blob: 48710f715e0e99a93bfc5139d236e3582c7bdd5c [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000016#include "llvm/Analysis/AssumptionCache.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
Sanjay Patelaee84212014-11-04 16:27:42 +000042/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
43/// 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
Benjamin Kramercfd8d902014-09-12 08:56:53 +000061namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000062// Simplifying using an assume can only be done in a particular control-flow
63// context (the context instruction provides that context). If an assume and
64// the context instruction are not in the same block then the DT helps in
65// figuring out if we can use it.
66struct Query {
67 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000068 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000069 const Instruction *CxtI;
70 const DominatorTree *DT;
71
Chandler Carruth66b31302015-01-04 12:03:27 +000072 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +000073 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +000074 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +000075
76 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +000077 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +000078 ExclInvs.insert(NewExcl);
79 }
80};
Benjamin Kramercfd8d902014-09-12 08:56:53 +000081} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +000082
Sanjay Patel547e9752014-11-04 16:09:50 +000083// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +000084// the preferred context instruction (if any).
85static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
86 // If we've been provided with a context instruction, then use that (provided
87 // it has been inserted).
88 if (CxtI && CxtI->getParent())
89 return CxtI;
90
91 // If the value is really an already-inserted instruction, then use that.
92 CxtI = dyn_cast<Instruction>(V);
93 if (CxtI && CxtI->getParent())
94 return CxtI;
95
96 return nullptr;
97}
98
99static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
100 const DataLayout *TD, unsigned Depth,
101 const Query &Q);
102
103void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
104 const DataLayout *TD, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000105 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000106 const DominatorTree *DT) {
107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000108 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000109}
110
111static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
112 const DataLayout *TD, unsigned Depth,
113 const Query &Q);
114
115void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
116 const DataLayout *TD, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000117 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000118 const DominatorTree *DT) {
119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000120 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000121}
122
123static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
124 const Query &Q);
125
126bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
129 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000130 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
133static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
134 const Query &Q);
135
136bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000137 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000138 const DominatorTree *DT) {
Chandler Carruth66b31302015-01-04 12:03:27 +0000139 return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000140}
141
142static bool MaskedValueIsZero(Value *V, const APInt &Mask,
143 const DataLayout *TD, unsigned Depth,
144 const Query &Q);
145
Chandler Carruth66b31302015-01-04 12:03:27 +0000146bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD,
147 unsigned Depth, AssumptionCache *AC,
148 const Instruction *CxtI, const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000149 return ::MaskedValueIsZero(V, Mask, TD, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000150 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000151}
152
153static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
154 unsigned Depth, const Query &Q);
155
156unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
Chandler Carruth66b31302015-01-04 12:03:27 +0000157 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000158 const Instruction *CxtI,
159 const DominatorTree *DT) {
Chandler Carruth66b31302015-01-04 12:03:27 +0000160 return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000161}
162
Jay Foada0653a32014-05-14 21:14:37 +0000163static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
164 APInt &KnownZero, APInt &KnownOne,
165 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000166 const DataLayout *TD, unsigned Depth,
167 const Query &Q) {
168 if (!Add) {
169 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
170 // We know that the top bits of C-X are clear if X contains less bits
171 // than C (i.e. no wrap-around can happen). For example, 20-X is
172 // positive if we can prove that X is >= 0 and < 16.
173 if (!CLHS->getValue().isNegative()) {
174 unsigned BitWidth = KnownZero.getBitWidth();
175 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
176 // NLZ can't be BitWidth with no sign bit
177 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
178 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
179
180 // If all of the MaskV bits are known to be zero, then we know the
181 // output top bits are zero, because we now know that the output is
182 // from [0-C].
183 if ((KnownZero2 & MaskV) == MaskV) {
184 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
185 // Top bits known zero.
186 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
187 }
188 }
189 }
190 }
191
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000192 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000193
David Majnemer97ddca32014-08-22 00:40:43 +0000194 // If an initial sequence of bits in the result is not needed, the
195 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000196 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000197 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
198 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000199
David Majnemer97ddca32014-08-22 00:40:43 +0000200 // Carry in a 1 for a subtract, rather than a 0.
201 APInt CarryIn(BitWidth, 0);
202 if (!Add) {
203 // Sum = LHS + ~RHS + 1
204 std::swap(KnownZero2, KnownOne2);
205 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000206 }
207
David Majnemer97ddca32014-08-22 00:40:43 +0000208 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
209 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
210
211 // Compute known bits of the carry.
212 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
213 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
214
215 // Compute set of known bits (where all three relevant bits are known).
216 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
217 APInt RHSKnown = KnownZero2 | KnownOne2;
218 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
219 APInt Known = LHSKnown & RHSKnown & CarryKnown;
220
221 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
222 "known bits of sum differ");
223
224 // Compute known bits of the result.
225 KnownZero = ~PossibleSumOne & Known;
226 KnownOne = PossibleSumOne & Known;
227
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000228 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000229 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000231 // Adding two non-negative numbers, or subtracting a negative number from
232 // a non-negative one, can't wrap into negative.
233 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
234 KnownZero |= APInt::getSignBit(BitWidth);
235 // Adding two negative numbers, or subtracting a non-negative number from
236 // a negative one, can't wrap into non-negative.
237 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
238 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000239 }
240 }
241}
242
Jay Foada0653a32014-05-14 21:14:37 +0000243static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
244 APInt &KnownZero, APInt &KnownOne,
245 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000246 const DataLayout *TD, unsigned Depth,
247 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000248 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000249 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
250 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000251
252 bool isKnownNegative = false;
253 bool isKnownNonNegative = false;
254 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000255 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000256 if (Op0 == Op1) {
257 // The product of a number with itself is non-negative.
258 isKnownNonNegative = true;
259 } else {
260 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
261 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
262 bool isKnownNegativeOp1 = KnownOne.isNegative();
263 bool isKnownNegativeOp0 = KnownOne2.isNegative();
264 // The product of two numbers with the same sign is non-negative.
265 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
266 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
267 // The product of a negative number and a non-negative number is either
268 // negative or zero.
269 if (!isKnownNonNegative)
270 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000271 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000272 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 }
275 }
276
277 // If low bits are zero in either operand, output low known-0 bits.
278 // Also compute a conserative estimate for high known-0 bits.
279 // More trickiness is possible, but this is sufficient for the
280 // interesting case of alignment computation.
281 KnownOne.clearAllBits();
282 unsigned TrailZ = KnownZero.countTrailingOnes() +
283 KnownZero2.countTrailingOnes();
284 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
285 KnownZero2.countLeadingOnes(),
286 BitWidth) - BitWidth;
287
288 TrailZ = std::min(TrailZ, BitWidth);
289 LeadZ = std::min(LeadZ, BitWidth);
290 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
291 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000292
293 // Only make use of no-wrap flags if we failed to compute the sign bit
294 // directly. This matters if the multiplication always overflows, in
295 // which case we prefer to follow the result of the direct computation,
296 // though as the program is invoking undefined behaviour we can choose
297 // whatever we like here.
298 if (isKnownNonNegative && !KnownOne.isNegative())
299 KnownZero.setBit(BitWidth - 1);
300 else if (isKnownNegative && !KnownZero.isNegative())
301 KnownOne.setBit(BitWidth - 1);
302}
303
Jingyue Wu37fcb592014-06-19 16:50:16 +0000304void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
305 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000306 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000307 unsigned NumRanges = Ranges.getNumOperands() / 2;
308 assert(NumRanges >= 1);
309
310 // Use the high end of the ranges to find leading zeros.
311 unsigned MinLeadingZeros = BitWidth;
312 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000313 ConstantInt *Lower =
314 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
315 ConstantInt *Upper =
316 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000317 ConstantRange Range(Lower->getValue(), Upper->getValue());
318 if (Range.isWrappedSet())
319 MinLeadingZeros = 0; // -1 has no zeros
320 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
321 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
322 }
323
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000324 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000325}
Jay Foad5a29c362014-05-15 12:12:55 +0000326
Hal Finkel60db0582014-09-07 18:57:58 +0000327static bool isEphemeralValueOf(Instruction *I, const Value *E) {
328 SmallVector<const Value *, 16> WorkSet(1, I);
329 SmallPtrSet<const Value *, 32> Visited;
330 SmallPtrSet<const Value *, 16> EphValues;
331
332 while (!WorkSet.empty()) {
333 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000334 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000335 continue;
336
337 // If all uses of this value are ephemeral, then so is this value.
338 bool FoundNEUse = false;
339 for (const User *I : V->users())
340 if (!EphValues.count(I)) {
341 FoundNEUse = true;
342 break;
343 }
344
345 if (!FoundNEUse) {
346 if (V == E)
347 return true;
348
349 EphValues.insert(V);
350 if (const User *U = dyn_cast<User>(V))
351 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
352 J != JE; ++J) {
353 if (isSafeToSpeculativelyExecute(*J))
354 WorkSet.push_back(*J);
355 }
356 }
357 }
358
359 return false;
360}
361
362// Is this an intrinsic that cannot be speculated but also cannot trap?
363static bool isAssumeLikeIntrinsic(const Instruction *I) {
364 if (const CallInst *CI = dyn_cast<CallInst>(I))
365 if (Function *F = CI->getCalledFunction())
366 switch (F->getIntrinsicID()) {
367 default: break;
368 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
369 case Intrinsic::assume:
370 case Intrinsic::dbg_declare:
371 case Intrinsic::dbg_value:
372 case Intrinsic::invariant_start:
373 case Intrinsic::invariant_end:
374 case Intrinsic::lifetime_start:
375 case Intrinsic::lifetime_end:
376 case Intrinsic::objectsize:
377 case Intrinsic::ptr_annotation:
378 case Intrinsic::var_annotation:
379 return true;
380 }
381
382 return false;
383}
384
385static bool isValidAssumeForContext(Value *V, const Query &Q,
386 const DataLayout *DL) {
387 Instruction *Inv = cast<Instruction>(V);
388
389 // There are two restrictions on the use of an assume:
390 // 1. The assume must dominate the context (or the control flow must
391 // reach the assume whenever it reaches the context).
392 // 2. The context must not be in the assume's set of ephemeral values
393 // (otherwise we will use the assume to prove that the condition
394 // feeding the assume is trivially true, thus causing the removal of
395 // the assume).
396
397 if (Q.DT) {
398 if (Q.DT->dominates(Inv, Q.CxtI)) {
399 return true;
400 } else if (Inv->getParent() == Q.CxtI->getParent()) {
401 // The context comes first, but they're both in the same block. Make sure
402 // there is nothing in between that might interrupt the control flow.
403 for (BasicBlock::const_iterator I =
404 std::next(BasicBlock::const_iterator(Q.CxtI)),
405 IE(Inv); I != IE; ++I)
406 if (!isSafeToSpeculativelyExecute(I, DL) &&
407 !isAssumeLikeIntrinsic(I))
408 return false;
409
410 return !isEphemeralValueOf(Inv, Q.CxtI);
411 }
412
413 return false;
414 }
415
416 // When we don't have a DT, we do a limited search...
417 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
418 return true;
419 } else if (Inv->getParent() == Q.CxtI->getParent()) {
420 // Search forward from the assume until we reach the context (or the end
421 // of the block); the common case is that the assume will come first.
422 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
423 IE = Inv->getParent()->end(); I != IE; ++I)
424 if (I == Q.CxtI)
425 return true;
426
427 // The context must come first...
428 for (BasicBlock::const_iterator I =
429 std::next(BasicBlock::const_iterator(Q.CxtI)),
430 IE(Inv); I != IE; ++I)
431 if (!isSafeToSpeculativelyExecute(I, DL) &&
432 !isAssumeLikeIntrinsic(I))
433 return false;
434
435 return !isEphemeralValueOf(Inv, Q.CxtI);
436 }
437
438 return false;
439}
440
441bool llvm::isValidAssumeForContext(const Instruction *I,
442 const Instruction *CxtI,
443 const DataLayout *DL,
444 const DominatorTree *DT) {
445 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
446 Query(nullptr, CxtI, DT), DL);
447}
448
449template<typename LHS, typename RHS>
450inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
451 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
452m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
453 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
454}
455
456template<typename LHS, typename RHS>
457inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
458 BinaryOp_match<RHS, LHS, Instruction::And>>
459m_c_And(const LHS &L, const RHS &R) {
460 return m_CombineOr(m_And(L, R), m_And(R, L));
461}
462
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000463template<typename LHS, typename RHS>
464inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
465 BinaryOp_match<RHS, LHS, Instruction::Or>>
466m_c_Or(const LHS &L, const RHS &R) {
467 return m_CombineOr(m_Or(L, R), m_Or(R, L));
468}
469
470template<typename LHS, typename RHS>
471inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
472 BinaryOp_match<RHS, LHS, Instruction::Xor>>
473m_c_Xor(const LHS &L, const RHS &R) {
474 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
475}
476
Hal Finkel60db0582014-09-07 18:57:58 +0000477static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
478 APInt &KnownOne,
479 const DataLayout *DL,
480 unsigned Depth, const Query &Q) {
481 // Use of assumptions is context-sensitive. If we don't have a context, we
482 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000483 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000484 return;
485
486 unsigned BitWidth = KnownZero.getBitWidth();
487
Chandler Carruth66b31302015-01-04 12:03:27 +0000488 for (auto &AssumeVH : Q.AC->assumptions()) {
489 if (!AssumeVH)
490 continue;
491 CallInst *I = cast<CallInst>(AssumeVH);
Michael Kuperstein58c3f6c2015-01-04 13:35:44 +0000492 assert((I->getParent()->getParent() ==
493 const_cast<Function*>(Q.CxtI->getParent()->getParent())) &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000494 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000495 if (Q.ExclInvs.count(I))
496 continue;
497
Philip Reames00d3b272014-11-24 23:44:28 +0000498 // Warning: This loop can end up being somewhat performance sensetive.
499 // We're running this loop for once for each value queried resulting in a
500 // runtime of ~O(#assumes * #values).
501
502 assert(isa<IntrinsicInst>(I) &&
503 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
504 "must be an assume intrinsic");
505
506 Value *Arg = I->getArgOperand(0);
507
508 if (Arg == V &&
Hal Finkel60db0582014-09-07 18:57:58 +0000509 isValidAssumeForContext(I, Q, DL)) {
510 assert(BitWidth == 1 && "assume operand is not i1?");
511 KnownZero.clearAllBits();
512 KnownOne.setAllBits();
513 return;
514 }
515
David Majnemer9b609752014-12-12 23:59:29 +0000516 // The remaining tests are all recursive, so bail out if we hit the limit.
517 if (Depth == MaxDepth)
518 continue;
519
Hal Finkel60db0582014-09-07 18:57:58 +0000520 Value *A, *B;
521 auto m_V = m_CombineOr(m_Specific(V),
522 m_CombineOr(m_PtrToInt(m_Specific(V)),
523 m_BitCast(m_Specific(V))));
524
525 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000526 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000527 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000528 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000529 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
530 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
531 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
532 KnownZero |= RHSKnownZero;
533 KnownOne |= RHSKnownOne;
534 // assume(v & b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000535 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
536 m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000537 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
538 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
539 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
540 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
541 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
542
543 // For those bits in the mask that are known to be one, we can propagate
544 // known bits from the RHS to V.
545 KnownZero |= RHSKnownZero & MaskKnownOne;
546 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000547 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000548 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
549 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000550 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
551 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
552 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
553 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
554 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
555
556 // For those bits in the mask that are known to be one, we can propagate
557 // inverted known bits from the RHS to V.
558 KnownZero |= RHSKnownOne & MaskKnownOne;
559 KnownOne |= RHSKnownZero & MaskKnownOne;
560 // assume(v | b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000561 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
562 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000563 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
564 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
565 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
566 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
567 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
568
569 // For those bits in B that are known to be zero, we can propagate known
570 // bits from the RHS to V.
571 KnownZero |= RHSKnownZero & BKnownZero;
572 KnownOne |= RHSKnownOne & BKnownZero;
573 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
575 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000576 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
579 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
580 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
581
582 // For those bits in B that are known to be zero, we can propagate
583 // inverted known bits from the RHS to V.
584 KnownZero |= RHSKnownOne & BKnownZero;
585 KnownOne |= RHSKnownZero & BKnownZero;
586 // assume(v ^ b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
588 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000589 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
590 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
591 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
592 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
593 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
594
595 // For those bits in B that are known to be zero, we can propagate known
596 // bits from the RHS to V. For those bits in B that are known to be one,
597 // we can propagate inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownZero & BKnownZero;
599 KnownOne |= RHSKnownOne & BKnownZero;
600 KnownZero |= RHSKnownOne & BKnownOne;
601 KnownOne |= RHSKnownZero & BKnownOne;
602 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000603 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
604 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
606 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
607 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
608 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
609 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
610
611 // For those bits in B that are known to be zero, we can propagate
612 // inverted known bits from the RHS to V. For those bits in B that are
613 // known to be one, we can propagate known bits from the RHS to V.
614 KnownZero |= RHSKnownOne & BKnownZero;
615 KnownOne |= RHSKnownZero & BKnownZero;
616 KnownZero |= RHSKnownZero & BKnownOne;
617 KnownOne |= RHSKnownOne & BKnownOne;
618 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000619 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
620 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
622 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
623 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
624 // For those bits in RHS that are known, we can propagate them to known
625 // bits in V shifted to the right by C.
626 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
627 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
628 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000629 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
630 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000631 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
632 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
633 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
634 // For those bits in RHS that are known, we can propagate them inverted
635 // to known bits in V shifted to the right by C.
636 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
637 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
638 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000639 } else if (match(Arg,
640 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000641 m_AShr(m_V,
642 m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000643 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000644 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
645 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
646 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
647 // For those bits in RHS that are known, we can propagate them to known
648 // bits in V shifted to the right by C.
649 KnownZero |= RHSKnownZero << C->getZExtValue();
650 KnownOne |= RHSKnownOne << C->getZExtValue();
651 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000652 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653 m_LShr(m_V, m_ConstantInt(C)),
654 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000655 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000656 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
657 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
658 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
659 // For those bits in RHS that are known, we can propagate them inverted
660 // to known bits in V shifted to the right by C.
661 KnownZero |= RHSKnownOne << C->getZExtValue();
662 KnownOne |= RHSKnownZero << C->getZExtValue();
663 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000664 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000665 Pred == ICmpInst::ICMP_SGE &&
666 isValidAssumeForContext(I, Q, DL)) {
667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
669
670 if (RHSKnownZero.isNegative()) {
671 // We know that the sign bit is zero.
672 KnownZero |= APInt::getSignBit(BitWidth);
673 }
674 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000675 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000676 Pred == ICmpInst::ICMP_SGT &&
677 isValidAssumeForContext(I, Q, DL)) {
678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
680
681 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
682 // We know that the sign bit is zero.
683 KnownZero |= APInt::getSignBit(BitWidth);
684 }
685 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000686 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 Pred == ICmpInst::ICMP_SLE &&
688 isValidAssumeForContext(I, Q, DL)) {
689 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
690 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
691
692 if (RHSKnownOne.isNegative()) {
693 // We know that the sign bit is one.
694 KnownOne |= APInt::getSignBit(BitWidth);
695 }
696 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000697 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698 Pred == ICmpInst::ICMP_SLT &&
699 isValidAssumeForContext(I, Q, DL)) {
700 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
701 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
702
703 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
704 // We know that the sign bit is one.
705 KnownOne |= APInt::getSignBit(BitWidth);
706 }
707 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000708 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709 Pred == ICmpInst::ICMP_ULE &&
710 isValidAssumeForContext(I, Q, DL)) {
711 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
712 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
713
714 // Whatever high bits in c are zero are known to be zero.
715 KnownZero |=
716 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
717 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000718 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719 Pred == ICmpInst::ICMP_ULT &&
720 isValidAssumeForContext(I, Q, DL)) {
721 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
722 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
723
724 // Whatever high bits in c are zero are known to be zero (if c is a power
725 // of 2, then one more).
726 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
727 KnownZero |=
728 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
729 else
730 KnownZero |=
731 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000732 }
733 }
734}
735
Jay Foada0653a32014-05-14 21:14:37 +0000736/// Determine which bits of V are known to be either zero or one and return
737/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000738///
Chris Lattner965c7692008-06-02 01:18:21 +0000739/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
740/// we cannot optimize based on the assumption that it is zero without changing
741/// it to be an explicit zero. If we don't change it to zero, other code could
742/// optimized based on the contradictory assumption that it is non-zero.
743/// Because instcombine aggressively folds operations with undef args anyway,
744/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000745///
746/// This function is defined on values with integer type, values with pointer
747/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000748/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000749/// same width as the vector element, and the bit is set only if it is true
750/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000751void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
752 const DataLayout *TD, unsigned Depth,
753 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000754 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000755 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000756 unsigned BitWidth = KnownZero.getBitWidth();
757
Nadav Rotem3924cb02011-12-05 06:29:09 +0000758 assert((V->getType()->isIntOrIntVectorTy() ||
759 V->getType()->getScalarType()->isPointerTy()) &&
760 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000761 assert((!TD ||
762 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000763 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000764 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000765 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000766 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000767 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000768
769 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
770 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000771 KnownOne = CI->getValue();
772 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000773 return;
774 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000775 // Null and aggregate-zero are all-zeros.
776 if (isa<ConstantPointerNull>(V) ||
777 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000778 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000779 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000780 return;
781 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000782 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000783 // each element. There is no real need to handle ConstantVector here, because
784 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000785 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
786 // We know that CDS must be a vector of integers. Take the intersection of
787 // each element.
788 KnownZero.setAllBits(); KnownOne.setAllBits();
789 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000790 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000791 Elt = CDS->getElementAsInteger(i);
792 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000793 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000794 }
795 return;
796 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000797
Chris Lattner965c7692008-06-02 01:18:21 +0000798 // The address of an aligned GlobalValue has trailing zeros.
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000799 if (auto *GO = dyn_cast<GlobalObject>(V)) {
800 unsigned Align = GO->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000801 if (Align == 0 && TD) {
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000802 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000803 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000804 if (ObjectType->isSized()) {
805 // If the object is defined in the current Module, we'll be giving
806 // it the preferred alignment. Otherwise, we have to assume that it
807 // may only have the minimum ABI alignment.
808 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
809 Align = TD->getPreferredAlignment(GVar);
810 else
811 Align = TD->getABITypeAlignment(ObjectType);
812 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000813 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000814 }
Chris Lattner965c7692008-06-02 01:18:21 +0000815 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000816 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000817 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000818 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000819 KnownZero.clearAllBits();
820 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000821 return;
822 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000823
Chris Lattner83791ce2011-05-23 00:03:39 +0000824 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000825 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000826
Hal Finkelccc70902014-07-22 16:58:55 +0000827 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000828 // An sret parameter has at least the ABI alignment of the return type.
829 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
830 if (EltTy->isSized())
831 Align = TD->getABITypeAlignment(EltTy);
832 }
833
834 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000835 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
David Majnemer8df46c92015-01-03 02:33:25 +0000836 else
837 KnownZero.clearAllBits();
838 KnownOne.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000839
840 // Don't give up yet... there might be an assumption that provides more
841 // information...
842 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000843 return;
844 }
Chris Lattner965c7692008-06-02 01:18:21 +0000845
Chris Lattner83791ce2011-05-23 00:03:39 +0000846 // Start out not knowing anything.
847 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000848
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000849 // Limit search depth.
850 // All recursive calls that increase depth must come after this.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000851 if (Depth == MaxDepth)
Michael Kupersteinbe8032c2014-12-23 11:33:41 +0000852 return;
853
854 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
855 // the bits of its aliasee.
856 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
857 if (!GA->mayBeOverridden())
858 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
859 return;
860 }
Chris Lattner965c7692008-06-02 01:18:21 +0000861
Hal Finkel60db0582014-09-07 18:57:58 +0000862 // Check whether a nearby assume intrinsic can determine some known bits.
863 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
864
Dan Gohman80ca01c2009-07-17 20:47:02 +0000865 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000866 if (!I) return;
867
868 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000869 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000870 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000871 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000872 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000873 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000874 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000875 case Instruction::And: {
876 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000877 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
878 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000879
Chris Lattner965c7692008-06-02 01:18:21 +0000880 // Output known-1 bits are only known if set in both the LHS & RHS.
881 KnownOne &= KnownOne2;
882 // Output known-0 are known to be clear if zero in either the LHS | RHS.
883 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000884 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000885 }
886 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000887 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
888 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000889
Chris Lattner965c7692008-06-02 01:18:21 +0000890 // Output known-0 bits are only known if clear in both the LHS & RHS.
891 KnownZero &= KnownZero2;
892 // Output known-1 are known to be set if set in either the LHS | RHS.
893 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000894 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000895 }
896 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000897 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
898 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000899
Chris Lattner965c7692008-06-02 01:18:21 +0000900 // Output known-0 bits are known if clear or set in both the LHS & RHS.
901 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
902 // Output known-1 are known to be set if set in only one of the LHS, RHS.
903 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
904 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000905 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000906 }
907 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000908 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000909 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000910 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
911 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000912 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000913 }
914 case Instruction::UDiv: {
915 // For the purposes of computing leading zeros we can conservatively
916 // treat a udiv as a logical right shift by the power of 2 known to
917 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000918 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000919 unsigned LeadZ = KnownZero2.countLeadingOnes();
920
Jay Foad25a5e4c2010-12-01 08:53:58 +0000921 KnownOne2.clearAllBits();
922 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000923 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000924 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
925 if (RHSUnknownLeadingOnes != BitWidth)
926 LeadZ = std::min(BitWidth,
927 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
928
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000929 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000930 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000931 }
932 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000933 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
934 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000935
936 // Only known if known in both the LHS and RHS.
937 KnownOne &= KnownOne2;
938 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000939 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000940 case Instruction::FPTrunc:
941 case Instruction::FPExt:
942 case Instruction::FPToUI:
943 case Instruction::FPToSI:
944 case Instruction::SIToFP:
945 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000946 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000947 case Instruction::PtrToInt:
948 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000949 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000950 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000951 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 // FALL THROUGH and handle them the same as zext/trunc.
953 case Instruction::ZExt:
954 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000955 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000956
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000957 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000958 // Note that we handle pointer operands here because of inttoptr/ptrtoint
959 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000960 if(TD) {
961 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
962 } else {
963 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000964 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000965 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000966
967 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000968 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
969 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000970 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000971 KnownZero = KnownZero.zextOrTrunc(BitWidth);
972 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000973 // Any top bits are known to be zero.
974 if (BitWidth > SrcBitWidth)
975 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000976 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000977 }
978 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000979 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000980 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000981 // TODO: For now, not handling conversions like:
982 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000983 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000984 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000985 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000986 }
987 break;
988 }
989 case Instruction::SExt: {
990 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000991 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000992
Jay Foad583abbc2010-12-07 08:25:19 +0000993 KnownZero = KnownZero.trunc(SrcBitWidth);
994 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000995 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000996 KnownZero = KnownZero.zext(BitWidth);
997 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000998
999 // If the sign bit of the input is known set or clear, then we know the
1000 // top bits of the result.
1001 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1002 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1003 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1004 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001005 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001006 }
1007 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001008 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001009 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1010 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +00001011 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001012 KnownZero <<= ShiftAmt;
1013 KnownOne <<= ShiftAmt;
1014 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001015 }
1016 break;
1017 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001018 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001019 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1020 // Compute the new bits that are at the top now.
1021 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001022
Chris Lattner965c7692008-06-02 01:18:21 +00001023 // Unsigned shift right.
Sanjay Patel8f093f42014-11-05 18:00:07 +00001024 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001025 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1026 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1027 // high bits known zero.
1028 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001029 }
1030 break;
1031 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001032 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001033 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1034 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001035 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001036
Chris Lattner965c7692008-06-02 01:18:21 +00001037 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001038 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001039 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1040 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001041
Chris Lattner965c7692008-06-02 01:18:21 +00001042 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1043 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1044 KnownZero |= HighBits;
1045 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1046 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001047 }
1048 break;
1049 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001050 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001051 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001052 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001053 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001054 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001055 }
Chris Lattner965c7692008-06-02 01:18:21 +00001056 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001057 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001058 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001059 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001060 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001061 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001062 }
1063 case Instruction::SRem:
1064 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001065 APInt RA = Rem->getValue().abs();
1066 if (RA.isPowerOf2()) {
1067 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +00001068 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
1069 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001070
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001071 // The low bits of the first operand are unchanged by the srem.
1072 KnownZero = KnownZero2 & LowBits;
1073 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001074
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001075 // If the first operand is non-negative or has all low bits zero, then
1076 // the upper bits are all zero.
1077 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1078 KnownZero |= ~LowBits;
1079
1080 // If the first operand is negative and not all low bits are zero, then
1081 // the upper bits are all one.
1082 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1083 KnownOne |= ~LowBits;
1084
Craig Topper1bef2c82012-12-22 19:15:35 +00001085 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001086 }
1087 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001088
1089 // The sign bit is the LHS's sign bit, except when the result of the
1090 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001091 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001092 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001093 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001094 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001095 // If it's known zero, our sign bit is also zero.
1096 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001097 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001098 }
1099
Chris Lattner965c7692008-06-02 01:18:21 +00001100 break;
1101 case Instruction::URem: {
1102 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1103 APInt RA = Rem->getValue();
1104 if (RA.isPowerOf2()) {
1105 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +00001106 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001107 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001108 KnownZero |= ~LowBits;
1109 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001110 break;
1111 }
1112 }
1113
1114 // Since the result is less than or equal to either operand, any leading
1115 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001116 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
1117 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001118
Chris Lattner4612ae12009-01-20 18:22:57 +00001119 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001120 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001121 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001122 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001123 break;
1124 }
1125
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001126 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +00001127 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +00001128 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001129 if (Align == 0 && TD)
1130 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001131
Chris Lattner965c7692008-06-02 01:18:21 +00001132 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001133 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001134 break;
1135 }
1136 case Instruction::GetElementPtr: {
1137 // Analyze all of the subscripts of this getelementptr instruction
1138 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001139 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001140 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001141 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001142 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1143
1144 gep_type_iterator GTI = gep_type_begin(I);
1145 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1146 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001147 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001148 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +00001149 if (!TD) {
1150 TrailZ = 0;
1151 break;
1152 }
Matt Arsenault74742a12013-08-19 21:43:16 +00001153
1154 // Handle case when index is vector zeroinitializer
1155 Constant *CIndex = cast<Constant>(Index);
1156 if (CIndex->isZeroValue())
1157 continue;
1158
1159 if (CIndex->getType()->isVectorTy())
1160 Index = CIndex->getSplatValue();
1161
Chris Lattner965c7692008-06-02 01:18:21 +00001162 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +00001163 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001164 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001165 TrailZ = std::min<unsigned>(TrailZ,
1166 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001167 } else {
1168 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001169 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001170 if (!IndexedTy->isSized()) {
1171 TrailZ = 0;
1172 break;
1173 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001174 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +00001175 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +00001176 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001177 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001178 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001179 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001180 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001181 }
1182 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001183
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001184 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001185 break;
1186 }
1187 case Instruction::PHI: {
1188 PHINode *P = cast<PHINode>(I);
1189 // Handle the case of a simple two-predecessor recurrence PHI.
1190 // There's a lot more that could theoretically be done here, but
1191 // this is sufficient to catch some interesting cases.
1192 if (P->getNumIncomingValues() == 2) {
1193 for (unsigned i = 0; i != 2; ++i) {
1194 Value *L = P->getIncomingValue(i);
1195 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001196 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001197 if (!LU)
1198 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001199 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001200 // Check for operations that have the property that if
1201 // both their operands have low zero bits, the result
1202 // will have low zero bits.
1203 if (Opcode == Instruction::Add ||
1204 Opcode == Instruction::Sub ||
1205 Opcode == Instruction::And ||
1206 Opcode == Instruction::Or ||
1207 Opcode == Instruction::Mul) {
1208 Value *LL = LU->getOperand(0);
1209 Value *LR = LU->getOperand(1);
1210 // Find a recurrence.
1211 if (LL == I)
1212 L = LR;
1213 else if (LR == I)
1214 L = LL;
1215 else
1216 break;
1217 // Ok, we have a PHI of the form L op= R. Check for low
1218 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001219 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001220
1221 // We need to take the minimum number of known bits
1222 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001223 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001224
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001225 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001226 std::min(KnownZero2.countTrailingOnes(),
1227 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001228 break;
1229 }
1230 }
1231 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001232
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001233 // Unreachable blocks may have zero-operand PHI nodes.
1234 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001235 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001236
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001237 // Otherwise take the unions of the known bit sets of the operands,
1238 // taking conservative care to avoid excessive recursion.
1239 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001240 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001241 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001242 break;
1243
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001244 KnownZero = APInt::getAllOnesValue(BitWidth);
1245 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001246 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1247 // Skip direct self references.
1248 if (P->getIncomingValue(i) == P) continue;
1249
1250 KnownZero2 = APInt(BitWidth, 0);
1251 KnownOne2 = APInt(BitWidth, 0);
1252 // Recurse, but cap the recursion to one level, because we don't
1253 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001254 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001255 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001256 KnownZero &= KnownZero2;
1257 KnownOne &= KnownOne2;
1258 // If all bits have been ruled out, there's no need to check
1259 // more operands.
1260 if (!KnownZero && !KnownOne)
1261 break;
1262 }
1263 }
Chris Lattner965c7692008-06-02 01:18:21 +00001264 break;
1265 }
1266 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001267 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001268 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001269 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1270 // If a range metadata is attached to this IntrinsicInst, intersect the
1271 // explicit range specified by the metadata and the implicit range of
1272 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001273 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1274 switch (II->getIntrinsicID()) {
1275 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001276 case Intrinsic::ctlz:
1277 case Intrinsic::cttz: {
1278 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001279 // If this call is undefined for 0, the result will be less than 2^n.
1280 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1281 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001282 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001283 break;
1284 }
1285 case Intrinsic::ctpop: {
1286 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001287 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001288 break;
1289 }
Chad Rosierb3628842011-05-26 23:13:19 +00001290 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001291 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001292 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001293 }
1294 }
1295 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001296 case Instruction::ExtractValue:
1297 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1298 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1299 if (EVI->getNumIndices() != 1) break;
1300 if (EVI->getIndices()[0] == 0) {
1301 switch (II->getIntrinsicID()) {
1302 default: break;
1303 case Intrinsic::uadd_with_overflow:
1304 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001305 computeKnownBitsAddSub(true, II->getArgOperand(0),
1306 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001307 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001308 break;
1309 case Intrinsic::usub_with_overflow:
1310 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001311 computeKnownBitsAddSub(false, II->getArgOperand(0),
1312 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001313 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001314 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001315 case Intrinsic::umul_with_overflow:
1316 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001317 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1318 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001319 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001320 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001321 }
1322 }
1323 }
Chris Lattner965c7692008-06-02 01:18:21 +00001324 }
Jay Foad5a29c362014-05-15 12:12:55 +00001325
1326 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001327}
1328
Sanjay Patelaee84212014-11-04 16:27:42 +00001329/// Determine whether the sign bit is known to be zero or one.
1330/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001331void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1332 const DataLayout *TD, unsigned Depth,
1333 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001334 unsigned BitWidth = getBitWidth(V->getType(), TD);
1335 if (!BitWidth) {
1336 KnownZero = false;
1337 KnownOne = false;
1338 return;
1339 }
1340 APInt ZeroBits(BitWidth, 0);
1341 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001342 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001343 KnownOne = OneBits[BitWidth - 1];
1344 KnownZero = ZeroBits[BitWidth - 1];
1345}
1346
Sanjay Patelaee84212014-11-04 16:27:42 +00001347/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001348/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001349/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001350/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001351bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1352 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001353 if (Constant *C = dyn_cast<Constant>(V)) {
1354 if (C->isNullValue())
1355 return OrZero;
1356 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1357 return CI->getValue().isPowerOf2();
1358 // TODO: Handle vector constants.
1359 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001360
1361 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1362 // it is shifted off the end then the result is undefined.
1363 if (match(V, m_Shl(m_One(), m_Value())))
1364 return true;
1365
1366 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1367 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001368 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001369 return true;
1370
1371 // The remaining tests are all recursive, so bail out if we hit the limit.
1372 if (Depth++ == MaxDepth)
1373 return false;
1374
Craig Topper9f008862014-04-15 04:59:12 +00001375 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001376 // A shift of a power of two is a power of two or zero.
1377 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1378 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001379 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001380
Duncan Sandsd3951082011-01-25 09:38:29 +00001381 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001382 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001383
1384 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001385 return
1386 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1387 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001388
Duncan Sandsba286d72011-10-26 20:55:21 +00001389 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1390 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001391 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1392 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001393 return true;
1394 // X & (-X) is always a power of two or zero.
1395 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1396 return true;
1397 return false;
1398 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001399
David Majnemerb7d54092013-07-30 21:01:36 +00001400 // Adding a power-of-two or zero to the same power-of-two or zero yields
1401 // either the original power-of-two, a larger power-of-two or zero.
1402 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1403 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1404 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1405 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1406 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001407 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001408 return true;
1409 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1410 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001411 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001412 return true;
1413
1414 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1415 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001416 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001417
1418 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001419 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001420 // If i8 V is a power of two or zero:
1421 // ZeroBits: 1 1 1 0 1 1 1 1
1422 // ~ZeroBits: 0 0 0 1 0 0 0 0
1423 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1424 // If OrZero isn't set, we cannot give back a zero result.
1425 // Make sure either the LHS or RHS has a bit set.
1426 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1427 return true;
1428 }
1429 }
David Majnemerbeab5672013-05-18 19:30:37 +00001430
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001431 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001432 // is a power of two only if the first operand is a power of two and not
1433 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001434 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1435 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001436 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1437 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001438 }
1439
Duncan Sandsd3951082011-01-25 09:38:29 +00001440 return false;
1441}
1442
Chandler Carruth80d3e562012-12-07 02:08:58 +00001443/// \brief Test whether a GEP's result is known to be non-null.
1444///
1445/// Uses properties inherent in a GEP to try to determine whether it is known
1446/// to be non-null.
1447///
1448/// Currently this routine does not support vector GEPs.
1449static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001450 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001451 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1452 return false;
1453
1454 // FIXME: Support vector-GEPs.
1455 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1456
1457 // If the base pointer is non-null, we cannot walk to a null address with an
1458 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001459 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001460 return true;
1461
1462 // Past this, if we don't have DataLayout, we can't do much.
1463 if (!DL)
1464 return false;
1465
1466 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1467 // If so, then the GEP cannot produce a null pointer, as doing so would
1468 // inherently violate the inbounds contract within address space zero.
1469 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1470 GTI != GTE; ++GTI) {
1471 // Struct types are easy -- they must always be indexed by a constant.
1472 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1473 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1474 unsigned ElementIdx = OpC->getZExtValue();
1475 const StructLayout *SL = DL->getStructLayout(STy);
1476 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1477 if (ElementOffset > 0)
1478 return true;
1479 continue;
1480 }
1481
1482 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1483 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1484 continue;
1485
1486 // Fast path the constant operand case both for efficiency and so we don't
1487 // increment Depth when just zipping down an all-constant GEP.
1488 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1489 if (!OpC->isZero())
1490 return true;
1491 continue;
1492 }
1493
1494 // We post-increment Depth here because while isKnownNonZero increments it
1495 // as well, when we pop back up that increment won't persist. We don't want
1496 // to recurse 10k times just because we have 10k GEP operands. We don't
1497 // bail completely out because we want to handle constant GEPs regardless
1498 // of depth.
1499 if (Depth++ >= MaxDepth)
1500 continue;
1501
Hal Finkel60db0582014-09-07 18:57:58 +00001502 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001503 return true;
1504 }
1505
1506 return false;
1507}
1508
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001509/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1510/// ensure that the value it's attached to is never Value? 'RangeType' is
1511/// is the type of the value described by the range.
1512static bool rangeMetadataExcludesValue(MDNode* Ranges,
1513 const APInt& Value) {
1514 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1515 assert(NumRanges >= 1);
1516 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001517 ConstantInt *Lower =
1518 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1519 ConstantInt *Upper =
1520 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001521 ConstantRange Range(Lower->getValue(), Upper->getValue());
1522 if (Range.contains(Value))
1523 return false;
1524 }
1525 return true;
1526}
1527
Sanjay Patelaee84212014-11-04 16:27:42 +00001528/// Return true if the given value is known to be non-zero when defined.
1529/// For vectors return true if every element is known to be non-zero when
1530/// defined. Supports values with integer or pointer type and vectors of
1531/// integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001532bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1533 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001534 if (Constant *C = dyn_cast<Constant>(V)) {
1535 if (C->isNullValue())
1536 return false;
1537 if (isa<ConstantInt>(C))
1538 // Must be non-zero due to null test above.
1539 return true;
1540 // TODO: Handle vectors
1541 return false;
1542 }
1543
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001544 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001545 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001546 // If the possible ranges don't contain zero, then the value is
1547 // definitely non-zero.
1548 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1549 const APInt ZeroValue(Ty->getBitWidth(), 0);
1550 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1551 return true;
1552 }
1553 }
1554 }
1555
Duncan Sandsd3951082011-01-25 09:38:29 +00001556 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001557 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001558 return false;
1559
Chandler Carruth80d3e562012-12-07 02:08:58 +00001560 // Check for pointer simplifications.
1561 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001562 if (isKnownNonNull(V))
1563 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001564 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001565 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001566 return true;
1567 }
1568
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001569 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001570
1571 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001572 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001573 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001574 return isKnownNonZero(X, TD, Depth, Q) ||
1575 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001576
1577 // ext X != 0 if X != 0.
1578 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001579 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001580
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001581 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001582 // if the lowest bit is shifted off the end.
1583 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001584 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001585 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001586 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001587 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001588
Duncan Sandsd3951082011-01-25 09:38:29 +00001589 APInt KnownZero(BitWidth, 0);
1590 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001591 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001592 if (KnownOne[0])
1593 return true;
1594 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001595 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001596 // defined if the sign bit is shifted off the end.
1597 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001598 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001599 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001600 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001601 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001602
Duncan Sandsd3951082011-01-25 09:38:29 +00001603 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001604 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001605 if (XKnownNegative)
1606 return true;
1607 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001608 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001609 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001610 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001611 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001612 // X + Y.
1613 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1614 bool XKnownNonNegative, XKnownNegative;
1615 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001616 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1617 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001618
1619 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001620 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001621 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001622 if (isKnownNonZero(X, TD, Depth, Q) ||
1623 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001624 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001625
1626 // If X and Y are both negative (as signed values) then their sum is not
1627 // zero unless both X and Y equal INT_MIN.
1628 if (BitWidth && XKnownNegative && YKnownNegative) {
1629 APInt KnownZero(BitWidth, 0);
1630 APInt KnownOne(BitWidth, 0);
1631 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1632 // The sign bit of X is set. If some other bit is set then X is not equal
1633 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001634 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001635 if ((KnownOne & Mask) != 0)
1636 return true;
1637 // The sign bit of Y is set. If some other bit is set then Y is not equal
1638 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001639 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001640 if ((KnownOne & Mask) != 0)
1641 return true;
1642 }
1643
1644 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001645 if (XKnownNonNegative &&
1646 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001647 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001648 if (YKnownNonNegative &&
1649 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001650 return true;
1651 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001652 // X * Y.
1653 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1654 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1655 // If X and Y are non-zero then so is X * Y as long as the multiplication
1656 // does not overflow.
1657 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001658 isKnownNonZero(X, TD, Depth, Q) &&
1659 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001660 return true;
1661 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001662 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1663 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001664 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1665 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001666 return true;
1667 }
1668
1669 if (!BitWidth) return false;
1670 APInt KnownZero(BitWidth, 0);
1671 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001672 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001673 return KnownOne != 0;
1674}
1675
Sanjay Patelaee84212014-11-04 16:27:42 +00001676/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1677/// simplify operations downstream. Mask is known to be zero for bits that V
1678/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001679///
1680/// This function is defined on values with integer type, values with pointer
1681/// type (but only if TD is non-null), and vectors of integers. In the case
1682/// where V is a vector, the mask, known zero, and known one values are the
1683/// same width as the vector element, and the bit is set only if it is true
1684/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001685bool MaskedValueIsZero(Value *V, const APInt &Mask,
1686 const DataLayout *TD, unsigned Depth,
1687 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001688 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001689 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001690 return (KnownZero & Mask) == Mask;
1691}
1692
1693
1694
Sanjay Patelaee84212014-11-04 16:27:42 +00001695/// Return the number of times the sign bit of the register is replicated into
1696/// the other bits. We know that at least 1 bit is always equal to the sign bit
1697/// (itself), but other cases can give us information. For example, immediately
1698/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1699/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001700///
1701/// 'Op' must have a scalar integer type.
1702///
Hal Finkel60db0582014-09-07 18:57:58 +00001703unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1704 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001705 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001706 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001707 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001708 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001709 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1710 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001711 unsigned Tmp, Tmp2;
1712 unsigned FirstAnswer = 1;
1713
Jay Foada0653a32014-05-14 21:14:37 +00001714 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001715 // below.
1716
Chris Lattner965c7692008-06-02 01:18:21 +00001717 if (Depth == 6)
1718 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001719
Dan Gohman80ca01c2009-07-17 20:47:02 +00001720 Operator *U = dyn_cast<Operator>(V);
1721 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001722 default: break;
1723 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001724 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001725 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001726
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001727 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001728 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001729 // ashr X, C -> adds C sign bits. Vectors too.
1730 const APInt *ShAmt;
1731 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1732 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001733 if (Tmp > TyBits) Tmp = TyBits;
1734 }
1735 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001736 }
1737 case Instruction::Shl: {
1738 const APInt *ShAmt;
1739 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001740 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001741 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001742 Tmp2 = ShAmt->getZExtValue();
1743 if (Tmp2 >= TyBits || // Bad shift.
1744 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1745 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001746 }
1747 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001748 }
Chris Lattner965c7692008-06-02 01:18:21 +00001749 case Instruction::And:
1750 case Instruction::Or:
1751 case Instruction::Xor: // NOT is handled here.
1752 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001753 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001754 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001755 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001756 FirstAnswer = std::min(Tmp, Tmp2);
1757 // We computed what we know about the sign bits as our first
1758 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001759 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001760 }
1761 break;
1762
1763 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001764 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001765 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001766 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001767 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001768
Chris Lattner965c7692008-06-02 01:18:21 +00001769 case Instruction::Add:
1770 // Add can have at most one carry bit. Thus we know that the output
1771 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001772 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001773 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001774
Chris Lattner965c7692008-06-02 01:18:21 +00001775 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00001776 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001777 if (CRHS->isAllOnesValue()) {
1778 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001779 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001780
Chris Lattner965c7692008-06-02 01:18:21 +00001781 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1782 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001783 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001784 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001785
Chris Lattner965c7692008-06-02 01:18:21 +00001786 // If we are subtracting one from a positive number, there is no carry
1787 // out of the result.
1788 if (KnownZero.isNegative())
1789 return Tmp;
1790 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001791
Hal Finkel60db0582014-09-07 18:57:58 +00001792 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001793 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001794 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001795
Chris Lattner965c7692008-06-02 01:18:21 +00001796 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001797 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001798 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001799
Chris Lattner965c7692008-06-02 01:18:21 +00001800 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00001801 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00001802 if (CLHS->isNullValue()) {
1803 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001804 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001805 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1806 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001807 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001808 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001809
Chris Lattner965c7692008-06-02 01:18:21 +00001810 // If the input is known to be positive (the sign bit is known clear),
1811 // the output of the NEG has the same number of sign bits as the input.
1812 if (KnownZero.isNegative())
1813 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001814
Chris Lattner965c7692008-06-02 01:18:21 +00001815 // Otherwise, we treat this like a SUB.
1816 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001817
Chris Lattner965c7692008-06-02 01:18:21 +00001818 // Sub can have at most one carry bit. Thus we know that the output
1819 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001820 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001821 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001822 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001823
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001824 case Instruction::PHI: {
1825 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00001826 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001827 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00001828 if (NumIncomingValues > 4) break;
1829 // Unreachable blocks may have zero-operand PHI nodes.
1830 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001831
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001832 // Take the minimum of all incoming values. This can't infinitely loop
1833 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001834 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00001835 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001836 if (Tmp == 1) return Tmp;
1837 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001838 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1839 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001840 }
1841 return Tmp;
1842 }
1843
Chris Lattner965c7692008-06-02 01:18:21 +00001844 case Instruction::Trunc:
1845 // FIXME: it's tricky to do anything useful for this, but it is an important
1846 // case for targets like X86.
1847 break;
1848 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001849
Chris Lattner965c7692008-06-02 01:18:21 +00001850 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1851 // use this information.
1852 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001853 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001854 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001855
Chris Lattner965c7692008-06-02 01:18:21 +00001856 if (KnownZero.isNegative()) { // sign bit is 0
1857 Mask = KnownZero;
1858 } else if (KnownOne.isNegative()) { // sign bit is 1;
1859 Mask = KnownOne;
1860 } else {
1861 // Nothing known.
1862 return FirstAnswer;
1863 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001864
Chris Lattner965c7692008-06-02 01:18:21 +00001865 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1866 // the number of identical bits in the top of the input value.
1867 Mask = ~Mask;
1868 Mask <<= Mask.getBitWidth()-TyBits;
1869 // Return # leading zeros. We use 'min' here in case Val was zero before
1870 // shifting. We don't want to return '64' as for an i32 "0".
1871 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1872}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001873
Sanjay Patelaee84212014-11-04 16:27:42 +00001874/// This function computes the integer multiple of Base that equals V.
1875/// If successful, it returns true and returns the multiple in
1876/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001877/// through SExt instructions only if LookThroughSExt is true.
1878bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001879 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001880 const unsigned MaxDepth = 6;
1881
Dan Gohman6a976bb2009-11-18 00:58:27 +00001882 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001883 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001884 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001885
Chris Lattner229907c2011-07-18 04:54:35 +00001886 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001887
Dan Gohman6a976bb2009-11-18 00:58:27 +00001888 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001889
1890 if (Base == 0)
1891 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001892
Victor Hernandez47444882009-11-10 08:28:35 +00001893 if (Base == 1) {
1894 Multiple = V;
1895 return true;
1896 }
1897
1898 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1899 Constant *BaseVal = ConstantInt::get(T, Base);
1900 if (CO && CO == BaseVal) {
1901 // Multiple is 1.
1902 Multiple = ConstantInt::get(T, 1);
1903 return true;
1904 }
1905
1906 if (CI && CI->getZExtValue() % Base == 0) {
1907 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001908 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001909 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001910
Victor Hernandez47444882009-11-10 08:28:35 +00001911 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001912
Victor Hernandez47444882009-11-10 08:28:35 +00001913 Operator *I = dyn_cast<Operator>(V);
1914 if (!I) return false;
1915
1916 switch (I->getOpcode()) {
1917 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001918 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001919 if (!LookThroughSExt) return false;
1920 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001921 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001922 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1923 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001924 case Instruction::Shl:
1925 case Instruction::Mul: {
1926 Value *Op0 = I->getOperand(0);
1927 Value *Op1 = I->getOperand(1);
1928
1929 if (I->getOpcode() == Instruction::Shl) {
1930 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1931 if (!Op1CI) return false;
1932 // Turn Op0 << Op1 into Op0 * 2^Op1
1933 APInt Op1Int = Op1CI->getValue();
1934 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001935 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001936 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001937 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001938 }
1939
Craig Topper9f008862014-04-15 04:59:12 +00001940 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001941 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1942 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1943 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001944 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001945 MulC->getType()->getPrimitiveSizeInBits())
1946 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001947 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001948 MulC->getType()->getPrimitiveSizeInBits())
1949 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001950
Chris Lattner72d283c2010-09-05 17:20:46 +00001951 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1952 Multiple = ConstantExpr::getMul(MulC, Op1C);
1953 return true;
1954 }
Victor Hernandez47444882009-11-10 08:28:35 +00001955
1956 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1957 if (Mul0CI->getValue() == 1) {
1958 // V == Base * Op1, so return Op1
1959 Multiple = Op1;
1960 return true;
1961 }
1962 }
1963
Craig Topper9f008862014-04-15 04:59:12 +00001964 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001965 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1966 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1967 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001968 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001969 MulC->getType()->getPrimitiveSizeInBits())
1970 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001971 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001972 MulC->getType()->getPrimitiveSizeInBits())
1973 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001974
Chris Lattner72d283c2010-09-05 17:20:46 +00001975 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1976 Multiple = ConstantExpr::getMul(MulC, Op0C);
1977 return true;
1978 }
Victor Hernandez47444882009-11-10 08:28:35 +00001979
1980 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1981 if (Mul1CI->getValue() == 1) {
1982 // V == Base * Op0, so return Op0
1983 Multiple = Op0;
1984 return true;
1985 }
1986 }
Victor Hernandez47444882009-11-10 08:28:35 +00001987 }
1988 }
1989
1990 // We could not determine if V is a multiple of Base.
1991 return false;
1992}
1993
Sanjay Patelaee84212014-11-04 16:27:42 +00001994/// Return true if we can prove that the specified FP value is never equal to
1995/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00001996///
1997/// NOTE: this function will need to be revisited when we support non-default
1998/// rounding modes!
1999///
2000bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2001 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2002 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002003
Chris Lattnera12a6de2008-06-02 01:29:46 +00002004 if (Depth == 6)
2005 return 1; // Limit search depth.
2006
Dan Gohman80ca01c2009-07-17 20:47:02 +00002007 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002008 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002009
2010 // Check if the nsz fast-math flag is set
2011 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2012 if (FPO->hasNoSignedZeros())
2013 return true;
2014
Chris Lattnera12a6de2008-06-02 01:29:46 +00002015 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002016 if (I->getOpcode() == Instruction::FAdd)
2017 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2018 if (CFP->isNullValue())
2019 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002020
Chris Lattnera12a6de2008-06-02 01:29:46 +00002021 // sitofp and uitofp turn into +0.0 for zero.
2022 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2023 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002024
Chris Lattnera12a6de2008-06-02 01:29:46 +00002025 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2026 // sqrt(-0.0) = -0.0, no other negative results are possible.
2027 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002028 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002029
Chris Lattnera12a6de2008-06-02 01:29:46 +00002030 if (const CallInst *CI = dyn_cast<CallInst>(I))
2031 if (const Function *F = CI->getCalledFunction()) {
2032 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002033 // abs(x) != -0.0
2034 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002035 // fabs[lf](x) != -0.0
2036 if (F->getName() == "fabs") return true;
2037 if (F->getName() == "fabsf") return true;
2038 if (F->getName() == "fabsl") return true;
2039 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2040 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002041 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002042 }
2043 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002044
Chris Lattnera12a6de2008-06-02 01:29:46 +00002045 return false;
2046}
2047
Sanjay Patelaee84212014-11-04 16:27:42 +00002048/// If the specified value can be set by repeating the same byte in memory,
2049/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002050/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2051/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2052/// byte store (e.g. i16 0x1234), return null.
2053Value *llvm::isBytewiseValue(Value *V) {
2054 // All byte-wide stores are splatable, even of arbitrary variables.
2055 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002056
2057 // Handle 'null' ConstantArrayZero etc.
2058 if (Constant *C = dyn_cast<Constant>(V))
2059 if (C->isNullValue())
2060 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002061
Chris Lattner9cb10352010-12-26 20:15:01 +00002062 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002063 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002064 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2065 if (CFP->getType()->isFloatTy())
2066 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2067 if (CFP->getType()->isDoubleTy())
2068 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2069 // Don't handle long double formats, which have strange constraints.
2070 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002071
2072 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00002073 // multiple of 8 bits.
2074 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2075 unsigned Width = CI->getBitWidth();
2076 if (isPowerOf2_32(Width) && Width > 8) {
2077 // We can handle this value if the recursive binary decomposition is the
2078 // same at all levels.
2079 APInt Val = CI->getValue();
2080 APInt Val2;
2081 while (Val.getBitWidth() != 8) {
2082 unsigned NextWidth = Val.getBitWidth()/2;
2083 Val2 = Val.lshr(NextWidth);
2084 Val2 = Val2.trunc(Val.getBitWidth()/2);
2085 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002086
Chris Lattner9cb10352010-12-26 20:15:01 +00002087 // If the top/bottom halves aren't the same, reject it.
2088 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00002089 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002090 }
2091 return ConstantInt::get(V->getContext(), Val);
2092 }
2093 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002094
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002095 // A ConstantDataArray/Vector is splatable if all its members are equal and
2096 // also splatable.
2097 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2098 Value *Elt = CA->getElementAsConstant(0);
2099 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002100 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002101 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002102
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002103 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2104 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002105 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002106
Chris Lattner9cb10352010-12-26 20:15:01 +00002107 return Val;
2108 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002109
Chris Lattner9cb10352010-12-26 20:15:01 +00002110 // Conceptually, we could handle things like:
2111 // %a = zext i8 %X to i16
2112 // %b = shl i16 %a, 8
2113 // %c = or i16 %a, %b
2114 // but until there is an example that actually needs this, it doesn't seem
2115 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002116 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002117}
2118
2119
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002120// This is the recursive version of BuildSubAggregate. It takes a few different
2121// arguments. Idxs is the index within the nested struct From that we are
2122// looking at now (which is of type IndexedType). IdxSkip is the number of
2123// indices from Idxs that should be left out when inserting into the resulting
2124// struct. To is the result struct built so far, new insertvalue instructions
2125// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002126static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002127 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002128 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002129 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002130 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002131 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002132 // Save the original To argument so we can modify it
2133 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002134 // General case, the type indexed by Idxs is a struct
2135 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2136 // Process each struct element recursively
2137 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002138 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002139 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002140 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002141 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002142 if (!To) {
2143 // Couldn't find any inserted value for this index? Cleanup
2144 while (PrevTo != OrigTo) {
2145 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2146 PrevTo = Del->getAggregateOperand();
2147 Del->eraseFromParent();
2148 }
2149 // Stop processing elements
2150 break;
2151 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002152 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002153 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002154 if (To)
2155 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002156 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002157 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2158 // the struct's elements had a value that was inserted directly. In the latter
2159 // case, perhaps we can't determine each of the subelements individually, but
2160 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002161
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002162 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002163 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002164
2165 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002166 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002167
2168 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002169 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002170 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002171}
2172
2173// This helper takes a nested struct and extracts a part of it (which is again a
2174// struct) into a new value. For example, given the struct:
2175// { a, { b, { c, d }, e } }
2176// and the indices "1, 1" this returns
2177// { c, d }.
2178//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002179// It does this by inserting an insertvalue for each element in the resulting
2180// struct, as opposed to just inserting a single struct. This will only work if
2181// each of the elements of the substruct are known (ie, inserted into From by an
2182// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002183//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002184// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002185static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002186 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002187 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002188 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002189 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002190 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002191 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002192 unsigned IdxSkip = Idxs.size();
2193
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002194 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002195}
2196
Sanjay Patelaee84212014-11-04 16:27:42 +00002197/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002198/// the scalar value indexed is already around as a register, for example if it
2199/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002200///
2201/// If InsertBefore is not null, this function will duplicate (modified)
2202/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002203Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2204 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002205 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002206 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002207 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002208 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002209 // We have indices, so V should have an indexable type.
2210 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2211 "Not looking at a struct or array?");
2212 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2213 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002214
Chris Lattner67058832012-01-25 06:48:06 +00002215 if (Constant *C = dyn_cast<Constant>(V)) {
2216 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002217 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002218 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2219 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002220
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002221 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002222 // Loop the indices for the insertvalue instruction in parallel with the
2223 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002224 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002225 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2226 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002227 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002228 // We can't handle this without inserting insertvalues
2229 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002230 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002231
2232 // The requested index identifies a part of a nested aggregate. Handle
2233 // this specially. For example,
2234 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2235 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2236 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2237 // This can be changed into
2238 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2239 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2240 // which allows the unused 0,0 element from the nested struct to be
2241 // removed.
2242 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2243 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002244 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002245
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002246 // This insert value inserts something else than what we are looking for.
2247 // See if the (aggregrate) value inserted into has the value we are
2248 // looking for, then.
2249 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002250 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002251 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002252 }
2253 // If we end up here, the indices of the insertvalue match with those
2254 // requested (though possibly only partially). Now we recursively look at
2255 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002256 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002257 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002258 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002259 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002260
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002261 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002262 // If we're extracting a value from an aggregrate that was extracted from
2263 // something else, we can extract from that something else directly instead.
2264 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
2266 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002267 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002268 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002269 SmallVector<unsigned, 5> Idxs;
2270 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002271 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002272 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002273
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002274 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002275 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002276
Craig Topper1bef2c82012-12-22 19:15:35 +00002277 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002278 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002279
Jay Foad57aa6362011-07-13 10:26:04 +00002280 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002281 }
2282 // Otherwise, we don't know (such as, extracting from a function return value
2283 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002284 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002285}
Evan Chengda3db112008-06-30 07:31:25 +00002286
Sanjay Patelaee84212014-11-04 16:27:42 +00002287/// Analyze the specified pointer to see if it can be expressed as a base
2288/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002289Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002290 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002291 // Without DataLayout, conservatively assume 64-bit offsets, which is
2292 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002293 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002294 APInt ByteOffset(BitWidth, 0);
2295 while (1) {
2296 if (Ptr->getType()->isVectorTy())
2297 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002298
Nuno Lopes368c4d02012-12-31 20:48:35 +00002299 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002300 if (DL) {
2301 APInt GEPOffset(BitWidth, 0);
2302 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2303 break;
2304
2305 ByteOffset += GEPOffset;
2306 }
2307
Nuno Lopes368c4d02012-12-31 20:48:35 +00002308 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002309 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2310 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002311 Ptr = cast<Operator>(Ptr)->getOperand(0);
2312 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2313 if (GA->mayBeOverridden())
2314 break;
2315 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002316 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002317 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002318 }
2319 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002320 Offset = ByteOffset.getSExtValue();
2321 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002322}
2323
2324
Sanjay Patelaee84212014-11-04 16:27:42 +00002325/// This function computes the length of a null-terminated C string pointed to
2326/// by V. If successful, it returns true and returns the string in Str.
2327/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002328bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2329 uint64_t Offset, bool TrimAtNul) {
2330 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002331
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002332 // Look through bitcast instructions and geps.
2333 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002334
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002335 // If the value is a GEP instructionor constant expression, treat it as an
2336 // offset.
2337 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002338 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002339 if (GEP->getNumOperands() != 3)
2340 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002341
Evan Chengda3db112008-06-30 07:31:25 +00002342 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002343 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2344 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002345 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002346 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002347
Evan Chengda3db112008-06-30 07:31:25 +00002348 // Check to make sure that the first operand of the GEP is an integer and
2349 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002350 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002351 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002352 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002353
Evan Chengda3db112008-06-30 07:31:25 +00002354 // If the second index isn't a ConstantInt, then this is a variable index
2355 // into the array. If this occurs, we can't say anything meaningful about
2356 // the string.
2357 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002358 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002359 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002360 else
2361 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002362 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002363 }
Nick Lewycky46209882011-10-20 00:34:35 +00002364
Evan Chengda3db112008-06-30 07:31:25 +00002365 // The GEP instruction, constant or instruction, must reference a global
2366 // variable that is a constant and is initialized. The referenced constant
2367 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002368 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002369 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002370 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002371
Nick Lewycky46209882011-10-20 00:34:35 +00002372 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002373 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002374 // This is a degenerate case. The initializer is constant zero so the
2375 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002376 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002377 return true;
2378 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002379
Evan Chengda3db112008-06-30 07:31:25 +00002380 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002381 const ConstantDataArray *Array =
2382 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002383 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002384 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002385
Evan Chengda3db112008-06-30 07:31:25 +00002386 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002387 uint64_t NumElts = Array->getType()->getArrayNumElements();
2388
2389 // Start out with the entire array in the StringRef.
2390 Str = Array->getAsString();
2391
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002392 if (Offset > NumElts)
2393 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002394
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002395 // Skip over 'offset' bytes.
2396 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002397
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002398 if (TrimAtNul) {
2399 // Trim off the \0 and anything after it. If the array is not nul
2400 // terminated, we just return the whole end of string. The client may know
2401 // some other way that the string is length-bound.
2402 Str = Str.substr(0, Str.find('\0'));
2403 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002404 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002405}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002406
2407// These next two are very similar to the above, but also look through PHI
2408// nodes.
2409// TODO: See if we can integrate these two together.
2410
Sanjay Patelaee84212014-11-04 16:27:42 +00002411/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002412/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002413static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002414 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002415 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002416
2417 // If this is a PHI node, there are two cases: either we have already seen it
2418 // or we haven't.
2419 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002420 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002421 return ~0ULL; // already in the set.
2422
2423 // If it was new, see if all the input strings are the same length.
2424 uint64_t LenSoFar = ~0ULL;
2425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2426 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2427 if (Len == 0) return 0; // Unknown length -> unknown.
2428
2429 if (Len == ~0ULL) continue;
2430
2431 if (Len != LenSoFar && LenSoFar != ~0ULL)
2432 return 0; // Disagree -> unknown.
2433 LenSoFar = Len;
2434 }
2435
2436 // Success, all agree.
2437 return LenSoFar;
2438 }
2439
2440 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2441 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2442 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2443 if (Len1 == 0) return 0;
2444 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2445 if (Len2 == 0) return 0;
2446 if (Len1 == ~0ULL) return Len2;
2447 if (Len2 == ~0ULL) return Len1;
2448 if (Len1 != Len2) return 0;
2449 return Len1;
2450 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002451
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002452 // Otherwise, see if we can read the string.
2453 StringRef StrData;
2454 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002455 return 0;
2456
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002457 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002458}
2459
Sanjay Patelaee84212014-11-04 16:27:42 +00002460/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002461/// the specified pointer, return 'len+1'. If we can't, return 0.
2462uint64_t llvm::GetStringLength(Value *V) {
2463 if (!V->getType()->isPointerTy()) return 0;
2464
2465 SmallPtrSet<PHINode*, 32> PHIs;
2466 uint64_t Len = GetStringLengthH(V, PHIs);
2467 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2468 // an empty string as a length.
2469 return Len == ~0ULL ? 1 : Len;
2470}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002471
Dan Gohman0f124e12011-01-24 18:53:32 +00002472Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002473llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002474 if (!V->getType()->isPointerTy())
2475 return V;
2476 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2477 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2478 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002479 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2480 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002481 V = cast<Operator>(V)->getOperand(0);
2482 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2483 if (GA->mayBeOverridden())
2484 return V;
2485 V = GA->getAliasee();
2486 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002487 // See if InstructionSimplify knows any relevant tricks.
2488 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002489 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002490 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002491 V = Simplified;
2492 continue;
2493 }
2494
Dan Gohmana4fcd242010-12-15 20:02:24 +00002495 return V;
2496 }
2497 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2498 }
2499 return V;
2500}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002501
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002502void
2503llvm::GetUnderlyingObjects(Value *V,
2504 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002505 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002506 unsigned MaxLookup) {
2507 SmallPtrSet<Value *, 4> Visited;
2508 SmallVector<Value *, 4> Worklist;
2509 Worklist.push_back(V);
2510 do {
2511 Value *P = Worklist.pop_back_val();
2512 P = GetUnderlyingObject(P, TD, MaxLookup);
2513
David Blaikie70573dc2014-11-19 07:49:26 +00002514 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002515 continue;
2516
2517 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2518 Worklist.push_back(SI->getTrueValue());
2519 Worklist.push_back(SI->getFalseValue());
2520 continue;
2521 }
2522
2523 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2524 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2525 Worklist.push_back(PN->getIncomingValue(i));
2526 continue;
2527 }
2528
2529 Objects.push_back(P);
2530 } while (!Worklist.empty());
2531}
2532
Sanjay Patelaee84212014-11-04 16:27:42 +00002533/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002534bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002535 for (const User *U : V->users()) {
2536 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002537 if (!II) return false;
2538
2539 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2540 II->getIntrinsicID() != Intrinsic::lifetime_end)
2541 return false;
2542 }
2543 return true;
2544}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002545
Dan Gohman7ac046a2012-01-04 23:01:09 +00002546bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002547 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002548 const Operator *Inst = dyn_cast<Operator>(V);
2549 if (!Inst)
2550 return false;
2551
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002552 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2553 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2554 if (C->canTrap())
2555 return false;
2556
2557 switch (Inst->getOpcode()) {
2558 default:
2559 return true;
2560 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00002561 case Instruction::URem: {
2562 // x / y is undefined if y == 0.
2563 const APInt *V;
2564 if (match(Inst->getOperand(1), m_APInt(V)))
2565 return *V != 0;
2566 return false;
2567 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002568 case Instruction::SDiv:
2569 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00002570 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
2571 const APInt *X, *Y;
2572 if (match(Inst->getOperand(1), m_APInt(Y))) {
2573 if (*Y != 0) {
2574 if (*Y == -1) {
2575 // The numerator can't be MinSignedValue if the denominator is -1.
2576 if (match(Inst->getOperand(0), m_APInt(X)))
2577 return !Y->isMinSignedValue();
2578 // The numerator *might* be MinSignedValue.
2579 return false;
2580 }
2581 // The denominator is not 0 or -1, it's safe to proceed.
2582 return true;
2583 }
2584 }
2585 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002586 }
2587 case Instruction::Load: {
2588 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002589 if (!LI->isUnordered() ||
2590 // Speculative load may create a race that did not exist in the source.
2591 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002592 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002593 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002594 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002595 case Instruction::Call: {
Michael Liao736bac62014-11-06 19:05:57 +00002596 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2597 switch (II->getIntrinsicID()) {
2598 // These synthetic intrinsics have no side-effects and just mark
2599 // information about their operands.
2600 // FIXME: There are other no-op synthetic instructions that potentially
2601 // should be considered at least *safe* to speculate...
2602 case Intrinsic::dbg_declare:
2603 case Intrinsic::dbg_value:
2604 return true;
Chandler Carruth28192c92012-04-07 19:22:18 +00002605
Michael Liao736bac62014-11-06 19:05:57 +00002606 case Intrinsic::bswap:
2607 case Intrinsic::ctlz:
2608 case Intrinsic::ctpop:
2609 case Intrinsic::cttz:
2610 case Intrinsic::objectsize:
2611 case Intrinsic::sadd_with_overflow:
2612 case Intrinsic::smul_with_overflow:
2613 case Intrinsic::ssub_with_overflow:
2614 case Intrinsic::uadd_with_overflow:
2615 case Intrinsic::umul_with_overflow:
2616 case Intrinsic::usub_with_overflow:
2617 return true;
2618 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2619 // errno like libm sqrt would.
2620 case Intrinsic::sqrt:
2621 case Intrinsic::fma:
2622 case Intrinsic::fmuladd:
2623 case Intrinsic::fabs:
2624 case Intrinsic::minnum:
2625 case Intrinsic::maxnum:
2626 return true;
2627 // TODO: some fp intrinsics are marked as having the same error handling
2628 // as libm. They're safe to speculate when they won't error.
2629 // TODO: are convert_{from,to}_fp16 safe?
2630 // TODO: can we list target-specific intrinsics here?
2631 default: break;
2632 }
2633 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002634 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002635 // side-effects, even if marked readnone nounwind.
2636 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002637 case Instruction::VAArg:
2638 case Instruction::Alloca:
2639 case Instruction::Invoke:
2640 case Instruction::PHI:
2641 case Instruction::Store:
2642 case Instruction::Ret:
2643 case Instruction::Br:
2644 case Instruction::IndirectBr:
2645 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002646 case Instruction::Unreachable:
2647 case Instruction::Fence:
2648 case Instruction::LandingPad:
2649 case Instruction::AtomicRMW:
2650 case Instruction::AtomicCmpXchg:
2651 case Instruction::Resume:
2652 return false; // Misc instructions which have effects
2653 }
2654}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002655
Sanjay Patelaee84212014-11-04 16:27:42 +00002656/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002657bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002658 // Alloca never returns null, malloc might.
2659 if (isa<AllocaInst>(V)) return true;
2660
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002661 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002662 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002663 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002664
2665 // Global values are not null unless extern weak.
2666 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2667 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002668
Philip Reamescdb72f32014-10-20 22:40:55 +00002669 // A Load tagged w/nonnull metadata is never null.
2670 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00002671 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00002672
Nick Lewyckyec373542014-05-20 05:13:21 +00002673 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002674 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002675 return true;
2676
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002677 // operator new never returns null.
2678 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2679 return true;
2680
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002681 return false;
2682}
David Majnemer491331a2015-01-02 07:29:43 +00002683
2684OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
2685 const DataLayout *DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00002686 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00002687 const Instruction *CxtI,
2688 const DominatorTree *DT) {
2689 // Multiplying n * m significant bits yields a result of n + m significant
2690 // bits. If the total number of significant bits does not exceed the
2691 // result bit width (minus 1), there is no overflow.
2692 // This means if we have enough leading zero bits in the operands
2693 // we can guarantee that the result does not overflow.
2694 // Ref: "Hacker's Delight" by Henry Warren
2695 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
2696 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00002697 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00002698 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00002699 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00002700 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
2701 DT);
2702 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
2703 DT);
David Majnemer491331a2015-01-02 07:29:43 +00002704 // Note that underestimating the number of zero bits gives a more
2705 // conservative answer.
2706 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
2707 RHSKnownZero.countLeadingOnes();
2708 // First handle the easy case: if we have enough zero bits there's
2709 // definitely no overflow.
2710 if (ZeroBits >= BitWidth)
2711 return OverflowResult::NeverOverflows;
2712
2713 // Get the largest possible values for each operand.
2714 APInt LHSMax = ~LHSKnownZero;
2715 APInt RHSMax = ~RHSKnownZero;
2716
2717 // We know the multiply operation doesn't overflow if the maximum values for
2718 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00002719 bool MaxOverflow;
2720 LHSMax.umul_ov(RHSMax, MaxOverflow);
2721 if (!MaxOverflow)
2722 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00002723
David Majnemerc8a576b2015-01-02 07:29:47 +00002724 // We know it always overflows if multiplying the smallest possible values for
2725 // the operands also results in overflow.
2726 bool MinOverflow;
2727 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
2728 if (MinOverflow)
2729 return OverflowResult::AlwaysOverflows;
2730
2731 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00002732}