blob: 272c665ace1311a8b287107e08956971dde5d477 [file] [log] [blame]
David Blaikie1213dbf2015-06-26 16:57:30 +00001//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines vectorizer utilities.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carruth6bda14b2017-06-06 11:49:48 +000014#include "llvm/Analysis/VectorUtils.h"
James Molloy55d633b2015-10-12 12:34:45 +000015#include "llvm/ADT/EquivalenceClasses.h"
16#include "llvm/Analysis/DemandedBits.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000017#include "llvm/Analysis/LoopInfo.h"
Florian Hahn1086ce22018-09-12 08:01:57 +000018#include "llvm/Analysis/LoopIterator.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000019#include "llvm/Analysis/ScalarEvolution.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000020#include "llvm/Analysis/ScalarEvolutionExpressions.h"
James Molloy55d633b2015-10-12 12:34:45 +000021#include "llvm/Analysis/TargetTransformInfo.h"
David Majnemerb4b27232016-04-19 19:10:21 +000022#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000023#include "llvm/IR/Constants.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000024#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000025#include "llvm/IR/IRBuilder.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000026#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Value.h"
Renato Golin3b1d3b02015-08-30 10:49:04 +000028
Florian Hahn1086ce22018-09-12 08:01:57 +000029#define DEBUG_TYPE "vectorutils"
30
David Majnemer5eaf08f2015-08-18 22:07:20 +000031using namespace llvm;
32using namespace llvm::PatternMatch;
David Blaikie1213dbf2015-06-26 16:57:30 +000033
Florian Hahn1086ce22018-09-12 08:01:57 +000034/// Maximum factor for an interleaved memory access.
35static cl::opt<unsigned> MaxInterleaveGroupFactor(
36 "max-interleave-group-factor", cl::Hidden,
37 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38 cl::init(8));
39
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000040/// Identify if the intrinsic is trivially vectorizable.
David Blaikie1213dbf2015-06-26 16:57:30 +000041/// This method returns true if the intrinsic's argument types are all
42/// scalars for the scalar form of the intrinsic and all vectors for
43/// the vector form of the intrinsic.
44bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45 switch (ID) {
46 case Intrinsic::sqrt:
47 case Intrinsic::sin:
48 case Intrinsic::cos:
49 case Intrinsic::exp:
50 case Intrinsic::exp2:
51 case Intrinsic::log:
52 case Intrinsic::log10:
53 case Intrinsic::log2:
54 case Intrinsic::fabs:
55 case Intrinsic::minnum:
56 case Intrinsic::maxnum:
57 case Intrinsic::copysign:
58 case Intrinsic::floor:
59 case Intrinsic::ceil:
60 case Intrinsic::trunc:
61 case Intrinsic::rint:
62 case Intrinsic::nearbyint:
63 case Intrinsic::round:
64 case Intrinsic::bswap:
Simon Pilgrimba319de2016-06-04 20:21:07 +000065 case Intrinsic::bitreverse:
David Blaikie1213dbf2015-06-26 16:57:30 +000066 case Intrinsic::ctpop:
67 case Intrinsic::pow:
68 case Intrinsic::fma:
69 case Intrinsic::fmuladd:
70 case Intrinsic::ctlz:
71 case Intrinsic::cttz:
72 case Intrinsic::powi:
Matt Arsenault80ea6dd2018-09-17 13:24:30 +000073 case Intrinsic::canonicalize:
David Blaikie1213dbf2015-06-26 16:57:30 +000074 return true;
75 default:
76 return false;
77 }
78}
79
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000080/// Identifies if the intrinsic has a scalar operand. It check for
David Blaikie1213dbf2015-06-26 16:57:30 +000081/// ctlz,cttz and powi special intrinsics whose argument is scalar.
82bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
83 unsigned ScalarOpdIdx) {
84 switch (ID) {
85 case Intrinsic::ctlz:
86 case Intrinsic::cttz:
87 case Intrinsic::powi:
88 return (ScalarOpdIdx == 1);
89 default:
90 return false;
91 }
92}
93
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000094/// Returns intrinsic ID for call.
David Blaikie1213dbf2015-06-26 16:57:30 +000095/// For the input call instruction it finds mapping intrinsic and returns
96/// its ID, in case it does not found it return not_intrinsic.
David Majnemerb4b27232016-04-19 19:10:21 +000097Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
98 const TargetLibraryInfo *TLI) {
99 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
100 if (ID == Intrinsic::not_intrinsic)
David Blaikie1213dbf2015-06-26 16:57:30 +0000101 return Intrinsic::not_intrinsic;
102
David Majnemerb4b27232016-04-19 19:10:21 +0000103 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
Dan Gohman2c74fe92017-11-08 21:59:51 +0000104 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
105 ID == Intrinsic::sideeffect)
David Majnemerb4b27232016-04-19 19:10:21 +0000106 return ID;
David Blaikie1213dbf2015-06-26 16:57:30 +0000107 return Intrinsic::not_intrinsic;
108}
Hal Finkel9cf58c42015-07-11 10:52:42 +0000109
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000110/// Find the operand of the GEP that should be checked for consecutive
Hal Finkel9cf58c42015-07-11 10:52:42 +0000111/// stores. This ignores trailing indices that have no effect on the final
112/// pointer.
113unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
114 const DataLayout &DL = Gep->getModule()->getDataLayout();
115 unsigned LastOperand = Gep->getNumOperands() - 1;
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000116 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000117
118 // Walk backwards and try to peel off zeros.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000119 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000120 // Find the type we're currently indexing into.
121 gep_type_iterator GEPTI = gep_type_begin(Gep);
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000122 std::advance(GEPTI, LastOperand - 2);
Hal Finkel9cf58c42015-07-11 10:52:42 +0000123
124 // If it's a type with the same allocation size as the result of the GEP we
125 // can peel off the zero index.
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000126 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
Hal Finkel9cf58c42015-07-11 10:52:42 +0000127 break;
128 --LastOperand;
129 }
130
131 return LastOperand;
132}
133
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000134/// If the argument is a GEP, then returns the operand identified by
Hal Finkel9cf58c42015-07-11 10:52:42 +0000135/// getGEPInductionOperand. However, if there is some other non-loop-invariant
136/// operand, it returns that instead.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000137Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000138 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
139 if (!GEP)
140 return Ptr;
141
142 unsigned InductionOperand = getGEPInductionOperand(GEP);
143
144 // Check that all of the gep indices are uniform except for our induction
145 // operand.
146 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
147 if (i != InductionOperand &&
148 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
149 return Ptr;
150 return GEP->getOperand(InductionOperand);
151}
152
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000153/// If a value has only one user that is a CastInst, return it.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000154Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
155 Value *UniqueCast = nullptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000156 for (User *U : Ptr->users()) {
157 CastInst *CI = dyn_cast<CastInst>(U);
158 if (CI && CI->getType() == Ty) {
159 if (!UniqueCast)
160 UniqueCast = CI;
161 else
162 return nullptr;
163 }
164 }
165 return UniqueCast;
166}
167
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000168/// Get the stride of a pointer access in a loop. Looks for symbolic
Hal Finkel9cf58c42015-07-11 10:52:42 +0000169/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000170Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000171 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000172 if (!PtrTy || PtrTy->isAggregateType())
173 return nullptr;
174
175 // Try to remove a gep instruction to make the pointer (actually index at this
Vedant Kumard3196742018-02-28 19:08:52 +0000176 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
Hal Finkel9cf58c42015-07-11 10:52:42 +0000177 // pointer, otherwise, we are analyzing the index.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000178 Value *OrigPtr = Ptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000179
180 // The size of the pointer access.
181 int64_t PtrAccessSize = 1;
182
183 Ptr = stripGetElementPtr(Ptr, SE, Lp);
184 const SCEV *V = SE->getSCEV(Ptr);
185
186 if (Ptr != OrigPtr)
187 // Strip off casts.
188 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
189 V = C->getOperand();
190
191 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
192 if (!S)
193 return nullptr;
194
195 V = S->getStepRecurrence(*SE);
196 if (!V)
197 return nullptr;
198
199 // Strip off the size of access multiplication if we are still analyzing the
200 // pointer.
201 if (OrigPtr == Ptr) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000202 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
203 if (M->getOperand(0)->getSCEVType() != scConstant)
204 return nullptr;
205
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000206 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000207
208 // Huge step value - give up.
209 if (APStepVal.getBitWidth() > 64)
210 return nullptr;
211
212 int64_t StepVal = APStepVal.getSExtValue();
213 if (PtrAccessSize != StepVal)
214 return nullptr;
215 V = M->getOperand(1);
216 }
217 }
218
219 // Strip off casts.
220 Type *StripedOffRecurrenceCast = nullptr;
221 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
222 StripedOffRecurrenceCast = C->getType();
223 V = C->getOperand();
224 }
225
226 // Look for the loop invariant symbolic value.
227 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
228 if (!U)
229 return nullptr;
230
David Majnemer5eaf08f2015-08-18 22:07:20 +0000231 Value *Stride = U->getValue();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000232 if (!Lp->isLoopInvariant(Stride))
233 return nullptr;
234
235 // If we have stripped off the recurrence cast we have to make sure that we
236 // return the value that is used in this loop so that we can replace it later.
237 if (StripedOffRecurrenceCast)
238 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
239
240 return Stride;
241}
David Majnemer599ca442015-07-13 01:15:53 +0000242
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000243/// Given a vector and an element number, see if the scalar value is
David Majnemer599ca442015-07-13 01:15:53 +0000244/// already around as a register, for example if it were inserted then extracted
245/// from the vector.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000246Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
David Majnemer599ca442015-07-13 01:15:53 +0000247 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
248 VectorType *VTy = cast<VectorType>(V->getType());
249 unsigned Width = VTy->getNumElements();
250 if (EltNo >= Width) // Out of range access.
251 return UndefValue::get(VTy->getElementType());
252
253 if (Constant *C = dyn_cast<Constant>(V))
254 return C->getAggregateElement(EltNo);
255
256 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
257 // If this is an insert to a variable element, we don't know what it is.
258 if (!isa<ConstantInt>(III->getOperand(2)))
259 return nullptr;
260 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
261
262 // If this is an insert to the element we are looking for, return the
263 // inserted value.
264 if (EltNo == IIElt)
265 return III->getOperand(1);
266
267 // Otherwise, the insertelement doesn't modify the value, recurse on its
268 // vector input.
269 return findScalarElement(III->getOperand(0), EltNo);
270 }
271
272 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
273 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
274 int InEl = SVI->getMaskValue(EltNo);
275 if (InEl < 0)
276 return UndefValue::get(VTy->getElementType());
277 if (InEl < (int)LHSWidth)
278 return findScalarElement(SVI->getOperand(0), InEl);
279 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
280 }
281
282 // Extract a value from a vector add operation with a constant zero.
Sanjay Patel3413a662018-09-24 17:18:32 +0000283 // TODO: Use getBinOpIdentity() to generalize this.
284 Value *Val; Constant *C;
285 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
286 if (Constant *Elt = C->getAggregateElement(EltNo))
David Majnemerc6bb0e22015-08-18 22:07:25 +0000287 if (Elt->isNullValue())
288 return findScalarElement(Val, EltNo);
David Majnemer599ca442015-07-13 01:15:53 +0000289
290 // Otherwise, we don't know.
291 return nullptr;
292}
Renato Golin3b1d3b02015-08-30 10:49:04 +0000293
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000294/// Get splat value if the input is a splat vector or return nullptr.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000295/// This function is not fully general. It checks only 2 cases:
296/// the input value is (1) a splat constants vector or (2) a sequence
297/// of instructions that broadcast a single value into a vector.
298///
Elena Demikhovsky0781d7b2015-12-01 12:08:36 +0000299const llvm::Value *llvm::getSplatValue(const Value *V) {
300
301 if (auto *C = dyn_cast<Constant>(V))
Elena Demikhovsky47fa2712015-12-01 12:30:40 +0000302 if (isa<VectorType>(V->getType()))
303 return C->getSplatValue();
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000304
305 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
Renato Golin3b1d3b02015-08-30 10:49:04 +0000306 if (!ShuffleInst)
307 return nullptr;
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000308 // All-zero (or undef) shuffle mask elements.
309 for (int MaskElt : ShuffleInst->getShuffleMask())
310 if (MaskElt != 0 && MaskElt != -1)
Renato Golin3b1d3b02015-08-30 10:49:04 +0000311 return nullptr;
312 // The first shuffle source is 'insertelement' with index 0.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000313 auto *InsertEltInst =
314 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
Renato Golin3b1d3b02015-08-30 10:49:04 +0000315 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
Craig Topper79ab6432017-07-06 18:39:47 +0000316 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
Renato Golin3b1d3b02015-08-30 10:49:04 +0000317 return nullptr;
318
319 return InsertEltInst->getOperand(1);
320}
James Molloy55d633b2015-10-12 12:34:45 +0000321
Charlie Turner54336a52015-11-26 20:39:51 +0000322MapVector<Instruction *, uint64_t>
James Molloy45f67d52015-11-09 14:32:05 +0000323llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
324 const TargetTransformInfo *TTI) {
James Molloy55d633b2015-10-12 12:34:45 +0000325
326 // DemandedBits will give us every value's live-out bits. But we want
327 // to ensure no extra casts would need to be inserted, so every DAG
328 // of connected values must have the same minimum bitwidth.
James Molloy45f67d52015-11-09 14:32:05 +0000329 EquivalenceClasses<Value *> ECs;
330 SmallVector<Value *, 16> Worklist;
331 SmallPtrSet<Value *, 4> Roots;
332 SmallPtrSet<Value *, 16> Visited;
333 DenseMap<Value *, uint64_t> DBits;
334 SmallPtrSet<Instruction *, 4> InstructionSet;
Charlie Turner54336a52015-11-26 20:39:51 +0000335 MapVector<Instruction *, uint64_t> MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000336
James Molloy55d633b2015-10-12 12:34:45 +0000337 // Determine the roots. We work bottom-up, from truncs or icmps.
338 bool SeenExtFromIllegalType = false;
339 for (auto *BB : Blocks)
340 for (auto &I : *BB) {
341 InstructionSet.insert(&I);
342
343 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
344 !TTI->isTypeLegal(I.getOperand(0)->getType()))
345 SeenExtFromIllegalType = true;
James Molloy45f67d52015-11-09 14:32:05 +0000346
James Molloy55d633b2015-10-12 12:34:45 +0000347 // Only deal with non-vector integers up to 64-bits wide.
348 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
349 !I.getType()->isVectorTy() &&
350 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
351 // Don't make work for ourselves. If we know the loaded type is legal,
352 // don't add it to the worklist.
353 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
354 continue;
James Molloy45f67d52015-11-09 14:32:05 +0000355
James Molloy55d633b2015-10-12 12:34:45 +0000356 Worklist.push_back(&I);
357 Roots.insert(&I);
358 }
359 }
360 // Early exit.
361 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
362 return MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000363
James Molloy55d633b2015-10-12 12:34:45 +0000364 // Now proceed breadth-first, unioning values together.
365 while (!Worklist.empty()) {
366 Value *Val = Worklist.pop_back_val();
367 Value *Leader = ECs.getOrInsertLeaderValue(Val);
James Molloy45f67d52015-11-09 14:32:05 +0000368
James Molloy55d633b2015-10-12 12:34:45 +0000369 if (Visited.count(Val))
370 continue;
371 Visited.insert(Val);
372
373 // Non-instructions terminate a chain successfully.
374 if (!isa<Instruction>(Val))
375 continue;
376 Instruction *I = cast<Instruction>(Val);
377
378 // If we encounter a type that is larger than 64 bits, we can't represent
379 // it so bail out.
James Molloyaa1d6382016-05-10 12:27:23 +0000380 if (DB.getDemandedBits(I).getBitWidth() > 64)
Charlie Turner54336a52015-11-26 20:39:51 +0000381 return MapVector<Instruction *, uint64_t>();
James Molloy45f67d52015-11-09 14:32:05 +0000382
James Molloyaa1d6382016-05-10 12:27:23 +0000383 uint64_t V = DB.getDemandedBits(I).getZExtValue();
384 DBits[Leader] |= V;
385 DBits[I] = V;
James Molloy45f67d52015-11-09 14:32:05 +0000386
James Molloy55d633b2015-10-12 12:34:45 +0000387 // Casts, loads and instructions outside of our range terminate a chain
388 // successfully.
389 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
390 !InstructionSet.count(I))
391 continue;
392
393 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
394 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
395 // transform anything that relies on them.
396 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
397 !I->getType()->isIntegerTy()) {
398 DBits[Leader] |= ~0ULL;
399 continue;
400 }
401
402 // We don't modify the types of PHIs. Reductions will already have been
403 // truncated if possible, and inductions' sizes will have been chosen by
404 // indvars.
405 if (isa<PHINode>(I))
406 continue;
407
408 if (DBits[Leader] == ~0ULL)
409 // All bits demanded, no point continuing.
410 continue;
411
412 for (Value *O : cast<User>(I)->operands()) {
413 ECs.unionSets(Leader, O);
414 Worklist.push_back(O);
415 }
416 }
417
418 // Now we've discovered all values, walk them to see if there are
419 // any users we didn't see. If there are, we can't optimize that
420 // chain.
421 for (auto &I : DBits)
422 for (auto *U : I.first->users())
423 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
424 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
James Molloy45f67d52015-11-09 14:32:05 +0000425
James Molloy55d633b2015-10-12 12:34:45 +0000426 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
427 uint64_t LeaderDemandedBits = 0;
428 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
429 LeaderDemandedBits |= DBits[*MI];
430
431 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
432 llvm::countLeadingZeros(LeaderDemandedBits);
433 // Round up to a power of 2
434 if (!isPowerOf2_64((uint64_t)MinBW))
435 MinBW = NextPowerOf2(MinBW);
James Molloy8e46cd02016-03-30 10:11:43 +0000436
437 // We don't modify the types of PHIs. Reductions will already have been
438 // truncated if possible, and inductions' sizes will have been chosen by
439 // indvars.
440 // If we are required to shrink a PHI, abandon this entire equivalence class.
441 bool Abort = false;
442 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
443 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
444 Abort = true;
445 break;
446 }
447 if (Abort)
448 continue;
449
James Molloy55d633b2015-10-12 12:34:45 +0000450 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
451 if (!isa<Instruction>(*MI))
452 continue;
453 Type *Ty = (*MI)->getType();
454 if (Roots.count(*MI))
455 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
456 if (MinBW < Ty->getScalarSizeInBits())
457 MinBWs[cast<Instruction>(*MI)] = MinBW;
458 }
459 }
460
461 return MinBWs;
462}
Matt Arsenault727e2792016-06-30 21:17:59 +0000463
464/// \returns \p I after propagating metadata from \p VL.
465Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
466 Instruction *I0 = cast<Instruction>(VL[0]);
467 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
468 I0->getAllMetadataOtherThanDebugLoc(Metadata);
469
Justin Lebar11a32042016-09-11 01:39:08 +0000470 for (auto Kind :
471 {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
472 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
473 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
Matt Arsenault727e2792016-06-30 21:17:59 +0000474 MDNode *MD = I0->getMetadata(Kind);
475
476 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
477 const Instruction *IJ = cast<Instruction>(VL[J]);
478 MDNode *IMD = IJ->getMetadata(Kind);
479 switch (Kind) {
480 case LLVMContext::MD_tbaa:
481 MD = MDNode::getMostGenericTBAA(MD, IMD);
482 break;
483 case LLVMContext::MD_alias_scope:
484 MD = MDNode::getMostGenericAliasScope(MD, IMD);
485 break;
Matt Arsenault727e2792016-06-30 21:17:59 +0000486 case LLVMContext::MD_fpmath:
487 MD = MDNode::getMostGenericFPMath(MD, IMD);
488 break;
Justin Lebar11a32042016-09-11 01:39:08 +0000489 case LLVMContext::MD_noalias:
Matt Arsenault727e2792016-06-30 21:17:59 +0000490 case LLVMContext::MD_nontemporal:
Justin Lebar11a32042016-09-11 01:39:08 +0000491 case LLVMContext::MD_invariant_load:
Matt Arsenault727e2792016-06-30 21:17:59 +0000492 MD = MDNode::intersect(MD, IMD);
493 break;
494 default:
495 llvm_unreachable("unhandled metadata");
496 }
497 }
498
499 Inst->setMetadata(Kind, MD);
500 }
501
502 return Inst;
503}
Matthew Simpsonba5cf9d2017-02-01 17:45:46 +0000504
505Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
506 unsigned NumVecs) {
507 SmallVector<Constant *, 16> Mask;
508 for (unsigned i = 0; i < VF; i++)
509 for (unsigned j = 0; j < NumVecs; j++)
510 Mask.push_back(Builder.getInt32(j * VF + i));
511
512 return ConstantVector::get(Mask);
513}
514
515Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
516 unsigned Stride, unsigned VF) {
517 SmallVector<Constant *, 16> Mask;
518 for (unsigned i = 0; i < VF; i++)
519 Mask.push_back(Builder.getInt32(Start + i * Stride));
520
521 return ConstantVector::get(Mask);
522}
523
524Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
525 unsigned NumInts, unsigned NumUndefs) {
526 SmallVector<Constant *, 16> Mask;
527 for (unsigned i = 0; i < NumInts; i++)
528 Mask.push_back(Builder.getInt32(Start + i));
529
530 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
531 for (unsigned i = 0; i < NumUndefs; i++)
532 Mask.push_back(Undef);
533
534 return ConstantVector::get(Mask);
535}
536
537/// A helper function for concatenating vectors. This function concatenates two
538/// vectors having the same element type. If the second vector has fewer
539/// elements than the first, it is padded with undefs.
540static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
541 Value *V2) {
542 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
543 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
544 assert(VecTy1 && VecTy2 &&
545 VecTy1->getScalarType() == VecTy2->getScalarType() &&
546 "Expect two vectors with the same element type");
547
548 unsigned NumElts1 = VecTy1->getNumElements();
549 unsigned NumElts2 = VecTy2->getNumElements();
550 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
551
552 if (NumElts1 > NumElts2) {
553 // Extend with UNDEFs.
554 Constant *ExtMask =
555 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
556 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
557 }
558
559 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
560 return Builder.CreateShuffleVector(V1, V2, Mask);
561}
562
563Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
564 unsigned NumVecs = Vecs.size();
565 assert(NumVecs > 1 && "Should be at least two vectors");
566
567 SmallVector<Value *, 8> ResList;
568 ResList.append(Vecs.begin(), Vecs.end());
569 do {
570 SmallVector<Value *, 8> TmpList;
571 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
572 Value *V0 = ResList[i], *V1 = ResList[i + 1];
573 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
574 "Only the last vector may have a different type");
575
576 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
577 }
578
579 // Push the last vector if the total number of vectors is odd.
580 if (NumVecs % 2 != 0)
581 TmpList.push_back(ResList[NumVecs - 1]);
582
583 ResList = TmpList;
584 NumVecs = ResList.size();
585 } while (NumVecs > 1);
586
587 return ResList[0];
588}
Florian Hahn1086ce22018-09-12 08:01:57 +0000589
590bool InterleavedAccessInfo::isStrided(int Stride) {
591 unsigned Factor = std::abs(Stride);
592 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
593}
594
595void InterleavedAccessInfo::collectConstStrideAccesses(
596 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
597 const ValueToValueMap &Strides) {
598 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
599
600 // Since it's desired that the load/store instructions be maintained in
601 // "program order" for the interleaved access analysis, we have to visit the
602 // blocks in the loop in reverse postorder (i.e., in a topological order).
603 // Such an ordering will ensure that any load/store that may be executed
604 // before a second load/store will precede the second load/store in
605 // AccessStrideInfo.
606 LoopBlocksDFS DFS(TheLoop);
607 DFS.perform(LI);
608 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
609 for (auto &I : *BB) {
610 auto *LI = dyn_cast<LoadInst>(&I);
611 auto *SI = dyn_cast<StoreInst>(&I);
612 if (!LI && !SI)
613 continue;
614
615 Value *Ptr = getLoadStorePointerOperand(&I);
616 // We don't check wrapping here because we don't know yet if Ptr will be
617 // part of a full group or a group with gaps. Checking wrapping for all
618 // pointers (even those that end up in groups with no gaps) will be overly
619 // conservative. For full groups, wrapping should be ok since if we would
620 // wrap around the address space we would do a memory access at nullptr
621 // even without the transformation. The wrapping checks are therefore
622 // deferred until after we've formed the interleaved groups.
623 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
624 /*Assume=*/true, /*ShouldCheckWrap=*/false);
625
626 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
627 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
628 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
629
630 // An alignment of 0 means target ABI alignment.
631 unsigned Align = getLoadStoreAlignment(&I);
632 if (!Align)
633 Align = DL.getABITypeAlignment(PtrTy->getElementType());
634
635 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
636 }
637}
638
639// Analyze interleaved accesses and collect them into interleaved load and
640// store groups.
641//
642// When generating code for an interleaved load group, we effectively hoist all
643// loads in the group to the location of the first load in program order. When
644// generating code for an interleaved store group, we sink all stores to the
645// location of the last store. This code motion can change the order of load
646// and store instructions and may break dependences.
647//
648// The code generation strategy mentioned above ensures that we won't violate
649// any write-after-read (WAR) dependences.
650//
651// E.g., for the WAR dependence: a = A[i]; // (1)
652// A[i] = b; // (2)
653//
654// The store group of (2) is always inserted at or below (2), and the load
655// group of (1) is always inserted at or above (1). Thus, the instructions will
656// never be reordered. All other dependences are checked to ensure the
657// correctness of the instruction reordering.
658//
659// The algorithm visits all memory accesses in the loop in bottom-up program
660// order. Program order is established by traversing the blocks in the loop in
661// reverse postorder when collecting the accesses.
662//
663// We visit the memory accesses in bottom-up order because it can simplify the
664// construction of store groups in the presence of write-after-write (WAW)
665// dependences.
666//
667// E.g., for the WAW dependence: A[i] = a; // (1)
668// A[i] = b; // (2)
669// A[i + 1] = c; // (3)
670//
671// We will first create a store group with (3) and (2). (1) can't be added to
672// this group because it and (2) are dependent. However, (1) can be grouped
673// with other accesses that may precede it in program order. Note that a
674// bottom-up order does not imply that WAW dependences should not be checked.
Dorit Nuzman5118c682018-10-14 07:21:20 +0000675void InterleavedAccessInfo::analyzeInterleaving() {
Florian Hahn1086ce22018-09-12 08:01:57 +0000676 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
677 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
678
679 // Holds all accesses with a constant stride.
680 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
681 collectConstStrideAccesses(AccessStrideInfo, Strides);
682
683 if (AccessStrideInfo.empty())
684 return;
685
686 // Collect the dependences in the loop.
687 collectDependences();
688
689 // Holds all interleaved store groups temporarily.
690 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
691 // Holds all interleaved load groups temporarily.
692 SmallSetVector<InterleaveGroup *, 4> LoadGroups;
693
694 // Search in bottom-up program order for pairs of accesses (A and B) that can
695 // form interleaved load or store groups. In the algorithm below, access A
696 // precedes access B in program order. We initialize a group for B in the
697 // outer loop of the algorithm, and then in the inner loop, we attempt to
698 // insert each A into B's group if:
699 //
700 // 1. A and B have the same stride,
701 // 2. A and B have the same memory object size, and
702 // 3. A belongs in B's group according to its distance from B.
703 //
704 // Special care is taken to ensure group formation will not break any
705 // dependences.
706 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
707 BI != E; ++BI) {
708 Instruction *B = BI->first;
709 StrideDescriptor DesB = BI->second;
710
711 // Initialize a group for B if it has an allowable stride. Even if we don't
712 // create a group for B, we continue with the bottom-up algorithm to ensure
713 // we don't break any of B's dependences.
714 InterleaveGroup *Group = nullptr;
Dorit Nuzman5118c682018-10-14 07:21:20 +0000715 // TODO: Ignore B if it is in a predicated block. This restriction can be
716 // relaxed in the future once we handle masked interleaved groups.
717 if (isStrided(DesB.Stride) && !isPredicated(B->getParent())) {
Florian Hahn1086ce22018-09-12 08:01:57 +0000718 Group = getInterleaveGroup(B);
719 if (!Group) {
720 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
721 << '\n');
722 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
723 }
724 if (B->mayWriteToMemory())
725 StoreGroups.insert(Group);
726 else
727 LoadGroups.insert(Group);
728 }
729
730 for (auto AI = std::next(BI); AI != E; ++AI) {
731 Instruction *A = AI->first;
732 StrideDescriptor DesA = AI->second;
733
734 // Our code motion strategy implies that we can't have dependences
735 // between accesses in an interleaved group and other accesses located
736 // between the first and last member of the group. Note that this also
737 // means that a group can't have more than one member at a given offset.
738 // The accesses in a group can have dependences with other accesses, but
739 // we must ensure we don't extend the boundaries of the group such that
740 // we encompass those dependent accesses.
741 //
742 // For example, assume we have the sequence of accesses shown below in a
743 // stride-2 loop:
744 //
745 // (1, 2) is a group | A[i] = a; // (1)
746 // | A[i-1] = b; // (2) |
747 // A[i-3] = c; // (3)
748 // A[i] = d; // (4) | (2, 4) is not a group
749 //
750 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
751 // but not with (4). If we did, the dependent access (3) would be within
752 // the boundaries of the (2, 4) group.
753 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
754 // If a dependence exists and A is already in a group, we know that A
755 // must be a store since A precedes B and WAR dependences are allowed.
756 // Thus, A would be sunk below B. We release A's group to prevent this
757 // illegal code motion. A will then be free to form another group with
758 // instructions that precede it.
759 if (isInterleaved(A)) {
760 InterleaveGroup *StoreGroup = getInterleaveGroup(A);
761 StoreGroups.remove(StoreGroup);
762 releaseGroup(StoreGroup);
763 }
764
765 // If a dependence exists and A is not already in a group (or it was
766 // and we just released it), B might be hoisted above A (if B is a
767 // load) or another store might be sunk below A (if B is a store). In
768 // either case, we can't add additional instructions to B's group. B
769 // will only form a group with instructions that it precedes.
770 break;
771 }
772
773 // At this point, we've checked for illegal code motion. If either A or B
774 // isn't strided, there's nothing left to do.
775 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
776 continue;
777
778 // Ignore A if it's already in a group or isn't the same kind of memory
779 // operation as B.
780 // Note that mayReadFromMemory() isn't mutually exclusive to
781 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
782 // here, canVectorizeMemory() should have returned false - except for the
783 // case we asked for optimization remarks.
784 if (isInterleaved(A) ||
785 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
786 (A->mayWriteToMemory() != B->mayWriteToMemory()))
787 continue;
788
789 // Check rules 1 and 2. Ignore A if its stride or size is different from
790 // that of B.
791 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
792 continue;
793
794 // Ignore A if the memory object of A and B don't belong to the same
795 // address space
796 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
797 continue;
798
799 // Calculate the distance from A to B.
800 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
801 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
802 if (!DistToB)
803 continue;
804 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
805
806 // Check rule 3. Ignore A if its distance to B is not a multiple of the
807 // size.
808 if (DistanceToB % static_cast<int64_t>(DesB.Size))
809 continue;
810
Dorit Nuzman5118c682018-10-14 07:21:20 +0000811 // Ignore A if either A or B is in a predicated block. Although we
812 // currently prevent group formation for predicated accesses, we may be
813 // able to relax this limitation in the future once we handle more
814 // complicated blocks.
815 if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
Florian Hahn1086ce22018-09-12 08:01:57 +0000816 continue;
817
818 // The index of A is the index of B plus A's distance to B in multiples
819 // of the size.
820 int IndexA =
821 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
822
823 // Try to insert A into B's group.
824 if (Group->insertMember(A, IndexA, DesA.Align)) {
825 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
826 << " into the interleave group with" << *B
827 << '\n');
828 InterleaveGroupMap[A] = Group;
829
830 // Set the first load in program order as the insert position.
831 if (A->mayReadFromMemory())
832 Group->setInsertPos(A);
833 }
834 } // Iteration over A accesses.
835 } // Iteration over B accesses.
836
837 // Remove interleaved store groups with gaps.
838 for (InterleaveGroup *Group : StoreGroups)
839 if (Group->getNumMembers() != Group->getFactor()) {
840 LLVM_DEBUG(
841 dbgs() << "LV: Invalidate candidate interleaved store group due "
842 "to gaps.\n");
843 releaseGroup(Group);
844 }
845 // Remove interleaved groups with gaps (currently only loads) whose memory
846 // accesses may wrap around. We have to revisit the getPtrStride analysis,
847 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
848 // not check wrapping (see documentation there).
849 // FORNOW we use Assume=false;
850 // TODO: Change to Assume=true but making sure we don't exceed the threshold
851 // of runtime SCEV assumptions checks (thereby potentially failing to
852 // vectorize altogether).
853 // Additional optional optimizations:
854 // TODO: If we are peeling the loop and we know that the first pointer doesn't
855 // wrap then we can deduce that all pointers in the group don't wrap.
856 // This means that we can forcefully peel the loop in order to only have to
857 // check the first pointer for no-wrap. When we'll change to use Assume=true
858 // we'll only need at most one runtime check per interleaved group.
859 for (InterleaveGroup *Group : LoadGroups) {
860 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
861 // load would wrap around the address space we would do a memory access at
862 // nullptr even without the transformation.
863 if (Group->getNumMembers() == Group->getFactor())
864 continue;
865
866 // Case 2: If first and last members of the group don't wrap this implies
867 // that all the pointers in the group don't wrap.
868 // So we check only group member 0 (which is always guaranteed to exist),
869 // and group member Factor - 1; If the latter doesn't exist we rely on
870 // peeling (if it is a non-reveresed accsess -- see Case 3).
871 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
872 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
873 /*ShouldCheckWrap=*/true)) {
874 LLVM_DEBUG(
875 dbgs() << "LV: Invalidate candidate interleaved group due to "
876 "first group member potentially pointer-wrapping.\n");
877 releaseGroup(Group);
878 continue;
879 }
880 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
881 if (LastMember) {
882 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
883 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
884 /*ShouldCheckWrap=*/true)) {
885 LLVM_DEBUG(
886 dbgs() << "LV: Invalidate candidate interleaved group due to "
887 "last group member potentially pointer-wrapping.\n");
888 releaseGroup(Group);
889 }
890 } else {
891 // Case 3: A non-reversed interleaved load group with gaps: We need
892 // to execute at least one scalar epilogue iteration. This will ensure
893 // we don't speculatively access memory out-of-bounds. We only need
894 // to look for a member at index factor - 1, since every group must have
895 // a member at index zero.
896 if (Group->isReverse()) {
897 LLVM_DEBUG(
898 dbgs() << "LV: Invalidate candidate interleaved group due to "
899 "a reverse access with gaps.\n");
900 releaseGroup(Group);
901 continue;
902 }
903 LLVM_DEBUG(
904 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
905 RequiresScalarEpilogue = true;
906 }
907 }
908}