blob: 5d8701431a2ce7242eeb4877c3995425e41e6623 [file] [log] [blame]
Jingyue Wu13755602016-03-20 20:59:20 +00001//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// CUDA C/C++ includes memory space designation as variable type qualifers (such
11// as __global__ and __shared__). Knowing the space of a memory access allows
12// CUDA compilers to emit faster PTX loads and stores. For example, a load from
13// shared memory can be translated to `ld.shared` which is roughly 10% faster
14// than a generic `ld` on an NVIDIA Tesla K40c.
15//
16// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17// compilers must infer the memory space of an address expression from
18// type-qualified variables.
19//
20// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22// places only type-qualified variables in specific address spaces, and then
23// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24// (so-called the generic address space) for other instructions to use.
25//
26// For example, the Clang translates the following CUDA code
27// __shared__ float a[10];
28// float v = a[i];
29// to
30// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32// %v = load float, float* %1 ; emits ld.f32
33// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34// redirected to %0 (the generic version of @a).
35//
36// The optimization implemented in this file propagates specific address spaces
37// from type-qualified variable declarations to its users. For example, it
38// optimizes the above IR to
39// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42// codegen is able to emit ld.shared.f32 for %v.
43//
44// Address space inference works in two steps. First, it uses a data-flow
45// analysis to infer as many generic pointers as possible to point to only one
46// specific address space. In the above example, it can prove that %1 only
47// points to addrspace(3). This algorithm was published in
48// CUDA: Compiling and optimizing for a GPU platform
49// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50// ICCS 2012
51//
52// Then, address space inference replaces all refinable generic pointers with
53// equivalent specific pointers.
54//
55// The major challenge of implementing this optimization is handling PHINodes,
56// which may create loops in the data flow graph. This brings two complications.
57//
58// First, the data flow analysis in Step 1 needs to be circular. For example,
59// %generic.input = addrspacecast float addrspace(3)* %input to float*
60// loop:
61// %y = phi [ %generic.input, %y2 ]
62// %y2 = getelementptr %y, 1
63// %v = load %y2
64// br ..., label %loop, ...
65// proving %y specific requires proving both %generic.input and %y2 specific,
66// but proving %y2 specific circles back to %y. To address this complication,
67// the data flow analysis operates on a lattice:
68// uninitialized > specific address spaces > generic.
69// All address expressions (our implementation only considers phi, bitcast,
70// addrspacecast, and getelementptr) start with the uninitialized address space.
71// The monotone transfer function moves the address space of a pointer down a
72// lattice path from uninitialized to specific and then to generic. A join
73// operation of two different specific address spaces pushes the expression down
74// to the generic address space. The analysis completes once it reaches a fixed
75// point.
76//
77// Second, IR rewriting in Step 2 also needs to be circular. For example,
78// converting %y to addrspace(3) requires the compiler to know the converted
79// %y2, but converting %y2 needs the converted %y. To address this complication,
80// we break these cycles using "undef" placeholders. When converting an
81// instruction `I` to a new address space, if its operand `Op` is not converted
82// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83// For instance, our algorithm first converts %y to
84// %y' = phi float addrspace(3)* [ %input, undef ]
85// Then, it converts %y2 to
86// %y2' = getelementptr %y', 1
87// Finally, it fixes the undef in %y' so that
88// %y' = phi float addrspace(3)* [ %input, %y2' ]
89//
Jingyue Wu13755602016-03-20 20:59:20 +000090//===----------------------------------------------------------------------===//
91
Matt Arsenault850657a2017-01-31 01:10:58 +000092#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +000093#include "llvm/ADT/DenseSet.h"
94#include "llvm/ADT/Optional.h"
95#include "llvm/ADT/SetVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000096#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu13755602016-03-20 20:59:20 +000097#include "llvm/IR/Function.h"
98#include "llvm/IR/InstIterator.h"
99#include "llvm/IR/Instructions.h"
100#include "llvm/IR/Operator.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000101#include "llvm/Support/Debug.h"
102#include "llvm/Support/raw_ostream.h"
103#include "llvm/Transforms/Utils/Local.h"
104#include "llvm/Transforms/Utils/ValueMapper.h"
105
Matt Arsenault850657a2017-01-31 01:10:58 +0000106#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000107
Jingyue Wu13755602016-03-20 20:59:20 +0000108using namespace llvm;
109
110namespace {
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000111static const unsigned UninitializedAddressSpace = ~0u;
Jingyue Wu13755602016-03-20 20:59:20 +0000112
113using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114
Matt Arsenault850657a2017-01-31 01:10:58 +0000115/// \brief InferAddressSpaces
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000116class InferAddressSpaces : public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000117 /// Target specific address space which uses of should be replaced if
118 /// possible.
119 unsigned FlatAddrSpace;
120
Jingyue Wu13755602016-03-20 20:59:20 +0000121public:
122 static char ID;
123
Matt Arsenault850657a2017-01-31 01:10:58 +0000124 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000125
Matt Arsenault32b96002017-01-27 17:30:39 +0000126 void getAnalysisUsage(AnalysisUsage &AU) const override {
127 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000128 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000129 }
130
Jingyue Wu13755602016-03-20 20:59:20 +0000131 bool runOnFunction(Function &F) override;
132
133private:
134 // Returns the new address space of V if updated; otherwise, returns None.
135 Optional<unsigned>
136 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000138
139 // Tries to infer the specific address space of each address expression in
140 // Postorder.
141 void inferAddressSpaces(const std::vector<Value *> &Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000142 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000143
Matt Arsenault72f259b2017-01-31 02:17:32 +0000144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000146 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000148 // all flat expressions in the use-def graph of function F.
Jingyue Wu13755602016-03-20 20:59:20 +0000149 bool
150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151 const ValueToAddrSpaceMapTy &InferredAddrSpace,
Matt Arsenault42b64782017-01-30 23:02:12 +0000152 Function *F) const;
153
154 void appendsFlatAddressExpressionToPostorderStack(
155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
156 DenseSet<Value *> *Visited) const;
157
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000158 bool rewriteIntrinsicOperands(IntrinsicInst *II,
159 Value *OldV, Value *NewV) const;
160 void collectRewritableIntrinsicOperands(
161 IntrinsicInst *II,
162 std::vector<std::pair<Value *, bool>> *PostorderStack,
163 DenseSet<Value *> *Visited) const;
164
Matt Arsenault42b64782017-01-30 23:02:12 +0000165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000166
Matt Arsenault42b64782017-01-30 23:02:12 +0000167 Value *cloneValueWithNewAddressSpace(
168 Value *V, unsigned NewAddrSpace,
169 const ValueToValueMapTy &ValueWithNewAddrSpace,
170 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000172};
173} // end anonymous namespace
174
Matt Arsenault850657a2017-01-31 01:10:58 +0000175char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000176
177namespace llvm {
Matt Arsenault850657a2017-01-31 01:10:58 +0000178void initializeInferAddressSpacesPass(PassRegistry &);
Jingyue Wu13755602016-03-20 20:59:20 +0000179}
Matt Arsenault850657a2017-01-31 01:10:58 +0000180
181INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000182 false, false)
183
184// Returns true if V is an address expression.
185// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186// getelementptr operators.
187static bool isAddressExpression(const Value &V) {
188 if (!isa<Operator>(V))
189 return false;
190
191 switch (cast<Operator>(V).getOpcode()) {
192 case Instruction::PHI:
193 case Instruction::BitCast:
194 case Instruction::AddrSpaceCast:
195 case Instruction::GetElementPtr:
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000196 case Instruction::Select:
Jingyue Wu13755602016-03-20 20:59:20 +0000197 return true;
198 default:
199 return false;
200 }
201}
202
203// Returns the pointer operands of V.
204//
205// Precondition: V is an address expression.
206static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
207 assert(isAddressExpression(V));
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000208 const Operator &Op = cast<Operator>(V);
Jingyue Wu13755602016-03-20 20:59:20 +0000209 switch (Op.getOpcode()) {
210 case Instruction::PHI: {
211 auto IncomingValues = cast<PHINode>(Op).incoming_values();
212 return SmallVector<Value *, 2>(IncomingValues.begin(),
213 IncomingValues.end());
214 }
215 case Instruction::BitCast:
216 case Instruction::AddrSpaceCast:
217 case Instruction::GetElementPtr:
218 return {Op.getOperand(0)};
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000219 case Instruction::Select:
220 return {Op.getOperand(1), Op.getOperand(2)};
Jingyue Wu13755602016-03-20 20:59:20 +0000221 default:
222 llvm_unreachable("Unexpected instruction type.");
223 }
224}
225
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000226// TODO: Move logic to TTI?
227bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
228 Value *OldV,
229 Value *NewV) const {
230 Module *M = II->getParent()->getParent()->getParent();
231
232 switch (II->getIntrinsicID()) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000233 case Intrinsic::amdgcn_atomic_inc:
Matt Arsenault79f837c2017-03-30 22:21:40 +0000234 case Intrinsic::amdgcn_atomic_dec:{
235 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
236 if (!IsVolatile || !IsVolatile->isNullValue())
237 return false;
238
239 LLVM_FALLTHROUGH;
240 }
241 case Intrinsic::objectsize: {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000242 Type *DestTy = II->getType();
243 Type *SrcTy = NewV->getType();
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000244 Function *NewDecl =
245 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000246 II->setArgOperand(0, NewV);
247 II->setCalledFunction(NewDecl);
248 return true;
249 }
250 default:
251 return false;
252 }
253}
254
255// TODO: Move logic to TTI?
256void InferAddressSpaces::collectRewritableIntrinsicOperands(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000257 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack,
258 DenseSet<Value *> *Visited) const {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000259 switch (II->getIntrinsicID()) {
260 case Intrinsic::objectsize:
261 case Intrinsic::amdgcn_atomic_inc:
262 case Intrinsic::amdgcn_atomic_dec:
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000263 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
264 PostorderStack, Visited);
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000265 break;
266 default:
267 break;
268 }
269}
270
271// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000272// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000273// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000274void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000275 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
276 DenseSet<Value *> *Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000277 assert(V->getType()->isPointerTy());
278 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000279 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000280 if (Visited->insert(V).second)
281 PostorderStack->push_back(std::make_pair(V, false));
282 }
283}
284
Matt Arsenault42b64782017-01-30 23:02:12 +0000285// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000286// ordered in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000287std::vector<Value *>
Matt Arsenault850657a2017-01-31 01:10:58 +0000288InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000289 // This function implements a non-recursive postorder traversal of a partial
290 // use-def graph of function F.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000291 std::vector<std::pair<Value *, bool>> PostorderStack;
Jingyue Wu13755602016-03-20 20:59:20 +0000292 // The set of visited expressions.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000293 DenseSet<Value *> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000294
295 auto PushPtrOperand = [&](Value *Ptr) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000296 appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack,
297 &Visited);
Matt Arsenault6c907a92017-01-31 01:40:38 +0000298 };
299
Jingyue Wu13755602016-03-20 20:59:20 +0000300 // We only explore address expressions that are reachable from loads and
301 // stores for now because we aim at generating faster loads and stores.
302 for (Instruction &I : instructions(F)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000303 if (auto *LI = dyn_cast<LoadInst>(&I))
304 PushPtrOperand(LI->getPointerOperand());
305 else if (auto *SI = dyn_cast<StoreInst>(&I))
306 PushPtrOperand(SI->getPointerOperand());
307 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
308 PushPtrOperand(RMW->getPointerOperand());
309 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
310 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000311 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
312 // For memset/memcpy/memmove, any pointer operand can be replaced.
313 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000314
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000315 // Handle 2nd operand for memcpy/memmove.
316 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000317 PushPtrOperand(MTI->getRawSource());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000318 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
319 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000320 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
321 // FIXME: Handle vectors of pointers
322 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
323 PushPtrOperand(Cmp->getOperand(0));
324 PushPtrOperand(Cmp->getOperand(1));
325 }
326 }
Jingyue Wu13755602016-03-20 20:59:20 +0000327 }
328
329 std::vector<Value *> Postorder; // The resultant postorder.
330 while (!PostorderStack.empty()) {
331 // If the operands of the expression on the top are already explored,
332 // adds that expression to the resultant postorder.
333 if (PostorderStack.back().second) {
334 Postorder.push_back(PostorderStack.back().first);
335 PostorderStack.pop_back();
336 continue;
337 }
338 // Otherwise, adds its operands to the stack and explores them.
339 PostorderStack.back().second = true;
340 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000341 appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack,
342 &Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000343 }
344 }
345 return Postorder;
346}
347
348// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
349// of OperandUse.get() in the new address space. If the clone is not ready yet,
350// returns an undef in the new address space as a placeholder.
351static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000352 const Use &OperandUse, unsigned NewAddrSpace,
353 const ValueToValueMapTy &ValueWithNewAddrSpace,
354 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000355 Value *Operand = OperandUse.get();
Matt Arsenault30083602017-02-02 03:37:22 +0000356
357 Type *NewPtrTy =
358 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
359
360 if (Constant *C = dyn_cast<Constant>(Operand))
361 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
362
Jingyue Wu13755602016-03-20 20:59:20 +0000363 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
364 return NewOperand;
365
366 UndefUsesToFix->push_back(&OperandUse);
Matt Arsenault30083602017-02-02 03:37:22 +0000367 return UndefValue::get(NewPtrTy);
Jingyue Wu13755602016-03-20 20:59:20 +0000368}
369
370// Returns a clone of `I` with its operands converted to those specified in
371// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
372// operand whose address space needs to be modified might not exist in
373// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
374// adds that operand use to UndefUsesToFix so that caller can fix them later.
375//
376// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
377// from a pointer whose type already matches. Therefore, this function returns a
378// Value* instead of an Instruction*.
379static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000380 Instruction *I, unsigned NewAddrSpace,
381 const ValueToValueMapTy &ValueWithNewAddrSpace,
382 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000383 Type *NewPtrType =
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000384 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000385
386 if (I->getOpcode() == Instruction::AddrSpaceCast) {
387 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000388 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000389 // Therefore, the inferred address space must be the source space, according
390 // to our algorithm.
391 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
392 if (Src->getType() != NewPtrType)
393 return new BitCastInst(Src, NewPtrType);
394 return Src;
395 }
396
397 // Computes the converted pointer operands.
398 SmallVector<Value *, 4> NewPointerOperands;
399 for (const Use &OperandUse : I->operands()) {
400 if (!OperandUse.get()->getType()->isPointerTy())
401 NewPointerOperands.push_back(nullptr);
402 else
403 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000404 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000405 }
406
407 switch (I->getOpcode()) {
408 case Instruction::BitCast:
409 return new BitCastInst(NewPointerOperands[0], NewPtrType);
410 case Instruction::PHI: {
411 assert(I->getType()->isPointerTy());
412 PHINode *PHI = cast<PHINode>(I);
413 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
414 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
415 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
416 NewPHI->addIncoming(NewPointerOperands[OperandNo],
417 PHI->getIncomingBlock(Index));
418 }
419 return NewPHI;
420 }
421 case Instruction::GetElementPtr: {
422 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
423 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000424 GEP->getSourceElementType(), NewPointerOperands[0],
425 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000426 NewGEP->setIsInBounds(GEP->isInBounds());
427 return NewGEP;
428 }
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000429 case Instruction::Select: {
430 assert(I->getType()->isPointerTy());
431 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
432 NewPointerOperands[2], "", nullptr, I);
433 }
Jingyue Wu13755602016-03-20 20:59:20 +0000434 default:
435 llvm_unreachable("Unexpected opcode");
436 }
437}
438
439// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
440// constant expression `CE` with its operands replaced as specified in
441// ValueWithNewAddrSpace.
442static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000443 ConstantExpr *CE, unsigned NewAddrSpace,
444 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000445 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000446 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000447
448 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000449 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000450 // Therefore, the inferred address space must be the source space according
451 // to our algorithm.
452 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
453 NewAddrSpace);
454 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
455 }
456
Matt Arsenaultc18b6772017-02-17 00:32:19 +0000457 if (CE->getOpcode() == Instruction::BitCast) {
458 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
459 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
460 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
461 }
462
Matt Arsenault30083602017-02-02 03:37:22 +0000463 if (CE->getOpcode() == Instruction::Select) {
464 Constant *Src0 = CE->getOperand(1);
465 Constant *Src1 = CE->getOperand(2);
466 if (Src0->getType()->getPointerAddressSpace() ==
467 Src1->getType()->getPointerAddressSpace()) {
468
469 return ConstantExpr::getSelect(
470 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
471 ConstantExpr::getAddrSpaceCast(Src1, TargetType));
472 }
473 }
474
Jingyue Wu13755602016-03-20 20:59:20 +0000475 // Computes the operands of the new constant expression.
476 SmallVector<Constant *, 4> NewOperands;
477 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
478 Constant *Operand = CE->getOperand(Index);
479 // If the address space of `Operand` needs to be modified, the new operand
480 // with the new address space should already be in ValueWithNewAddrSpace
481 // because (1) the constant expressions we consider (i.e. addrspacecast,
482 // bitcast, and getelementptr) do not incur cycles in the data flow graph
483 // and (2) this function is called on constant expressions in postorder.
484 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
485 NewOperands.push_back(cast<Constant>(NewOperand));
486 } else {
487 // Otherwise, reuses the old operand.
488 NewOperands.push_back(Operand);
489 }
490 }
491
492 if (CE->getOpcode() == Instruction::GetElementPtr) {
493 // Needs to specify the source type while constructing a getelementptr
494 // constant expression.
495 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000496 NewOperands, TargetType, /*OnlyIfReduced=*/false,
497 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000498 }
499
500 return CE->getWithOperands(NewOperands, TargetType);
501}
502
503// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000504// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000505// expression whose address space needs to be modified, in postorder.
506//
507// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000508Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000509 Value *V, unsigned NewAddrSpace,
510 const ValueToValueMapTy &ValueWithNewAddrSpace,
511 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000512 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000513 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000514 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000515
516 if (Instruction *I = dyn_cast<Instruction>(V)) {
517 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000518 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000519 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
520 if (NewI->getParent() == nullptr) {
521 NewI->insertBefore(I);
522 NewI->takeName(I);
523 }
524 }
525 return NewV;
526 }
527
528 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000529 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000530}
531
532// Defines the join operation on the address space lattice (see the file header
533// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000534unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
535 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000536 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
537 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000538
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000539 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000540 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000541 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000542 return AS1;
543
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000544 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000545 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000546}
547
Matt Arsenault850657a2017-01-31 01:10:58 +0000548bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000549 if (skipFunction(F))
550 return false;
551
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000552 const TargetTransformInfo &TTI =
553 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Matt Arsenault42b64782017-01-30 23:02:12 +0000554 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000555 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000556 return false;
557
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000558 // Collects all flat address expressions in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000559 std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000560
561 // Runs a data-flow analysis to refine the address spaces of every expression
562 // in Postorder.
563 ValueToAddrSpaceMapTy InferredAddrSpace;
564 inferAddressSpaces(Postorder, &InferredAddrSpace);
565
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000566 // Changes the address spaces of the flat address expressions who are inferred
567 // to point to a specific address space.
Jingyue Wu13755602016-03-20 20:59:20 +0000568 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
569}
570
Matt Arsenault850657a2017-01-31 01:10:58 +0000571void InferAddressSpaces::inferAddressSpaces(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000572 const std::vector<Value *> &Postorder,
573 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000574 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
575 // Initially, all expressions are in the uninitialized address space.
576 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000577 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000578
579 while (!Worklist.empty()) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000580 Value *V = Worklist.pop_back_val();
Jingyue Wu13755602016-03-20 20:59:20 +0000581
582 // Tries to update the address space of the stack top according to the
583 // address spaces of its operands.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000584 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000585 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
586 if (!NewAS.hasValue())
587 continue;
588 // If any updates are made, grabs its users to the worklist because
589 // their address spaces can also be possibly updated.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000590 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000591 (*InferredAddrSpace)[V] = NewAS.getValue();
592
593 for (Value *User : V->users()) {
594 // Skip if User is already in the worklist.
595 if (Worklist.count(User))
596 continue;
597
598 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000599 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000600 // expressions, which are those in InferredAddrSpace.
601 if (Pos == InferredAddrSpace->end())
602 continue;
603
604 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000605 // path. Therefore, nothing to do if User is already inferred as flat (the
606 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000607 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000608 continue;
609
610 Worklist.insert(User);
611 }
612 }
613}
614
Matt Arsenault850657a2017-01-31 01:10:58 +0000615Optional<unsigned> InferAddressSpaces::updateAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000616 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000617 assert(InferredAddrSpace.count(&V));
618
619 // The new inferred address space equals the join of the address spaces
620 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000621 unsigned NewAS = UninitializedAddressSpace;
Matt Arsenault850657a2017-01-31 01:10:58 +0000622
Matt Arsenault30083602017-02-02 03:37:22 +0000623 const Operator &Op = cast<Operator>(V);
624 if (Op.getOpcode() == Instruction::Select) {
625 Value *Src0 = Op.getOperand(1);
626 Value *Src1 = Op.getOperand(2);
627
628 auto I = InferredAddrSpace.find(Src0);
629 unsigned Src0AS = (I != InferredAddrSpace.end()) ?
630 I->second : Src0->getType()->getPointerAddressSpace();
631
632 auto J = InferredAddrSpace.find(Src1);
633 unsigned Src1AS = (J != InferredAddrSpace.end()) ?
634 J->second : Src1->getType()->getPointerAddressSpace();
635
636 auto *C0 = dyn_cast<Constant>(Src0);
637 auto *C1 = dyn_cast<Constant>(Src1);
638
639 // If one of the inputs is a constant, we may be able to do a constant
640 // addrspacecast of it. Defer inferring the address space until the input
641 // address space is known.
642 if ((C1 && Src0AS == UninitializedAddressSpace) ||
643 (C0 && Src1AS == UninitializedAddressSpace))
644 return None;
645
646 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
647 NewAS = Src1AS;
648 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
649 NewAS = Src0AS;
650 else
651 NewAS = joinAddressSpaces(Src0AS, Src1AS);
652 } else {
653 for (Value *PtrOperand : getPointerOperands(V)) {
654 auto I = InferredAddrSpace.find(PtrOperand);
655 unsigned OperandAS = I != InferredAddrSpace.end() ?
656 I->second : PtrOperand->getType()->getPointerAddressSpace();
657
658 // join(flat, *) = flat. So we can break if NewAS is already flat.
659 NewAS = joinAddressSpaces(NewAS, OperandAS);
660 if (NewAS == FlatAddrSpace)
661 break;
662 }
Jingyue Wu13755602016-03-20 20:59:20 +0000663 }
664
665 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000666 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000667 if (OldAS == NewAS)
668 return None;
669 return NewAS;
670}
671
Matt Arsenault6c907a92017-01-31 01:40:38 +0000672/// \p returns true if \p U is the pointer operand of a memory instruction with
673/// a single pointer operand that can have its address space changed by simply
674/// mutating the use to a new value.
675static bool isSimplePointerUseValidToReplace(Use &U) {
676 User *Inst = U.getUser();
677 unsigned OpNo = U.getOperandNo();
678
679 if (auto *LI = dyn_cast<LoadInst>(Inst))
680 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
681
682 if (auto *SI = dyn_cast<StoreInst>(Inst))
683 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
684
685 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
686 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
687
688 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
689 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
690 !CmpX->isVolatile();
691 }
692
693 return false;
694}
695
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000696/// Update memory intrinsic uses that require more complex processing than
697/// simple memory instructions. Thse require re-mangling and may have multiple
698/// pointer operands.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000699static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
700 Value *NewV) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000701 IRBuilder<> B(MI);
702 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
703 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
704 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
705
706 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
707 B.CreateMemSet(NewV, MSI->getValue(),
708 MSI->getLength(), MSI->getAlignment(),
709 false, // isVolatile
710 TBAA, ScopeMD, NoAliasMD);
711 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
712 Value *Src = MTI->getRawSource();
713 Value *Dest = MTI->getRawDest();
714
715 // Be careful in case this is a self-to-self copy.
716 if (Src == OldV)
717 Src = NewV;
718
719 if (Dest == OldV)
720 Dest = NewV;
721
722 if (isa<MemCpyInst>(MTI)) {
723 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
724 B.CreateMemCpy(Dest, Src, MTI->getLength(),
725 MTI->getAlignment(),
726 false, // isVolatile
727 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
728 } else {
729 assert(isa<MemMoveInst>(MTI));
730 B.CreateMemMove(Dest, Src, MTI->getLength(),
731 MTI->getAlignment(),
732 false, // isVolatile
733 TBAA, ScopeMD, NoAliasMD);
734 }
735 } else
736 llvm_unreachable("unhandled MemIntrinsic");
737
738 MI->eraseFromParent();
739 return true;
740}
741
Matt Arsenault72f259b2017-01-31 02:17:32 +0000742// \p returns true if it is OK to change the address space of constant \p C with
743// a ConstantExpr addrspacecast.
744bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
Matt Arsenault30083602017-02-02 03:37:22 +0000745 assert(NewAS != UninitializedAddressSpace);
746
Matt Arsenault2a46d812017-01-31 23:48:40 +0000747 unsigned SrcAS = C->getType()->getPointerAddressSpace();
748 if (SrcAS == NewAS || isa<UndefValue>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000749 return true;
750
Matt Arsenault2a46d812017-01-31 23:48:40 +0000751 // Prevent illegal casts between different non-flat address spaces.
752 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
753 return false;
754
755 if (isa<ConstantPointerNull>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000756 return true;
757
758 if (auto *Op = dyn_cast<Operator>(C)) {
759 // If we already have a constant addrspacecast, it should be safe to cast it
760 // off.
761 if (Op->getOpcode() == Instruction::AddrSpaceCast)
762 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
763
764 if (Op->getOpcode() == Instruction::IntToPtr &&
765 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
766 return true;
767 }
768
769 return false;
770}
771
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000772static Value::use_iterator skipToNextUser(Value::use_iterator I,
773 Value::use_iterator End) {
774 User *CurUser = I->getUser();
775 ++I;
776
777 while (I != End && I->getUser() == CurUser)
778 ++I;
779
780 return I;
781}
782
Matt Arsenault850657a2017-01-31 01:10:58 +0000783bool InferAddressSpaces::rewriteWithNewAddressSpaces(
784 const std::vector<Value *> &Postorder,
785 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000786 // For each address expression to be modified, creates a clone of it with its
787 // pointer operands converted to the new address space. Since the pointer
788 // operands are converted, the clone is naturally in the new address space by
789 // construction.
790 ValueToValueMapTy ValueWithNewAddrSpace;
791 SmallVector<const Use *, 32> UndefUsesToFix;
792 for (Value* V : Postorder) {
793 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
794 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
795 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000796 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000797 }
798 }
799
800 if (ValueWithNewAddrSpace.empty())
801 return false;
802
803 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000804 for (const Use *UndefUse : UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000805 User *V = UndefUse->getUser();
806 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
807 unsigned OperandNo = UndefUse->getOperandNo();
808 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
809 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
810 }
811
812 // Replaces the uses of the old address expressions with the new ones.
813 for (Value *V : Postorder) {
814 Value *NewV = ValueWithNewAddrSpace.lookup(V);
815 if (NewV == nullptr)
816 continue;
817
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000818 DEBUG(dbgs() << "Replacing the uses of " << *V
819 << "\n with\n " << *NewV << '\n');
820
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000821 Value::use_iterator I, E, Next;
822 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
823 Use &U = *I;
824
825 // Some users may see the same pointer operand in multiple operands. Skip
826 // to the next instruction.
827 I = skipToNextUser(I, E);
828
829 if (isSimplePointerUseValidToReplace(U)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000830 // If V is used as the pointer operand of a compatible memory operation,
831 // sets the pointer operand to NewV. This replacement does not change
832 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000833 U.set(NewV);
834 continue;
835 }
836
837 User *CurUser = U.getUser();
838 // Handle more complex cases like intrinsic that need to be remangled.
839 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
840 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
841 continue;
842 }
843
844 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
845 if (rewriteIntrinsicOperands(II, V, NewV))
846 continue;
847 }
848
849 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000850 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
851 // If we can infer that both pointers are in the same addrspace,
852 // transform e.g.
853 // %cmp = icmp eq float* %p, %q
854 // into
855 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
856
857 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
858 int SrcIdx = U.getOperandNo();
859 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
860 Value *OtherSrc = Cmp->getOperand(OtherIdx);
861
862 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
863 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
864 Cmp->setOperand(OtherIdx, OtherNewV);
865 Cmp->setOperand(SrcIdx, NewV);
866 continue;
867 }
868 }
869
870 // Even if the type mismatches, we can cast the constant.
871 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
872 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
873 Cmp->setOperand(SrcIdx, NewV);
874 Cmp->setOperand(OtherIdx,
875 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
876 continue;
877 }
878 }
879 }
880
Matt Arsenault850657a2017-01-31 01:10:58 +0000881 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000882 if (Instruction *I = dyn_cast<Instruction>(V)) {
883 BasicBlock::iterator InsertPos = std::next(I->getIterator());
884 while (isa<PHINode>(InsertPos))
885 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000886 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +0000887 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000888 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
889 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +0000890 }
891 }
892 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000893
Jingyue Wu13755602016-03-20 20:59:20 +0000894 if (V->use_empty())
895 RecursivelyDeleteTriviallyDeadInstructions(V);
896 }
897
898 return true;
899}
900
Matt Arsenault850657a2017-01-31 01:10:58 +0000901FunctionPass *llvm::createInferAddressSpacesPass() {
902 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +0000903}