blob: 190702491a34f4dcd7a5d259e6dc0da1e4580407 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000083 if (ST->hasAVX512())
84 return 512;
85 if (ST->hasAVX())
86 return 256;
87 if (ST->hasSSE1())
88 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Chandler Carruth705b1852015-01-31 03:43:40 +0000117 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
118 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
119 TTI::OperandValueProperties Opd2PropInfo) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000120 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000121 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000122
123 int ISD = TLI->InstructionOpcodeToISD(Opcode);
124 assert(ISD && "Invalid opcode");
125
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000126 if (ISD == ISD::SDIV &&
127 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
128 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
129 // On X86, vector signed division by constants power-of-two are
130 // normally expanded to the sequence SRA + SRL + ADD + SRA.
131 // The OperandValue properties many not be same as that of previous
132 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000133 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
134 Op2Info, TargetTransformInfo::OP_None,
135 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000136 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
137 TargetTransformInfo::OP_None,
138 TargetTransformInfo::OP_None);
139 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
140 TargetTransformInfo::OP_None,
141 TargetTransformInfo::OP_None);
142
143 return Cost;
144 }
145
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000146 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
147 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
148 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
149 };
150
151 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
152 ST->hasBWI()) {
153 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
154 LT.second))
155 return LT.first * Entry->Cost;
156 }
157
158 static const CostTblEntry AVX512UniformConstCostTable[] = {
159 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
160 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
161 };
162
163 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
164 ST->hasAVX512()) {
165 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
166 LT.second))
167 return LT.first * Entry->Cost;
168 }
169
Craig Topper4b275762015-10-28 04:02:12 +0000170 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000171 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
172
Benjamin Kramer7c372272014-04-26 14:53:05 +0000173 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
174 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
175 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
176 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
177 };
178
179 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
180 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000181 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
182 LT.second))
183 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000184 }
185
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000186 static const CostTblEntry SSE2UniformConstCostTable[] = {
187 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
188 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
189 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
190 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
191 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
192 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
193 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
194 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
195 };
196
197 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
198 ST->hasSSE2()) {
199 // pmuldq sequence.
200 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
201 return LT.first * 30;
202 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
203 return LT.first * 15;
204
205 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
206 LT.second))
207 return LT.first * Entry->Cost;
208 }
209
Simon Pilgrim820e1322016-10-27 15:27:00 +0000210 static const CostTblEntry AVX512DQCostTable[] = {
211 { ISD::MUL, MVT::v2i64, 1 },
212 { ISD::MUL, MVT::v4i64, 1 },
213 { ISD::MUL, MVT::v8i64, 1 }
214 };
215
216 // Look for AVX512DQ lowering tricks for custom cases.
217 if (ST->hasDQI()) {
218 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD,
219 LT.second))
220 return LT.first * Entry->Cost;
221 }
222
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000223 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000224 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
225 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
226 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
227
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000228 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
229 { ISD::SDIV, MVT::v64i8, 64*20 },
230 { ISD::SDIV, MVT::v32i16, 32*20 },
231 { ISD::SDIV, MVT::v16i32, 16*20 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000232 { ISD::SDIV, MVT::v8i64, 8*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000233 { ISD::UDIV, MVT::v64i8, 64*20 },
234 { ISD::UDIV, MVT::v32i16, 32*20 },
235 { ISD::UDIV, MVT::v16i32, 16*20 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000236 { ISD::UDIV, MVT::v8i64, 8*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000237 };
238
239 // Look for AVX512BW lowering tricks for custom cases.
240 if (ST->hasBWI()) {
241 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD,
242 LT.second))
243 return LT.first * Entry->Cost;
244 }
245
Craig Topper4b275762015-10-28 04:02:12 +0000246 static const CostTblEntry AVX512CostTable[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000247 { ISD::SHL, MVT::v16i32, 1 },
248 { ISD::SRL, MVT::v16i32, 1 },
249 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000250 { ISD::SHL, MVT::v8i64, 1 },
251 { ISD::SRL, MVT::v8i64, 1 },
252 { ISD::SRA, MVT::v8i64, 1 },
253
254 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
255 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
Elena Demikhovsky27012472014-09-16 07:57:37 +0000256 };
257
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000258 if (ST->hasAVX512()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000259 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
260 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000261 }
262
Craig Topper4b275762015-10-28 04:02:12 +0000263 static const CostTblEntry AVX2CostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000264 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
265 // customize them to detect the cases where shift amount is a scalar one.
266 { ISD::SHL, MVT::v4i32, 1 },
267 { ISD::SRL, MVT::v4i32, 1 },
268 { ISD::SRA, MVT::v4i32, 1 },
269 { ISD::SHL, MVT::v8i32, 1 },
270 { ISD::SRL, MVT::v8i32, 1 },
271 { ISD::SRA, MVT::v8i32, 1 },
272 { ISD::SHL, MVT::v2i64, 1 },
273 { ISD::SRL, MVT::v2i64, 1 },
274 { ISD::SHL, MVT::v4i64, 1 },
275 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000276 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000277
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000278 // Look for AVX2 lowering tricks.
279 if (ST->hasAVX2()) {
280 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
281 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
282 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
283 // On AVX2, a packed v16i16 shift left by a constant build_vector
284 // is lowered into a vector multiply (vpmullw).
285 return LT.first;
286
Craig Topperee0c8592015-10-27 04:14:24 +0000287 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
288 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000289 }
290
Craig Topper4b275762015-10-28 04:02:12 +0000291 static const CostTblEntry XOPCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000292 // 128bit shifts take 1cy, but right shifts require negation beforehand.
293 { ISD::SHL, MVT::v16i8, 1 },
294 { ISD::SRL, MVT::v16i8, 2 },
295 { ISD::SRA, MVT::v16i8, 2 },
296 { ISD::SHL, MVT::v8i16, 1 },
297 { ISD::SRL, MVT::v8i16, 2 },
298 { ISD::SRA, MVT::v8i16, 2 },
299 { ISD::SHL, MVT::v4i32, 1 },
300 { ISD::SRL, MVT::v4i32, 2 },
301 { ISD::SRA, MVT::v4i32, 2 },
302 { ISD::SHL, MVT::v2i64, 1 },
303 { ISD::SRL, MVT::v2i64, 2 },
304 { ISD::SRA, MVT::v2i64, 2 },
305 // 256bit shifts require splitting if AVX2 didn't catch them above.
306 { ISD::SHL, MVT::v32i8, 2 },
307 { ISD::SRL, MVT::v32i8, 4 },
308 { ISD::SRA, MVT::v32i8, 4 },
309 { ISD::SHL, MVT::v16i16, 2 },
310 { ISD::SRL, MVT::v16i16, 4 },
311 { ISD::SRA, MVT::v16i16, 4 },
312 { ISD::SHL, MVT::v8i32, 2 },
313 { ISD::SRL, MVT::v8i32, 4 },
314 { ISD::SRA, MVT::v8i32, 4 },
315 { ISD::SHL, MVT::v4i64, 2 },
316 { ISD::SRL, MVT::v4i64, 4 },
317 { ISD::SRA, MVT::v4i64, 4 },
318 };
319
320 // Look for XOP lowering tricks.
321 if (ST->hasXOP()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000322 if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
323 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000324 }
325
Craig Topper4b275762015-10-28 04:02:12 +0000326 static const CostTblEntry AVX2CustomCostTable[] = {
Simon Pilgrim59656802015-06-11 07:46:37 +0000327 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
Simon Pilgrim0be4fa72015-05-25 17:49:13 +0000328 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000329
Simon Pilgrim59656802015-06-11 07:46:37 +0000330 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
Simon Pilgrim0be4fa72015-05-25 17:49:13 +0000331 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000332
Simon Pilgrim59656802015-06-11 07:46:37 +0000333 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
Simon Pilgrim0be4fa72015-05-25 17:49:13 +0000334 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000335 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
336 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000337
338 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
339 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
340
Alexey Bataevd07c7312016-10-31 12:10:53 +0000341 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
342 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
343 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
344 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
345 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
346 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000347 };
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000348
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000349 // Look for AVX2 lowering tricks for custom cases.
350 if (ST->hasAVX2()) {
351 if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
352 LT.second))
353 return LT.first * Entry->Cost;
354 }
355
356 static const CostTblEntry AVXCustomCostTable[] = {
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000357 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
358
Alexey Bataevd07c7312016-10-31 12:10:53 +0000359 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
360 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
361 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
362 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
363 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
364 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000365
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000366 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
367 { ISD::SDIV, MVT::v32i8, 32*20 },
368 { ISD::SDIV, MVT::v16i16, 16*20 },
369 { ISD::SDIV, MVT::v8i32, 8*20 },
370 { ISD::SDIV, MVT::v4i64, 4*20 },
371 { ISD::UDIV, MVT::v32i8, 32*20 },
372 { ISD::UDIV, MVT::v16i16, 16*20 },
373 { ISD::UDIV, MVT::v8i32, 8*20 },
374 { ISD::UDIV, MVT::v4i64, 4*20 },
Michael Liao70dd7f92013-03-20 22:01:10 +0000375 };
376
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000377 // Look for AVX2 lowering tricks for custom cases.
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000378 if (ST->hasAVX()) {
379 if (const auto *Entry = CostTableLookup(AVXCustomCostTable, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +0000380 LT.second))
381 return LT.first * Entry->Cost;
Michael Liao70dd7f92013-03-20 22:01:10 +0000382 }
383
Alexey Bataevd07c7312016-10-31 12:10:53 +0000384 static const CostTblEntry SSE42FloatCostTable[] = {
385 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
386 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
387 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
388 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
389 };
390
391 if (ST->hasSSE42()) {
392 if (const auto *Entry = CostTableLookup(SSE42FloatCostTable, ISD,
393 LT.second))
394 return LT.first * Entry->Cost;
395 }
396
Craig Topper4b275762015-10-28 04:02:12 +0000397 static const CostTblEntry
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000398 SSE2UniformCostTable[] = {
399 // Uniform splats are cheaper for the following instructions.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000400 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000401 { ISD::SHL, MVT::v32i8, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000402 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000403 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000404 { ISD::SHL, MVT::v4i32, 1 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000405 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000406 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000407 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000408
409 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000410 { ISD::SRL, MVT::v32i8, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000411 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000412 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000413 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000414 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000415 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000416 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000417
418 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000419 { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000420 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000421 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000422 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000423 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000424 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000425 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000426 };
427
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000428 if (ST->hasSSE2() &&
429 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
430 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000431 if (const auto *Entry =
432 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000433 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000434 }
435
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000436 if (ISD == ISD::SHL &&
437 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000438 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000439 // Vector shift left by non uniform constant can be lowered
440 // into vector multiply (pmullw/pmulld).
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000441 if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
442 (VT == MVT::v4i32 && ST->hasSSE41()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000443 return LT.first;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000444
445 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
446 // sequence of extract + two vector multiply + insert.
447 if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
448 (ST->hasAVX() && !ST->hasAVX2()))
449 ISD = ISD::MUL;
450
451 // A vector shift left by non uniform constant is converted
452 // into a vector multiply; the new multiply is eventually
453 // lowered into a sequence of shuffles and 2 x pmuludq.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000454 if (VT == MVT::v4i32 && ST->hasSSE2())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000455 ISD = ISD::MUL;
456 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000457
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000458 static const CostTblEntry SSE41CostTable[] = {
459 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
460 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
461 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
462 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
463
464 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
465 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
466 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
467 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
468 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
469 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
470
471 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
472 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
473 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
474 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
475 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
476 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
477 };
478
479 if (ST->hasSSE41()) {
480 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
481 return LT.first * Entry->Cost;
482 }
483
Craig Topper4b275762015-10-28 04:02:12 +0000484 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000485 // We don't correctly identify costs of casts because they are marked as
486 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000487 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000488 { ISD::SHL, MVT::v32i8, 2*26 }, // cmpgtb sequence.
Simon Pilgrim59656802015-06-11 07:46:37 +0000489 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000490 { ISD::SHL, MVT::v16i16, 2*32 }, // cmpgtb sequence.
Simon Pilgrim59656802015-06-11 07:46:37 +0000491 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000492 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000493 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000494 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000495
496 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000497 { ISD::SRL, MVT::v32i8, 2*26 }, // cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000498 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000499 { ISD::SRL, MVT::v16i16, 2*32 }, // cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000500 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000501 { ISD::SRL, MVT::v8i32, 2*16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000502 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000503 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000504
505 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000506 { ISD::SRA, MVT::v32i8, 2*54 }, // unpacked cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000507 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000508 { ISD::SRA, MVT::v16i16, 2*32 }, // cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000509 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000510 { ISD::SRA, MVT::v8i32, 2*16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000511 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000512 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000513
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000514 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
515
Alexey Bataevd07c7312016-10-31 12:10:53 +0000516 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
517 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
518 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
519 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
520
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000521 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000522 // in the process we will often end up having to spilling regular
523 // registers. The overhead of division is going to dominate most kernels
524 // anyways so try hard to prevent vectorization of division - it is
525 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
526 // to hide "20 cycles" for each lane.
527 { ISD::SDIV, MVT::v16i8, 16*20 },
528 { ISD::SDIV, MVT::v8i16, 8*20 },
529 { ISD::SDIV, MVT::v4i32, 4*20 },
530 { ISD::SDIV, MVT::v2i64, 2*20 },
531 { ISD::UDIV, MVT::v16i8, 16*20 },
532 { ISD::UDIV, MVT::v8i16, 8*20 },
533 { ISD::UDIV, MVT::v4i32, 4*20 },
534 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000535 };
536
537 if (ST->hasSSE2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000538 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
539 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000540 }
541
Craig Topper4b275762015-10-28 04:02:12 +0000542 static const CostTblEntry AVX1CostTable[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000543 // We don't have to scalarize unsupported ops. We can issue two half-sized
544 // operations and we only need to extract the upper YMM half.
545 // Two ops + 1 extract + 1 insert = 4.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000546 { ISD::MUL, MVT::v16i16, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000547 { ISD::MUL, MVT::v8i32, 4 },
Simon Pilgrim27fed8e2016-11-14 14:45:16 +0000548 { ISD::SUB, MVT::v32i8, 4 },
549 { ISD::ADD, MVT::v32i8, 4 },
550 { ISD::SUB, MVT::v16i16, 4 },
551 { ISD::ADD, MVT::v16i16, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000552 { ISD::SUB, MVT::v8i32, 4 },
553 { ISD::ADD, MVT::v8i32, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000554 { ISD::SUB, MVT::v4i64, 4 },
555 { ISD::ADD, MVT::v4i64, 4 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000556 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
Simon Pilgrim081abbb2016-12-21 20:00:10 +0000557 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000558 // Because we believe v4i64 to be a legal type, we must also include the
Simon Pilgrim081abbb2016-12-21 20:00:10 +0000559 // split factor of two in the cost table. Therefore, the cost here is 16
560 // instead of 8.
561 { ISD::MUL, MVT::v4i64, 16 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000562 };
Chandler Carruth664e3542013-01-07 01:37:14 +0000563
564 // Look for AVX1 lowering tricks.
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000565 if (ST->hasAVX() && !ST->hasAVX2()) {
Craig Toppereda02a92015-10-25 03:15:29 +0000566 MVT VT = LT.second;
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000567
Craig Topperee0c8592015-10-27 04:14:24 +0000568 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT))
569 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000570 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000571
572 // Custom lowering of vectors.
Craig Topper4b275762015-10-28 04:02:12 +0000573 static const CostTblEntry CustomLowered[] = {
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000574 // A v2i64/v4i64 and multiply is custom lowered as a series of long
Simon Pilgrim081abbb2016-12-21 20:00:10 +0000575 // multiplies(3), shifts(3) and adds(2).
576 { ISD::MUL, MVT::v2i64, 8 },
577 { ISD::MUL, MVT::v4i64, 8 },
578 { ISD::MUL, MVT::v8i64, 8 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000579 };
Craig Topperee0c8592015-10-27 04:14:24 +0000580 if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second))
581 return LT.first * Entry->Cost;
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000582
583 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
584 // 2x pmuludq, 2x shuffle.
585 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
586 !ST->hasSSE41())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000587 return LT.first * 6;
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000588
Alexey Bataevd07c7312016-10-31 12:10:53 +0000589 static const CostTblEntry SSE1FloatCostTable[] = {
590 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
591 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
592 };
593
594 if (ST->hasSSE1())
595 if (const auto *Entry = CostTableLookup(SSE1FloatCostTable, ISD,
596 LT.second))
597 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000598 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000599 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000600}
601
Chandler Carruth93205eb2015-08-05 18:08:10 +0000602int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
603 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000604 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
605 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
606 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000607
Simon Pilgrima62395a2017-01-05 14:33:32 +0000608 if (Kind == TTI::SK_Reverse || Kind == TTI::SK_Alternate) {
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000609 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
610 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
611 { TTI::SK_Reverse, MVT::v32i8, 1 } // vpermb
612 };
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000613
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000614 if (ST->hasVBMI())
615 if (const auto *Entry =
616 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
617 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000618
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000619 static const CostTblEntry AVX512BWShuffleTbl[] = {
620 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
621 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
622 { TTI::SK_Reverse, MVT::v64i8, 6 } // vextracti64x4 + 2*vperm2i128
623 // + 2*pshufb + vinserti64x4
624 };
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000625
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000626 if (ST->hasBWI())
627 if (const auto *Entry =
628 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
629 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000630
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000631 static const CostTblEntry AVX512ShuffleTbl[] = {
632 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
633 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
634 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
635 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
636 };
637
638 if (ST->hasAVX512())
639 if (const auto *Entry =
640 CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
641 return LT.first * Entry->Cost;
642
643 static const CostTblEntry AVX2ShuffleTbl[] = {
644 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
645 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
646 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
647 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
648 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
649 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
650
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000651 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
652 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000653 };
654
655 if (ST->hasAVX2())
656 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
657 return LT.first * Entry->Cost;
658
659 static const CostTblEntry AVX1ShuffleTbl[] = {
660 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
661 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
662 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
663 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
664 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
665 // + vinsertf128
666 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
667 // + vinsertf128
668
669 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
670 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
671 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
672 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000673 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
674 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000675 };
676
Craig Topperee0c8592015-10-27 04:14:24 +0000677 if (ST->hasAVX())
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000678 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000679 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000680
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000681 static const CostTblEntry SSE41ShuffleTbl[] = {
682 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
683 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
684 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
685 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
686 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000687 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000688 };
689
Craig Topperee0c8592015-10-27 04:14:24 +0000690 if (ST->hasSSE41())
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000691 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000692 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000693
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000694 static const CostTblEntry SSSE3ShuffleTbl[] = {
695 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
696 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000697
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000698 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
699 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000700 };
Michael Liao5bf95782014-12-04 05:20:33 +0000701
Craig Topperee0c8592015-10-27 04:14:24 +0000702 if (ST->hasSSSE3())
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000703 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000704 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000705
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000706 static const CostTblEntry SSE2ShuffleTbl[] = {
707 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
708 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
709 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
710 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
711 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
712 // + 2*pshufd + 2*unpck + packus
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000713
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000714 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
715 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
716 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000717 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
718 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000719 };
720
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000721 if (ST->hasSSE2())
722 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
723 return LT.first * Entry->Cost;
724
725 static const CostTblEntry SSE1ShuffleTbl[] = {
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000726 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
727 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000728 };
729
730 if (ST->hasSSE1())
731 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
732 return LT.first * Entry->Cost;
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000733
734 } else if (Kind == TTI::SK_PermuteTwoSrc) {
735 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000736 int NumOfDests = LT.first;
737 int NumOfShufflesPerDest = LT.first * 2 - 1;
738 int NumOfShuffles = NumOfDests * NumOfShufflesPerDest;
739
740 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
741 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 1}, // vpermt2b
742 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 1}, // vpermt2b
743 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1} // vpermt2b
744 };
745
746 if (ST->hasVBMI())
747 if (const auto *Entry = CostTableLookup(AVX512VBMIShuffleTbl,
748 ISD::VECTOR_SHUFFLE, LT.second))
749 return NumOfShuffles * Entry->Cost;
750
751 static const CostTblEntry AVX512BWShuffleTbl[] = {
752 {ISD::VECTOR_SHUFFLE, MVT::v32i16, 1}, // vpermt2w
753 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 1}, // vpermt2w
754 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, // vpermt2w
755 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 3}, // zext + vpermt2w + trunc
756 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 19}, // 6 * v32i8 + 1
757 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // zext + vpermt2w + trunc
758 };
759
760 if (ST->hasBWI())
761 if (const auto *Entry = CostTableLookup(AVX512BWShuffleTbl,
762 ISD::VECTOR_SHUFFLE, LT.second))
763 return NumOfShuffles * Entry->Cost;
764
765 static const CostTblEntry AVX512ShuffleTbl[] = {
766 {ISD::VECTOR_SHUFFLE, MVT::v8f64, 1}, // vpermt2pd
767 {ISD::VECTOR_SHUFFLE, MVT::v16f32, 1}, // vpermt2ps
768 {ISD::VECTOR_SHUFFLE, MVT::v8i64, 1}, // vpermt2q
769 {ISD::VECTOR_SHUFFLE, MVT::v16i32, 1}, // vpermt2d
770 {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vpermt2pd
771 {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vpermt2ps
772 {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vpermt2q
773 {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vpermt2d
774 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // vpermt2pd
775 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, // vpermt2ps
776 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // vpermt2q
777 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1} // vpermt2d
778 };
779
780 if (ST->hasAVX512())
781 if (const auto *Entry =
782 CostTableLookup(AVX512ShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
783 return NumOfShuffles * Entry->Cost;
784
785 } else if (Kind == TTI::SK_PermuteSingleSrc) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000786 if (LT.first == 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000787 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
788 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 1}, // vpermb
789 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 1} // vpermb
790 };
791
792 if (ST->hasVBMI())
793 if (const auto *Entry = CostTableLookup(AVX512VBMIShuffleTbl,
794 ISD::VECTOR_SHUFFLE, LT.second))
795 return Entry->Cost;
796
797 static const CostTblEntry AVX512BWShuffleTbl[] = {
798 {ISD::VECTOR_SHUFFLE, MVT::v32i16, 1}, // vpermw
799 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 1}, // vpermw
800 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, // vpermw
801 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 8}, // extend to v32i16
802 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 3} // vpermw + zext/trunc
803 };
804
805 if (ST->hasBWI())
806 if (const auto *Entry = CostTableLookup(AVX512BWShuffleTbl,
807 ISD::VECTOR_SHUFFLE, LT.second))
808 return Entry->Cost;
809
810 static const CostTblEntry AVX512ShuffleTbl[] = {
811 {ISD::VECTOR_SHUFFLE, MVT::v8f64, 1}, // vpermpd
812 {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vpermpd
813 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // vpermpd
814 {ISD::VECTOR_SHUFFLE, MVT::v16f32, 1}, // vpermps
815 {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vpermps
816 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, // vpermps
817 {ISD::VECTOR_SHUFFLE, MVT::v8i64, 1}, // vpermq
818 {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vpermq
819 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // vpermq
820 {ISD::VECTOR_SHUFFLE, MVT::v16i32, 1}, // vpermd
821 {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vpermd
822 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, // vpermd
823 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1} // pshufb
824 };
825
826 if (ST->hasAVX512())
827 if (const auto *Entry =
828 CostTableLookup(AVX512ShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
829 return Entry->Cost;
830
831 } else {
832 // We are going to permute multiple sources and the result will be in
833 // multiple destinations. Providing an accurate cost only for splits where
834 // the element type remains the same.
835
836 MVT LegalVT = LT.second;
837 if (LegalVT.getVectorElementType().getSizeInBits() ==
838 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
839 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
840
841 unsigned VecTySize = DL.getTypeStoreSize(Tp);
842 unsigned LegalVTSize = LegalVT.getStoreSize();
843 // Number of source vectors after legalization:
844 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
845 // Number of destination vectors after legalization:
846 unsigned NumOfDests = LT.first;
847
848 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
849 LegalVT.getVectorNumElements());
850
851 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
852 return NumOfShuffles *
853 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
854 }
855 }
Karthik Bhate03a25d2014-06-20 04:32:48 +0000856 }
857
Chandler Carruth705b1852015-01-31 03:43:40 +0000858 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000859}
860
Chandler Carruth93205eb2015-08-05 18:08:10 +0000861int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000862 int ISD = TLI->InstructionOpcodeToISD(Opcode);
863 assert(ISD && "Invalid opcode");
864
Cong Hou59898d82015-12-11 00:31:39 +0000865 // FIXME: Need a better design of the cost table to handle non-simple types of
866 // potential massive combinations (elem_num x src_type x dst_type).
867
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000868 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000869 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
870 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000871 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
872 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000873 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
874 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
875
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000876 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000877 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000878 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000879 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000880 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000881 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000882
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000883 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000884 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000885 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000886 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000887 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000888 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
889
890 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
891 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
892 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
893 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
894 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
895 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000896 };
897
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000898 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
899 // 256-bit wide vectors.
900
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000901 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000902 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
903 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
904 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000905
906 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
907 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
908 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
909 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000910
911 // v16i1 -> v16i32 - load + broadcast
912 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
913 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000914 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
915 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
916 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
917 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000918 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
919 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000920 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
921 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000922
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000923 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000924 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000925 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000926 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000927 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000928 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
929 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000930 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000931 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
932 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000933
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000934 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000935 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000936 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000937 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
938 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
939 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
940 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000941 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000942 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
943 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
944 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
945 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000946 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000947 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000948 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
949 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
950 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
951 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
952 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000953 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000954 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
955 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
956 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
957
958 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
959 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
960 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
961 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000962 };
963
Craig Topper4b275762015-10-28 04:02:12 +0000964 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000965 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
966 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000967 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
968 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000969 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
970 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000971 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
972 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
973 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
974 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000975 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
976 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000977 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
978 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000979 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
980 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
981
982 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
983 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
984 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
985 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
986 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
987 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000988
989 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
990 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000991
992 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000993 };
994
Craig Topper4b275762015-10-28 04:02:12 +0000995 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000996 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
997 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000998 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
999 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001000 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1001 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001002 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1003 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1004 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1005 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001006 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1007 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001008 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1009 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001010 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1011 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1012
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001013 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1014 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1015 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001016 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1017 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1018 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001019 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001020
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001021 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001022 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001023 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1024 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001025 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001026 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1027 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001028 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001029 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1030 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001031 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001032 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001033
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001034 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001035 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001036 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1037 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001038 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001039 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1040 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001041 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001042 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001043 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001044 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001045 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001046 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001047 // The generic code to compute the scalar overhead is currently broken.
1048 // Workaround this limitation by estimating the scalarization overhead
1049 // here. We have roughly 10 instructions per scalar element.
1050 // Multiply that by the vector width.
1051 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001052 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1053 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1054 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1055 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001056
Renato Goline1fb0592013-01-20 20:57:20 +00001057 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001058 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001059 // This node is expanded into scalarized operations but BasicTTI is overly
1060 // optimistic estimating its cost. It computes 3 per element (one
1061 // vector-extract, one scalar conversion and one vector-insert). The
1062 // problem is that the inserts form a read-modify-write chain so latency
1063 // should be factored in too. Inflating the cost per element by 1.
1064 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001065 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001066
1067 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1068 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001069 };
1070
Cong Hou59898d82015-12-11 00:31:39 +00001071 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001072 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1073 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001074 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1075 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1076 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1077 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001078
Cong Hou59898d82015-12-11 00:31:39 +00001079 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1080 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001081 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1082 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1083 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1084 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1085 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1086 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1087 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1088 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1089 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1090 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1091 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1092 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1093 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1094 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1095 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1096 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001097
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001098 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1099 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1100 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001101 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001102 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001103 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001104 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1105
Cong Hou59898d82015-12-11 00:31:39 +00001106 };
1107
1108 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001109 // These are somewhat magic numbers justified by looking at the output of
1110 // Intel's IACA, running some kernels and making sure when we take
1111 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001112 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001113 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1114 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1115 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001116 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001117 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1118 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1119 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001120
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001121 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1122 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1123 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1124 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1125 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1126 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1127 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1128 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001129
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001130 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1131
Cong Hou59898d82015-12-11 00:31:39 +00001132 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1133 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001134 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1135 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1136 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1137 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1138 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1139 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1140 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1141 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1142 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1143 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1144 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1145 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1146 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1147 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1148 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1149 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1150 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1151 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1152 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001153 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001154 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1155 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001156
Cong Hou59898d82015-12-11 00:31:39 +00001157 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001158 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1159 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1160 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1161 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1162 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1163 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1164 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1165 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001166 };
1167
Chandler Carruth93205eb2015-08-05 18:08:10 +00001168 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1169 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001170
1171 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001172 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001173 LTDest.second, LTSrc.second))
1174 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001175 }
1176
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001177 EVT SrcTy = TLI->getValueType(DL, Src);
1178 EVT DstTy = TLI->getValueType(DL, Dst);
1179
1180 // The function getSimpleVT only handles simple value types.
1181 if (!SrcTy.isSimple() || !DstTy.isSimple())
1182 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1183
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001184 if (ST->hasDQI())
1185 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1186 DstTy.getSimpleVT(),
1187 SrcTy.getSimpleVT()))
1188 return Entry->Cost;
1189
1190 if (ST->hasAVX512())
1191 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1192 DstTy.getSimpleVT(),
1193 SrcTy.getSimpleVT()))
1194 return Entry->Cost;
1195
Tim Northoverf0e21612014-02-06 18:18:36 +00001196 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001197 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1198 DstTy.getSimpleVT(),
1199 SrcTy.getSimpleVT()))
1200 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001201 }
1202
Chandler Carruth664e3542013-01-07 01:37:14 +00001203 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001204 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1205 DstTy.getSimpleVT(),
1206 SrcTy.getSimpleVT()))
1207 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001208 }
1209
Cong Hou59898d82015-12-11 00:31:39 +00001210 if (ST->hasSSE41()) {
1211 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1212 DstTy.getSimpleVT(),
1213 SrcTy.getSimpleVT()))
1214 return Entry->Cost;
1215 }
1216
1217 if (ST->hasSSE2()) {
1218 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1219 DstTy.getSimpleVT(),
1220 SrcTy.getSimpleVT()))
1221 return Entry->Cost;
1222 }
1223
Chandler Carruth705b1852015-01-31 03:43:40 +00001224 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001225}
1226
Chandler Carruth93205eb2015-08-05 18:08:10 +00001227int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001228 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001229 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001230
1231 MVT MTy = LT.second;
1232
1233 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1234 assert(ISD && "Invalid opcode");
1235
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001236 static const CostTblEntry SSE2CostTbl[] = {
1237 { ISD::SETCC, MVT::v2i64, 8 },
1238 { ISD::SETCC, MVT::v4i32, 1 },
1239 { ISD::SETCC, MVT::v8i16, 1 },
1240 { ISD::SETCC, MVT::v16i8, 1 },
1241 };
1242
Craig Topper4b275762015-10-28 04:02:12 +00001243 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001244 { ISD::SETCC, MVT::v2f64, 1 },
1245 { ISD::SETCC, MVT::v4f32, 1 },
1246 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001247 };
1248
Craig Topper4b275762015-10-28 04:02:12 +00001249 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001250 { ISD::SETCC, MVT::v4f64, 1 },
1251 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001252 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001253 { ISD::SETCC, MVT::v4i64, 4 },
1254 { ISD::SETCC, MVT::v8i32, 4 },
1255 { ISD::SETCC, MVT::v16i16, 4 },
1256 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001257 };
1258
Craig Topper4b275762015-10-28 04:02:12 +00001259 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001260 { ISD::SETCC, MVT::v4i64, 1 },
1261 { ISD::SETCC, MVT::v8i32, 1 },
1262 { ISD::SETCC, MVT::v16i16, 1 },
1263 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001264 };
1265
Craig Topper4b275762015-10-28 04:02:12 +00001266 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001267 { ISD::SETCC, MVT::v8i64, 1 },
1268 { ISD::SETCC, MVT::v16i32, 1 },
1269 { ISD::SETCC, MVT::v8f64, 1 },
1270 { ISD::SETCC, MVT::v16f32, 1 },
1271 };
1272
Craig Topperee0c8592015-10-27 04:14:24 +00001273 if (ST->hasAVX512())
1274 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1275 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001276
Craig Topperee0c8592015-10-27 04:14:24 +00001277 if (ST->hasAVX2())
1278 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1279 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001280
Craig Topperee0c8592015-10-27 04:14:24 +00001281 if (ST->hasAVX())
1282 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1283 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001284
Craig Topperee0c8592015-10-27 04:14:24 +00001285 if (ST->hasSSE42())
1286 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1287 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001288
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001289 if (ST->hasSSE2())
1290 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1291 return LT.first * Entry->Cost;
1292
Chandler Carruth705b1852015-01-31 03:43:40 +00001293 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001294}
1295
Simon Pilgrim14000b32016-05-24 08:17:50 +00001296int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1297 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001298 // Costs should match the codegen from:
1299 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1300 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001301 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001302 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001303 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001304 static const CostTblEntry XOPCostTbl[] = {
1305 { ISD::BITREVERSE, MVT::v4i64, 4 },
1306 { ISD::BITREVERSE, MVT::v8i32, 4 },
1307 { ISD::BITREVERSE, MVT::v16i16, 4 },
1308 { ISD::BITREVERSE, MVT::v32i8, 4 },
1309 { ISD::BITREVERSE, MVT::v2i64, 1 },
1310 { ISD::BITREVERSE, MVT::v4i32, 1 },
1311 { ISD::BITREVERSE, MVT::v8i16, 1 },
1312 { ISD::BITREVERSE, MVT::v16i8, 1 },
1313 { ISD::BITREVERSE, MVT::i64, 3 },
1314 { ISD::BITREVERSE, MVT::i32, 3 },
1315 { ISD::BITREVERSE, MVT::i16, 3 },
1316 { ISD::BITREVERSE, MVT::i8, 3 }
1317 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001318 static const CostTblEntry AVX2CostTbl[] = {
1319 { ISD::BITREVERSE, MVT::v4i64, 5 },
1320 { ISD::BITREVERSE, MVT::v8i32, 5 },
1321 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001322 { ISD::BITREVERSE, MVT::v32i8, 5 },
1323 { ISD::BSWAP, MVT::v4i64, 1 },
1324 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001325 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001326 { ISD::CTLZ, MVT::v4i64, 23 },
1327 { ISD::CTLZ, MVT::v8i32, 18 },
1328 { ISD::CTLZ, MVT::v16i16, 14 },
1329 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001330 { ISD::CTPOP, MVT::v4i64, 7 },
1331 { ISD::CTPOP, MVT::v8i32, 11 },
1332 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001333 { ISD::CTPOP, MVT::v32i8, 6 },
1334 { ISD::CTTZ, MVT::v4i64, 10 },
1335 { ISD::CTTZ, MVT::v8i32, 14 },
1336 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001337 { ISD::CTTZ, MVT::v32i8, 9 },
1338 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1339 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1340 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1341 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1342 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1343 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001344 };
1345 static const CostTblEntry AVX1CostTbl[] = {
1346 { ISD::BITREVERSE, MVT::v4i64, 10 },
1347 { ISD::BITREVERSE, MVT::v8i32, 10 },
1348 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001349 { ISD::BITREVERSE, MVT::v32i8, 10 },
1350 { ISD::BSWAP, MVT::v4i64, 4 },
1351 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001352 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001353 { ISD::CTLZ, MVT::v4i64, 46 },
1354 { ISD::CTLZ, MVT::v8i32, 36 },
1355 { ISD::CTLZ, MVT::v16i16, 28 },
1356 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001357 { ISD::CTPOP, MVT::v4i64, 14 },
1358 { ISD::CTPOP, MVT::v8i32, 22 },
1359 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001360 { ISD::CTPOP, MVT::v32i8, 12 },
1361 { ISD::CTTZ, MVT::v4i64, 20 },
1362 { ISD::CTTZ, MVT::v8i32, 28 },
1363 { ISD::CTTZ, MVT::v16i16, 24 },
1364 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001365 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1366 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1367 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1368 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1369 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1370 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1371 };
1372 static const CostTblEntry SSE42CostTbl[] = {
1373 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1374 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001375 };
1376 static const CostTblEntry SSSE3CostTbl[] = {
1377 { ISD::BITREVERSE, MVT::v2i64, 5 },
1378 { ISD::BITREVERSE, MVT::v4i32, 5 },
1379 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001380 { ISD::BITREVERSE, MVT::v16i8, 5 },
1381 { ISD::BSWAP, MVT::v2i64, 1 },
1382 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001383 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001384 { ISD::CTLZ, MVT::v2i64, 23 },
1385 { ISD::CTLZ, MVT::v4i32, 18 },
1386 { ISD::CTLZ, MVT::v8i16, 14 },
1387 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001388 { ISD::CTPOP, MVT::v2i64, 7 },
1389 { ISD::CTPOP, MVT::v4i32, 11 },
1390 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001391 { ISD::CTPOP, MVT::v16i8, 6 },
1392 { ISD::CTTZ, MVT::v2i64, 10 },
1393 { ISD::CTTZ, MVT::v4i32, 14 },
1394 { ISD::CTTZ, MVT::v8i16, 12 },
1395 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001396 };
1397 static const CostTblEntry SSE2CostTbl[] = {
1398 { ISD::BSWAP, MVT::v2i64, 7 },
1399 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001400 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001401 { ISD::CTLZ, MVT::v2i64, 25 },
1402 { ISD::CTLZ, MVT::v4i32, 26 },
1403 { ISD::CTLZ, MVT::v8i16, 20 },
1404 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001405 { ISD::CTPOP, MVT::v2i64, 12 },
1406 { ISD::CTPOP, MVT::v4i32, 15 },
1407 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001408 { ISD::CTPOP, MVT::v16i8, 10 },
1409 { ISD::CTTZ, MVT::v2i64, 14 },
1410 { ISD::CTTZ, MVT::v4i32, 18 },
1411 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001412 { ISD::CTTZ, MVT::v16i8, 13 },
1413 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1414 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1415 };
1416 static const CostTblEntry SSE1CostTbl[] = {
1417 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1418 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001419 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001420
1421 unsigned ISD = ISD::DELETED_NODE;
1422 switch (IID) {
1423 default:
1424 break;
1425 case Intrinsic::bitreverse:
1426 ISD = ISD::BITREVERSE;
1427 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001428 case Intrinsic::bswap:
1429 ISD = ISD::BSWAP;
1430 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001431 case Intrinsic::ctlz:
1432 ISD = ISD::CTLZ;
1433 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001434 case Intrinsic::ctpop:
1435 ISD = ISD::CTPOP;
1436 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001437 case Intrinsic::cttz:
1438 ISD = ISD::CTTZ;
1439 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001440 case Intrinsic::sqrt:
1441 ISD = ISD::FSQRT;
1442 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001443 }
1444
1445 // Legalize the type.
1446 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1447 MVT MTy = LT.second;
1448
1449 // Attempt to lookup cost.
1450 if (ST->hasXOP())
1451 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1452 return LT.first * Entry->Cost;
1453
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001454 if (ST->hasAVX2())
1455 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1456 return LT.first * Entry->Cost;
1457
1458 if (ST->hasAVX())
1459 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1460 return LT.first * Entry->Cost;
1461
Alexey Bataevd07c7312016-10-31 12:10:53 +00001462 if (ST->hasSSE42())
1463 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1464 return LT.first * Entry->Cost;
1465
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001466 if (ST->hasSSSE3())
1467 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1468 return LT.first * Entry->Cost;
1469
Simon Pilgrim356e8232016-06-20 23:08:21 +00001470 if (ST->hasSSE2())
1471 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1472 return LT.first * Entry->Cost;
1473
Alexey Bataevd07c7312016-10-31 12:10:53 +00001474 if (ST->hasSSE1())
1475 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1476 return LT.first * Entry->Cost;
1477
Simon Pilgrim14000b32016-05-24 08:17:50 +00001478 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1479}
1480
1481int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1482 ArrayRef<Value *> Args, FastMathFlags FMF) {
1483 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1484}
1485
Chandler Carruth93205eb2015-08-05 18:08:10 +00001486int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001487 assert(Val->isVectorTy() && "This must be a vector type");
1488
Sanjay Patelaedc3472016-05-25 17:27:54 +00001489 Type *ScalarType = Val->getScalarType();
1490
Chandler Carruth664e3542013-01-07 01:37:14 +00001491 if (Index != -1U) {
1492 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001493 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001494
1495 // This type is legalized to a scalar type.
1496 if (!LT.second.isVector())
1497 return 0;
1498
1499 // The type may be split. Normalize the index to the new type.
1500 unsigned Width = LT.second.getVectorNumElements();
1501 Index = Index % Width;
1502
1503 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001504 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001505 return 0;
1506 }
1507
Sanjay Patelaedc3472016-05-25 17:27:54 +00001508 // Add to the base cost if we know that the extracted element of a vector is
1509 // destined to be moved to and used in the integer register file.
1510 int RegisterFileMoveCost = 0;
1511 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1512 RegisterFileMoveCost = 1;
1513
1514 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001515}
1516
Chandler Carruth93205eb2015-08-05 18:08:10 +00001517int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001518 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001519 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001520
1521 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1522 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001523 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001524 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001525 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001526 }
1527
1528 return Cost;
1529}
1530
Chandler Carruth93205eb2015-08-05 18:08:10 +00001531int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1532 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001533 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001534 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1535 unsigned NumElem = VTy->getVectorNumElements();
1536
1537 // Handle a few common cases:
1538 // <3 x float>
1539 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1540 // Cost = 64 bit store + extract + 32 bit store.
1541 return 3;
1542
1543 // <3 x double>
1544 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1545 // Cost = 128 bit store + unpack + 64 bit store.
1546 return 3;
1547
Alp Tokerf907b892013-12-05 05:44:44 +00001548 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001549 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001550 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1551 AddressSpace);
1552 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1553 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001554 return NumElem * Cost + SplitCost;
1555 }
1556 }
1557
Chandler Carruth664e3542013-01-07 01:37:14 +00001558 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001559 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001560 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1561 "Invalid Opcode");
1562
1563 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001564 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001565
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001566 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1567 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1568 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1569 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001570
1571 return Cost;
1572}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001573
Chandler Carruth93205eb2015-08-05 18:08:10 +00001574int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1575 unsigned Alignment,
1576 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001577 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1578 if (!SrcVTy)
1579 // To calculate scalar take the regular cost, without mask
1580 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1581
1582 unsigned NumElem = SrcVTy->getVectorNumElements();
1583 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001584 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001585 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1586 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001587 !isPowerOf2_32(NumElem)) {
1588 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001589 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1590 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001591 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001592 int BranchCost = getCFInstrCost(Instruction::Br);
1593 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001594
Chandler Carruth93205eb2015-08-05 18:08:10 +00001595 int ValueSplitCost = getScalarizationOverhead(
1596 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1597 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001598 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1599 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001600 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1601 }
1602
1603 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001604 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001605 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001606 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001607 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001608 LT.second.getVectorNumElements() == NumElem)
1609 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001610 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1611 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001612
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001613 else if (LT.second.getVectorNumElements() > NumElem) {
1614 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1615 LT.second.getVectorNumElements());
1616 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001617 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001618 }
1619 if (!ST->hasAVX512())
1620 return Cost + LT.first*4; // Each maskmov costs 4
1621
1622 // AVX-512 masked load/store is cheapper
1623 return Cost+LT.first;
1624}
1625
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001626int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1627 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001628 // Address computations in vectorized code with non-consecutive addresses will
1629 // likely result in more instructions compared to scalar code where the
1630 // computation can more often be merged into the index mode. The resulting
1631 // extra micro-ops can significantly decrease throughput.
1632 unsigned NumVectorInstToHideOverhead = 10;
1633
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001634 // Cost modeling of Strided Access Computation is hidden by the indexing
1635 // modes of X86 regardless of the stride value. We dont believe that there
1636 // is a difference between constant strided access in gerenal and constant
1637 // strided value which is less than or equal to 64.
1638 // Even in the case of (loop invariant) stride whose value is not known at
1639 // compile time, the address computation will not incur more than one extra
1640 // ADD instruction.
1641 if (Ty->isVectorTy() && SE) {
1642 if (!BaseT::isStridedAccess(Ptr))
1643 return NumVectorInstToHideOverhead;
1644 if (!BaseT::getConstantStrideStep(SE, Ptr))
1645 return 1;
1646 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001647
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001648 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001649}
Yi Jiang5c343de2013-09-19 17:48:48 +00001650
Chandler Carruth93205eb2015-08-05 18:08:10 +00001651int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1652 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001653
Chandler Carruth93205eb2015-08-05 18:08:10 +00001654 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001655
Yi Jiang5c343de2013-09-19 17:48:48 +00001656 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001657
Yi Jiang5c343de2013-09-19 17:48:48 +00001658 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1659 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001660
1661 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1662 // and make it as the cost.
1663
Craig Topper4b275762015-10-28 04:02:12 +00001664 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001665 { ISD::FADD, MVT::v2f64, 2 },
1666 { ISD::FADD, MVT::v4f32, 4 },
1667 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1668 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1669 { ISD::ADD, MVT::v8i16, 5 },
1670 };
Michael Liao5bf95782014-12-04 05:20:33 +00001671
Craig Topper4b275762015-10-28 04:02:12 +00001672 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001673 { ISD::FADD, MVT::v4f32, 4 },
1674 { ISD::FADD, MVT::v4f64, 5 },
1675 { ISD::FADD, MVT::v8f32, 7 },
1676 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1677 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1678 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1679 { ISD::ADD, MVT::v8i16, 5 },
1680 { ISD::ADD, MVT::v8i32, 5 },
1681 };
1682
Craig Topper4b275762015-10-28 04:02:12 +00001683 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001684 { ISD::FADD, MVT::v2f64, 2 },
1685 { ISD::FADD, MVT::v4f32, 4 },
1686 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1687 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1688 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1689 };
Michael Liao5bf95782014-12-04 05:20:33 +00001690
Craig Topper4b275762015-10-28 04:02:12 +00001691 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001692 { ISD::FADD, MVT::v4f32, 3 },
1693 { ISD::FADD, MVT::v4f64, 3 },
1694 { ISD::FADD, MVT::v8f32, 4 },
1695 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1696 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1697 { ISD::ADD, MVT::v4i64, 3 },
1698 { ISD::ADD, MVT::v8i16, 4 },
1699 { ISD::ADD, MVT::v8i32, 5 },
1700 };
Michael Liao5bf95782014-12-04 05:20:33 +00001701
Yi Jiang5c343de2013-09-19 17:48:48 +00001702 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001703 if (ST->hasAVX())
1704 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1705 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001706
Craig Topperee0c8592015-10-27 04:14:24 +00001707 if (ST->hasSSE42())
1708 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1709 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001710 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001711 if (ST->hasAVX())
1712 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1713 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001714
Craig Topperee0c8592015-10-27 04:14:24 +00001715 if (ST->hasSSE42())
1716 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1717 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001718 }
1719
Chandler Carruth705b1852015-01-31 03:43:40 +00001720 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001721}
1722
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001723/// \brief Calculate the cost of materializing a 64-bit value. This helper
1724/// method might only calculate a fraction of a larger immediate. Therefore it
1725/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001726int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001727 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001728 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001729
1730 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001731 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001732
Chandler Carruth705b1852015-01-31 03:43:40 +00001733 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001734}
1735
Chandler Carruth93205eb2015-08-05 18:08:10 +00001736int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001737 assert(Ty->isIntegerTy());
1738
1739 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1740 if (BitSize == 0)
1741 return ~0U;
1742
Juergen Ributzka43176172014-05-19 21:00:53 +00001743 // Never hoist constants larger than 128bit, because this might lead to
1744 // incorrect code generation or assertions in codegen.
1745 // Fixme: Create a cost model for types larger than i128 once the codegen
1746 // issues have been fixed.
1747 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001748 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001749
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001750 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001751 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001752
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001753 // Sign-extend all constants to a multiple of 64-bit.
1754 APInt ImmVal = Imm;
1755 if (BitSize & 0x3f)
1756 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1757
1758 // Split the constant into 64-bit chunks and calculate the cost for each
1759 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001760 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001761 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1762 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1763 int64_t Val = Tmp.getSExtValue();
1764 Cost += getIntImmCost(Val);
1765 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001766 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001767 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001768}
1769
Chandler Carruth93205eb2015-08-05 18:08:10 +00001770int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1771 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001772 assert(Ty->isIntegerTy());
1773
1774 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001775 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1776 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001777 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001778 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001779
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001780 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001781 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001782 default:
1783 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001784 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001785 // Always hoist the base address of a GetElementPtr. This prevents the
1786 // creation of new constants for every base constant that gets constant
1787 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001788 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001789 return 2 * TTI::TCC_Basic;
1790 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001791 case Instruction::Store:
1792 ImmIdx = 0;
1793 break;
Craig Topper074e8452015-12-20 18:41:54 +00001794 case Instruction::ICmp:
1795 // This is an imperfect hack to prevent constant hoisting of
1796 // compares that might be trying to check if a 64-bit value fits in
1797 // 32-bits. The backend can optimize these cases using a right shift by 32.
1798 // Ideally we would check the compare predicate here. There also other
1799 // similar immediates the backend can use shifts for.
1800 if (Idx == 1 && Imm.getBitWidth() == 64) {
1801 uint64_t ImmVal = Imm.getZExtValue();
1802 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1803 return TTI::TCC_Free;
1804 }
1805 ImmIdx = 1;
1806 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001807 case Instruction::And:
1808 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1809 // by using a 32-bit operation with implicit zero extension. Detect such
1810 // immediates here as the normal path expects bit 31 to be sign extended.
1811 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1812 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001813 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001814 case Instruction::Add:
1815 case Instruction::Sub:
1816 case Instruction::Mul:
1817 case Instruction::UDiv:
1818 case Instruction::SDiv:
1819 case Instruction::URem:
1820 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001821 case Instruction::Or:
1822 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001823 ImmIdx = 1;
1824 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001825 // Always return TCC_Free for the shift value of a shift instruction.
1826 case Instruction::Shl:
1827 case Instruction::LShr:
1828 case Instruction::AShr:
1829 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001830 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001831 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001832 case Instruction::Trunc:
1833 case Instruction::ZExt:
1834 case Instruction::SExt:
1835 case Instruction::IntToPtr:
1836 case Instruction::PtrToInt:
1837 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001838 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001839 case Instruction::Call:
1840 case Instruction::Select:
1841 case Instruction::Ret:
1842 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001843 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001844 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001845
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001846 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001847 int NumConstants = (BitSize + 63) / 64;
1848 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001849 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001850 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001851 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001852 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001853
Chandler Carruth705b1852015-01-31 03:43:40 +00001854 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001855}
1856
Chandler Carruth93205eb2015-08-05 18:08:10 +00001857int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1858 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001859 assert(Ty->isIntegerTy());
1860
1861 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001862 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1863 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001864 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001865 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001866
1867 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001868 default:
1869 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001870 case Intrinsic::sadd_with_overflow:
1871 case Intrinsic::uadd_with_overflow:
1872 case Intrinsic::ssub_with_overflow:
1873 case Intrinsic::usub_with_overflow:
1874 case Intrinsic::smul_with_overflow:
1875 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001876 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001877 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001878 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001879 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001880 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001881 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001882 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001883 case Intrinsic::experimental_patchpoint_void:
1884 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001885 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001886 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001887 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001888 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001889 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001890}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001891
Elena Demikhovsky54946982015-12-28 20:10:59 +00001892// Return an average cost of Gather / Scatter instruction, maybe improved later
1893int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1894 unsigned Alignment, unsigned AddressSpace) {
1895
1896 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1897 unsigned VF = SrcVTy->getVectorNumElements();
1898
1899 // Try to reduce index size from 64 bit (default for GEP)
1900 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1901 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1902 // to split. Also check that the base pointer is the same for all lanes,
1903 // and that there's at most one variable index.
1904 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1905 unsigned IndexSize = DL.getPointerSizeInBits();
1906 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1907 if (IndexSize < 64 || !GEP)
1908 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001909
Elena Demikhovsky54946982015-12-28 20:10:59 +00001910 unsigned NumOfVarIndices = 0;
1911 Value *Ptrs = GEP->getPointerOperand();
1912 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1913 return IndexSize;
1914 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1915 if (isa<Constant>(GEP->getOperand(i)))
1916 continue;
1917 Type *IndxTy = GEP->getOperand(i)->getType();
1918 if (IndxTy->isVectorTy())
1919 IndxTy = IndxTy->getVectorElementType();
1920 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1921 !isa<SExtInst>(GEP->getOperand(i))) ||
1922 ++NumOfVarIndices > 1)
1923 return IndexSize; // 64
1924 }
1925 return (unsigned)32;
1926 };
1927
1928
1929 // Trying to reduce IndexSize to 32 bits for vector 16.
1930 // By default the IndexSize is equal to pointer size.
1931 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1932 DL.getPointerSizeInBits();
1933
Mehdi Amini867e9142016-04-14 04:36:40 +00001934 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001935 IndexSize), VF);
1936 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1937 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1938 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1939 if (SplitFactor > 1) {
1940 // Handle splitting of vector of pointers
1941 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1942 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1943 AddressSpace);
1944 }
1945
1946 // The gather / scatter cost is given by Intel architects. It is a rough
1947 // number since we are looking at one instruction in a time.
1948 const int GSOverhead = 2;
1949 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1950 Alignment, AddressSpace);
1951}
1952
1953/// Return the cost of full scalarization of gather / scatter operation.
1954///
1955/// Opcode - Load or Store instruction.
1956/// SrcVTy - The type of the data vector that should be gathered or scattered.
1957/// VariableMask - The mask is non-constant at compile time.
1958/// Alignment - Alignment for one element.
1959/// AddressSpace - pointer[s] address space.
1960///
1961int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
1962 bool VariableMask, unsigned Alignment,
1963 unsigned AddressSpace) {
1964 unsigned VF = SrcVTy->getVectorNumElements();
1965
1966 int MaskUnpackCost = 0;
1967 if (VariableMask) {
1968 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001969 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00001970 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
1971 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00001972 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001973 nullptr);
1974 int BranchCost = getCFInstrCost(Instruction::Br);
1975 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
1976 }
1977
1978 // The cost of the scalar loads/stores.
1979 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1980 Alignment, AddressSpace);
1981
1982 int InsertExtractCost = 0;
1983 if (Opcode == Instruction::Load)
1984 for (unsigned i = 0; i < VF; ++i)
1985 // Add the cost of inserting each scalar load into the vector
1986 InsertExtractCost +=
1987 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
1988 else
1989 for (unsigned i = 0; i < VF; ++i)
1990 // Add the cost of extracting each element out of the data vector
1991 InsertExtractCost +=
1992 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
1993
1994 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
1995}
1996
1997/// Calculate the cost of Gather / Scatter operation
1998int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
1999 Value *Ptr, bool VariableMask,
2000 unsigned Alignment) {
2001 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2002 unsigned VF = SrcVTy->getVectorNumElements();
2003 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2004 if (!PtrTy && Ptr->getType()->isVectorTy())
2005 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2006 assert(PtrTy && "Unexpected type for Ptr argument");
2007 unsigned AddressSpace = PtrTy->getAddressSpace();
2008
2009 bool Scalarize = false;
2010 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2011 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2012 Scalarize = true;
2013 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2014 // Vector-4 of gather/scatter instruction does not exist on KNL.
2015 // We can extend it to 8 elements, but zeroing upper bits of
2016 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002017 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2018 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002019 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2020 Scalarize = true;
2021
2022 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002023 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2024 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002025
2026 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2027}
2028
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002029bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2030 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002031 int DataWidth = isa<PointerType>(ScalarTy) ?
2032 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002033
Igor Bregerf44b79d2016-08-02 09:15:28 +00002034 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2035 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002036}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002037
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002038bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2039 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002040}
2041
Elena Demikhovsky09285852015-10-25 15:37:55 +00002042bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2043 // This function is called now in two cases: from the Loop Vectorizer
2044 // and from the Scalarizer.
2045 // When the Loop Vectorizer asks about legality of the feature,
2046 // the vectorization factor is not calculated yet. The Loop Vectorizer
2047 // sends a scalar type and the decision is based on the width of the
2048 // scalar element.
2049 // Later on, the cost model will estimate usage this intrinsic based on
2050 // the vector type.
2051 // The Scalarizer asks again about legality. It sends a vector type.
2052 // In this case we can reject non-power-of-2 vectors.
2053 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2054 return false;
2055 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002056 int DataWidth = isa<PointerType>(ScalarTy) ?
2057 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002058
2059 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002060 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002061}
2062
2063bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2064 return isLegalMaskedGather(DataType);
2065}
2066
Eric Christopherd566fb12015-07-29 22:09:48 +00002067bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2068 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002069 const TargetMachine &TM = getTLI()->getTargetMachine();
2070
2071 // Work this as a subsetting of subtarget features.
2072 const FeatureBitset &CallerBits =
2073 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2074 const FeatureBitset &CalleeBits =
2075 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2076
2077 // FIXME: This is likely too limiting as it will include subtarget features
2078 // that we might not care about for inlining, but it is conservatively
2079 // correct.
2080 return (CallerBits & CalleeBits) == CalleeBits;
2081}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002082
2083bool X86TTIImpl::enableInterleavedAccessVectorization() {
2084 // TODO: We expect this to be beneficial regardless of arch,
2085 // but there are currently some unexplained performance artifacts on Atom.
2086 // As a temporary solution, disable on Atom.
2087 return !(ST->isAtom() || ST->isSLM());
2088}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002089
2090// Get estimation for interleaved load/store operations and strided load.
2091// \p Indices contains indices for strided load.
2092// \p Factor - the factor of interleaving.
2093// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2094int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2095 unsigned Factor,
2096 ArrayRef<unsigned> Indices,
2097 unsigned Alignment,
2098 unsigned AddressSpace) {
2099
2100 // VecTy for interleave memop is <VF*Factor x Elt>.
2101 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2102 // VecTy = <12 x i32>.
2103
2104 // Calculate the number of memory operations (NumOfMemOps), required
2105 // for load/store the VecTy.
2106 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2107 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2108 unsigned LegalVTSize = LegalVT.getStoreSize();
2109 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2110
2111 // Get the cost of one memory operation.
2112 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2113 LegalVT.getVectorNumElements());
2114 unsigned MemOpCost =
2115 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2116
2117 if (Opcode == Instruction::Load) {
2118 // Kind of shuffle depends on number of loaded values.
2119 // If we load the entire data in one register, we can use a 1-src shuffle.
2120 // Otherwise, we'll merge 2 sources in each operation.
2121 TTI::ShuffleKind ShuffleKind =
2122 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2123
2124 unsigned ShuffleCost =
2125 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2126
2127 unsigned NumOfLoadsInInterleaveGrp =
2128 Indices.size() ? Indices.size() : Factor;
2129 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2130 VecTy->getVectorNumElements() / Factor);
2131 unsigned NumOfResults =
2132 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2133 NumOfLoadsInInterleaveGrp;
2134
2135 // About a half of the loads may be folded in shuffles when we have only
2136 // one result. If we have more than one result, we do not fold loads at all.
2137 unsigned NumOfUnfoldedLoads =
2138 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2139
2140 // Get a number of shuffle operations per result.
2141 unsigned NumOfShufflesPerResult =
2142 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2143
2144 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2145 // When we have more than one destination, we need additional instructions
2146 // to keep sources.
2147 unsigned NumOfMoves = 0;
2148 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2149 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2150
2151 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2152 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2153
2154 return Cost;
2155 }
2156
2157 // Store.
2158 assert(Opcode == Instruction::Store &&
2159 "Expected Store Instruction at this point");
2160
2161 // There is no strided stores meanwhile. And store can't be folded in
2162 // shuffle.
2163 unsigned NumOfSources = Factor; // The number of values to be merged.
2164 unsigned ShuffleCost =
2165 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2166 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2167
2168 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2169 // We need additional instructions to keep sources.
2170 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2171 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2172 NumOfMoves;
2173 return Cost;
2174}
2175
2176int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2177 unsigned Factor,
2178 ArrayRef<unsigned> Indices,
2179 unsigned Alignment,
2180 unsigned AddressSpace) {
2181 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2182 RequiresBW = false;
2183 Type *EltTy = VecTy->getVectorElementType();
2184 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2185 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2186 return true;
2187 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2188 RequiresBW = true;
2189 return true;
2190 }
2191 return false;
2192 };
2193 bool RequiresBW;
2194 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2195 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2196 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2197 Alignment, AddressSpace);
2198 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2199 Alignment, AddressSpace);
2200}