set if set in either the LHS | RHS.
891 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000892 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000893 }
894 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000895 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
896 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000897
Chris Lattner965c7692008-06-02 01:18:21 +0000898 // Output known-0 bits are known if clear or set in both the LHS & RHS.
899 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
900 // Output known-1 are known to be set if set in only one of the LHS, RHS.
901 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
902 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000903 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000904 }
905 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000906 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000907 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000908 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
909 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000910 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000911 }
912 case Instruction::UDiv: {
913 // For the purposes of computing leading zeros we can conservatively
914 // treat a udiv as a logical right shift by the power of 2 known to
915 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000916 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000917 unsigned LeadZ = KnownZero2.countLeadingOnes();
918
Jay Foad25a5e4c2010-12-01 08:53:58 +0000919 KnownOne2.clearAllBits();
920 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000921 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000922 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
923 if (RHSUnknownLeadingOnes != BitWidth)
924 LeadZ = std::min(BitWidth,
925 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
926
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000927 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000928 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000929 }
930 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000931 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
932 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000933
934 // Only known if known in both the LHS and RHS.
935 KnownOne &= KnownOne2;
936 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000937 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000938 case Instruction::FPTrunc:
939 case Instruction::FPExt:
940 case Instruction::FPToUI:
941 case Instruction::FPToSI:
942 case Instruction::SIToFP:
943 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000944 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000945 case Instruction::PtrToInt:
946 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000947 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000948 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000949 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000950 // FALL THROUGH and handle them the same as zext/trunc.
951 case Instruction::ZExt:
952 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000953 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000954
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000955 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000956 // Note that we handle pointer operands here because of inttoptr/ptrtoint
957 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000958 if(TD) {
959 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
960 } else {
961 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000962 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000963 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000964
965 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000966 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
967 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000968 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000969 KnownZero = KnownZero.zextOrTrunc(BitWidth);
970 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000971 // Any top bits are known to be zero.
972 if (BitWidth > SrcBitWidth)
973 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000974 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000975 }
976 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000977 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000978 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000979 // TODO: For now, not handling conversions like:
980 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000981 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000982 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000983 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000984 }
985 break;
986 }
987 case Instruction::SExt: {
988 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000989 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000990
Jay Foad583abbc2010-12-07 08:25:19 +0000991 KnownZero = KnownZero.trunc(SrcBitWidth);
992 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000993 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000994 KnownZero = KnownZero.zext(BitWidth);
995 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000996
997 // If the sign bit of the input is known set or clear, then we know the
998 // top bits of the result.
999 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1000 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1001 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1002 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001003 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001004 }
1005 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001006 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001007 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1008 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +00001009 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001010 KnownZero <<= ShiftAmt;
1011 KnownOne <<= ShiftAmt;
1012 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001013 }
1014 break;
1015 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001016 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001017 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1018 // Compute the new bits that are at the top now.
1019 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001020
Chris Lattner965c7692008-06-02 01:18:21 +00001021 // Unsigned shift right.
Sanjay Patel8f093f42014-11-05 18:00:07 +00001022 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001023 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1024 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1025 // high bits known zero.
1026 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001027 }
1028 break;
1029 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001030 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001031 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1032 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001033 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001034
Chris Lattner965c7692008-06-02 01:18:21 +00001035 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001036 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001037 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1038 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001039
Chris Lattner965c7692008-06-02 01:18:21 +00001040 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1041 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1042 KnownZero |= HighBits;
1043 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1044 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001045 }
1046 break;
1047 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001048 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001049 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001050 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001051 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001052 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001053 }
Chris Lattner965c7692008-06-02 01:18:21 +00001054 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001055 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001056 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001057 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001058 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001059 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001060 }
1061 case Instruction::SRem:
1062 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001063 APInt RA = Rem->getValue().abs();
1064 if (RA.isPowerOf2()) {
1065 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +00001066 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
1067 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001068
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001069 // The low bits of the first operand are unchanged by the srem.
1070 KnownZero = KnownZero2 & LowBits;
1071 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001072
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001073 // If the first operand is non-negative or has all low bits zero, then
1074 // the upper bits are all zero.
1075 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1076 KnownZero |= ~LowBits;
1077
1078 // If the first operand is negative and not all low bits are zero, then
1079 // the upper bits are all one.
1080 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1081 KnownOne |= ~LowBits;
1082
Craig Topper1bef2c82012-12-22 19:15:35 +00001083 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001084 }
1085 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001086
1087 // The sign bit is the LHS's sign bit, except when the result of the
1088 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001089 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001090 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001091 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001092 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001093 // If it's known zero, our sign bit is also zero.
1094 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001095 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001096 }
1097
Chris Lattner965c7692008-06-02 01:18:21 +00001098 break;
1099 case Instruction::URem: {
1100 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1101 APInt RA = Rem->getValue();
1102 if (RA.isPowerOf2()) {
1103 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +00001104 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001105 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001106 KnownZero |= ~LowBits;
1107 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001108 break;
1109 }
1110 }
1111
1112 // Since the result is less than or equal to either operand, any leading
1113 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001114 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
1115 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001116
Chris Lattner4612ae12009-01-20 18:22:57 +00001117 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001118 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001119 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001120 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001121 break;
1122 }
1123
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001124 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +00001125 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +00001126 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001127 if (Align == 0 && TD)
1128 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001129
Chris Lattner965c7692008-06-02 01:18:21 +00001130 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001131 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001132 break;
1133 }
1134 case Instruction::GetElementPtr: {
1135 // Analyze all of the subscripts of this getelementptr instruction
1136 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001137 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001138 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001139 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001140 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1141
1142 gep_type_iterator GTI = gep_type_begin(I);
1143 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1144 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001145 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001146 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +00001147 if (!TD) {
1148 TrailZ = 0;
1149 break;
1150 }
Matt Arsenault74742a12013-08-19 21:43:16 +00001151
1152 // Handle case when index is vector zeroinitializer
1153 Constant *CIndex = cast<Constant>(Index);
1154 if (CIndex->isZeroValue())
1155 continue;
1156
1157 if (CIndex->getType()->isVectorTy())
1158 Index = CIndex->getSplatValue();
1159
Chris Lattner965c7692008-06-02 01:18:21 +00001160 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +00001161 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001162 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001163 TrailZ = std::min<unsigned>(TrailZ,
1164 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001165 } else {
1166 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001167 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001168 if (!IndexedTy->isSized()) {
1169 TrailZ = 0;
1170 break;
1171 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001172 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +00001173 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +00001174 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001175 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001176 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001177 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001178 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001179 }
1180 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001181
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001182 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001183 break;
1184 }
1185 case Instruction::PHI: {
1186 PHINode *P = cast<PHINode>(I);
1187 // Handle the case of a simple two-predecessor recurrence PHI.
1188 // There's a lot more that could theoretically be done here, but
1189 // this is sufficient to catch some interesting cases.
1190 if (P->getNumIncomingValues() == 2) {
1191 for (unsigned i = 0; i != 2; ++i) {
1192 Value *L = P->getIncomingValue(i);
1193 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001194 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001195 if (!LU)
1196 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001197 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001198 // Check for operations that have the property that if
1199 // both their operands have low zero bits, the result
1200 // will have low zero bits.
1201 if (Opcode == Instruction::Add ||
1202 Opcode == Instruction::Sub ||
1203 Opcode == Instruction::And ||
1204 Opcode == Instruction::Or ||
1205 Opcode == Instruction::Mul) {
1206 Value *LL = LU->getOperand(0);
1207 Value *LR = LU->getOperand(1);
1208 // Find a recurrence.
1209 if (LL == I)
1210 L = LR;
1211 else if (LR == I)
1212 L = LL;
1213 else
1214 break;
1215 // Ok, we have a PHI of the form L op= R. Check for low
1216 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001217 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001218
1219 // We need to take the minimum number of known bits
1220 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001221 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001222
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001223 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001224 std::min(KnownZero2.countTrailingOnes(),
1225 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001226 break;
1227 }
1228 }
1229 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001230
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001231 // Unreachable blocks may have zero-operand PHI nodes.
1232 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001233 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001234
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001235 // Otherwise take the unions of the known bit sets of the operands,
1236 // taking conservative care to avoid excessive recursion.
1237 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001238 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001239 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001240 break;
1241
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001242 KnownZero = APInt::getAllOnesValue(BitWidth);
1243 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001244 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1245 // Skip direct self references.
1246 if (P->getIncomingValue(i) == P) continue;
1247
1248 KnownZero2 = APInt(BitWidth, 0);
1249 KnownOne2 = APInt(BitWidth, 0);
1250 // Recurse, but cap the recursion to one level, because we don't
1251 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001252 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001253 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001254 KnownZero &= KnownZero2;
1255 KnownOne &= KnownOne2;
1256 // If all bits have been ruled out, there's no need to check
1257 // more operands.
1258 if (!KnownZero && !KnownOne)
1259 break;
1260 }
1261 }
Chris Lattner965c7692008-06-02 01:18:21 +00001262 break;
1263 }
1264 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001265 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001266 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001267 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1268 // If a range metadata is attached to this IntrinsicInst, intersect the
1269 // explicit range specified by the metadata and the implicit range of
1270 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001271 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1272 switch (II->getIntrinsicID()) {
1273 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001274 case Intrinsic::ctlz:
1275 case Intrinsic::cttz: {
1276 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001277 // If this call is undefined for 0, the result will be less than 2^n.
1278 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1279 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001281 break;
1282 }
1283 case Intrinsic::ctpop: {
1284 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001285 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001286 break;
1287 }
Chad Rosierb3628842011-05-26 23:13:19 +00001288 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001289 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001290 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001291 }
1292 }
1293 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001294 case Instruction::ExtractValue:
1295 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1296 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1297 if (EVI->getNumIndices() != 1) break;
1298 if (EVI->getIndices()[0] == 0) {
1299 switch (II->getIntrinsicID()) {
1300 default: break;
1301 case Intrinsic::uadd_with_overflow:
1302 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001303 computeKnownBitsAddSub(true, II->getArgOperand(0),
1304 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001305 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001306 break;
1307 case Intrinsic::usub_with_overflow:
1308 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001309 computeKnownBitsAddSub(false, II->getArgOperand(0),
1310 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001311 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001312 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001313 case Intrinsic::umul_with_overflow:
1314 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001315 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1316 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001317 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001318 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001319 }
1320 }
1321 }
Chris Lattner965c7692008-06-02 01:18:21 +00001322 }
Jay Foad5a29c362014-05-15 12:12:55 +00001323
1324 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001325}
1326
Sanjay Patelaee84212014-11-04 16:27:42 +00001327/// Determine whether the sign bit is known to be zero or one.
1328/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001329void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1330 const DataLayout *TD, unsigned Depth,
1331 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001332 unsigned BitWidth = getBitWidth(V->getType(), TD);
1333 if (!BitWidth) {
1334 KnownZero = false;
1335 KnownOne = false;
1336 return;
1337 }
1338 APInt ZeroBits(BitWidth, 0);
1339 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001340 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001341 KnownOne = OneBits[BitWidth - 1];
1342 KnownZero = ZeroBits[BitWidth - 1];
1343}
1344
Sanjay Patelaee84212014-11-04 16:27:42 +00001345/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001346/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001347/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001348/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001349bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1350 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001351 if (Constant *C = dyn_cast<Constant>(V)) {
1352 if (C->isNullValue())
1353 return OrZero;
1354 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1355 return CI->getValue().isPowerOf2();
1356 // TODO: Handle vector constants.
1357 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001358
1359 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1360 // it is shifted off the end then the result is undefined.
1361 if (match(V, m_Shl(m_One(), m_Value())))
1362 return true;
1363
1364 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1365 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001366 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001367 return true;
1368
1369 // The remaining tests are all recursive, so bail out if we hit the limit.
1370 if (Depth++ == MaxDepth)
1371 return false;
1372
Craig Topper9f008862014-04-15 04:59:12 +00001373 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001374 // A shift of a power of two is a power of two or zero.
1375 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1376 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001377 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001378
Duncan Sandsd3951082011-01-25 09:38:29 +00001379 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001380 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001381
1382 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001383 return
1384 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1385 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001386
Duncan Sandsba286d72011-10-26 20:55:21 +00001387 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1388 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001389 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1390 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001391 return true;
1392 // X & (-X) is always a power of two or zero.
1393 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1394 return true;
1395 return false;
1396 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001397
David Majnemerb7d54092013-07-30 21:01:36 +00001398 // Adding a power-of-two or zero to the same power-of-two or zero yields
1399 // either the original power-of-two, a larger power-of-two or zero.
1400 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1401 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1402 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1403 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1404 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001405 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001406 return true;
1407 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1408 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001409 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001410 return true;
1411
1412 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1413 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001414 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001415
1416 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001417 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001418 // If i8 V is a power of two or zero:
1419 // ZeroBits: 1 1 1 0 1 1 1 1
1420 // ~ZeroBits: 0 0 0 1 0 0 0 0
1421 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1422 // If OrZero isn't set, we cannot give back a zero result.
1423 // Make sure either the LHS or RHS has a bit set.
1424 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1425 return true;
1426 }
1427 }
David Majnemerbeab5672013-05-18 19:30:37 +00001428
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001429 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001430 // is a power of two only if the first operand is a power of two and not
1431 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001432 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1433 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001434 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1435 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001436 }
1437
Duncan Sandsd3951082011-01-25 09:38:29 +00001438 return false;
1439}
1440
Chandler Carruth80d3e562012-12-07 02:08:58 +00001441/// \brief Test whether a GEP's result is known to be non-null.
1442///
1443/// Uses properties inherent in a GEP to try to determine whether it is known
1444/// to be non-null.
1445///
1446/// Currently this routine does not support vector GEPs.
1447static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001448 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001449 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1450 return false;
1451
1452 // FIXME: Support vector-GEPs.
1453 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1454
1455 // If the base pointer is non-null, we cannot walk to a null address with an
1456 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001457 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001458 return true;
1459
1460 // Past this, if we don't have DataLayout, we can't do much.
1461 if (!DL)
1462 return false;
1463
1464 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1465 // If so, then the GEP cannot produce a null pointer, as doing so would
1466 // inherently violate the inbounds contract within address space zero.
1467 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1468 GTI != GTE; ++GTI) {
1469 // Struct types are easy -- they must always be indexed by a constant.
1470 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1471 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1472 unsigned ElementIdx = OpC->getZExtValue();
1473 const StructLayout *SL = DL->getStructLayout(STy);
1474 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1475 if (ElementOffset > 0)
1476 return true;
1477 continue;
1478 }
1479
1480 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1481 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1482 continue;
1483
1484 // Fast path the constant operand case both for efficiency and so we don't
1485 // increment Depth when just zipping down an all-constant GEP.
1486 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1487 if (!OpC->isZero())
1488 return true;
1489 continue;
1490 }
1491
1492 // We post-increment Depth here because while isKnownNonZero increments it
1493 // as well, when we pop back up that increment won't persist. We don't want
1494 // to recurse 10k times just because we have 10k GEP operands. We don't
1495 // bail completely out because we want to handle constant GEPs regardless
1496 // of depth.
1497 if (Depth++ >= MaxDepth)
1498 continue;
1499
Hal Finkel60db0582014-09-07 18:57:58 +00001500 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001501 return true;
1502 }
1503
1504 return false;
1505}
1506
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001507/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1508/// ensure that the value it's attached to is never Value? 'RangeType' is
1509/// is the type of the value described by the range.
1510static bool rangeMetadataExcludesValue(MDNode* Ranges,
1511 const APInt& Value) {
1512 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1513 assert(NumRanges >= 1);
1514 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001515 ConstantInt *Lower =
1516 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1517 ConstantInt *Upper =
1518 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001519 ConstantRange Range(Lower->getValue(), Upper->getValue());
1520 if (Range.contains(Value))
1521 return false;
1522 }
1523 return true;
1524}
1525
Sanjay Patelaee84212014-11-04 16:27:42 +00001526/// Return true if the given value is known to be non-zero when defined.
1527/// For vectors return true if every element is known to be non-zero when
1528/// defined. Supports values with integer or pointer type and vectors of
1529/// integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001530bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1531 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001532 if (Constant *C = dyn_cast<Constant>(V)) {
1533 if (C->isNullValue())
1534 return false;
1535 if (isa<ConstantInt>(C))
1536 // Must be non-zero due to null test above.
1537 return true;
1538 // TODO: Handle vectors
1539 return false;
1540 }
1541
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001542 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001543 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001544 // If the possible ranges don't contain zero, then the value is
1545 // definitely non-zero.
1546 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1547 const APInt ZeroValue(Ty->getBitWidth(), 0);
1548 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1549 return true;
1550 }
1551 }
1552 }
1553
Duncan Sandsd3951082011-01-25 09:38:29 +00001554 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001555 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001556 return false;
1557
Chandler Carruth80d3e562012-12-07 02:08:58 +00001558 // Check for pointer simplifications.
1559 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001560 if (isKnownNonNull(V))
1561 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001562 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001563 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001564 return true;
1565 }
1566
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001567 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001568
1569 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001570 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001571 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001572 return isKnownNonZero(X, TD, Depth, Q) ||
1573 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001574
1575 // ext X != 0 if X != 0.
1576 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001577 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001578
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001579 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001580 // if the lowest bit is shifted off the end.
1581 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001582 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001583 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001584 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001585 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001586
Duncan Sandsd3951082011-01-25 09:38:29 +00001587 APInt KnownZero(BitWidth, 0);
1588 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001589 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001590 if (KnownOne[0])
1591 return true;
1592 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001593 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001594 // defined if the sign bit is shifted off the end.
1595 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001596 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001597 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001598 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001599 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001600
Duncan Sandsd3951082011-01-25 09:38:29 +00001601 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001602 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001603 if (XKnownNegative)
1604 return true;
1605 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001606 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001607 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001608 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001609 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001610 // X + Y.
1611 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1612 bool XKnownNonNegative, XKnownNegative;
1613 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001614 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1615 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001616
1617 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001618 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001619 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001620 if (isKnownNonZero(X, TD, Depth, Q) ||
1621 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001622 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001623
1624 // If X and Y are both negative (as signed values) then their sum is not
1625 // zero unless both X and Y equal INT_MIN.
1626 if (BitWidth && XKnownNegative && YKnownNegative) {
1627 APInt KnownZero(BitWidth, 0);
1628 APInt KnownOne(BitWidth, 0);
1629 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1630 // The sign bit of X is set. If some other bit is set then X is not equal
1631 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001632 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001633 if ((KnownOne & Mask) != 0)
1634 return true;
1635 // The sign bit of Y is set. If some other bit is set then Y is not equal
1636 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001637 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001638 if ((KnownOne & Mask) != 0)
1639 return true;
1640 }
1641
1642 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001643 if (XKnownNonNegative &&
1644 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001645 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001646 if (YKnownNonNegative &&
1647 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001648 return true;
1649 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001650 // X * Y.
1651 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1652 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1653 // If X and Y are non-zero then so is X * Y as long as the multiplication
1654 // does not overflow.
1655 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001656 isKnownNonZero(X, TD, Depth, Q) &&
1657 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001658 return true;
1659 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001660 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1661 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001662 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1663 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001664 return true;
1665 }
1666
1667 if (!BitWidth) return false;
1668 APInt KnownZero(BitWidth, 0);
1669 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001670 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001671 return KnownOne != 0;
1672}
1673
Sanjay Patelaee84212014-11-04 16:27:42 +00001674/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1675/// simplify operations downstream. Mask is known to be zero for bits that V
1676/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001677///
1678/// This function is defined on values with integer type, values with pointer
1679/// type (but only if TD is non-null), and vectors of integers. In the case
1680/// where V is a vector, the mask, known zero, and known one values are the
1681/// same width as the vector element, and the bit is set only if it is true
1682/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001683bool MaskedValueIsZero(Value *V, const APInt &Mask,
1684 const DataLayout *TD, unsigned Depth,
1685 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001686 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001687 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001688 return (KnownZero & Mask) == Mask;
1689}
1690
1691
1692
Sanjay Patelaee84212014-11-04 16:27:42 +00001693/// Return the number of times the sign bit of the register is replicated into
1694/// the other bits. We know that at least 1 bit is always equal to the sign bit
1695/// (itself), but other cases can give us information. For example, immediately
1696/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1697/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001698///
1699/// 'Op' must have a scalar integer type.
1700///
Hal Finkel60db0582014-09-07 18:57:58 +00001701unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1702 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001703 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001704 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001705 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001706 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001707 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1708 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001709 unsigned Tmp, Tmp2;
1710 unsigned FirstAnswer = 1;
1711
Jay Foada0653a32014-05-14 21:14:37 +00001712 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001713 // below.
1714
Chris Lattner965c7692008-06-02 01:18:21 +00001715 if (Depth == 6)
1716 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001717
Dan Gohman80ca01c2009-07-17 20:47:02 +00001718 Operator *U = dyn_cast<Operator>(V);
1719 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001720 default: break;
1721 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001722 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001723 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001724
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001725 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001726 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001727 // ashr X, C -> adds C sign bits. Vectors too.
1728 const APInt *ShAmt;
1729 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1730 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001731 if (Tmp > TyBits) Tmp = TyBits;
1732 }
1733 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001734 }
1735 case Instruction::Shl: {
1736 const APInt *ShAmt;
1737 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001738 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001739 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001740 Tmp2 = ShAmt->getZExtValue();
1741 if (Tmp2 >= TyBits || // Bad shift.
1742 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1743 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001744 }
1745 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001746 }
Chris Lattner965c7692008-06-02 01:18:21 +00001747 case Instruction::And:
1748 case Instruction::Or:
1749 case Instruction::Xor: // NOT is handled here.
1750 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001751 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001752 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001753 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001754 FirstAnswer = std::min(Tmp, Tmp2);
1755 // We computed what we know about the sign bits as our first
1756 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001757 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001758 }
1759 break;
1760
1761 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001762 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001763 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001764 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001765 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001766
Chris Lattner965c7692008-06-02 01:18:21 +00001767 case Instruction::Add:
1768 // Add can have at most one carry bit. Thus we know that the output
1769 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001770 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001771 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001772
Chris Lattner965c7692008-06-02 01:18:21 +00001773 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00001774 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001775 if (CRHS->isAllOnesValue()) {
1776 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001777 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001778
Chris Lattner965c7692008-06-02 01:18:21 +00001779 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1780 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001781 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001782 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001783
Chris Lattner965c7692008-06-02 01:18:21 +00001784 // If we are subtracting one from a positive number, there is no carry
1785 // out of the result.
1786 if (KnownZero.isNegative())
1787 return Tmp;
1788 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001789
Hal Finkel60db0582014-09-07 18:57:58 +00001790 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001791 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001792 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001793
Chris Lattner965c7692008-06-02 01:18:21 +00001794 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001795 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001796 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001797
Chris Lattner965c7692008-06-02 01:18:21 +00001798 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00001799 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00001800 if (CLHS->isNullValue()) {
1801 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001802 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001803 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1804 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001805 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001806 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001807
Chris Lattner965c7692008-06-02 01:18:21 +00001808 // If the input is known to be positive (the sign bit is known clear),
1809 // the output of the NEG has the same number of sign bits as the input.
1810 if (KnownZero.isNegative())
1811 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001812
Chris Lattner965c7692008-06-02 01:18:21 +00001813 // Otherwise, we treat this like a SUB.
1814 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001815
Chris Lattner965c7692008-06-02 01:18:21 +00001816 // Sub can have at most one carry bit. Thus we know that the output
1817 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001818 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001819 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001820 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001821
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001822 case Instruction::PHI: {
1823 PHINode *PN = cast<PHINode>(U);
1824 // Don't analyze large in-degree PHIs.
1825 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001826
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001827 // Take the minimum of all incoming values. This can't infinitely loop
1828 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001829 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001830 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1831 if (Tmp == 1) return Tmp;
1832 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001833 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1834 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001835 }
1836 return Tmp;
1837 }
1838
Chris Lattner965c7692008-06-02 01:18:21 +00001839 case Instruction::Trunc:
1840 // FIXME: it's tricky to do anything useful for this, but it is an important
1841 // case for targets like X86.
1842 break;
1843 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001844
Chris Lattner965c7692008-06-02 01:18:21 +00001845 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1846 // use this information.
1847 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001848 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001849 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001850
Chris Lattner965c7692008-06-02 01:18:21 +00001851 if (KnownZero.isNegative()) { // sign bit is 0
1852 Mask = KnownZero;
1853 } else if (KnownOne.isNegative()) { // sign bit is 1;
1854 Mask = KnownOne;
1855 } else {
1856 // Nothing known.
1857 return FirstAnswer;
1858 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001859
Chris Lattner965c7692008-06-02 01:18:21 +00001860 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1861 // the number of identical bits in the top of the input value.
1862 Mask = ~Mask;
1863 Mask <<= Mask.getBitWidth()-TyBits;
1864 // Return # leading zeros. We use 'min' here in case Val was zero before
1865 // shifting. We don't want to return '64' as for an i32 "0".
1866 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1867}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001868
Sanjay Patelaee84212014-11-04 16:27:42 +00001869/// This function computes the integer multiple of Base that equals V.
1870/// If successful, it returns true and returns the multiple in
1871/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001872/// through SExt instructions only if LookThroughSExt is true.
1873bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001874 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001875 const unsigned MaxDepth = 6;
1876
Dan Gohman6a976bb2009-11-18 00:58:27 +00001877 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001878 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001879 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001880
Chris Lattner229907c2011-07-18 04:54:35 +00001881 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001882
Dan Gohman6a976bb2009-11-18 00:58:27 +00001883 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001884
1885 if (Base == 0)
1886 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001887
Victor Hernandez47444882009-11-10 08:28:35 +00001888 if (Base == 1) {
1889 Multiple = V;
1890 return true;
1891 }
1892
1893 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1894 Constant *BaseVal = ConstantInt::get(T, Base);
1895 if (CO && CO == BaseVal) {
1896 // Multiple is 1.
1897 Multiple = ConstantInt::get(T, 1);
1898 return true;
1899 }
1900
1901 if (CI && CI->getZExtValue() % Base == 0) {
1902 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001903 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001904 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001905
Victor Hernandez47444882009-11-10 08:28:35 +00001906 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001907
Victor Hernandez47444882009-11-10 08:28:35 +00001908 Operator *I = dyn_cast<Operator>(V);
1909 if (!I) return false;
1910
1911 switch (I->getOpcode()) {
1912 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001913 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001914 if (!LookThroughSExt) return false;
1915 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001916 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001917 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1918 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001919 case Instruction::Shl:
1920 case Instruction::Mul: {
1921 Value *Op0 = I->getOperand(0);
1922 Value *Op1 = I->getOperand(1);
1923
1924 if (I->getOpcode() == Instruction::Shl) {
1925 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1926 if (!Op1CI) return false;
1927 // Turn Op0 << Op1 into Op0 * 2^Op1
1928 APInt Op1Int = Op1CI->getValue();
1929 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001930 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001931 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001932 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001933 }
1934
Craig Topper9f008862014-04-15 04:59:12 +00001935 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001936 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1937 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1938 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001939 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001940 MulC->getType()->getPrimitiveSizeInBits())
1941 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001942 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001943 MulC->getType()->getPrimitiveSizeInBits())
1944 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001945
Chris Lattner72d283c2010-09-05 17:20:46 +00001946 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1947 Multiple = ConstantExpr::getMul(MulC, Op1C);
1948 return true;
1949 }
Victor Hernandez47444882009-11-10 08:28:35 +00001950
1951 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1952 if (Mul0CI->getValue() == 1) {
1953 // V == Base * Op1, so return Op1
1954 Multiple = Op1;
1955 return true;
1956 }
1957 }
1958
Craig Topper9f008862014-04-15 04:59:12 +00001959 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001960 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1961 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1962 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001963 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001964 MulC->getType()->getPrimitiveSizeInBits())
1965 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001966 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001967 MulC->getType()->getPrimitiveSizeInBits())
1968 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001969
Chris Lattner72d283c2010-09-05 17:20:46 +00001970 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1971 Multiple = ConstantExpr::getMul(MulC, Op0C);
1972 return true;
1973 }
Victor Hernandez47444882009-11-10 08:28:35 +00001974
1975 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1976 if (Mul1CI->getValue() == 1) {
1977 // V == Base * Op0, so return Op0
1978 Multiple = Op0;
1979 return true;
1980 }
1981 }
Victor Hernandez47444882009-11-10 08:28:35 +00001982 }
1983 }
1984
1985 // We could not determine if V is a multiple of Base.
1986 return false;
1987}
1988
Sanjay Patelaee84212014-11-04 16:27:42 +00001989/// Return true if we can prove that the specified FP value is never equal to
1990/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00001991///
1992/// NOTE: this function will need to be revisited when we support non-default
1993/// rounding modes!
1994///
1995bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1996 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1997 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001998
Chris Lattnera12a6de2008-06-02 01:29:46 +00001999 if (Depth == 6)
2000 return 1; // Limit search depth.
2001
Dan Gohman80ca01c2009-07-17 20:47:02 +00002002 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002003 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002004
2005 // Check if the nsz fast-math flag is set
2006 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2007 if (FPO->hasNoSignedZeros())
2008 return true;
2009
Chris Lattnera12a6de2008-06-02 01:29:46 +00002010 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002011 if (I->getOpcode() == Instruction::FAdd)
2012 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2013 if (CFP->isNullValue())
2014 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002015
Chris Lattnera12a6de2008-06-02 01:29:46 +00002016 // sitofp and uitofp turn into +0.0 for zero.
2017 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2018 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002019
Chris Lattnera12a6de2008-06-02 01:29:46 +00002020 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2021 // sqrt(-0.0) = -0.0, no other negative results are possible.
2022 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002023 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002024
Chris Lattnera12a6de2008-06-02 01:29:46 +00002025 if (const CallInst *CI = dyn_cast<CallInst>(I))
2026 if (const Function *F = CI->getCalledFunction()) {
2027 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002028 // abs(x) != -0.0
2029 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002030 // fabs[lf](x) != -0.0
2031 if (F->getName() == "fabs") return true;
2032 if (F->getName() == "fabsf") return true;
2033 if (F->getName() == "fabsl") return true;
2034 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2035 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002036 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002037 }
2038 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002039
Chris Lattnera12a6de2008-06-02 01:29:46 +00002040 return false;
2041}
2042
Sanjay Patelaee84212014-11-04 16:27:42 +00002043/// If the specified value can be set by repeating the same byte in memory,
2044/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002045/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2046/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2047/// byte store (e.g. i16 0x1234), return null.
2048Value *llvm::isBytewiseValue(Value *V) {
2049 // All byte-wide stores are splatable, even of arbitrary variables.
2050 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002051
2052 // Handle 'null' ConstantArrayZero etc.
2053 if (Constant *C = dyn_cast<Constant>(V))
2054 if (C->isNullValue())
2055 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002056
Chris Lattner9cb10352010-12-26 20:15:01 +00002057 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002058 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002059 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2060 if (CFP->getType()->isFloatTy())
2061 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2062 if (CFP->getType()->isDoubleTy())
2063 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2064 // Don't handle long double formats, which have strange constraints.
2065 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002066
2067 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00002068 // multiple of 8 bits.
2069 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2070 unsigned Width = CI->getBitWidth();
2071 if (isPowerOf2_32(Width) && Width > 8) {
2072 // We can handle this value if the recursive binary decomposition is the
2073 // same at all levels.
2074 APInt Val = CI->getValue();
2075 APInt Val2;
2076 while (Val.getBitWidth() != 8) {
2077 unsigned NextWidth = Val.getBitWidth()/2;
2078 Val2 = Val.lshr(NextWidth);
2079 Val2 = Val2.trunc(Val.getBitWidth()/2);
2080 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002081
Chris Lattner9cb10352010-12-26 20:15:01 +00002082 // If the top/bottom halves aren't the same, reject it.
2083 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00002084 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002085 }
2086 return ConstantInt::get(V->getContext(), Val);
2087 }
2088 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002089
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002090 // A ConstantDataArray/Vector is splatable if all its members are equal and
2091 // also splatable.
2092 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2093 Value *Elt = CA->getElementAsConstant(0);
2094 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002095 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002096 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002097
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002098 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2099 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002100 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002101
Chris Lattner9cb10352010-12-26 20:15:01 +00002102 return Val;
2103 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002104
Chris Lattner9cb10352010-12-26 20:15:01 +00002105 // Conceptually, we could handle things like:
2106 // %a = zext i8 %X to i16
2107 // %b = shl i16 %a, 8
2108 // %c = or i16 %a, %b
2109 // but until there is an example that actually needs this, it doesn't seem
2110 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002111 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002112}
2113
2114
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002115// This is the recursive version of BuildSubAggregate. It takes a few different
2116// arguments. Idxs is the index within the nested struct From that we are
2117// looking at now (which is of type IndexedType). IdxSkip is the number of
2118// indices from Idxs that should be left out when inserting into the resulting
2119// struct. To is the result struct built so far, new insertvalue instructions
2120// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002121static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002122 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002123 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002124 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002125 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002126 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002127 // Save the original To argument so we can modify it
2128 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002129 // General case, the type indexed by Idxs is a struct
2130 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2131 // Process each struct element recursively
2132 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002133 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002134 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002135 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002136 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002137 if (!To) {
2138 // Couldn't find any inserted value for this index? Cleanup
2139 while (PrevTo != OrigTo) {
2140 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2141 PrevTo = Del->getAggregateOperand();
2142 Del->eraseFromParent();
2143 }
2144 // Stop processing elements
2145 break;
2146 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002147 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002148 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002149 if (To)
2150 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002151 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002152 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2153 // the struct's elements had a value that was inserted directly. In the latter
2154 // case, perhaps we can't determine each of the subelements individually, but
2155 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002156
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002157 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002158 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002159
2160 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002161 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002162
2163 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002164 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002165 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002166}
2167
2168// This helper takes a nested struct and extracts a part of it (which is again a
2169// struct) into a new value. For example, given the struct:
2170// { a, { b, { c, d }, e } }
2171// and the indices "1, 1" this returns
2172// { c, d }.
2173//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002174// It does this by inserting an insertvalue for each element in the resulting
2175// struct, as opposed to just inserting a single struct. This will only work if
2176// each of the elements of the substruct are known (ie, inserted into From by an
2177// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002178//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002179// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002180static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002181 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002182 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002183 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002184 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002185 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002186 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002187 unsigned IdxSkip = Idxs.size();
2188
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002189 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002190}
2191
Sanjay Patelaee84212014-11-04 16:27:42 +00002192/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002193/// the scalar value indexed is already around as a register, for example if it
2194/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002195///
2196/// If InsertBefore is not null, this function will duplicate (modified)
2197/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002198Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2199 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002200 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002201 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002202 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002203 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002204 // We have indices, so V should have an indexable type.
2205 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2206 "Not looking at a struct or array?");
2207 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2208 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002209
Chris Lattner67058832012-01-25 06:48:06 +00002210 if (Constant *C = dyn_cast<Constant>(V)) {
2211 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002212 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002213 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2214 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002215
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002216 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002217 // Loop the indices for the insertvalue instruction in parallel with the
2218 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002219 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002220 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2221 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002222 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002223 // We can't handle this without inserting insertvalues
2224 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002225 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002226
2227 // The requested index identifies a part of a nested aggregate. Handle
2228 // this specially. For example,
2229 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2230 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2231 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2232 // This can be changed into
2233 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2234 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2235 // which allows the unused 0,0 element from the nested struct to be
2236 // removed.
2237 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2238 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002239 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002240
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002241 // This insert value inserts something else than what we are looking for.
2242 // See if the (aggregrate) value inserted into has the value we are
2243 // looking for, then.
2244 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002245 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002246 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002247 }
2248 // If we end up here, the indices of the insertvalue match with those
2249 // requested (though possibly only partially). Now we recursively look at
2250 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002251 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002252 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002253 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002254 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002255
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002256 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002257 // If we're extracting a value from an aggregrate that was extracted from
2258 // something else, we can extract from that something else directly instead.
2259 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002260
2261 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002262 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002263 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002264 SmallVector<unsigned, 5> Idxs;
2265 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002266 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002267 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002268
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002269 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002270 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002271
Craig Topper1bef2c82012-12-22 19:15:35 +00002272 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002273 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002274
Jay Foad57aa6362011-07-13 10:26:04 +00002275 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002276 }
2277 // Otherwise, we don't know (such as, extracting from a function return value
2278 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002279 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002280}
Evan Chengda3db112008-06-30 07:31:25 +00002281
Sanjay Patelaee84212014-11-04 16:27:42 +00002282/// Analyze the specified pointer to see if it can be expressed as a base
2283/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002284Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002285 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002286 // Without DataLayout, conservatively assume 64-bit offsets, which is
2287 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002288 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002289 APInt ByteOffset(BitWidth, 0);
2290 while (1) {
2291 if (Ptr->getType()->isVectorTy())
2292 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002293
Nuno Lopes368c4d02012-12-31 20:48:35 +00002294 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002295 if (DL) {
2296 APInt GEPOffset(BitWidth, 0);
2297 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2298 break;
2299
2300 ByteOffset += GEPOffset;
2301 }
2302
Nuno Lopes368c4d02012-12-31 20:48:35 +00002303 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002304 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2305 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002306 Ptr = cast<Operator>(Ptr)->getOperand(0);
2307 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2308 if (GA->mayBeOverridden())
2309 break;
2310 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002311 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002312 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002313 }
2314 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002315 Offset = ByteOffset.getSExtValue();
2316 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002317}
2318
2319
Sanjay Patelaee84212014-11-04 16:27:42 +00002320/// This function computes the length of a null-terminated C string pointed to
2321/// by V. If successful, it returns true and returns the string in Str.
2322/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002323bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2324 uint64_t Offset, bool TrimAtNul) {
2325 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002326
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002327 // Look through bitcast instructions and geps.
2328 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002329
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002330 // If the value is a GEP instructionor constant expression, treat it as an
2331 // offset.
2332 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002333 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002334 if (GEP->getNumOperands() != 3)
2335 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002336
Evan Chengda3db112008-06-30 07:31:25 +00002337 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002338 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2339 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002340 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002341 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002342
Evan Chengda3db112008-06-30 07:31:25 +00002343 // Check to make sure that the first operand of the GEP is an integer and
2344 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002345 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002346 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002347 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002348
Evan Chengda3db112008-06-30 07:31:25 +00002349 // If the second index isn't a ConstantInt, then this is a variable index
2350 // into the array. If this occurs, we can't say anything meaningful about
2351 // the string.
2352 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002353 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002354 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002355 else
2356 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002357 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002358 }
Nick Lewycky46209882011-10-20 00:34:35 +00002359
Evan Chengda3db112008-06-30 07:31:25 +00002360 // The GEP instruction, constant or instruction, must reference a global
2361 // variable that is a constant and is initialized. The referenced constant
2362 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002363 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002364 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002365 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002366
Nick Lewycky46209882011-10-20 00:34:35 +00002367 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002368 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002369 // This is a degenerate case. The initializer is constant zero so the
2370 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002371 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002372 return true;
2373 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002374
Evan Chengda3db112008-06-30 07:31:25 +00002375 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002376 const ConstantDataArray *Array =
2377 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002378 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002379 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002380
Evan Chengda3db112008-06-30 07:31:25 +00002381 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002382 uint64_t NumElts = Array->getType()->getArrayNumElements();
2383
2384 // Start out with the entire array in the StringRef.
2385 Str = Array->getAsString();
2386
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002387 if (Offset > NumElts)
2388 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002389
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002390 // Skip over 'offset' bytes.
2391 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002392
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002393 if (TrimAtNul) {
2394 // Trim off the \0 and anything after it. If the array is not nul
2395 // terminated, we just return the whole end of string. The client may know
2396 // some other way that the string is length-bound.
2397 Str = Str.substr(0, Str.find('\0'));
2398 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002399 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002400}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002401
2402// These next two are very similar to the above, but also look through PHI
2403// nodes.
2404// TODO: See if we can integrate these two together.
2405
Sanjay Patelaee84212014-11-04 16:27:42 +00002406/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002407/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002408static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002409 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002410 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002411
2412 // If this is a PHI node, there are two cases: either we have already seen it
2413 // or we haven't.
2414 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002415 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002416 return ~0ULL; // already in the set.
2417
2418 // If it was new, see if all the input strings are the same length.
2419 uint64_t LenSoFar = ~0ULL;
2420 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2421 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2422 if (Len == 0) return 0; // Unknown length -> unknown.
2423
2424 if (Len == ~0ULL) continue;
2425
2426 if (Len != LenSoFar && LenSoFar != ~0ULL)
2427 return 0; // Disagree -> unknown.
2428 LenSoFar = Len;
2429 }
2430
2431 // Success, all agree.
2432 return LenSoFar;
2433 }
2434
2435 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2436 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2437 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2438 if (Len1 == 0) return 0;
2439 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2440 if (Len2 == 0) return 0;
2441 if (Len1 == ~0ULL) return Len2;
2442 if (Len2 == ~0ULL) return Len1;
2443 if (Len1 != Len2) return 0;
2444 return Len1;
2445 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002446
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002447 // Otherwise, see if we can read the string.
2448 StringRef StrData;
2449 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002450 return 0;
2451
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002452 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002453}
2454
Sanjay Patelaee84212014-11-04 16:27:42 +00002455/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002456/// the specified pointer, return 'len+1'. If we can't, return 0.
2457uint64_t llvm::GetStringLength(Value *V) {
2458 if (!V->getType()->isPointerTy()) return 0;
2459
2460 SmallPtrSet<PHINode*, 32> PHIs;
2461 uint64_t Len = GetStringLengthH(V, PHIs);
2462 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2463 // an empty string as a length.
2464 return Len == ~0ULL ? 1 : Len;
2465}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002466
Dan Gohman0f124e12011-01-24 18:53:32 +00002467Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002468llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002469 if (!V->getType()->isPointerTy())
2470 return V;
2471 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2472 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2473 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002474 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2475 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002476 V = cast<Operator>(V)->getOperand(0);
2477 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2478 if (GA->mayBeOverridden())
2479 return V;
2480 V = GA->getAliasee();
2481 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002482 // See if InstructionSimplify knows any relevant tricks.
2483 if (Instruction *I = dyn_cast<Instruction>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00002484 // TODO: Acquire a DominatorTree and AssumptionTracker and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002485 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002486 V = Simplified;
2487 continue;
2488 }
2489
Dan Gohmana4fcd242010-12-15 20:02:24 +00002490 return V;
2491 }
2492 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2493 }
2494 return V;
2495}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002496
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002497void
2498llvm::GetUnderlyingObjects(Value *V,
2499 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002500 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002501 unsigned MaxLookup) {
2502 SmallPtrSet<Value *, 4> Visited;
2503 SmallVector<Value *, 4> Worklist;
2504 Worklist.push_back(V);
2505 do {
2506 Value *P = Worklist.pop_back_val();
2507 P = GetUnderlyingObject(P, TD, MaxLookup);
2508
David Blaikie70573dc2014-11-19 07:49:26 +00002509 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002510 continue;
2511
2512 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2513 Worklist.push_back(SI->getTrueValue());
2514 Worklist.push_back(SI->getFalseValue());
2515 continue;
2516 }
2517
2518 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2519 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2520 Worklist.push_back(PN->getIncomingValue(i));
2521 continue;
2522 }
2523
2524 Objects.push_back(P);
2525 } while (!Worklist.empty());
2526}
2527
Sanjay Patelaee84212014-11-04 16:27:42 +00002528/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002529bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002530 for (const User *U : V->users()) {
2531 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002532 if (!II) return false;
2533
2534 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2535 II->getIntrinsicID() != Intrinsic::lifetime_end)
2536 return false;
2537 }
2538 return true;
2539}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002540
Dan Gohman7ac046a2012-01-04 23:01:09 +00002541bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002542 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002543 const Operator *Inst = dyn_cast<Operator>(V);
2544 if (!Inst)
2545 return false;
2546
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002547 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2548 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2549 if (C->canTrap())
2550 return false;
2551
2552 switch (Inst->getOpcode()) {
2553 default:
2554 return true;
2555 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00002556 case Instruction::URem: {
2557 // x / y is undefined if y == 0.
2558 const APInt *V;
2559 if (match(Inst->getOperand(1), m_APInt(V)))
2560 return *V != 0;
2561 return false;
2562 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002563 case Instruction::SDiv:
2564 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00002565 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
2566 const APInt *X, *Y;
2567 if (match(Inst->getOperand(1), m_APInt(Y))) {
2568 if (*Y != 0) {
2569 if (*Y == -1) {
2570 // The numerator can't be MinSignedValue if the denominator is -1.
2571 if (match(Inst->getOperand(0), m_APInt(X)))
2572 return !Y->isMinSignedValue();
2573 // The numerator *might* be MinSignedValue.
2574 return false;
2575 }
2576 // The denominator is not 0 or -1, it's safe to proceed.
2577 return true;
2578 }
2579 }
2580 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002581 }
2582 case Instruction::Load: {
2583 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002584 if (!LI->isUnordered() ||
2585 // Speculative load may create a race that did not exist in the source.
2586 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002587 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002588 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002589 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002590 case Instruction::Call: {
Michael Liao736bac62014-11-06 19:05:57 +00002591 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2592 switch (II->getIntrinsicID()) {
2593 // These synthetic intrinsics have no side-effects and just mark
2594 // information about their operands.
2595 // FIXME: There are other no-op synthetic instructions that potentially
2596 // should be considered at least *safe* to speculate...
2597 case Intrinsic::dbg_declare:
2598 case Intrinsic::dbg_value:
2599 return true;
Chandler Carruth28192c92012-04-07 19:22:18 +00002600
Michael Liao736bac62014-11-06 19:05:57 +00002601 case Intrinsic::bswap:
2602 case Intrinsic::ctlz:
2603 case Intrinsic::ctpop:
2604 case Intrinsic::cttz:
2605 case Intrinsic::objectsize:
2606 case Intrinsic::sadd_with_overflow:
2607 case Intrinsic::smul_with_overflow:
2608 case Intrinsic::ssub_with_overflow:
2609 case Intrinsic::uadd_with_overflow:
2610 case Intrinsic::umul_with_overflow:
2611 case Intrinsic::usub_with_overflow:
2612 return true;
2613 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2614 // errno like libm sqrt would.
2615 case Intrinsic::sqrt:
2616 case Intrinsic::fma:
2617 case Intrinsic::fmuladd:
2618 case Intrinsic::fabs:
2619 case Intrinsic::minnum:
2620 case Intrinsic::maxnum:
2621 return true;
2622 // TODO: some fp intrinsics are marked as having the same error handling
2623 // as libm. They're safe to speculate when they won't error.
2624 // TODO: are convert_{from,to}_fp16 safe?
2625 // TODO: can we list target-specific intrinsics here?
2626 default: break;
2627 }
2628 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002629 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002630 // side-effects, even if marked readnone nounwind.
2631 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002632 case Instruction::VAArg:
2633 case Instruction::Alloca:
2634 case Instruction::Invoke:
2635 case Instruction::PHI:
2636 case Instruction::Store:
2637 case Instruction::Ret:
2638 case Instruction::Br:
2639 case Instruction::IndirectBr:
2640 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002641 case Instruction::Unreachable:
2642 case Instruction::Fence:
2643 case Instruction::LandingPad:
2644 case Instruction::AtomicRMW:
2645 case Instruction::AtomicCmpXchg:
2646 case Instruction::Resume:
2647 return false; // Misc instructions which have effects
2648 }
2649}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002650
Sanjay Patelaee84212014-11-04 16:27:42 +00002651/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002652bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002653 // Alloca never returns null, malloc might.
2654 if (isa<AllocaInst>(V)) return true;
2655
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002656 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002657 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002658 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002659
2660 // Global values are not null unless extern weak.
2661 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2662 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002663
Philip Reamescdb72f32014-10-20 22:40:55 +00002664 // A Load tagged w/nonnull metadata is never null.
2665 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00002666 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00002667
Nick Lewyckyec373542014-05-20 05:13:21 +00002668 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002669 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002670 return true;
2671
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002672 // operator new never returns null.
2673 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2674 return true;
2675
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002676 return false;
2677}
David Majnemer491331a2015-01-02 07:29:43 +00002678
2679OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
2680 const DataLayout *DL,
2681 AssumptionTracker *AT,
2682 const Instruction *CxtI,
2683 const DominatorTree *DT) {
2684 // Multiplying n * m significant bits yields a result of n + m significant
2685 // bits. If the total number of significant bits does not exceed the
2686 // result bit width (minus 1), there is no overflow.
2687 // This means if we have enough leading zero bits in the operands
2688 // we can guarantee that the result does not overflow.
2689 // Ref: "Hacker's Delight" by Henry Warren
2690 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
2691 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00002692 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00002693 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00002694 APInt RHSKnownOne(BitWidth, 0);
2695 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AT, CxtI, DT);
2696 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AT, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00002697 // Note that underestimating the number of zero bits gives a more
2698 // conservative answer.
2699 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
2700 RHSKnownZero.countLeadingOnes();
2701 // First handle the easy case: if we have enough zero bits there's
2702 // definitely no overflow.
2703 if (ZeroBits >= BitWidth)
2704 return OverflowResult::NeverOverflows;
2705
2706 // Get the largest possible values for each operand.
2707 APInt LHSMax = ~LHSKnownZero;
2708 APInt RHSMax = ~RHSKnownZero;
2709
2710 // We know the multiply operation doesn't overflow if the maximum values for
2711 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00002712 bool MaxOverflow;
2713 LHSMax.umul_ov(RHSMax, MaxOverflow);
2714 if (!MaxOverflow)
2715 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00002716
David Majnemerc8a576b2015-01-02 07:29:47 +00002717 // We know it always overflows if multiplying the smallest possible values for
2718 // the operands also results in overflow.
2719 bool MinOverflow;
2720 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
2721 if (MinOverflow)
2722 return OverflowResult::AlwaysOverflows;
2723
2724 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00002725}