blob: d8813554705adbf4ff1d614c1cfbcf5f62d841e3 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Chandler Carruth705b1852015-01-31 03:43:40 +0000117 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
118 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
119 TTI::OperandValueProperties Opd2PropInfo) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000120 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000121 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000122
123 int ISD = TLI->InstructionOpcodeToISD(Opcode);
124 assert(ISD && "Invalid opcode");
125
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000126 if (ISD == ISD::SDIV &&
127 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
128 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
129 // On X86, vector signed division by constants power-of-two are
130 // normally expanded to the sequence SRA + SRL + ADD + SRA.
131 // The OperandValue properties many not be same as that of previous
132 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000133 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
134 Op2Info, TargetTransformInfo::OP_None,
135 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000136 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
137 TargetTransformInfo::OP_None,
138 TargetTransformInfo::OP_None);
139 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
140 TargetTransformInfo::OP_None,
141 TargetTransformInfo::OP_None);
142
143 return Cost;
144 }
145
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000146 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
147 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
148 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
149 };
150
151 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
152 ST->hasBWI()) {
153 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
154 LT.second))
155 return LT.first * Entry->Cost;
156 }
157
158 static const CostTblEntry AVX512UniformConstCostTable[] = {
159 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
160 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
161 };
162
163 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
164 ST->hasAVX512()) {
165 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
166 LT.second))
167 return LT.first * Entry->Cost;
168 }
169
Craig Topper4b275762015-10-28 04:02:12 +0000170 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000171 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
172
Benjamin Kramer7c372272014-04-26 14:53:05 +0000173 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
174 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
175 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
176 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
177 };
178
179 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
180 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000181 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
182 LT.second))
183 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000184 }
185
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000186 static const CostTblEntry SSE2UniformConstCostTable[] = {
187 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
188 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
189 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
190 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
191 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
192 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
193 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
194 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
195 };
196
197 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
198 ST->hasSSE2()) {
199 // pmuldq sequence.
200 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
201 return LT.first * 30;
202 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
203 return LT.first * 15;
204
205 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
206 LT.second))
207 return LT.first * Entry->Cost;
208 }
209
Simon Pilgrim820e1322016-10-27 15:27:00 +0000210 static const CostTblEntry AVX512DQCostTable[] = {
211 { ISD::MUL, MVT::v2i64, 1 },
212 { ISD::MUL, MVT::v4i64, 1 },
213 { ISD::MUL, MVT::v8i64, 1 }
214 };
215
216 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000217 if (ST->hasDQI())
218 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000219 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000220
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000221 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrima4109d62017-01-07 17:54:10 +0000222 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
223 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
224 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
225
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000226 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
227 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
228 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
229
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000230 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
231 { ISD::SDIV, MVT::v64i8, 64*20 },
232 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000233 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000234 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000235 };
236
237 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000238 if (ST->hasBWI())
239 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000240 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000241
Craig Topper4b275762015-10-28 04:02:12 +0000242 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000243 { ISD::SHL, MVT::v16i32, 1 },
244 { ISD::SRL, MVT::v16i32, 1 },
245 { ISD::SRA, MVT::v16i32, 1 },
246 { ISD::SHL, MVT::v8i64, 1 },
247 { ISD::SRL, MVT::v8i64, 1 },
248 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000249
Simon Pilgrimd8333372017-01-06 11:12:53 +0000250 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
251 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
252 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
253 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
254
255 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
256 { ISD::SDIV, MVT::v16i32, 16*20 },
257 { ISD::SDIV, MVT::v8i64, 8*20 },
258 { ISD::UDIV, MVT::v16i32, 16*20 },
259 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000260 };
261
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000262 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000263 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
264 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000265
Craig Topper4b275762015-10-28 04:02:12 +0000266 static const CostTblEntry AVX2CostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000267 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
268 // customize them to detect the cases where shift amount is a scalar one.
269 { ISD::SHL, MVT::v4i32, 1 },
270 { ISD::SRL, MVT::v4i32, 1 },
271 { ISD::SRA, MVT::v4i32, 1 },
272 { ISD::SHL, MVT::v8i32, 1 },
273 { ISD::SRL, MVT::v8i32, 1 },
274 { ISD::SRA, MVT::v8i32, 1 },
275 { ISD::SHL, MVT::v2i64, 1 },
276 { ISD::SRL, MVT::v2i64, 1 },
277 { ISD::SHL, MVT::v4i64, 1 },
278 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000279 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000280
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000281 // Look for AVX2 lowering tricks.
282 if (ST->hasAVX2()) {
283 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
284 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
285 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
286 // On AVX2, a packed v16i16 shift left by a constant build_vector
287 // is lowered into a vector multiply (vpmullw).
288 return LT.first;
289
Craig Topperee0c8592015-10-27 04:14:24 +0000290 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
291 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000292 }
293
Craig Topper4b275762015-10-28 04:02:12 +0000294 static const CostTblEntry XOPCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000295 // 128bit shifts take 1cy, but right shifts require negation beforehand.
296 { ISD::SHL, MVT::v16i8, 1 },
297 { ISD::SRL, MVT::v16i8, 2 },
298 { ISD::SRA, MVT::v16i8, 2 },
299 { ISD::SHL, MVT::v8i16, 1 },
300 { ISD::SRL, MVT::v8i16, 2 },
301 { ISD::SRA, MVT::v8i16, 2 },
302 { ISD::SHL, MVT::v4i32, 1 },
303 { ISD::SRL, MVT::v4i32, 2 },
304 { ISD::SRA, MVT::v4i32, 2 },
305 { ISD::SHL, MVT::v2i64, 1 },
306 { ISD::SRL, MVT::v2i64, 2 },
307 { ISD::SRA, MVT::v2i64, 2 },
308 // 256bit shifts require splitting if AVX2 didn't catch them above.
309 { ISD::SHL, MVT::v32i8, 2 },
310 { ISD::SRL, MVT::v32i8, 4 },
311 { ISD::SRA, MVT::v32i8, 4 },
312 { ISD::SHL, MVT::v16i16, 2 },
313 { ISD::SRL, MVT::v16i16, 4 },
314 { ISD::SRA, MVT::v16i16, 4 },
315 { ISD::SHL, MVT::v8i32, 2 },
316 { ISD::SRL, MVT::v8i32, 4 },
317 { ISD::SRA, MVT::v8i32, 4 },
318 { ISD::SHL, MVT::v4i64, 2 },
319 { ISD::SRL, MVT::v4i64, 4 },
320 { ISD::SRA, MVT::v4i64, 4 },
321 };
322
323 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000324 if (ST->hasXOP())
Craig Topperee0c8592015-10-27 04:14:24 +0000325 if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
326 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000327
Craig Topper4b275762015-10-28 04:02:12 +0000328 static const CostTblEntry AVX2CustomCostTable[] = {
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000329 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
330 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000331
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000332 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
333 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000334
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000335 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
336 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
337 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
338 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000339
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000340 { ISD::SUB, MVT::v32i8, 1 }, // psubb
341 { ISD::ADD, MVT::v32i8, 1 }, // paddb
342 { ISD::SUB, MVT::v16i16, 1 }, // psubw
343 { ISD::ADD, MVT::v16i16, 1 }, // paddw
344 { ISD::SUB, MVT::v8i32, 1 }, // psubd
345 { ISD::ADD, MVT::v8i32, 1 }, // paddd
346 { ISD::SUB, MVT::v4i64, 1 }, // psubq
347 { ISD::ADD, MVT::v4i64, 1 }, // paddq
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000348
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000349 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
350 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
351 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
352 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
353 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
354
355 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
356 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
357 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
358 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
359 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
360 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000361 };
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000362
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000363 // Look for AVX2 lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000364 if (ST->hasAVX2())
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000365 if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
366 LT.second))
367 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000368
369 static const CostTblEntry AVXCustomCostTable[] = {
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000370 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
371
Alexey Bataevd07c7312016-10-31 12:10:53 +0000372 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
373 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
374 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
375 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
376 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
377 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000378
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000379 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
380 { ISD::SDIV, MVT::v32i8, 32*20 },
381 { ISD::SDIV, MVT::v16i16, 16*20 },
382 { ISD::SDIV, MVT::v8i32, 8*20 },
383 { ISD::SDIV, MVT::v4i64, 4*20 },
384 { ISD::UDIV, MVT::v32i8, 32*20 },
385 { ISD::UDIV, MVT::v16i16, 16*20 },
386 { ISD::UDIV, MVT::v8i32, 8*20 },
387 { ISD::UDIV, MVT::v4i64, 4*20 },
Michael Liao70dd7f92013-03-20 22:01:10 +0000388 };
389
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000390 // Look for AVX2 lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000391 if (ST->hasAVX())
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000392 if (const auto *Entry = CostTableLookup(AVXCustomCostTable, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +0000393 LT.second))
394 return LT.first * Entry->Cost;
Michael Liao70dd7f92013-03-20 22:01:10 +0000395
Craig Topper4b275762015-10-28 04:02:12 +0000396 static const CostTblEntry
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000397 SSE2UniformCostTable[] = {
398 // Uniform splats are cheaper for the following instructions.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000399 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000400 { ISD::SHL, MVT::v32i8, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000401 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000402 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000403 { ISD::SHL, MVT::v4i32, 1 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000404 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000405 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000406 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000407
408 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000409 { ISD::SRL, MVT::v32i8, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000410 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000411 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000412 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000413 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000414 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000415 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000416
417 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000418 { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000419 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000420 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000421 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000422 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000423 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000424 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000425 };
426
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000427 if (ST->hasSSE2() &&
428 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
429 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000430 if (const auto *Entry =
431 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000432 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000433 }
434
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000435 if (ISD == ISD::SHL &&
436 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000437 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000438 // Vector shift left by non uniform constant can be lowered
439 // into vector multiply (pmullw/pmulld).
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000440 if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
441 (VT == MVT::v4i32 && ST->hasSSE41()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000442 return LT.first;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000443
444 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
445 // sequence of extract + two vector multiply + insert.
446 if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
447 (ST->hasAVX() && !ST->hasAVX2()))
448 ISD = ISD::MUL;
449
450 // A vector shift left by non uniform constant is converted
451 // into a vector multiply; the new multiply is eventually
452 // lowered into a sequence of shuffles and 2 x pmuludq.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000453 if (VT == MVT::v4i32 && ST->hasSSE2())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000454 ISD = ISD::MUL;
455 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000456
Simon Pilgrim100eae12017-01-07 17:03:51 +0000457 static const CostTblEntry AVX1CostTable[] = {
458 // We don't have to scalarize unsupported ops. We can issue two half-sized
459 // operations and we only need to extract the upper YMM half.
460 // Two ops + 1 extract + 1 insert = 4.
461 { ISD::MUL, MVT::v16i16, 4 },
462 { ISD::MUL, MVT::v8i32, 4 },
463 { ISD::SUB, MVT::v32i8, 4 },
464 { ISD::ADD, MVT::v32i8, 4 },
465 { ISD::SUB, MVT::v16i16, 4 },
466 { ISD::ADD, MVT::v16i16, 4 },
467 { ISD::SUB, MVT::v8i32, 4 },
468 { ISD::ADD, MVT::v8i32, 4 },
469 { ISD::SUB, MVT::v4i64, 4 },
470 { ISD::ADD, MVT::v4i64, 4 },
471
472 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
473 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
474 // Because we believe v4i64 to be a legal type, we must also include the
475 // extract+insert in the cost table. Therefore, the cost here is 18
476 // instead of 8.
477 { ISD::MUL, MVT::v4i64, 18 },
478 };
479
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000480 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000481 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
482 return LT.first * Entry->Cost;
483
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000484 static const CostTblEntry SSE42CostTable[] = {
485 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
486 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
487 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
488 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
489 };
490
491 if (ST->hasSSE42())
492 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
493 return LT.first * Entry->Cost;
494
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000495 static const CostTblEntry SSE41CostTable[] = {
496 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
497 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
498 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
499 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
500
501 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
502 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
503 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
504 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
505 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
506 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
507
508 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
509 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
510 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
511 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
512 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
513 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000514
515 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000516 };
517
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000518 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000519 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
520 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000521
Craig Topper4b275762015-10-28 04:02:12 +0000522 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000523 // We don't correctly identify costs of casts because they are marked as
524 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000525 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
526 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
527 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000528 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000529 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000530 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000531
532 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
533 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
534 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000535 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000536 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000537
538 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
539 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
540 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000541 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000542 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000543
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000544 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000545 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000546 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000547
Alexey Bataevd07c7312016-10-31 12:10:53 +0000548 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
549 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
550 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
551 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
552
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000553 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000554 // in the process we will often end up having to spilling regular
555 // registers. The overhead of division is going to dominate most kernels
556 // anyways so try hard to prevent vectorization of division - it is
557 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
558 // to hide "20 cycles" for each lane.
559 { ISD::SDIV, MVT::v16i8, 16*20 },
560 { ISD::SDIV, MVT::v8i16, 8*20 },
561 { ISD::SDIV, MVT::v4i32, 4*20 },
562 { ISD::SDIV, MVT::v2i64, 2*20 },
563 { ISD::UDIV, MVT::v16i8, 16*20 },
564 { ISD::UDIV, MVT::v8i16, 8*20 },
565 { ISD::UDIV, MVT::v4i32, 4*20 },
566 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000567 };
568
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000569 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000570 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
571 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000572
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000573 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000574 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
575 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
576 };
577
578 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000579 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000580 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000581
Chandler Carruth664e3542013-01-07 01:37:14 +0000582 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000583 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000584}
585
Chandler Carruth93205eb2015-08-05 18:08:10 +0000586int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
587 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000588 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
589 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
590 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000591
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000592 // For Broadcasts we are splatting the first element from the first input
593 // register, so only need to reference that input and all the output
594 // registers are the same.
595 if (Kind == TTI::SK_Broadcast)
596 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000597
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000598 // We are going to permute multiple sources and the result will be in multiple
599 // destinations. Providing an accurate cost only for splits where the element
600 // type remains the same.
601 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
602 MVT LegalVT = LT.second;
603 if (LegalVT.getVectorElementType().getSizeInBits() ==
604 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
605 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000606
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000607 unsigned VecTySize = DL.getTypeStoreSize(Tp);
608 unsigned LegalVTSize = LegalVT.getStoreSize();
609 // Number of source vectors after legalization:
610 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
611 // Number of destination vectors after legalization:
612 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000613
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000614 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
615 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000616
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000617 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
618 return NumOfShuffles *
619 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
620 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000621
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000622 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
623 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000624
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000625 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
626 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000627 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000628 int NumOfDests = LT.first;
629 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000630 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000631 }
632
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000633 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
634 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
635 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
636
637 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
638 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
639
640 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
641 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
642 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
643 };
644
645 if (ST->hasVBMI())
646 if (const auto *Entry =
647 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
648 return LT.first * Entry->Cost;
649
650 static const CostTblEntry AVX512BWShuffleTbl[] = {
651 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
652 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
653
654 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
655 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000656 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000657
658 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
659 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
660 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
661 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
662 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
663
664 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
665 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
666 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
667 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
668 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
669 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
670 };
671
672 if (ST->hasBWI())
673 if (const auto *Entry =
674 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
675 return LT.first * Entry->Cost;
676
677 static const CostTblEntry AVX512ShuffleTbl[] = {
678 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
679 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
680 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
681 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
682
683 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
684 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
685 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
686 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
687
688 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
689 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
690 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
691 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
692 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
693 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
694 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
695 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
696 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
697 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
698 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
699 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
700 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
701
702 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
703 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
704 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
705 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
706 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
707 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
708 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
709 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
710 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
711 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
712 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
713 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
714 };
715
716 if (ST->hasAVX512())
717 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
718 return LT.first * Entry->Cost;
719
720 static const CostTblEntry AVX2ShuffleTbl[] = {
721 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
722 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
723 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
724 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
725 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
726 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
727
728 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
729 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
730 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
731 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
732 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
733 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
734
735 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
736 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
737 };
738
739 if (ST->hasAVX2())
740 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
741 return LT.first * Entry->Cost;
742
743 static const CostTblEntry AVX1ShuffleTbl[] = {
744 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
745 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
746 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
747 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
748 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
749 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
750
751 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
752 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
753 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
754 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
755 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
756 // + vinsertf128
757 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
758 // + vinsertf128
759
760 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
761 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
762 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
763 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
764 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
765 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
766 };
767
768 if (ST->hasAVX())
769 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
770 return LT.first * Entry->Cost;
771
772 static const CostTblEntry SSE41ShuffleTbl[] = {
773 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
774 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
775 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
776 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
777 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
778 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
779 };
780
781 if (ST->hasSSE41())
782 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
783 return LT.first * Entry->Cost;
784
785 static const CostTblEntry SSSE3ShuffleTbl[] = {
786 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
787 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
788
789 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
790 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
791
792 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
793 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
794 };
795
796 if (ST->hasSSSE3())
797 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
798 return LT.first * Entry->Cost;
799
800 static const CostTblEntry SSE2ShuffleTbl[] = {
801 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
802 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
803 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
804 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
805 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
806
807 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
808 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
809 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
810 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
811 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
812 // + 2*pshufd + 2*unpck + packus
813
814 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
815 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
816 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
817 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
818 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
819 };
820
821 if (ST->hasSSE2())
822 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
823 return LT.first * Entry->Cost;
824
825 static const CostTblEntry SSE1ShuffleTbl[] = {
826 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
827 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
828 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
829 };
830
831 if (ST->hasSSE1())
832 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
833 return LT.first * Entry->Cost;
834
Chandler Carruth705b1852015-01-31 03:43:40 +0000835 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000836}
837
Chandler Carruth93205eb2015-08-05 18:08:10 +0000838int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000839 int ISD = TLI->InstructionOpcodeToISD(Opcode);
840 assert(ISD && "Invalid opcode");
841
Cong Hou59898d82015-12-11 00:31:39 +0000842 // FIXME: Need a better design of the cost table to handle non-simple types of
843 // potential massive combinations (elem_num x src_type x dst_type).
844
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000845 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000846 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
847 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000848 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
849 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000850 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
851 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
852
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000853 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000854 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000855 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000856 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000857 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000858 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000859
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000860 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000861 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000862 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000863 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000864 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000865 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
866
867 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
868 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
869 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
870 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
871 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
872 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000873 };
874
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000875 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
876 // 256-bit wide vectors.
877
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000878 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000879 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
880 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
881 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000882
883 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
884 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
885 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
886 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000887
888 // v16i1 -> v16i32 - load + broadcast
889 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
890 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000891 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
892 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
893 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
894 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000895 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
896 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000897 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
898 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000899
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000900 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000901 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000902 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000903 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000904 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000905 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
906 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000907 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000908 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
909 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000910
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000911 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000912 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000913 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000914 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
915 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
916 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
917 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000918 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000919 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
920 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
921 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
922 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000923 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000924 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000925 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
926 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
927 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
928 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
929 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000930 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000931 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
932 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
933 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
934
935 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
936 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
937 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
938 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000939 };
940
Craig Topper4b275762015-10-28 04:02:12 +0000941 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000942 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
943 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000944 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
945 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000946 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
947 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000948 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
949 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
950 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
951 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000952 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
953 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000954 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
955 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000956 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
957 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
958
959 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
960 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
961 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
962 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
963 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
964 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000965
966 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
967 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000968
969 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000970 };
971
Craig Topper4b275762015-10-28 04:02:12 +0000972 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000973 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
974 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000975 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
976 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000977 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
978 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000979 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
980 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
981 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
982 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000983 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
984 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000985 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
986 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000987 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
988 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
989
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000990 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
991 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
992 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000993 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
994 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
995 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000996 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000997
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000998 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000999 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001000 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1001 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001002 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001003 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1004 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001005 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001006 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1007 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001008 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001009 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001010
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001011 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001012 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001013 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1014 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001015 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001016 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1017 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001018 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001019 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001020 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001021 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001022 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001023 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001024 // The generic code to compute the scalar overhead is currently broken.
1025 // Workaround this limitation by estimating the scalarization overhead
1026 // here. We have roughly 10 instructions per scalar element.
1027 // Multiply that by the vector width.
1028 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001029 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1030 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1031 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1032 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001033
Renato Goline1fb0592013-01-20 20:57:20 +00001034 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001035 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001036 // This node is expanded into scalarized operations but BasicTTI is overly
1037 // optimistic estimating its cost. It computes 3 per element (one
1038 // vector-extract, one scalar conversion and one vector-insert). The
1039 // problem is that the inserts form a read-modify-write chain so latency
1040 // should be factored in too. Inflating the cost per element by 1.
1041 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001042 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001043
1044 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1045 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001046 };
1047
Cong Hou59898d82015-12-11 00:31:39 +00001048 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001049 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1050 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001051 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1052 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1053 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1054 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001055
Cong Hou59898d82015-12-11 00:31:39 +00001056 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1057 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001058 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1059 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1060 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1061 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1062 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1063 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1064 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1065 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1066 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1067 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1068 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1069 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1070 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1071 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1072 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1073 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001074
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001075 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1076 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1077 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001078 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001079 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001080 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001081 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1082
Cong Hou59898d82015-12-11 00:31:39 +00001083 };
1084
1085 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001086 // These are somewhat magic numbers justified by looking at the output of
1087 // Intel's IACA, running some kernels and making sure when we take
1088 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001089 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001090 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1091 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1092 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001093 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001094 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1095 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1096 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001097
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001098 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1099 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1100 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1101 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1102 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1103 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1104 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1105 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001106
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001107 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1108
Cong Hou59898d82015-12-11 00:31:39 +00001109 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1110 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001111 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1112 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1113 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1114 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1115 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1116 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1117 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1118 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1119 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1120 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1121 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1122 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1123 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1124 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1125 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1126 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1127 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1128 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1129 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001130 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001131 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1132 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001133
Cong Hou59898d82015-12-11 00:31:39 +00001134 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001135 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1136 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1137 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1138 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1139 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1140 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1141 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1142 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001143 };
1144
Chandler Carruth93205eb2015-08-05 18:08:10 +00001145 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1146 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001147
1148 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001149 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001150 LTDest.second, LTSrc.second))
1151 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001152 }
1153
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001154 EVT SrcTy = TLI->getValueType(DL, Src);
1155 EVT DstTy = TLI->getValueType(DL, Dst);
1156
1157 // The function getSimpleVT only handles simple value types.
1158 if (!SrcTy.isSimple() || !DstTy.isSimple())
1159 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1160
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001161 if (ST->hasDQI())
1162 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1163 DstTy.getSimpleVT(),
1164 SrcTy.getSimpleVT()))
1165 return Entry->Cost;
1166
1167 if (ST->hasAVX512())
1168 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1169 DstTy.getSimpleVT(),
1170 SrcTy.getSimpleVT()))
1171 return Entry->Cost;
1172
Tim Northoverf0e21612014-02-06 18:18:36 +00001173 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001174 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1175 DstTy.getSimpleVT(),
1176 SrcTy.getSimpleVT()))
1177 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001178 }
1179
Chandler Carruth664e3542013-01-07 01:37:14 +00001180 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001181 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1182 DstTy.getSimpleVT(),
1183 SrcTy.getSimpleVT()))
1184 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001185 }
1186
Cong Hou59898d82015-12-11 00:31:39 +00001187 if (ST->hasSSE41()) {
1188 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1189 DstTy.getSimpleVT(),
1190 SrcTy.getSimpleVT()))
1191 return Entry->Cost;
1192 }
1193
1194 if (ST->hasSSE2()) {
1195 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1196 DstTy.getSimpleVT(),
1197 SrcTy.getSimpleVT()))
1198 return Entry->Cost;
1199 }
1200
Chandler Carruth705b1852015-01-31 03:43:40 +00001201 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001202}
1203
Chandler Carruth93205eb2015-08-05 18:08:10 +00001204int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001205 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001206 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001207
1208 MVT MTy = LT.second;
1209
1210 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1211 assert(ISD && "Invalid opcode");
1212
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001213 static const CostTblEntry SSE2CostTbl[] = {
1214 { ISD::SETCC, MVT::v2i64, 8 },
1215 { ISD::SETCC, MVT::v4i32, 1 },
1216 { ISD::SETCC, MVT::v8i16, 1 },
1217 { ISD::SETCC, MVT::v16i8, 1 },
1218 };
1219
Craig Topper4b275762015-10-28 04:02:12 +00001220 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001221 { ISD::SETCC, MVT::v2f64, 1 },
1222 { ISD::SETCC, MVT::v4f32, 1 },
1223 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001224 };
1225
Craig Topper4b275762015-10-28 04:02:12 +00001226 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001227 { ISD::SETCC, MVT::v4f64, 1 },
1228 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001229 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001230 { ISD::SETCC, MVT::v4i64, 4 },
1231 { ISD::SETCC, MVT::v8i32, 4 },
1232 { ISD::SETCC, MVT::v16i16, 4 },
1233 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001234 };
1235
Craig Topper4b275762015-10-28 04:02:12 +00001236 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001237 { ISD::SETCC, MVT::v4i64, 1 },
1238 { ISD::SETCC, MVT::v8i32, 1 },
1239 { ISD::SETCC, MVT::v16i16, 1 },
1240 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001241 };
1242
Craig Topper4b275762015-10-28 04:02:12 +00001243 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001244 { ISD::SETCC, MVT::v8i64, 1 },
1245 { ISD::SETCC, MVT::v16i32, 1 },
1246 { ISD::SETCC, MVT::v8f64, 1 },
1247 { ISD::SETCC, MVT::v16f32, 1 },
1248 };
1249
Craig Topperee0c8592015-10-27 04:14:24 +00001250 if (ST->hasAVX512())
1251 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1252 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001253
Craig Topperee0c8592015-10-27 04:14:24 +00001254 if (ST->hasAVX2())
1255 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1256 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001257
Craig Topperee0c8592015-10-27 04:14:24 +00001258 if (ST->hasAVX())
1259 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1260 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001261
Craig Topperee0c8592015-10-27 04:14:24 +00001262 if (ST->hasSSE42())
1263 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1264 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001265
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001266 if (ST->hasSSE2())
1267 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1268 return LT.first * Entry->Cost;
1269
Chandler Carruth705b1852015-01-31 03:43:40 +00001270 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001271}
1272
Simon Pilgrim14000b32016-05-24 08:17:50 +00001273int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1274 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001275 // Costs should match the codegen from:
1276 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1277 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001278 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001279 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001280 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001281 static const CostTblEntry XOPCostTbl[] = {
1282 { ISD::BITREVERSE, MVT::v4i64, 4 },
1283 { ISD::BITREVERSE, MVT::v8i32, 4 },
1284 { ISD::BITREVERSE, MVT::v16i16, 4 },
1285 { ISD::BITREVERSE, MVT::v32i8, 4 },
1286 { ISD::BITREVERSE, MVT::v2i64, 1 },
1287 { ISD::BITREVERSE, MVT::v4i32, 1 },
1288 { ISD::BITREVERSE, MVT::v8i16, 1 },
1289 { ISD::BITREVERSE, MVT::v16i8, 1 },
1290 { ISD::BITREVERSE, MVT::i64, 3 },
1291 { ISD::BITREVERSE, MVT::i32, 3 },
1292 { ISD::BITREVERSE, MVT::i16, 3 },
1293 { ISD::BITREVERSE, MVT::i8, 3 }
1294 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001295 static const CostTblEntry AVX2CostTbl[] = {
1296 { ISD::BITREVERSE, MVT::v4i64, 5 },
1297 { ISD::BITREVERSE, MVT::v8i32, 5 },
1298 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001299 { ISD::BITREVERSE, MVT::v32i8, 5 },
1300 { ISD::BSWAP, MVT::v4i64, 1 },
1301 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001302 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001303 { ISD::CTLZ, MVT::v4i64, 23 },
1304 { ISD::CTLZ, MVT::v8i32, 18 },
1305 { ISD::CTLZ, MVT::v16i16, 14 },
1306 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001307 { ISD::CTPOP, MVT::v4i64, 7 },
1308 { ISD::CTPOP, MVT::v8i32, 11 },
1309 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001310 { ISD::CTPOP, MVT::v32i8, 6 },
1311 { ISD::CTTZ, MVT::v4i64, 10 },
1312 { ISD::CTTZ, MVT::v8i32, 14 },
1313 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001314 { ISD::CTTZ, MVT::v32i8, 9 },
1315 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1316 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1317 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1318 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1319 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1320 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001321 };
1322 static const CostTblEntry AVX1CostTbl[] = {
1323 { ISD::BITREVERSE, MVT::v4i64, 10 },
1324 { ISD::BITREVERSE, MVT::v8i32, 10 },
1325 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001326 { ISD::BITREVERSE, MVT::v32i8, 10 },
1327 { ISD::BSWAP, MVT::v4i64, 4 },
1328 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001329 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001330 { ISD::CTLZ, MVT::v4i64, 46 },
1331 { ISD::CTLZ, MVT::v8i32, 36 },
1332 { ISD::CTLZ, MVT::v16i16, 28 },
1333 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001334 { ISD::CTPOP, MVT::v4i64, 14 },
1335 { ISD::CTPOP, MVT::v8i32, 22 },
1336 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001337 { ISD::CTPOP, MVT::v32i8, 12 },
1338 { ISD::CTTZ, MVT::v4i64, 20 },
1339 { ISD::CTTZ, MVT::v8i32, 28 },
1340 { ISD::CTTZ, MVT::v16i16, 24 },
1341 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001342 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1343 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1344 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1345 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1346 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1347 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1348 };
1349 static const CostTblEntry SSE42CostTbl[] = {
1350 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1351 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001352 };
1353 static const CostTblEntry SSSE3CostTbl[] = {
1354 { ISD::BITREVERSE, MVT::v2i64, 5 },
1355 { ISD::BITREVERSE, MVT::v4i32, 5 },
1356 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001357 { ISD::BITREVERSE, MVT::v16i8, 5 },
1358 { ISD::BSWAP, MVT::v2i64, 1 },
1359 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001360 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001361 { ISD::CTLZ, MVT::v2i64, 23 },
1362 { ISD::CTLZ, MVT::v4i32, 18 },
1363 { ISD::CTLZ, MVT::v8i16, 14 },
1364 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001365 { ISD::CTPOP, MVT::v2i64, 7 },
1366 { ISD::CTPOP, MVT::v4i32, 11 },
1367 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001368 { ISD::CTPOP, MVT::v16i8, 6 },
1369 { ISD::CTTZ, MVT::v2i64, 10 },
1370 { ISD::CTTZ, MVT::v4i32, 14 },
1371 { ISD::CTTZ, MVT::v8i16, 12 },
1372 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001373 };
1374 static const CostTblEntry SSE2CostTbl[] = {
1375 { ISD::BSWAP, MVT::v2i64, 7 },
1376 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001377 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001378 { ISD::CTLZ, MVT::v2i64, 25 },
1379 { ISD::CTLZ, MVT::v4i32, 26 },
1380 { ISD::CTLZ, MVT::v8i16, 20 },
1381 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001382 { ISD::CTPOP, MVT::v2i64, 12 },
1383 { ISD::CTPOP, MVT::v4i32, 15 },
1384 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001385 { ISD::CTPOP, MVT::v16i8, 10 },
1386 { ISD::CTTZ, MVT::v2i64, 14 },
1387 { ISD::CTTZ, MVT::v4i32, 18 },
1388 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001389 { ISD::CTTZ, MVT::v16i8, 13 },
1390 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1391 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1392 };
1393 static const CostTblEntry SSE1CostTbl[] = {
1394 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1395 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001396 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001397
1398 unsigned ISD = ISD::DELETED_NODE;
1399 switch (IID) {
1400 default:
1401 break;
1402 case Intrinsic::bitreverse:
1403 ISD = ISD::BITREVERSE;
1404 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001405 case Intrinsic::bswap:
1406 ISD = ISD::BSWAP;
1407 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001408 case Intrinsic::ctlz:
1409 ISD = ISD::CTLZ;
1410 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001411 case Intrinsic::ctpop:
1412 ISD = ISD::CTPOP;
1413 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001414 case Intrinsic::cttz:
1415 ISD = ISD::CTTZ;
1416 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001417 case Intrinsic::sqrt:
1418 ISD = ISD::FSQRT;
1419 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001420 }
1421
1422 // Legalize the type.
1423 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1424 MVT MTy = LT.second;
1425
1426 // Attempt to lookup cost.
1427 if (ST->hasXOP())
1428 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1429 return LT.first * Entry->Cost;
1430
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001431 if (ST->hasAVX2())
1432 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1433 return LT.first * Entry->Cost;
1434
1435 if (ST->hasAVX())
1436 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1437 return LT.first * Entry->Cost;
1438
Alexey Bataevd07c7312016-10-31 12:10:53 +00001439 if (ST->hasSSE42())
1440 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1441 return LT.first * Entry->Cost;
1442
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001443 if (ST->hasSSSE3())
1444 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1445 return LT.first * Entry->Cost;
1446
Simon Pilgrim356e8232016-06-20 23:08:21 +00001447 if (ST->hasSSE2())
1448 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1449 return LT.first * Entry->Cost;
1450
Alexey Bataevd07c7312016-10-31 12:10:53 +00001451 if (ST->hasSSE1())
1452 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1453 return LT.first * Entry->Cost;
1454
Simon Pilgrim14000b32016-05-24 08:17:50 +00001455 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1456}
1457
1458int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1459 ArrayRef<Value *> Args, FastMathFlags FMF) {
1460 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1461}
1462
Chandler Carruth93205eb2015-08-05 18:08:10 +00001463int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001464 assert(Val->isVectorTy() && "This must be a vector type");
1465
Sanjay Patelaedc3472016-05-25 17:27:54 +00001466 Type *ScalarType = Val->getScalarType();
1467
Chandler Carruth664e3542013-01-07 01:37:14 +00001468 if (Index != -1U) {
1469 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001470 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001471
1472 // This type is legalized to a scalar type.
1473 if (!LT.second.isVector())
1474 return 0;
1475
1476 // The type may be split. Normalize the index to the new type.
1477 unsigned Width = LT.second.getVectorNumElements();
1478 Index = Index % Width;
1479
1480 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001481 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001482 return 0;
1483 }
1484
Sanjay Patelaedc3472016-05-25 17:27:54 +00001485 // Add to the base cost if we know that the extracted element of a vector is
1486 // destined to be moved to and used in the integer register file.
1487 int RegisterFileMoveCost = 0;
1488 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1489 RegisterFileMoveCost = 1;
1490
1491 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001492}
1493
Chandler Carruth93205eb2015-08-05 18:08:10 +00001494int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001495 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001496 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001497
1498 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1499 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001500 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001501 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001502 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001503 }
1504
1505 return Cost;
1506}
1507
Chandler Carruth93205eb2015-08-05 18:08:10 +00001508int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1509 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001510 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001511 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1512 unsigned NumElem = VTy->getVectorNumElements();
1513
1514 // Handle a few common cases:
1515 // <3 x float>
1516 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1517 // Cost = 64 bit store + extract + 32 bit store.
1518 return 3;
1519
1520 // <3 x double>
1521 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1522 // Cost = 128 bit store + unpack + 64 bit store.
1523 return 3;
1524
Alp Tokerf907b892013-12-05 05:44:44 +00001525 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001526 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001527 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1528 AddressSpace);
1529 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1530 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001531 return NumElem * Cost + SplitCost;
1532 }
1533 }
1534
Chandler Carruth664e3542013-01-07 01:37:14 +00001535 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001536 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001537 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1538 "Invalid Opcode");
1539
1540 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001541 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001542
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001543 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1544 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1545 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1546 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001547
1548 return Cost;
1549}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001550
Chandler Carruth93205eb2015-08-05 18:08:10 +00001551int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1552 unsigned Alignment,
1553 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001554 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1555 if (!SrcVTy)
1556 // To calculate scalar take the regular cost, without mask
1557 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1558
1559 unsigned NumElem = SrcVTy->getVectorNumElements();
1560 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001561 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001562 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1563 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001564 !isPowerOf2_32(NumElem)) {
1565 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001566 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1567 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001568 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001569 int BranchCost = getCFInstrCost(Instruction::Br);
1570 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001571
Chandler Carruth93205eb2015-08-05 18:08:10 +00001572 int ValueSplitCost = getScalarizationOverhead(
1573 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1574 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001575 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1576 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001577 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1578 }
1579
1580 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001581 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001582 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001583 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001584 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001585 LT.second.getVectorNumElements() == NumElem)
1586 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001587 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1588 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001589
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001590 else if (LT.second.getVectorNumElements() > NumElem) {
1591 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1592 LT.second.getVectorNumElements());
1593 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001594 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001595 }
1596 if (!ST->hasAVX512())
1597 return Cost + LT.first*4; // Each maskmov costs 4
1598
1599 // AVX-512 masked load/store is cheapper
1600 return Cost+LT.first;
1601}
1602
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001603int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1604 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001605 // Address computations in vectorized code with non-consecutive addresses will
1606 // likely result in more instructions compared to scalar code where the
1607 // computation can more often be merged into the index mode. The resulting
1608 // extra micro-ops can significantly decrease throughput.
1609 unsigned NumVectorInstToHideOverhead = 10;
1610
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001611 // Cost modeling of Strided Access Computation is hidden by the indexing
1612 // modes of X86 regardless of the stride value. We dont believe that there
1613 // is a difference between constant strided access in gerenal and constant
1614 // strided value which is less than or equal to 64.
1615 // Even in the case of (loop invariant) stride whose value is not known at
1616 // compile time, the address computation will not incur more than one extra
1617 // ADD instruction.
1618 if (Ty->isVectorTy() && SE) {
1619 if (!BaseT::isStridedAccess(Ptr))
1620 return NumVectorInstToHideOverhead;
1621 if (!BaseT::getConstantStrideStep(SE, Ptr))
1622 return 1;
1623 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001624
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001625 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001626}
Yi Jiang5c343de2013-09-19 17:48:48 +00001627
Chandler Carruth93205eb2015-08-05 18:08:10 +00001628int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1629 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001630
Chandler Carruth93205eb2015-08-05 18:08:10 +00001631 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001632
Yi Jiang5c343de2013-09-19 17:48:48 +00001633 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001634
Yi Jiang5c343de2013-09-19 17:48:48 +00001635 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1636 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001637
1638 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1639 // and make it as the cost.
1640
Craig Topper4b275762015-10-28 04:02:12 +00001641 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001642 { ISD::FADD, MVT::v2f64, 2 },
1643 { ISD::FADD, MVT::v4f32, 4 },
1644 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1645 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1646 { ISD::ADD, MVT::v8i16, 5 },
1647 };
Michael Liao5bf95782014-12-04 05:20:33 +00001648
Craig Topper4b275762015-10-28 04:02:12 +00001649 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001650 { ISD::FADD, MVT::v4f32, 4 },
1651 { ISD::FADD, MVT::v4f64, 5 },
1652 { ISD::FADD, MVT::v8f32, 7 },
1653 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1654 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1655 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1656 { ISD::ADD, MVT::v8i16, 5 },
1657 { ISD::ADD, MVT::v8i32, 5 },
1658 };
1659
Craig Topper4b275762015-10-28 04:02:12 +00001660 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001661 { ISD::FADD, MVT::v2f64, 2 },
1662 { ISD::FADD, MVT::v4f32, 4 },
1663 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1664 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1665 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1666 };
Michael Liao5bf95782014-12-04 05:20:33 +00001667
Craig Topper4b275762015-10-28 04:02:12 +00001668 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001669 { ISD::FADD, MVT::v4f32, 3 },
1670 { ISD::FADD, MVT::v4f64, 3 },
1671 { ISD::FADD, MVT::v8f32, 4 },
1672 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1673 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1674 { ISD::ADD, MVT::v4i64, 3 },
1675 { ISD::ADD, MVT::v8i16, 4 },
1676 { ISD::ADD, MVT::v8i32, 5 },
1677 };
Michael Liao5bf95782014-12-04 05:20:33 +00001678
Yi Jiang5c343de2013-09-19 17:48:48 +00001679 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001680 if (ST->hasAVX())
1681 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1682 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001683
Craig Topperee0c8592015-10-27 04:14:24 +00001684 if (ST->hasSSE42())
1685 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1686 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001687 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001688 if (ST->hasAVX())
1689 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1690 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001691
Craig Topperee0c8592015-10-27 04:14:24 +00001692 if (ST->hasSSE42())
1693 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1694 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001695 }
1696
Chandler Carruth705b1852015-01-31 03:43:40 +00001697 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001698}
1699
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001700/// \brief Calculate the cost of materializing a 64-bit value. This helper
1701/// method might only calculate a fraction of a larger immediate. Therefore it
1702/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001703int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001704 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001705 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001706
1707 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001708 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001709
Chandler Carruth705b1852015-01-31 03:43:40 +00001710 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001711}
1712
Chandler Carruth93205eb2015-08-05 18:08:10 +00001713int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001714 assert(Ty->isIntegerTy());
1715
1716 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1717 if (BitSize == 0)
1718 return ~0U;
1719
Juergen Ributzka43176172014-05-19 21:00:53 +00001720 // Never hoist constants larger than 128bit, because this might lead to
1721 // incorrect code generation or assertions in codegen.
1722 // Fixme: Create a cost model for types larger than i128 once the codegen
1723 // issues have been fixed.
1724 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001725 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001726
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001727 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001728 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001729
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001730 // Sign-extend all constants to a multiple of 64-bit.
1731 APInt ImmVal = Imm;
1732 if (BitSize & 0x3f)
1733 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1734
1735 // Split the constant into 64-bit chunks and calculate the cost for each
1736 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001737 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001738 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1739 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1740 int64_t Val = Tmp.getSExtValue();
1741 Cost += getIntImmCost(Val);
1742 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001743 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001744 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001745}
1746
Chandler Carruth93205eb2015-08-05 18:08:10 +00001747int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1748 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001749 assert(Ty->isIntegerTy());
1750
1751 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001752 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1753 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001754 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001755 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001756
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001757 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001758 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001759 default:
1760 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001761 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001762 // Always hoist the base address of a GetElementPtr. This prevents the
1763 // creation of new constants for every base constant that gets constant
1764 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001765 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001766 return 2 * TTI::TCC_Basic;
1767 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001768 case Instruction::Store:
1769 ImmIdx = 0;
1770 break;
Craig Topper074e8452015-12-20 18:41:54 +00001771 case Instruction::ICmp:
1772 // This is an imperfect hack to prevent constant hoisting of
1773 // compares that might be trying to check if a 64-bit value fits in
1774 // 32-bits. The backend can optimize these cases using a right shift by 32.
1775 // Ideally we would check the compare predicate here. There also other
1776 // similar immediates the backend can use shifts for.
1777 if (Idx == 1 && Imm.getBitWidth() == 64) {
1778 uint64_t ImmVal = Imm.getZExtValue();
1779 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1780 return TTI::TCC_Free;
1781 }
1782 ImmIdx = 1;
1783 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001784 case Instruction::And:
1785 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1786 // by using a 32-bit operation with implicit zero extension. Detect such
1787 // immediates here as the normal path expects bit 31 to be sign extended.
1788 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1789 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001790 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001791 case Instruction::Add:
1792 case Instruction::Sub:
1793 case Instruction::Mul:
1794 case Instruction::UDiv:
1795 case Instruction::SDiv:
1796 case Instruction::URem:
1797 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001798 case Instruction::Or:
1799 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001800 ImmIdx = 1;
1801 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001802 // Always return TCC_Free for the shift value of a shift instruction.
1803 case Instruction::Shl:
1804 case Instruction::LShr:
1805 case Instruction::AShr:
1806 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001807 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001808 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001809 case Instruction::Trunc:
1810 case Instruction::ZExt:
1811 case Instruction::SExt:
1812 case Instruction::IntToPtr:
1813 case Instruction::PtrToInt:
1814 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001815 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001816 case Instruction::Call:
1817 case Instruction::Select:
1818 case Instruction::Ret:
1819 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001820 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001821 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001822
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001823 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001824 int NumConstants = (BitSize + 63) / 64;
1825 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001826 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001827 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001828 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001829 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001830
Chandler Carruth705b1852015-01-31 03:43:40 +00001831 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001832}
1833
Chandler Carruth93205eb2015-08-05 18:08:10 +00001834int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1835 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001836 assert(Ty->isIntegerTy());
1837
1838 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001839 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1840 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001841 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001842 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001843
1844 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001845 default:
1846 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001847 case Intrinsic::sadd_with_overflow:
1848 case Intrinsic::uadd_with_overflow:
1849 case Intrinsic::ssub_with_overflow:
1850 case Intrinsic::usub_with_overflow:
1851 case Intrinsic::smul_with_overflow:
1852 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001853 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001854 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001855 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001856 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001857 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001858 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001859 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001860 case Intrinsic::experimental_patchpoint_void:
1861 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001862 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001863 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001864 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001865 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001866 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001867}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001868
Elena Demikhovsky54946982015-12-28 20:10:59 +00001869// Return an average cost of Gather / Scatter instruction, maybe improved later
1870int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1871 unsigned Alignment, unsigned AddressSpace) {
1872
1873 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1874 unsigned VF = SrcVTy->getVectorNumElements();
1875
1876 // Try to reduce index size from 64 bit (default for GEP)
1877 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1878 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1879 // to split. Also check that the base pointer is the same for all lanes,
1880 // and that there's at most one variable index.
1881 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1882 unsigned IndexSize = DL.getPointerSizeInBits();
1883 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1884 if (IndexSize < 64 || !GEP)
1885 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001886
Elena Demikhovsky54946982015-12-28 20:10:59 +00001887 unsigned NumOfVarIndices = 0;
1888 Value *Ptrs = GEP->getPointerOperand();
1889 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1890 return IndexSize;
1891 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1892 if (isa<Constant>(GEP->getOperand(i)))
1893 continue;
1894 Type *IndxTy = GEP->getOperand(i)->getType();
1895 if (IndxTy->isVectorTy())
1896 IndxTy = IndxTy->getVectorElementType();
1897 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1898 !isa<SExtInst>(GEP->getOperand(i))) ||
1899 ++NumOfVarIndices > 1)
1900 return IndexSize; // 64
1901 }
1902 return (unsigned)32;
1903 };
1904
1905
1906 // Trying to reduce IndexSize to 32 bits for vector 16.
1907 // By default the IndexSize is equal to pointer size.
1908 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1909 DL.getPointerSizeInBits();
1910
Mehdi Amini867e9142016-04-14 04:36:40 +00001911 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001912 IndexSize), VF);
1913 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1914 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1915 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1916 if (SplitFactor > 1) {
1917 // Handle splitting of vector of pointers
1918 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1919 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1920 AddressSpace);
1921 }
1922
1923 // The gather / scatter cost is given by Intel architects. It is a rough
1924 // number since we are looking at one instruction in a time.
1925 const int GSOverhead = 2;
1926 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1927 Alignment, AddressSpace);
1928}
1929
1930/// Return the cost of full scalarization of gather / scatter operation.
1931///
1932/// Opcode - Load or Store instruction.
1933/// SrcVTy - The type of the data vector that should be gathered or scattered.
1934/// VariableMask - The mask is non-constant at compile time.
1935/// Alignment - Alignment for one element.
1936/// AddressSpace - pointer[s] address space.
1937///
1938int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
1939 bool VariableMask, unsigned Alignment,
1940 unsigned AddressSpace) {
1941 unsigned VF = SrcVTy->getVectorNumElements();
1942
1943 int MaskUnpackCost = 0;
1944 if (VariableMask) {
1945 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001946 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00001947 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
1948 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00001949 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001950 nullptr);
1951 int BranchCost = getCFInstrCost(Instruction::Br);
1952 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
1953 }
1954
1955 // The cost of the scalar loads/stores.
1956 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1957 Alignment, AddressSpace);
1958
1959 int InsertExtractCost = 0;
1960 if (Opcode == Instruction::Load)
1961 for (unsigned i = 0; i < VF; ++i)
1962 // Add the cost of inserting each scalar load into the vector
1963 InsertExtractCost +=
1964 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
1965 else
1966 for (unsigned i = 0; i < VF; ++i)
1967 // Add the cost of extracting each element out of the data vector
1968 InsertExtractCost +=
1969 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
1970
1971 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
1972}
1973
1974/// Calculate the cost of Gather / Scatter operation
1975int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
1976 Value *Ptr, bool VariableMask,
1977 unsigned Alignment) {
1978 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
1979 unsigned VF = SrcVTy->getVectorNumElements();
1980 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
1981 if (!PtrTy && Ptr->getType()->isVectorTy())
1982 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
1983 assert(PtrTy && "Unexpected type for Ptr argument");
1984 unsigned AddressSpace = PtrTy->getAddressSpace();
1985
1986 bool Scalarize = false;
1987 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
1988 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
1989 Scalarize = true;
1990 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
1991 // Vector-4 of gather/scatter instruction does not exist on KNL.
1992 // We can extend it to 8 elements, but zeroing upper bits of
1993 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00001994 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
1995 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00001996 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
1997 Scalarize = true;
1998
1999 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002000 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2001 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002002
2003 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2004}
2005
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002006bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2007 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002008 int DataWidth = isa<PointerType>(ScalarTy) ?
2009 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002010
Igor Bregerf44b79d2016-08-02 09:15:28 +00002011 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2012 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002013}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002014
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002015bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2016 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002017}
2018
Elena Demikhovsky09285852015-10-25 15:37:55 +00002019bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2020 // This function is called now in two cases: from the Loop Vectorizer
2021 // and from the Scalarizer.
2022 // When the Loop Vectorizer asks about legality of the feature,
2023 // the vectorization factor is not calculated yet. The Loop Vectorizer
2024 // sends a scalar type and the decision is based on the width of the
2025 // scalar element.
2026 // Later on, the cost model will estimate usage this intrinsic based on
2027 // the vector type.
2028 // The Scalarizer asks again about legality. It sends a vector type.
2029 // In this case we can reject non-power-of-2 vectors.
2030 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2031 return false;
2032 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002033 int DataWidth = isa<PointerType>(ScalarTy) ?
2034 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002035
2036 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002037 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002038}
2039
2040bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2041 return isLegalMaskedGather(DataType);
2042}
2043
Eric Christopherd566fb12015-07-29 22:09:48 +00002044bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2045 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002046 const TargetMachine &TM = getTLI()->getTargetMachine();
2047
2048 // Work this as a subsetting of subtarget features.
2049 const FeatureBitset &CallerBits =
2050 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2051 const FeatureBitset &CalleeBits =
2052 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2053
2054 // FIXME: This is likely too limiting as it will include subtarget features
2055 // that we might not care about for inlining, but it is conservatively
2056 // correct.
2057 return (CallerBits & CalleeBits) == CalleeBits;
2058}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002059
2060bool X86TTIImpl::enableInterleavedAccessVectorization() {
2061 // TODO: We expect this to be beneficial regardless of arch,
2062 // but there are currently some unexplained performance artifacts on Atom.
2063 // As a temporary solution, disable on Atom.
2064 return !(ST->isAtom() || ST->isSLM());
2065}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002066
2067// Get estimation for interleaved load/store operations and strided load.
2068// \p Indices contains indices for strided load.
2069// \p Factor - the factor of interleaving.
2070// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2071int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2072 unsigned Factor,
2073 ArrayRef<unsigned> Indices,
2074 unsigned Alignment,
2075 unsigned AddressSpace) {
2076
2077 // VecTy for interleave memop is <VF*Factor x Elt>.
2078 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2079 // VecTy = <12 x i32>.
2080
2081 // Calculate the number of memory operations (NumOfMemOps), required
2082 // for load/store the VecTy.
2083 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2084 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2085 unsigned LegalVTSize = LegalVT.getStoreSize();
2086 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2087
2088 // Get the cost of one memory operation.
2089 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2090 LegalVT.getVectorNumElements());
2091 unsigned MemOpCost =
2092 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2093
2094 if (Opcode == Instruction::Load) {
2095 // Kind of shuffle depends on number of loaded values.
2096 // If we load the entire data in one register, we can use a 1-src shuffle.
2097 // Otherwise, we'll merge 2 sources in each operation.
2098 TTI::ShuffleKind ShuffleKind =
2099 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2100
2101 unsigned ShuffleCost =
2102 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2103
2104 unsigned NumOfLoadsInInterleaveGrp =
2105 Indices.size() ? Indices.size() : Factor;
2106 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2107 VecTy->getVectorNumElements() / Factor);
2108 unsigned NumOfResults =
2109 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2110 NumOfLoadsInInterleaveGrp;
2111
2112 // About a half of the loads may be folded in shuffles when we have only
2113 // one result. If we have more than one result, we do not fold loads at all.
2114 unsigned NumOfUnfoldedLoads =
2115 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2116
2117 // Get a number of shuffle operations per result.
2118 unsigned NumOfShufflesPerResult =
2119 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2120
2121 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2122 // When we have more than one destination, we need additional instructions
2123 // to keep sources.
2124 unsigned NumOfMoves = 0;
2125 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2126 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2127
2128 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2129 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2130
2131 return Cost;
2132 }
2133
2134 // Store.
2135 assert(Opcode == Instruction::Store &&
2136 "Expected Store Instruction at this point");
2137
2138 // There is no strided stores meanwhile. And store can't be folded in
2139 // shuffle.
2140 unsigned NumOfSources = Factor; // The number of values to be merged.
2141 unsigned ShuffleCost =
2142 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2143 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2144
2145 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2146 // We need additional instructions to keep sources.
2147 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2148 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2149 NumOfMoves;
2150 return Cost;
2151}
2152
2153int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2154 unsigned Factor,
2155 ArrayRef<unsigned> Indices,
2156 unsigned Alignment,
2157 unsigned AddressSpace) {
2158 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2159 RequiresBW = false;
2160 Type *EltTy = VecTy->getVectorElementType();
2161 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2162 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2163 return true;
2164 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2165 RequiresBW = true;
2166 return true;
2167 }
2168 return false;
2169 };
2170 bool RequiresBW;
2171 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2172 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2173 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2174 Alignment, AddressSpace);
2175 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2176 Alignment, AddressSpace);
2177}