blob: 681fe7178843141666a6bc34acd65e0ff90c7ef1 [file] [log] [blame]
Jingyue Wu13755602016-03-20 20:59:20 +00001//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// CUDA C/C++ includes memory space designation as variable type qualifers (such
11// as __global__ and __shared__). Knowing the space of a memory access allows
12// CUDA compilers to emit faster PTX loads and stores. For example, a load from
13// shared memory can be translated to `ld.shared` which is roughly 10% faster
14// than a generic `ld` on an NVIDIA Tesla K40c.
15//
16// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17// compilers must infer the memory space of an address expression from
18// type-qualified variables.
19//
20// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22// places only type-qualified variables in specific address spaces, and then
23// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24// (so-called the generic address space) for other instructions to use.
25//
26// For example, the Clang translates the following CUDA code
27// __shared__ float a[10];
28// float v = a[i];
29// to
30// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32// %v = load float, float* %1 ; emits ld.f32
33// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34// redirected to %0 (the generic version of @a).
35//
36// The optimization implemented in this file propagates specific address spaces
37// from type-qualified variable declarations to its users. For example, it
38// optimizes the above IR to
39// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42// codegen is able to emit ld.shared.f32 for %v.
43//
44// Address space inference works in two steps. First, it uses a data-flow
45// analysis to infer as many generic pointers as possible to point to only one
46// specific address space. In the above example, it can prove that %1 only
47// points to addrspace(3). This algorithm was published in
48// CUDA: Compiling and optimizing for a GPU platform
49// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50// ICCS 2012
51//
52// Then, address space inference replaces all refinable generic pointers with
53// equivalent specific pointers.
54//
55// The major challenge of implementing this optimization is handling PHINodes,
56// which may create loops in the data flow graph. This brings two complications.
57//
58// First, the data flow analysis in Step 1 needs to be circular. For example,
59// %generic.input = addrspacecast float addrspace(3)* %input to float*
60// loop:
61// %y = phi [ %generic.input, %y2 ]
62// %y2 = getelementptr %y, 1
63// %v = load %y2
64// br ..., label %loop, ...
65// proving %y specific requires proving both %generic.input and %y2 specific,
66// but proving %y2 specific circles back to %y. To address this complication,
67// the data flow analysis operates on a lattice:
68// uninitialized > specific address spaces > generic.
69// All address expressions (our implementation only considers phi, bitcast,
70// addrspacecast, and getelementptr) start with the uninitialized address space.
71// The monotone transfer function moves the address space of a pointer down a
72// lattice path from uninitialized to specific and then to generic. A join
73// operation of two different specific address spaces pushes the expression down
74// to the generic address space. The analysis completes once it reaches a fixed
75// point.
76//
77// Second, IR rewriting in Step 2 also needs to be circular. For example,
78// converting %y to addrspace(3) requires the compiler to know the converted
79// %y2, but converting %y2 needs the converted %y. To address this complication,
80// we break these cycles using "undef" placeholders. When converting an
81// instruction `I` to a new address space, if its operand `Op` is not converted
82// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83// For instance, our algorithm first converts %y to
84// %y' = phi float addrspace(3)* [ %input, undef ]
85// Then, it converts %y2 to
86// %y2' = getelementptr %y', 1
87// Finally, it fixes the undef in %y' so that
88// %y' = phi float addrspace(3)* [ %input, %y2' ]
89//
Jingyue Wu13755602016-03-20 20:59:20 +000090//===----------------------------------------------------------------------===//
91
Matt Arsenault850657a2017-01-31 01:10:58 +000092#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +000093#include "llvm/ADT/DenseSet.h"
94#include "llvm/ADT/Optional.h"
95#include "llvm/ADT/SetVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000096#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu13755602016-03-20 20:59:20 +000097#include "llvm/IR/Function.h"
98#include "llvm/IR/InstIterator.h"
99#include "llvm/IR/Instructions.h"
100#include "llvm/IR/Operator.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000101#include "llvm/Support/Debug.h"
102#include "llvm/Support/raw_ostream.h"
103#include "llvm/Transforms/Utils/Local.h"
104#include "llvm/Transforms/Utils/ValueMapper.h"
105
Matt Arsenault850657a2017-01-31 01:10:58 +0000106#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000107
Jingyue Wu13755602016-03-20 20:59:20 +0000108using namespace llvm;
109
110namespace {
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000111static const unsigned UninitializedAddressSpace = ~0u;
Jingyue Wu13755602016-03-20 20:59:20 +0000112
113using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114
Matt Arsenault850657a2017-01-31 01:10:58 +0000115/// \brief InferAddressSpaces
116class InferAddressSpaces: public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000117 /// Target specific address space which uses of should be replaced if
118 /// possible.
119 unsigned FlatAddrSpace;
120
Jingyue Wu13755602016-03-20 20:59:20 +0000121public:
122 static char ID;
123
Matt Arsenault850657a2017-01-31 01:10:58 +0000124 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000125
Matt Arsenault32b96002017-01-27 17:30:39 +0000126 void getAnalysisUsage(AnalysisUsage &AU) const override {
127 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000128 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000129 }
130
Jingyue Wu13755602016-03-20 20:59:20 +0000131 bool runOnFunction(Function &F) override;
132
133private:
134 // Returns the new address space of V if updated; otherwise, returns None.
135 Optional<unsigned>
136 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000138
139 // Tries to infer the specific address space of each address expression in
140 // Postorder.
141 void inferAddressSpaces(const std::vector<Value *> &Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000142 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000143
Matt Arsenault72f259b2017-01-31 02:17:32 +0000144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000146 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000148 // all flat expressions in the use-def graph of function F.
Jingyue Wu13755602016-03-20 20:59:20 +0000149 bool
150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151 const ValueToAddrSpaceMapTy &InferredAddrSpace,
Matt Arsenault42b64782017-01-30 23:02:12 +0000152 Function *F) const;
153
154 void appendsFlatAddressExpressionToPostorderStack(
155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
156 DenseSet<Value *> *Visited) const;
157
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000158 bool rewriteIntrinsicOperands(IntrinsicInst *II,
159 Value *OldV, Value *NewV) const;
160 void collectRewritableIntrinsicOperands(
161 IntrinsicInst *II,
162 std::vector<std::pair<Value *, bool>> *PostorderStack,
163 DenseSet<Value *> *Visited) const;
164
Matt Arsenault42b64782017-01-30 23:02:12 +0000165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000166
Matt Arsenault42b64782017-01-30 23:02:12 +0000167 Value *cloneValueWithNewAddressSpace(
168 Value *V, unsigned NewAddrSpace,
169 const ValueToValueMapTy &ValueWithNewAddrSpace,
170 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000172};
173} // end anonymous namespace
174
Matt Arsenault850657a2017-01-31 01:10:58 +0000175char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000176
177namespace llvm {
Matt Arsenault850657a2017-01-31 01:10:58 +0000178void initializeInferAddressSpacesPass(PassRegistry &);
Jingyue Wu13755602016-03-20 20:59:20 +0000179}
Matt Arsenault850657a2017-01-31 01:10:58 +0000180
181INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000182 false, false)
183
184// Returns true if V is an address expression.
185// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186// getelementptr operators.
187static bool isAddressExpression(const Value &V) {
188 if (!isa<Operator>(V))
189 return false;
190
191 switch (cast<Operator>(V).getOpcode()) {
192 case Instruction::PHI:
193 case Instruction::BitCast:
194 case Instruction::AddrSpaceCast:
195 case Instruction::GetElementPtr:
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000196 case Instruction::Select:
Jingyue Wu13755602016-03-20 20:59:20 +0000197 return true;
198 default:
199 return false;
200 }
201}
202
203// Returns the pointer operands of V.
204//
205// Precondition: V is an address expression.
206static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
207 assert(isAddressExpression(V));
208 const Operator& Op = cast<Operator>(V);
209 switch (Op.getOpcode()) {
210 case Instruction::PHI: {
211 auto IncomingValues = cast<PHINode>(Op).incoming_values();
212 return SmallVector<Value *, 2>(IncomingValues.begin(),
213 IncomingValues.end());
214 }
215 case Instruction::BitCast:
216 case Instruction::AddrSpaceCast:
217 case Instruction::GetElementPtr:
218 return {Op.getOperand(0)};
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000219 case Instruction::Select:
220 return {Op.getOperand(1), Op.getOperand(2)};
Jingyue Wu13755602016-03-20 20:59:20 +0000221 default:
222 llvm_unreachable("Unexpected instruction type.");
223 }
224}
225
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000226// TODO: Move logic to TTI?
227bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
228 Value *OldV,
229 Value *NewV) const {
230 Module *M = II->getParent()->getParent()->getParent();
231
232 switch (II->getIntrinsicID()) {
233 case Intrinsic::objectsize:
234 case Intrinsic::amdgcn_atomic_inc:
235 case Intrinsic::amdgcn_atomic_dec: {
236 Type *DestTy = II->getType();
237 Type *SrcTy = NewV->getType();
238 Function *NewDecl
239 = Intrinsic::getDeclaration(M, II->getIntrinsicID(), { DestTy, SrcTy });
240 II->setArgOperand(0, NewV);
241 II->setCalledFunction(NewDecl);
242 return true;
243 }
244 default:
245 return false;
246 }
247}
248
249// TODO: Move logic to TTI?
250void InferAddressSpaces::collectRewritableIntrinsicOperands(
251 IntrinsicInst *II,
252 std::vector<std::pair<Value *, bool>> *PostorderStack,
253 DenseSet<Value *> *Visited) const {
254 switch (II->getIntrinsicID()) {
255 case Intrinsic::objectsize:
256 case Intrinsic::amdgcn_atomic_inc:
257 case Intrinsic::amdgcn_atomic_dec:
258 appendsFlatAddressExpressionToPostorderStack(
259 II->getArgOperand(0), PostorderStack, Visited);
260 break;
261 default:
262 break;
263 }
264}
265
266// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000267// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000268// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000269void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
270 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
271 DenseSet<Value *> *Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000272 assert(V->getType()->isPointerTy());
273 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000274 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000275 if (Visited->insert(V).second)
276 PostorderStack->push_back(std::make_pair(V, false));
277 }
278}
279
Matt Arsenault42b64782017-01-30 23:02:12 +0000280// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000281// ordered in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000282std::vector<Value *>
Matt Arsenault850657a2017-01-31 01:10:58 +0000283InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000284 // This function implements a non-recursive postorder traversal of a partial
285 // use-def graph of function F.
286 std::vector<std::pair<Value*, bool>> PostorderStack;
287 // The set of visited expressions.
288 DenseSet<Value*> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000289
290 auto PushPtrOperand = [&](Value *Ptr) {
291 appendsFlatAddressExpressionToPostorderStack(
292 Ptr, &PostorderStack, &Visited);
293 };
294
Jingyue Wu13755602016-03-20 20:59:20 +0000295 // We only explore address expressions that are reachable from loads and
296 // stores for now because we aim at generating faster loads and stores.
297 for (Instruction &I : instructions(F)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000298 if (auto *LI = dyn_cast<LoadInst>(&I))
299 PushPtrOperand(LI->getPointerOperand());
300 else if (auto *SI = dyn_cast<StoreInst>(&I))
301 PushPtrOperand(SI->getPointerOperand());
302 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
303 PushPtrOperand(RMW->getPointerOperand());
304 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
305 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000306 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
307 // For memset/memcpy/memmove, any pointer operand can be replaced.
308 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000309
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000310 // Handle 2nd operand for memcpy/memmove.
311 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
312 PushPtrOperand(MTI->getRawSource());
313 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
314 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000315 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
316 // FIXME: Handle vectors of pointers
317 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
318 PushPtrOperand(Cmp->getOperand(0));
319 PushPtrOperand(Cmp->getOperand(1));
320 }
321 }
Jingyue Wu13755602016-03-20 20:59:20 +0000322 }
323
324 std::vector<Value *> Postorder; // The resultant postorder.
325 while (!PostorderStack.empty()) {
326 // If the operands of the expression on the top are already explored,
327 // adds that expression to the resultant postorder.
328 if (PostorderStack.back().second) {
329 Postorder.push_back(PostorderStack.back().first);
330 PostorderStack.pop_back();
331 continue;
332 }
333 // Otherwise, adds its operands to the stack and explores them.
334 PostorderStack.back().second = true;
335 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
Matt Arsenault42b64782017-01-30 23:02:12 +0000336 appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault850657a2017-01-31 01:10:58 +0000337 PtrOperand, &PostorderStack, &Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000338 }
339 }
340 return Postorder;
341}
342
343// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
344// of OperandUse.get() in the new address space. If the clone is not ready yet,
345// returns an undef in the new address space as a placeholder.
346static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000347 const Use &OperandUse, unsigned NewAddrSpace,
348 const ValueToValueMapTy &ValueWithNewAddrSpace,
349 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000350 Value *Operand = OperandUse.get();
351 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
352 return NewOperand;
353
354 UndefUsesToFix->push_back(&OperandUse);
355 return UndefValue::get(
Matt Arsenault850657a2017-01-31 01:10:58 +0000356 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
Jingyue Wu13755602016-03-20 20:59:20 +0000357}
358
359// Returns a clone of `I` with its operands converted to those specified in
360// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
361// operand whose address space needs to be modified might not exist in
362// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
363// adds that operand use to UndefUsesToFix so that caller can fix them later.
364//
365// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
366// from a pointer whose type already matches. Therefore, this function returns a
367// Value* instead of an Instruction*.
368static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000369 Instruction *I, unsigned NewAddrSpace,
370 const ValueToValueMapTy &ValueWithNewAddrSpace,
371 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000372 Type *NewPtrType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000373 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000374
375 if (I->getOpcode() == Instruction::AddrSpaceCast) {
376 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000377 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000378 // Therefore, the inferred address space must be the source space, according
379 // to our algorithm.
380 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
381 if (Src->getType() != NewPtrType)
382 return new BitCastInst(Src, NewPtrType);
383 return Src;
384 }
385
386 // Computes the converted pointer operands.
387 SmallVector<Value *, 4> NewPointerOperands;
388 for (const Use &OperandUse : I->operands()) {
389 if (!OperandUse.get()->getType()->isPointerTy())
390 NewPointerOperands.push_back(nullptr);
391 else
392 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000393 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000394 }
395
396 switch (I->getOpcode()) {
397 case Instruction::BitCast:
398 return new BitCastInst(NewPointerOperands[0], NewPtrType);
399 case Instruction::PHI: {
400 assert(I->getType()->isPointerTy());
401 PHINode *PHI = cast<PHINode>(I);
402 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
403 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
404 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
405 NewPHI->addIncoming(NewPointerOperands[OperandNo],
406 PHI->getIncomingBlock(Index));
407 }
408 return NewPHI;
409 }
410 case Instruction::GetElementPtr: {
411 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
412 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenault850657a2017-01-31 01:10:58 +0000413 GEP->getSourceElementType(), NewPointerOperands[0],
414 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000415 NewGEP->setIsInBounds(GEP->isInBounds());
416 return NewGEP;
417 }
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000418 case Instruction::Select: {
419 assert(I->getType()->isPointerTy());
420 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
421 NewPointerOperands[2], "", nullptr, I);
422 }
Jingyue Wu13755602016-03-20 20:59:20 +0000423 default:
424 llvm_unreachable("Unexpected opcode");
425 }
426}
427
428// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
429// constant expression `CE` with its operands replaced as specified in
430// ValueWithNewAddrSpace.
431static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000432 ConstantExpr *CE, unsigned NewAddrSpace,
433 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000434 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000435 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000436
437 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000438 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000439 // Therefore, the inferred address space must be the source space according
440 // to our algorithm.
441 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
442 NewAddrSpace);
443 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
444 }
445
446 // Computes the operands of the new constant expression.
447 SmallVector<Constant *, 4> NewOperands;
448 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
449 Constant *Operand = CE->getOperand(Index);
450 // If the address space of `Operand` needs to be modified, the new operand
451 // with the new address space should already be in ValueWithNewAddrSpace
452 // because (1) the constant expressions we consider (i.e. addrspacecast,
453 // bitcast, and getelementptr) do not incur cycles in the data flow graph
454 // and (2) this function is called on constant expressions in postorder.
455 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
456 NewOperands.push_back(cast<Constant>(NewOperand));
457 } else {
458 // Otherwise, reuses the old operand.
459 NewOperands.push_back(Operand);
460 }
461 }
462
463 if (CE->getOpcode() == Instruction::GetElementPtr) {
464 // Needs to specify the source type while constructing a getelementptr
465 // constant expression.
466 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000467 NewOperands, TargetType, /*OnlyIfReduced=*/false,
468 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000469 }
470
471 return CE->getWithOperands(NewOperands, TargetType);
472}
473
474// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000475// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000476// expression whose address space needs to be modified, in postorder.
477//
478// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000479Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000480 Value *V, unsigned NewAddrSpace,
481 const ValueToValueMapTy &ValueWithNewAddrSpace,
482 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000483 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000484 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000485 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000486
487 if (Instruction *I = dyn_cast<Instruction>(V)) {
488 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000489 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000490 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
491 if (NewI->getParent() == nullptr) {
492 NewI->insertBefore(I);
493 NewI->takeName(I);
494 }
495 }
496 return NewV;
497 }
498
499 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000500 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000501}
502
503// Defines the join operation on the address space lattice (see the file header
504// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000505unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
506 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000507 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
508 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000509
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000510 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000511 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000512 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000513 return AS1;
514
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000515 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000516 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000517}
518
Matt Arsenault850657a2017-01-31 01:10:58 +0000519bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000520 if (skipFunction(F))
521 return false;
522
Matt Arsenault42b64782017-01-30 23:02:12 +0000523 const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
524 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000525 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000526 return false;
527
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000528 // Collects all flat address expressions in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000529 std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000530
531 // Runs a data-flow analysis to refine the address spaces of every expression
532 // in Postorder.
533 ValueToAddrSpaceMapTy InferredAddrSpace;
534 inferAddressSpaces(Postorder, &InferredAddrSpace);
535
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000536 // Changes the address spaces of the flat address expressions who are inferred
537 // to point to a specific address space.
Jingyue Wu13755602016-03-20 20:59:20 +0000538 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
539}
540
Matt Arsenault850657a2017-01-31 01:10:58 +0000541void InferAddressSpaces::inferAddressSpaces(
542 const std::vector<Value *> &Postorder,
543 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000544 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
545 // Initially, all expressions are in the uninitialized address space.
546 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000547 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000548
549 while (!Worklist.empty()) {
550 Value* V = Worklist.pop_back_val();
551
552 // Tries to update the address space of the stack top according to the
553 // address spaces of its operands.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000554 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000555 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
556 if (!NewAS.hasValue())
557 continue;
558 // If any updates are made, grabs its users to the worklist because
559 // their address spaces can also be possibly updated.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000560 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000561 (*InferredAddrSpace)[V] = NewAS.getValue();
562
563 for (Value *User : V->users()) {
564 // Skip if User is already in the worklist.
565 if (Worklist.count(User))
566 continue;
567
568 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000569 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000570 // expressions, which are those in InferredAddrSpace.
571 if (Pos == InferredAddrSpace->end())
572 continue;
573
574 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000575 // path. Therefore, nothing to do if User is already inferred as flat (the
576 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000577 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000578 continue;
579
580 Worklist.insert(User);
581 }
582 }
583}
584
Matt Arsenault850657a2017-01-31 01:10:58 +0000585Optional<unsigned> InferAddressSpaces::updateAddressSpace(
586 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000587 assert(InferredAddrSpace.count(&V));
588
589 // The new inferred address space equals the join of the address spaces
590 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000591 unsigned NewAS = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000592 for (Value *PtrOperand : getPointerOperands(V)) {
Matt Arsenault517a2902017-01-31 23:48:44 +0000593 auto I = InferredAddrSpace.find(PtrOperand);
594 unsigned OperandAS = I != InferredAddrSpace.end() ?
595 I->second : PtrOperand->getType()->getPointerAddressSpace();
Matt Arsenault850657a2017-01-31 01:10:58 +0000596
597 // join(flat, *) = flat. So we can break if NewAS is already flat.
Matt Arsenault517a2902017-01-31 23:48:44 +0000598 NewAS = joinAddressSpaces(NewAS, OperandAS);
Matt Arsenault42b64782017-01-30 23:02:12 +0000599 if (NewAS == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000600 break;
601 }
602
603 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000604 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000605 if (OldAS == NewAS)
606 return None;
607 return NewAS;
608}
609
Matt Arsenault6c907a92017-01-31 01:40:38 +0000610/// \p returns true if \p U is the pointer operand of a memory instruction with
611/// a single pointer operand that can have its address space changed by simply
612/// mutating the use to a new value.
613static bool isSimplePointerUseValidToReplace(Use &U) {
614 User *Inst = U.getUser();
615 unsigned OpNo = U.getOperandNo();
616
617 if (auto *LI = dyn_cast<LoadInst>(Inst))
618 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
619
620 if (auto *SI = dyn_cast<StoreInst>(Inst))
621 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
622
623 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
624 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
625
626 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
627 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
628 !CmpX->isVolatile();
629 }
630
631 return false;
632}
633
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000634/// Update memory intrinsic uses that require more complex processing than
635/// simple memory instructions. Thse require re-mangling and may have multiple
636/// pointer operands.
637static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI,
638 Value *OldV, Value *NewV) {
639 IRBuilder<> B(MI);
640 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
641 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
642 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
643
644 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
645 B.CreateMemSet(NewV, MSI->getValue(),
646 MSI->getLength(), MSI->getAlignment(),
647 false, // isVolatile
648 TBAA, ScopeMD, NoAliasMD);
649 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
650 Value *Src = MTI->getRawSource();
651 Value *Dest = MTI->getRawDest();
652
653 // Be careful in case this is a self-to-self copy.
654 if (Src == OldV)
655 Src = NewV;
656
657 if (Dest == OldV)
658 Dest = NewV;
659
660 if (isa<MemCpyInst>(MTI)) {
661 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
662 B.CreateMemCpy(Dest, Src, MTI->getLength(),
663 MTI->getAlignment(),
664 false, // isVolatile
665 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
666 } else {
667 assert(isa<MemMoveInst>(MTI));
668 B.CreateMemMove(Dest, Src, MTI->getLength(),
669 MTI->getAlignment(),
670 false, // isVolatile
671 TBAA, ScopeMD, NoAliasMD);
672 }
673 } else
674 llvm_unreachable("unhandled MemIntrinsic");
675
676 MI->eraseFromParent();
677 return true;
678}
679
Matt Arsenault72f259b2017-01-31 02:17:32 +0000680// \p returns true if it is OK to change the address space of constant \p C with
681// a ConstantExpr addrspacecast.
682bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
Matt Arsenault2a46d812017-01-31 23:48:40 +0000683 unsigned SrcAS = C->getType()->getPointerAddressSpace();
684 if (SrcAS == NewAS || isa<UndefValue>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000685 return true;
686
Matt Arsenault2a46d812017-01-31 23:48:40 +0000687 // Prevent illegal casts between different non-flat address spaces.
688 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
689 return false;
690
691 if (isa<ConstantPointerNull>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000692 return true;
693
694 if (auto *Op = dyn_cast<Operator>(C)) {
695 // If we already have a constant addrspacecast, it should be safe to cast it
696 // off.
697 if (Op->getOpcode() == Instruction::AddrSpaceCast)
698 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
699
700 if (Op->getOpcode() == Instruction::IntToPtr &&
701 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
702 return true;
703 }
704
705 return false;
706}
707
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000708static Value::use_iterator skipToNextUser(Value::use_iterator I,
709 Value::use_iterator End) {
710 User *CurUser = I->getUser();
711 ++I;
712
713 while (I != End && I->getUser() == CurUser)
714 ++I;
715
716 return I;
717}
718
Matt Arsenault850657a2017-01-31 01:10:58 +0000719bool InferAddressSpaces::rewriteWithNewAddressSpaces(
720 const std::vector<Value *> &Postorder,
721 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000722 // For each address expression to be modified, creates a clone of it with its
723 // pointer operands converted to the new address space. Since the pointer
724 // operands are converted, the clone is naturally in the new address space by
725 // construction.
726 ValueToValueMapTy ValueWithNewAddrSpace;
727 SmallVector<const Use *, 32> UndefUsesToFix;
728 for (Value* V : Postorder) {
729 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
730 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
731 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000732 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000733 }
734 }
735
736 if (ValueWithNewAddrSpace.empty())
737 return false;
738
739 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
740 for (const Use* UndefUse : UndefUsesToFix) {
741 User *V = UndefUse->getUser();
742 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
743 unsigned OperandNo = UndefUse->getOperandNo();
744 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
745 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
746 }
747
748 // Replaces the uses of the old address expressions with the new ones.
749 for (Value *V : Postorder) {
750 Value *NewV = ValueWithNewAddrSpace.lookup(V);
751 if (NewV == nullptr)
752 continue;
753
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000754 DEBUG(dbgs() << "Replacing the uses of " << *V
755 << "\n with\n " << *NewV << '\n');
756
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000757 Value::use_iterator I, E, Next;
758 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
759 Use &U = *I;
760
761 // Some users may see the same pointer operand in multiple operands. Skip
762 // to the next instruction.
763 I = skipToNextUser(I, E);
764
765 if (isSimplePointerUseValidToReplace(U)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000766 // If V is used as the pointer operand of a compatible memory operation,
767 // sets the pointer operand to NewV. This replacement does not change
768 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000769 U.set(NewV);
770 continue;
771 }
772
773 User *CurUser = U.getUser();
774 // Handle more complex cases like intrinsic that need to be remangled.
775 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
776 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
777 continue;
778 }
779
780 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
781 if (rewriteIntrinsicOperands(II, V, NewV))
782 continue;
783 }
784
785 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000786 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
787 // If we can infer that both pointers are in the same addrspace,
788 // transform e.g.
789 // %cmp = icmp eq float* %p, %q
790 // into
791 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
792
793 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
794 int SrcIdx = U.getOperandNo();
795 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
796 Value *OtherSrc = Cmp->getOperand(OtherIdx);
797
798 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
799 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
800 Cmp->setOperand(OtherIdx, OtherNewV);
801 Cmp->setOperand(SrcIdx, NewV);
802 continue;
803 }
804 }
805
806 // Even if the type mismatches, we can cast the constant.
807 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
808 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
809 Cmp->setOperand(SrcIdx, NewV);
810 Cmp->setOperand(OtherIdx,
811 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
812 continue;
813 }
814 }
815 }
816
Matt Arsenault850657a2017-01-31 01:10:58 +0000817 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000818 if (Instruction *I = dyn_cast<Instruction>(V)) {
819 BasicBlock::iterator InsertPos = std::next(I->getIterator());
820 while (isa<PHINode>(InsertPos))
821 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000822 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +0000823 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000824 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
825 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +0000826 }
827 }
828 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000829
Jingyue Wu13755602016-03-20 20:59:20 +0000830 if (V->use_empty())
831 RecursivelyDeleteTriviallyDeadInstructions(V);
832 }
833
834 return true;
835}
836
Matt Arsenault850657a2017-01-31 01:10:58 +0000837FunctionPass *llvm::createInferAddressSpacesPass() {
838 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +0000839}