blob: 4247d8a6e295606fa58fdd389545e86b71289ff3 [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner99f48c62002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattnerdd1a86d2004-05-04 15:19:33 +000015// %Y = add int %X, 1
16// %Z = add int %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattnerdd1a86d2004-05-04 15:19:33 +000018// %Z = add int %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000027// 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All SetCC instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner7d2a5392004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner00648e12004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattner04805fa2002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner1085bdf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner0f1d8a32003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattnerf4ad1652003-11-02 05:57:39 +000042#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Transforms/Utils/Local.h"
Chris Lattner69193f92004-04-05 01:30:19 +000045#include "llvm/Support/CallSite.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000046#include "llvm/Support/Debug.h"
Chris Lattner69193f92004-04-05 01:30:19 +000047#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner260ab202002-04-18 17:39:14 +000048#include "llvm/Support/InstVisitor.h"
Chris Lattner22d00a82005-08-02 19:16:58 +000049#include "llvm/Support/MathExtras.h"
Chris Lattnerd4252a72004-07-30 07:50:03 +000050#include "llvm/Support/PatternMatch.h"
Chris Lattner4ed40f72005-07-07 20:40:38 +000051#include "llvm/ADT/DepthFirstIterator.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000052#include "llvm/ADT/Statistic.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000053#include "llvm/ADT/STLExtras.h"
Chris Lattner053c0932002-05-14 15:24:07 +000054#include <algorithm>
Chris Lattnerc597b8a2006-01-22 23:32:06 +000055#include <iostream>
Chris Lattner8427bff2003-12-07 01:24:23 +000056using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000057using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000058
Chris Lattner260ab202002-04-18 17:39:14 +000059namespace {
Chris Lattnerbf3a0992002-10-01 22:38:41 +000060 Statistic<> NumCombined ("instcombine", "Number of insts combined");
61 Statistic<> NumConstProp("instcombine", "Number of constant folds");
62 Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
Chris Lattner5997cf92006-02-08 03:25:32 +000063 Statistic<> NumDeadStore("instcombine", "Number of dead stores eliminated");
Chris Lattner39c98bb2004-12-08 23:43:58 +000064 Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000065
Chris Lattnerc8e66542002-04-27 06:56:12 +000066 class InstCombiner : public FunctionPass,
Chris Lattner260ab202002-04-18 17:39:14 +000067 public InstVisitor<InstCombiner, Instruction*> {
68 // Worklist of all of the instructions that need to be simplified.
69 std::vector<Instruction*> WorkList;
Chris Lattnerf4ad1652003-11-02 05:57:39 +000070 TargetData *TD;
Chris Lattner260ab202002-04-18 17:39:14 +000071
Chris Lattner51ea1272004-02-28 05:22:00 +000072 /// AddUsersToWorkList - When an instruction is simplified, add all users of
73 /// the instruction to the work lists because they might get more simplified
74 /// now.
75 ///
Chris Lattner2590e512006-02-07 06:56:34 +000076 void AddUsersToWorkList(Value &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +000077 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattner260ab202002-04-18 17:39:14 +000078 UI != UE; ++UI)
79 WorkList.push_back(cast<Instruction>(*UI));
80 }
81
Chris Lattner51ea1272004-02-28 05:22:00 +000082 /// AddUsesToWorkList - When an instruction is simplified, add operands to
83 /// the work lists because they might get more simplified now.
84 ///
85 void AddUsesToWorkList(Instruction &I) {
86 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
87 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
88 WorkList.push_back(Op);
89 }
90
Chris Lattner99f48c62002-09-02 04:59:56 +000091 // removeFromWorkList - remove all instances of I from the worklist.
92 void removeFromWorkList(Instruction *I);
Chris Lattner260ab202002-04-18 17:39:14 +000093 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000094 virtual bool runOnFunction(Function &F);
Chris Lattner260ab202002-04-18 17:39:14 +000095
Chris Lattnerf12cc842002-04-28 21:27:06 +000096 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerf4ad1652003-11-02 05:57:39 +000097 AU.addRequired<TargetData>();
Chris Lattner820d9712002-10-21 20:00:28 +000098 AU.setPreservesCFG();
Chris Lattnerf12cc842002-04-28 21:27:06 +000099 }
100
Chris Lattner69193f92004-04-05 01:30:19 +0000101 TargetData &getTargetData() const { return *TD; }
102
Chris Lattner260ab202002-04-18 17:39:14 +0000103 // Visitation implementation - Implement instruction combining for different
104 // instruction types. The semantics are as follows:
105 // Return Value:
106 // null - No change was made
Chris Lattnere6794492002-08-12 21:17:25 +0000107 // I - Change was made, I is still valid, I may be dead though
Chris Lattner260ab202002-04-18 17:39:14 +0000108 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanb1c93172005-04-21 23:48:37 +0000109 //
Chris Lattner113f4f42002-06-25 16:13:24 +0000110 Instruction *visitAdd(BinaryOperator &I);
111 Instruction *visitSub(BinaryOperator &I);
112 Instruction *visitMul(BinaryOperator &I);
113 Instruction *visitDiv(BinaryOperator &I);
114 Instruction *visitRem(BinaryOperator &I);
115 Instruction *visitAnd(BinaryOperator &I);
116 Instruction *visitOr (BinaryOperator &I);
117 Instruction *visitXor(BinaryOperator &I);
Chris Lattnerd1f46d32005-04-24 06:59:08 +0000118 Instruction *visitSetCondInst(SetCondInst &I);
119 Instruction *visitSetCondInstWithCastAndCast(SetCondInst &SCI);
120
Chris Lattner0798af32005-01-13 20:14:25 +0000121 Instruction *FoldGEPSetCC(User *GEPLHS, Value *RHS,
122 Instruction::BinaryOps Cond, Instruction &I);
Chris Lattnere8d6c602003-03-10 19:16:08 +0000123 Instruction *visitShiftInst(ShiftInst &I);
Chris Lattner14553932006-01-06 07:12:35 +0000124 Instruction *FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
125 ShiftInst &I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000126 Instruction *visitCastInst(CastInst &CI);
Chris Lattner411336f2005-01-19 21:50:18 +0000127 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
128 Instruction *FI);
Chris Lattnerb909e8b2004-03-12 05:52:32 +0000129 Instruction *visitSelectInst(SelectInst &CI);
Chris Lattner970c33a2003-06-19 17:00:31 +0000130 Instruction *visitCallInst(CallInst &CI);
131 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner113f4f42002-06-25 16:13:24 +0000132 Instruction *visitPHINode(PHINode &PN);
133 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner1085bdf2002-11-04 16:18:53 +0000134 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner8427bff2003-12-07 01:24:23 +0000135 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner0f1d8a32003-06-26 05:06:25 +0000136 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner31f486c2005-01-31 05:36:43 +0000137 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattner9eef8a72003-06-04 04:46:00 +0000138 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner4c9c20a2004-07-03 00:26:11 +0000139 Instruction *visitSwitchInst(SwitchInst &SI);
Robert Bocchinoa8352962006-01-13 22:48:06 +0000140 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattner260ab202002-04-18 17:39:14 +0000141
142 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner113f4f42002-06-25 16:13:24 +0000143 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000144
Chris Lattner970c33a2003-06-19 17:00:31 +0000145 private:
Chris Lattneraec3d942003-10-07 22:32:43 +0000146 Instruction *visitCallSite(CallSite CS);
Chris Lattner970c33a2003-06-19 17:00:31 +0000147 bool transformConstExprCastCall(CallSite CS);
148
Chris Lattner69193f92004-04-05 01:30:19 +0000149 public:
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000150 // InsertNewInstBefore - insert an instruction New before instruction Old
151 // in the program. Add the new instruction to the worklist.
152 //
Chris Lattner623826c2004-09-28 21:48:02 +0000153 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattner65217ff2002-08-23 18:32:43 +0000154 assert(New && New->getParent() == 0 &&
155 "New instruction already inserted into a basic block!");
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000156 BasicBlock *BB = Old.getParent();
157 BB->getInstList().insert(&Old, New); // Insert inst
158 WorkList.push_back(New); // Add to worklist
Chris Lattnere79e8542004-02-23 06:38:22 +0000159 return New;
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000160 }
161
Chris Lattner7e794272004-09-24 15:21:34 +0000162 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
163 /// This also adds the cast to the worklist. Finally, this returns the
164 /// cast.
165 Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
166 if (V->getType() == Ty) return V;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000167
Chris Lattner7e794272004-09-24 15:21:34 +0000168 Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
169 WorkList.push_back(C);
170 return C;
171 }
172
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000173 // ReplaceInstUsesWith - This method is to be used when an instruction is
174 // found to be dead, replacable with another preexisting expression. Here
175 // we add all uses of I to the worklist, replace all uses of I with the new
176 // value, then return I, so that the inst combiner will know that I was
177 // modified.
178 //
179 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner51ea1272004-02-28 05:22:00 +0000180 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner8953b902004-04-05 02:10:19 +0000181 if (&I != V) {
182 I.replaceAllUsesWith(V);
183 return &I;
184 } else {
185 // If we are replacing the instruction with itself, this must be in a
186 // segment of unreachable code, so just clobber the instruction.
Chris Lattner8ba9ec92004-10-18 02:59:09 +0000187 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner8953b902004-04-05 02:10:19 +0000188 return &I;
189 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000190 }
Chris Lattner51ea1272004-02-28 05:22:00 +0000191
Chris Lattner2590e512006-02-07 06:56:34 +0000192 // UpdateValueUsesWith - This method is to be used when an value is
193 // found to be replacable with another preexisting expression or was
194 // updated. Here we add all uses of I to the worklist, replace all uses of
195 // I with the new value (unless the instruction was just updated), then
196 // return true, so that the inst combiner will know that I was modified.
197 //
198 bool UpdateValueUsesWith(Value *Old, Value *New) {
199 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
200 if (Old != New)
201 Old->replaceAllUsesWith(New);
202 if (Instruction *I = dyn_cast<Instruction>(Old))
203 WorkList.push_back(I);
Chris Lattner5b2edb12006-02-12 08:02:11 +0000204 if (Instruction *I = dyn_cast<Instruction>(New))
205 WorkList.push_back(I);
Chris Lattner2590e512006-02-07 06:56:34 +0000206 return true;
207 }
208
Chris Lattner51ea1272004-02-28 05:22:00 +0000209 // EraseInstFromFunction - When dealing with an instruction that has side
210 // effects or produces a void value, we can't rely on DCE to delete the
211 // instruction. Instead, visit methods should return the value returned by
212 // this function.
213 Instruction *EraseInstFromFunction(Instruction &I) {
214 assert(I.use_empty() && "Cannot erase instruction that is used!");
215 AddUsesToWorkList(I);
216 removeFromWorkList(&I);
Chris Lattner95307542004-11-18 21:41:39 +0000217 I.eraseFromParent();
Chris Lattner51ea1272004-02-28 05:22:00 +0000218 return 0; // Don't do anything with FI
219 }
220
Chris Lattner3ac7c262003-08-13 20:16:26 +0000221 private:
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000222 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
223 /// InsertBefore instruction. This is specialized a bit to avoid inserting
224 /// casts that are known to not do anything...
225 ///
226 Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
227 Instruction *InsertBefore);
228
Chris Lattner7fb29e12003-03-11 00:12:48 +0000229 // SimplifyCommutative - This performs a few simplifications for commutative
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000230 // operators.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000231 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerba1cb382003-09-19 17:17:26 +0000232
Chris Lattner0157e7f2006-02-11 09:31:47 +0000233 bool SimplifyDemandedBits(Value *V, uint64_t Mask,
234 uint64_t &KnownZero, uint64_t &KnownOne,
235 unsigned Depth = 0);
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000236
237 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
238 // PHI node as operand #0, see if we can fold the instruction into the PHI
239 // (which is only possible if all operands to the PHI are constants).
240 Instruction *FoldOpIntoPhi(Instruction &I);
241
Chris Lattner7515cab2004-11-14 19:13:23 +0000242 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
243 // operator and they all are only used by the PHI, PHI together their
244 // inputs, and do the operation once, to the result of the PHI.
245 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
246
Chris Lattnerba1cb382003-09-19 17:17:26 +0000247 Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
248 ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
Chris Lattneraf517572005-09-18 04:24:45 +0000249
250 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantIntegral *Mask,
251 bool isSub, Instruction &I);
Chris Lattner6862fbd2004-09-29 17:40:11 +0000252 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
253 bool Inside, Instruction &IB);
Chris Lattner216be912005-10-24 06:03:58 +0000254 Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
Chris Lattner260ab202002-04-18 17:39:14 +0000255 };
Chris Lattnerb28b6802002-07-23 18:06:35 +0000256
Chris Lattnerc8b70922002-07-26 21:12:46 +0000257 RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattner260ab202002-04-18 17:39:14 +0000258}
259
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000260// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattner81a7a232004-10-16 18:11:37 +0000261// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000262static unsigned getComplexity(Value *V) {
263 if (isa<Instruction>(V)) {
264 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattner81a7a232004-10-16 18:11:37 +0000265 return 3;
266 return 4;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000267 }
Chris Lattner81a7a232004-10-16 18:11:37 +0000268 if (isa<Argument>(V)) return 3;
269 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000270}
Chris Lattner260ab202002-04-18 17:39:14 +0000271
Chris Lattner7fb29e12003-03-11 00:12:48 +0000272// isOnlyUse - Return true if this instruction will be deleted if we stop using
273// it.
274static bool isOnlyUse(Value *V) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000275 return V->hasOneUse() || isa<Constant>(V);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000276}
277
Chris Lattnere79e8542004-02-23 06:38:22 +0000278// getPromotedType - Return the specified type promoted as it would be to pass
279// though a va_arg area...
280static const Type *getPromotedType(const Type *Ty) {
Chris Lattner97bfcea2004-06-17 18:16:02 +0000281 switch (Ty->getTypeID()) {
Chris Lattnere79e8542004-02-23 06:38:22 +0000282 case Type::SByteTyID:
283 case Type::ShortTyID: return Type::IntTy;
284 case Type::UByteTyID:
285 case Type::UShortTyID: return Type::UIntTy;
286 case Type::FloatTyID: return Type::DoubleTy;
287 default: return Ty;
288 }
289}
290
Chris Lattner567b81f2005-09-13 00:40:14 +0000291/// isCast - If the specified operand is a CastInst or a constant expr cast,
292/// return the operand value, otherwise return null.
293static Value *isCast(Value *V) {
294 if (CastInst *I = dyn_cast<CastInst>(V))
295 return I->getOperand(0);
296 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
297 if (CE->getOpcode() == Instruction::Cast)
298 return CE->getOperand(0);
299 return 0;
300}
301
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000302// SimplifyCommutative - This performs a few simplifications for commutative
303// operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000304//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000305// 1. Order operands such that they are listed from right (least complex) to
306// left (most complex). This puts constants before unary operators before
307// binary operators.
308//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000309// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
310// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000311//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000312bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000313 bool Changed = false;
314 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
315 Changed = !I.swapOperands();
Misha Brukmanb1c93172005-04-21 23:48:37 +0000316
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000317 if (!I.isAssociative()) return Changed;
318 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattner7fb29e12003-03-11 00:12:48 +0000319 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
320 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
321 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner34428442003-05-27 16:40:51 +0000322 Constant *Folded = ConstantExpr::get(I.getOpcode(),
323 cast<Constant>(I.getOperand(1)),
324 cast<Constant>(Op->getOperand(1)));
Chris Lattner7fb29e12003-03-11 00:12:48 +0000325 I.setOperand(0, Op->getOperand(0));
326 I.setOperand(1, Folded);
327 return true;
328 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
329 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
330 isOnlyUse(Op) && isOnlyUse(Op1)) {
331 Constant *C1 = cast<Constant>(Op->getOperand(1));
332 Constant *C2 = cast<Constant>(Op1->getOperand(1));
333
334 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner34428442003-05-27 16:40:51 +0000335 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000336 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
337 Op1->getOperand(0),
338 Op1->getName(), &I);
339 WorkList.push_back(New);
340 I.setOperand(0, New);
341 I.setOperand(1, Folded);
342 return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000343 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000344 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000345 return Changed;
Chris Lattner260ab202002-04-18 17:39:14 +0000346}
Chris Lattnerca081252001-12-14 16:52:21 +0000347
Chris Lattnerbb74e222003-03-10 23:06:50 +0000348// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
349// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000350//
Chris Lattnerbb74e222003-03-10 23:06:50 +0000351static inline Value *dyn_castNegVal(Value *V) {
352 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000353 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000354
Chris Lattner9ad0d552004-12-14 20:08:06 +0000355 // Constants can be considered to be negated values if they can be folded.
356 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
357 return ConstantExpr::getNeg(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000358 return 0;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000359}
360
Chris Lattnerbb74e222003-03-10 23:06:50 +0000361static inline Value *dyn_castNotVal(Value *V) {
362 if (BinaryOperator::isNot(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000363 return BinaryOperator::getNotArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000364
365 // Constants can be considered to be not'ed values...
Chris Lattnerdd65d862003-04-30 22:34:06 +0000366 if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
Chris Lattnerc8e7e292004-06-10 02:12:35 +0000367 return ConstantExpr::getNot(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000368 return 0;
369}
370
Chris Lattner7fb29e12003-03-11 00:12:48 +0000371// dyn_castFoldableMul - If this value is a multiply that can be folded into
372// other computations (because it has a constant operand), return the
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000373// non-constant operand of the multiply, and set CST to point to the multiplier.
374// Otherwise, return null.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000375//
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000376static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000377 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000378 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattner7fb29e12003-03-11 00:12:48 +0000379 if (I->getOpcode() == Instruction::Mul)
Chris Lattner970136362004-11-15 05:54:07 +0000380 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattner7fb29e12003-03-11 00:12:48 +0000381 return I->getOperand(0);
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000382 if (I->getOpcode() == Instruction::Shl)
Chris Lattner970136362004-11-15 05:54:07 +0000383 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000384 // The multiplier is really 1 << CST.
385 Constant *One = ConstantInt::get(V->getType(), 1);
386 CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
387 return I->getOperand(0);
388 }
389 }
Chris Lattner7fb29e12003-03-11 00:12:48 +0000390 return 0;
Chris Lattner3082c5a2003-02-18 19:28:33 +0000391}
Chris Lattner31ae8632002-08-14 17:51:49 +0000392
Chris Lattner0798af32005-01-13 20:14:25 +0000393/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
394/// expression, return it.
395static User *dyn_castGetElementPtr(Value *V) {
396 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
398 if (CE->getOpcode() == Instruction::GetElementPtr)
399 return cast<User>(V);
400 return false;
401}
402
Chris Lattner623826c2004-09-28 21:48:02 +0000403// AddOne, SubOne - Add or subtract a constant one from an integer constant...
Chris Lattner6862fbd2004-09-29 17:40:11 +0000404static ConstantInt *AddOne(ConstantInt *C) {
405 return cast<ConstantInt>(ConstantExpr::getAdd(C,
406 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000407}
Chris Lattner6862fbd2004-09-29 17:40:11 +0000408static ConstantInt *SubOne(ConstantInt *C) {
409 return cast<ConstantInt>(ConstantExpr::getSub(C,
410 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000411}
412
Chris Lattner0157e7f2006-02-11 09:31:47 +0000413/// GetConstantInType - Return a ConstantInt with the specified type and value.
414///
Chris Lattneree0f2802006-02-12 02:07:56 +0000415static ConstantIntegral *GetConstantInType(const Type *Ty, uint64_t Val) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000416 if (Ty->isUnsigned())
417 return ConstantUInt::get(Ty, Val);
Chris Lattneree0f2802006-02-12 02:07:56 +0000418 else if (Ty->getTypeID() == Type::BoolTyID)
419 return ConstantBool::get(Val);
Chris Lattner0157e7f2006-02-11 09:31:47 +0000420 int64_t SVal = Val;
421 SVal <<= 64-Ty->getPrimitiveSizeInBits();
422 SVal >>= 64-Ty->getPrimitiveSizeInBits();
423 return ConstantSInt::get(Ty, SVal);
424}
425
426
Chris Lattner4534dd592006-02-09 07:38:58 +0000427/// ComputeMaskedBits - Determine which of the bits specified in Mask are
428/// known to be either zero or one and return them in the KnownZero/KnownOne
429/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
430/// processing.
431static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
432 uint64_t &KnownOne, unsigned Depth = 0) {
Chris Lattner0b3557f2005-09-24 23:43:33 +0000433 // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
434 // we cannot optimize based on the assumption that it is zero without changing
Chris Lattnerc3ebf402006-02-07 07:27:52 +0000435 // it to be an explicit zero. If we don't change it to zero, other code could
Chris Lattner0b3557f2005-09-24 23:43:33 +0000436 // optimized based on the contradictory assumption that it is non-zero.
437 // Because instcombine aggressively folds operations with undef args anyway,
438 // this won't lose us code quality.
Chris Lattner4534dd592006-02-09 07:38:58 +0000439 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
440 // We know all of the bits for a constant!
Chris Lattner0157e7f2006-02-11 09:31:47 +0000441 KnownOne = CI->getZExtValue() & Mask;
Chris Lattner4534dd592006-02-09 07:38:58 +0000442 KnownZero = ~KnownOne & Mask;
443 return;
444 }
445
446 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner92a68652006-02-07 08:05:22 +0000447 if (Depth == 6 || Mask == 0)
Chris Lattner4534dd592006-02-09 07:38:58 +0000448 return; // Limit search depth.
449
450 uint64_t KnownZero2, KnownOne2;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000451 Instruction *I = dyn_cast<Instruction>(V);
452 if (!I) return;
453
454 switch (I->getOpcode()) {
455 case Instruction::And:
456 // If either the LHS or the RHS are Zero, the result is zero.
457 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
458 Mask &= ~KnownZero;
459 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
460 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
461 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
462
463 // Output known-1 bits are only known if set in both the LHS & RHS.
464 KnownOne &= KnownOne2;
465 // Output known-0 are known to be clear if zero in either the LHS | RHS.
466 KnownZero |= KnownZero2;
467 return;
468 case Instruction::Or:
469 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
470 Mask &= ~KnownOne;
471 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
474
475 // Output known-0 bits are only known if clear in both the LHS & RHS.
476 KnownZero &= KnownZero2;
477 // Output known-1 are known to be set if set in either the LHS | RHS.
478 KnownOne |= KnownOne2;
479 return;
480 case Instruction::Xor: {
481 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
482 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
484 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
485
486 // Output known-0 bits are known if clear or set in both the LHS & RHS.
487 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
488 // Output known-1 are known to be set if set in only one of the LHS, RHS.
489 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
490 KnownZero = KnownZeroOut;
491 return;
492 }
493 case Instruction::Select:
494 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
495 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
496 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
497 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
498
499 // Only known if known in both the LHS and RHS.
500 KnownOne &= KnownOne2;
501 KnownZero &= KnownZero2;
502 return;
503 case Instruction::Cast: {
504 const Type *SrcTy = I->getOperand(0)->getType();
505 if (!SrcTy->isIntegral()) return;
506
507 // If this is an integer truncate or noop, just look in the input.
508 if (SrcTy->getPrimitiveSizeInBits() >=
509 I->getType()->getPrimitiveSizeInBits()) {
510 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Chris Lattner4534dd592006-02-09 07:38:58 +0000511 return;
512 }
Chris Lattner4534dd592006-02-09 07:38:58 +0000513
Chris Lattner0157e7f2006-02-11 09:31:47 +0000514 // Sign or Zero extension. Compute the bits in the result that are not
515 // present in the input.
516 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
517 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
Chris Lattner62010c42005-10-09 06:36:35 +0000518
Chris Lattner0157e7f2006-02-11 09:31:47 +0000519 // Handle zero extension.
520 if (!SrcTy->isSigned()) {
521 Mask &= SrcTy->getIntegralTypeMask();
522 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524 // The top bits are known to be zero.
525 KnownZero |= NewBits;
526 } else {
527 // Sign extension.
528 Mask &= SrcTy->getIntegralTypeMask();
529 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
530 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner92a68652006-02-07 08:05:22 +0000531
Chris Lattner0157e7f2006-02-11 09:31:47 +0000532 // If the sign bit of the input is known set or clear, then we know the
533 // top bits of the result.
534 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
535 if (KnownZero & InSignBit) { // Input sign bit known zero
Chris Lattner4534dd592006-02-09 07:38:58 +0000536 KnownZero |= NewBits;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000537 KnownOne &= ~NewBits;
538 } else if (KnownOne & InSignBit) { // Input sign bit known set
539 KnownOne |= NewBits;
540 KnownZero &= ~NewBits;
541 } else { // Input sign bit unknown
542 KnownZero &= ~NewBits;
543 KnownOne &= ~NewBits;
544 }
545 }
546 return;
547 }
548 case Instruction::Shl:
549 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
550 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
551 Mask >>= SA->getValue();
552 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554 KnownZero <<= SA->getValue();
555 KnownOne <<= SA->getValue();
556 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
557 return;
558 }
559 break;
560 case Instruction::Shr:
561 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
562 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
563 // Compute the new bits that are at the top now.
564 uint64_t HighBits = (1ULL << SA->getValue())-1;
565 HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
566
567 if (I->getType()->isUnsigned()) { // Unsigned shift right.
568 Mask <<= SA->getValue();
569 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
570 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
571 KnownZero >>= SA->getValue();
572 KnownOne >>= SA->getValue();
573 KnownZero |= HighBits; // high bits known zero.
Chris Lattner4534dd592006-02-09 07:38:58 +0000574 } else {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000575 Mask <<= SA->getValue();
576 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
577 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
578 KnownZero >>= SA->getValue();
579 KnownOne >>= SA->getValue();
580
581 // Handle the sign bits.
582 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
583 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
584
585 if (KnownZero & SignBit) { // New bits are known zero.
586 KnownZero |= HighBits;
587 } else if (KnownOne & SignBit) { // New bits are known one.
588 KnownOne |= HighBits;
Chris Lattner4534dd592006-02-09 07:38:58 +0000589 }
590 }
591 return;
Chris Lattner62010c42005-10-09 06:36:35 +0000592 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000593 break;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000594 }
Chris Lattner92a68652006-02-07 08:05:22 +0000595}
596
597/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
598/// this predicate to simplify operations downstream. Mask is known to be zero
599/// for bits that V cannot have.
600static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
Chris Lattner4534dd592006-02-09 07:38:58 +0000601 uint64_t KnownZero, KnownOne;
602 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
603 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
604 return (KnownZero & Mask) == Mask;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000605}
606
Chris Lattner0157e7f2006-02-11 09:31:47 +0000607/// ShrinkDemandedConstant - Check to see if the specified operand of the
608/// specified instruction is a constant integer. If so, check to see if there
609/// are any bits set in the constant that are not demanded. If so, shrink the
610/// constant and return true.
611static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
612 uint64_t Demanded) {
613 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
614 if (!OpC) return false;
615
616 // If there are no bits set that aren't demanded, nothing to do.
617 if ((~Demanded & OpC->getZExtValue()) == 0)
618 return false;
619
620 // This is producing any bits that are not needed, shrink the RHS.
621 uint64_t Val = Demanded & OpC->getZExtValue();
622 I->setOperand(OpNo, GetConstantInType(OpC->getType(), Val));
623 return true;
624}
625
Chris Lattneree0f2802006-02-12 02:07:56 +0000626// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
627// set of known zero and one bits, compute the maximum and minimum values that
628// could have the specified known zero and known one bits, returning them in
629// min/max.
630static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
631 uint64_t KnownZero,
632 uint64_t KnownOne,
633 int64_t &Min, int64_t &Max) {
634 uint64_t TypeBits = Ty->getIntegralTypeMask();
635 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
636
637 uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
638
639 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
640 // bit if it is unknown.
641 Min = KnownOne;
642 Max = KnownOne|UnknownBits;
643
644 if (SignBit & UnknownBits) { // Sign bit is unknown
645 Min |= SignBit;
646 Max &= ~SignBit;
647 }
648
649 // Sign extend the min/max values.
650 int ShAmt = 64-Ty->getPrimitiveSizeInBits();
651 Min = (Min << ShAmt) >> ShAmt;
652 Max = (Max << ShAmt) >> ShAmt;
653}
654
655// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
656// a set of known zero and one bits, compute the maximum and minimum values that
657// could have the specified known zero and known one bits, returning them in
658// min/max.
659static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
660 uint64_t KnownZero,
661 uint64_t KnownOne,
662 uint64_t &Min,
663 uint64_t &Max) {
664 uint64_t TypeBits = Ty->getIntegralTypeMask();
665 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
666
667 // The minimum value is when the unknown bits are all zeros.
668 Min = KnownOne;
669 // The maximum value is when the unknown bits are all ones.
670 Max = KnownOne|UnknownBits;
671}
Chris Lattner0157e7f2006-02-11 09:31:47 +0000672
673
674/// SimplifyDemandedBits - Look at V. At this point, we know that only the
675/// DemandedMask bits of the result of V are ever used downstream. If we can
676/// use this information to simplify V, do so and return true. Otherwise,
677/// analyze the expression and return a mask of KnownOne and KnownZero bits for
678/// the expression (used to simplify the caller). The KnownZero/One bits may
679/// only be accurate for those bits in the DemandedMask.
680bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
681 uint64_t &KnownZero, uint64_t &KnownOne,
Chris Lattner2590e512006-02-07 06:56:34 +0000682 unsigned Depth) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000683 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
684 // We know all of the bits for a constant!
685 KnownOne = CI->getZExtValue() & DemandedMask;
686 KnownZero = ~KnownOne & DemandedMask;
687 return false;
688 }
689
690 KnownZero = KnownOne = 0;
Chris Lattner2590e512006-02-07 06:56:34 +0000691 if (!V->hasOneUse()) { // Other users may use these bits.
Chris Lattner0157e7f2006-02-11 09:31:47 +0000692 if (Depth != 0) { // Not at the root.
693 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
694 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattner2590e512006-02-07 06:56:34 +0000695 return false;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000696 }
Chris Lattner2590e512006-02-07 06:56:34 +0000697 // If this is the root being simplified, allow it to have multiple uses,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000698 // just set the DemandedMask to all bits.
699 DemandedMask = V->getType()->getIntegralTypeMask();
700 } else if (DemandedMask == 0) { // Not demanding any bits from V.
Chris Lattner92a68652006-02-07 08:05:22 +0000701 if (V != UndefValue::get(V->getType()))
702 return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
703 return false;
Chris Lattner2590e512006-02-07 06:56:34 +0000704 } else if (Depth == 6) { // Limit search depth.
705 return false;
706 }
707
708 Instruction *I = dyn_cast<Instruction>(V);
709 if (!I) return false; // Only analyze instructions.
710
Chris Lattner0157e7f2006-02-11 09:31:47 +0000711 uint64_t KnownZero2, KnownOne2;
Chris Lattner2590e512006-02-07 06:56:34 +0000712 switch (I->getOpcode()) {
713 default: break;
714 case Instruction::And:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000715 // If either the LHS or the RHS are Zero, the result is zero.
716 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
717 KnownZero, KnownOne, Depth+1))
718 return true;
719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720
721 // If something is known zero on the RHS, the bits aren't demanded on the
722 // LHS.
723 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
724 KnownZero2, KnownOne2, Depth+1))
725 return true;
726 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
727
728 // If all of the demanded bits are known one on one side, return the other.
729 // These bits cannot contribute to the result of the 'and'.
730 if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
731 return UpdateValueUsesWith(I, I->getOperand(0));
732 if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
733 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +0000734
735 // If all of the demanded bits in the inputs are known zeros, return zero.
736 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
737 return UpdateValueUsesWith(I, Constant::getNullValue(I->getType()));
738
Chris Lattner0157e7f2006-02-11 09:31:47 +0000739 // If the RHS is a constant, see if we can simplify it.
Chris Lattner5b2edb12006-02-12 08:02:11 +0000740 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
Chris Lattner0157e7f2006-02-11 09:31:47 +0000741 return UpdateValueUsesWith(I, I);
742
743 // Output known-1 bits are only known if set in both the LHS & RHS.
744 KnownOne &= KnownOne2;
745 // Output known-0 are known to be clear if zero in either the LHS | RHS.
746 KnownZero |= KnownZero2;
747 break;
748 case Instruction::Or:
749 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
750 KnownZero, KnownOne, Depth+1))
751 return true;
752 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
753 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne,
754 KnownZero2, KnownOne2, Depth+1))
755 return true;
756 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
757
758 // If all of the demanded bits are known zero on one side, return the other.
759 // These bits cannot contribute to the result of the 'or'.
760 if ((DemandedMask & ~KnownOne2 & KnownZero) == DemandedMask & ~KnownOne2)
761 return UpdateValueUsesWith(I, I->getOperand(0));
762 if ((DemandedMask & ~KnownOne & KnownZero2) == DemandedMask & ~KnownOne)
763 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +0000764
765 // If all of the potentially set bits on one side are known to be set on
766 // the other side, just use the 'other' side.
767 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
768 (DemandedMask & (~KnownZero)))
769 return UpdateValueUsesWith(I, I->getOperand(0));
770 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
771 (DemandedMask & (~KnownZero2)))
772 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner0157e7f2006-02-11 09:31:47 +0000773
774 // If the RHS is a constant, see if we can simplify it.
775 if (ShrinkDemandedConstant(I, 1, DemandedMask))
776 return UpdateValueUsesWith(I, I);
777
778 // Output known-0 bits are only known if clear in both the LHS & RHS.
779 KnownZero &= KnownZero2;
780 // Output known-1 are known to be set if set in either the LHS | RHS.
781 KnownOne |= KnownOne2;
782 break;
783 case Instruction::Xor: {
784 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
785 KnownZero, KnownOne, Depth+1))
786 return true;
787 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
788 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
789 KnownZero2, KnownOne2, Depth+1))
790 return true;
791 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
792
793 // If all of the demanded bits are known zero on one side, return the other.
794 // These bits cannot contribute to the result of the 'xor'.
795 if ((DemandedMask & KnownZero) == DemandedMask)
796 return UpdateValueUsesWith(I, I->getOperand(0));
797 if ((DemandedMask & KnownZero2) == DemandedMask)
798 return UpdateValueUsesWith(I, I->getOperand(1));
799
800 // Output known-0 bits are known if clear or set in both the LHS & RHS.
801 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
802 // Output known-1 are known to be set if set in only one of the LHS, RHS.
803 uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
804
805 // If all of the unknown bits are known to be zero on one side or the other
806 // (but not both) turn this into an *inclusive* or.
Chris Lattner5b2edb12006-02-12 08:02:11 +0000807 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner0157e7f2006-02-11 09:31:47 +0000808 if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) {
809 if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) {
810 Instruction *Or =
811 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
812 I->getName());
813 InsertNewInstBefore(Or, *I);
814 return UpdateValueUsesWith(I, Or);
Chris Lattner2590e512006-02-07 06:56:34 +0000815 }
816 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000817
Chris Lattner5b2edb12006-02-12 08:02:11 +0000818 // If all of the demanded bits on one side are known, and all of the set
819 // bits on that side are also known to be set on the other side, turn this
820 // into an AND, as we know the bits will be cleared.
821 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
822 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
823 if ((KnownOne & KnownOne2) == KnownOne) {
824 Constant *AndC = GetConstantInType(I->getType(),
825 ~KnownOne & DemandedMask);
826 Instruction *And =
827 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
828 InsertNewInstBefore(And, *I);
829 return UpdateValueUsesWith(I, And);
830 }
831 }
832
Chris Lattner0157e7f2006-02-11 09:31:47 +0000833 // If the RHS is a constant, see if we can simplify it.
834 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
835 if (ShrinkDemandedConstant(I, 1, DemandedMask))
836 return UpdateValueUsesWith(I, I);
837
838 KnownZero = KnownZeroOut;
839 KnownOne = KnownOneOut;
840 break;
841 }
842 case Instruction::Select:
843 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
844 KnownZero, KnownOne, Depth+1))
845 return true;
846 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
847 KnownZero2, KnownOne2, Depth+1))
848 return true;
849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
850 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
851
852 // If the operands are constants, see if we can simplify them.
853 if (ShrinkDemandedConstant(I, 1, DemandedMask))
854 return UpdateValueUsesWith(I, I);
855 if (ShrinkDemandedConstant(I, 2, DemandedMask))
856 return UpdateValueUsesWith(I, I);
857
858 // Only known if known in both the LHS and RHS.
859 KnownOne &= KnownOne2;
860 KnownZero &= KnownZero2;
861 break;
Chris Lattner2590e512006-02-07 06:56:34 +0000862 case Instruction::Cast: {
863 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner0157e7f2006-02-11 09:31:47 +0000864 if (!SrcTy->isIntegral()) return false;
Chris Lattner2590e512006-02-07 06:56:34 +0000865
Chris Lattner0157e7f2006-02-11 09:31:47 +0000866 // If this is an integer truncate or noop, just look in the input.
867 if (SrcTy->getPrimitiveSizeInBits() >=
868 I->getType()->getPrimitiveSizeInBits()) {
869 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
870 KnownZero, KnownOne, Depth+1))
871 return true;
872 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
873 break;
874 }
875
876 // Sign or Zero extension. Compute the bits in the result that are not
877 // present in the input.
878 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
879 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
880
881 // Handle zero extension.
882 if (!SrcTy->isSigned()) {
883 DemandedMask &= SrcTy->getIntegralTypeMask();
884 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
885 KnownZero, KnownOne, Depth+1))
886 return true;
887 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
888 // The top bits are known to be zero.
889 KnownZero |= NewBits;
890 } else {
891 // Sign extension.
892 if (SimplifyDemandedBits(I->getOperand(0),
893 DemandedMask & SrcTy->getIntegralTypeMask(),
894 KnownZero, KnownOne, Depth+1))
895 return true;
896 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
897
898 // If the sign bit of the input is known set or clear, then we know the
899 // top bits of the result.
900 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
Chris Lattner2590e512006-02-07 06:56:34 +0000901
Chris Lattner0157e7f2006-02-11 09:31:47 +0000902 // If the input sign bit is known zero, or if the NewBits are not demanded
903 // convert this into a zero extension.
904 if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner2590e512006-02-07 06:56:34 +0000905 // Convert to unsigned first.
Chris Lattner44314822006-02-07 19:07:40 +0000906 Instruction *NewVal;
Chris Lattner2590e512006-02-07 06:56:34 +0000907 NewVal = new CastInst(I->getOperand(0), SrcTy->getUnsignedVersion(),
Chris Lattner44314822006-02-07 19:07:40 +0000908 I->getOperand(0)->getName());
909 InsertNewInstBefore(NewVal, *I);
Chris Lattner0157e7f2006-02-11 09:31:47 +0000910 // Then cast that to the destination type.
Chris Lattner44314822006-02-07 19:07:40 +0000911 NewVal = new CastInst(NewVal, I->getType(), I->getName());
912 InsertNewInstBefore(NewVal, *I);
Chris Lattner2590e512006-02-07 06:56:34 +0000913 return UpdateValueUsesWith(I, NewVal);
Chris Lattner0157e7f2006-02-11 09:31:47 +0000914 } else if (KnownOne & InSignBit) { // Input sign bit known set
915 KnownOne |= NewBits;
916 KnownZero &= ~NewBits;
917 } else { // Input sign bit unknown
918 KnownZero &= ~NewBits;
919 KnownOne &= ~NewBits;
Chris Lattner2590e512006-02-07 06:56:34 +0000920 }
Chris Lattner2590e512006-02-07 06:56:34 +0000921 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000922 break;
Chris Lattner2590e512006-02-07 06:56:34 +0000923 }
Chris Lattner2590e512006-02-07 06:56:34 +0000924 case Instruction::Shl:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000925 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
926 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> SA->getValue(),
927 KnownZero, KnownOne, Depth+1))
928 return true;
929 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
930 KnownZero <<= SA->getValue();
931 KnownOne <<= SA->getValue();
932 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
933 }
Chris Lattner2590e512006-02-07 06:56:34 +0000934 break;
935 case Instruction::Shr:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000936 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
937 unsigned ShAmt = SA->getValue();
938
939 // Compute the new bits that are at the top now.
940 uint64_t HighBits = (1ULL << ShAmt)-1;
941 HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShAmt;
Chris Lattner68e74752006-02-13 06:09:08 +0000942 uint64_t TypeMask = I->getType()->getIntegralTypeMask();
Chris Lattner0157e7f2006-02-11 09:31:47 +0000943 if (I->getType()->isUnsigned()) { // Unsigned shift right.
Chris Lattner68e74752006-02-13 06:09:08 +0000944 if (SimplifyDemandedBits(I->getOperand(0),
945 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000946 KnownZero, KnownOne, Depth+1))
947 return true;
948 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner68e74752006-02-13 06:09:08 +0000949 KnownZero &= TypeMask;
950 KnownOne &= TypeMask;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000951 KnownZero >>= ShAmt;
952 KnownOne >>= ShAmt;
953 KnownZero |= HighBits; // high bits known zero.
954 } else { // Signed shift right.
Chris Lattner68e74752006-02-13 06:09:08 +0000955 if (SimplifyDemandedBits(I->getOperand(0),
956 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000957 KnownZero, KnownOne, Depth+1))
958 return true;
959 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner68e74752006-02-13 06:09:08 +0000960 KnownZero &= TypeMask;
961 KnownOne &= TypeMask;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000962 KnownZero >>= SA->getValue();
963 KnownOne >>= SA->getValue();
964
965 // Handle the sign bits.
966 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
967 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
968
969 // If the input sign bit is known to be zero, or if none of the top bits
970 // are demanded, turn this into an unsigned shift right.
971 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
972 // Convert the input to unsigned.
973 Instruction *NewVal;
974 NewVal = new CastInst(I->getOperand(0),
975 I->getType()->getUnsignedVersion(),
976 I->getOperand(0)->getName());
977 InsertNewInstBefore(NewVal, *I);
978 // Perform the unsigned shift right.
979 NewVal = new ShiftInst(Instruction::Shr, NewVal, SA, I->getName());
980 InsertNewInstBefore(NewVal, *I);
981 // Then cast that to the destination type.
982 NewVal = new CastInst(NewVal, I->getType(), I->getName());
983 InsertNewInstBefore(NewVal, *I);
984 return UpdateValueUsesWith(I, NewVal);
985 } else if (KnownOne & SignBit) { // New bits are known one.
986 KnownOne |= HighBits;
987 }
Chris Lattner2590e512006-02-07 06:56:34 +0000988 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000989 }
Chris Lattner2590e512006-02-07 06:56:34 +0000990 break;
991 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000992
993 // If the client is only demanding bits that we know, return the known
994 // constant.
995 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
996 return UpdateValueUsesWith(I, GetConstantInType(I->getType(), KnownOne));
Chris Lattner2590e512006-02-07 06:56:34 +0000997 return false;
998}
999
Chris Lattner623826c2004-09-28 21:48:02 +00001000// isTrueWhenEqual - Return true if the specified setcondinst instruction is
1001// true when both operands are equal...
1002//
1003static bool isTrueWhenEqual(Instruction &I) {
1004 return I.getOpcode() == Instruction::SetEQ ||
1005 I.getOpcode() == Instruction::SetGE ||
1006 I.getOpcode() == Instruction::SetLE;
1007}
Chris Lattnerb8b97502003-08-13 19:01:45 +00001008
1009/// AssociativeOpt - Perform an optimization on an associative operator. This
1010/// function is designed to check a chain of associative operators for a
1011/// potential to apply a certain optimization. Since the optimization may be
1012/// applicable if the expression was reassociated, this checks the chain, then
1013/// reassociates the expression as necessary to expose the optimization
1014/// opportunity. This makes use of a special Functor, which must define
1015/// 'shouldApply' and 'apply' methods.
1016///
1017template<typename Functor>
1018Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1019 unsigned Opcode = Root.getOpcode();
1020 Value *LHS = Root.getOperand(0);
1021
1022 // Quick check, see if the immediate LHS matches...
1023 if (F.shouldApply(LHS))
1024 return F.apply(Root);
1025
1026 // Otherwise, if the LHS is not of the same opcode as the root, return.
1027 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001028 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00001029 // Should we apply this transform to the RHS?
1030 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1031
1032 // If not to the RHS, check to see if we should apply to the LHS...
1033 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1034 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1035 ShouldApply = true;
1036 }
1037
1038 // If the functor wants to apply the optimization to the RHS of LHSI,
1039 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1040 if (ShouldApply) {
1041 BasicBlock *BB = Root.getParent();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001042
Chris Lattnerb8b97502003-08-13 19:01:45 +00001043 // Now all of the instructions are in the current basic block, go ahead
1044 // and perform the reassociation.
1045 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1046
1047 // First move the selected RHS to the LHS of the root...
1048 Root.setOperand(0, LHSI->getOperand(1));
1049
1050 // Make what used to be the LHS of the root be the user of the root...
1051 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner284d3b02004-04-16 18:08:07 +00001052 if (&Root == TmpLHSI) {
Chris Lattner8953b902004-04-05 02:10:19 +00001053 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1054 return 0;
1055 }
Chris Lattner284d3b02004-04-16 18:08:07 +00001056 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattnerb8b97502003-08-13 19:01:45 +00001057 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner284d3b02004-04-16 18:08:07 +00001058 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
1059 BasicBlock::iterator ARI = &Root; ++ARI;
1060 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
1061 ARI = Root;
Chris Lattnerb8b97502003-08-13 19:01:45 +00001062
1063 // Now propagate the ExtraOperand down the chain of instructions until we
1064 // get to LHSI.
1065 while (TmpLHSI != LHSI) {
1066 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner284d3b02004-04-16 18:08:07 +00001067 // Move the instruction to immediately before the chain we are
1068 // constructing to avoid breaking dominance properties.
1069 NextLHSI->getParent()->getInstList().remove(NextLHSI);
1070 BB->getInstList().insert(ARI, NextLHSI);
1071 ARI = NextLHSI;
1072
Chris Lattnerb8b97502003-08-13 19:01:45 +00001073 Value *NextOp = NextLHSI->getOperand(1);
1074 NextLHSI->setOperand(1, ExtraOperand);
1075 TmpLHSI = NextLHSI;
1076 ExtraOperand = NextOp;
1077 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001078
Chris Lattnerb8b97502003-08-13 19:01:45 +00001079 // Now that the instructions are reassociated, have the functor perform
1080 // the transformation...
1081 return F.apply(Root);
1082 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001083
Chris Lattnerb8b97502003-08-13 19:01:45 +00001084 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1085 }
1086 return 0;
1087}
1088
1089
1090// AddRHS - Implements: X + X --> X << 1
1091struct AddRHS {
1092 Value *RHS;
1093 AddRHS(Value *rhs) : RHS(rhs) {}
1094 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1095 Instruction *apply(BinaryOperator &Add) const {
1096 return new ShiftInst(Instruction::Shl, Add.getOperand(0),
1097 ConstantInt::get(Type::UByteTy, 1));
1098 }
1099};
1100
1101// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1102// iff C1&C2 == 0
1103struct AddMaskingAnd {
1104 Constant *C2;
1105 AddMaskingAnd(Constant *c) : C2(c) {}
1106 bool shouldApply(Value *LHS) const {
Chris Lattnerd4252a72004-07-30 07:50:03 +00001107 ConstantInt *C1;
Misha Brukmanb1c93172005-04-21 23:48:37 +00001108 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00001109 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattnerb8b97502003-08-13 19:01:45 +00001110 }
1111 Instruction *apply(BinaryOperator &Add) const {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001112 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattnerb8b97502003-08-13 19:01:45 +00001113 }
1114};
1115
Chris Lattner86102b82005-01-01 16:22:27 +00001116static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +00001117 InstCombiner *IC) {
Chris Lattner86102b82005-01-01 16:22:27 +00001118 if (isa<CastInst>(I)) {
1119 if (Constant *SOC = dyn_cast<Constant>(SO))
1120 return ConstantExpr::getCast(SOC, I.getType());
Misha Brukmanb1c93172005-04-21 23:48:37 +00001121
Chris Lattner86102b82005-01-01 16:22:27 +00001122 return IC->InsertNewInstBefore(new CastInst(SO, I.getType(),
1123 SO->getName() + ".cast"), I);
1124 }
1125
Chris Lattner183b3362004-04-09 19:05:30 +00001126 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +00001127 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1128 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +00001129
Chris Lattner183b3362004-04-09 19:05:30 +00001130 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1131 if (ConstIsRHS)
Chris Lattner86102b82005-01-01 16:22:27 +00001132 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1133 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +00001134 }
1135
1136 Value *Op0 = SO, *Op1 = ConstOperand;
1137 if (!ConstIsRHS)
1138 std::swap(Op0, Op1);
1139 Instruction *New;
Chris Lattner86102b82005-01-01 16:22:27 +00001140 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1141 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
1142 else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I))
1143 New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh");
Chris Lattnerf9d96652004-04-10 19:15:56 +00001144 else {
Chris Lattner183b3362004-04-09 19:05:30 +00001145 assert(0 && "Unknown binary instruction type!");
Chris Lattnerf9d96652004-04-10 19:15:56 +00001146 abort();
1147 }
Chris Lattner86102b82005-01-01 16:22:27 +00001148 return IC->InsertNewInstBefore(New, I);
1149}
1150
1151// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1152// constant as the other operand, try to fold the binary operator into the
1153// select arguments. This also works for Cast instructions, which obviously do
1154// not have a second operand.
1155static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1156 InstCombiner *IC) {
1157 // Don't modify shared select instructions
1158 if (!SI->hasOneUse()) return 0;
1159 Value *TV = SI->getOperand(1);
1160 Value *FV = SI->getOperand(2);
1161
1162 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +00001163 // Bool selects with constant operands can be folded to logical ops.
1164 if (SI->getType() == Type::BoolTy) return 0;
1165
Chris Lattner86102b82005-01-01 16:22:27 +00001166 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1167 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1168
1169 return new SelectInst(SI->getCondition(), SelectTrueVal,
1170 SelectFalseVal);
1171 }
1172 return 0;
Chris Lattner183b3362004-04-09 19:05:30 +00001173}
1174
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001175
1176/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1177/// node as operand #0, see if we can fold the instruction into the PHI (which
1178/// is only possible if all operands to the PHI are constants).
1179Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1180 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00001181 unsigned NumPHIValues = PN->getNumIncomingValues();
1182 if (!PN->hasOneUse() || NumPHIValues == 0 ||
1183 !isa<Constant>(PN->getIncomingValue(0))) return 0;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001184
1185 // Check to see if all of the operands of the PHI are constants. If not, we
1186 // cannot do the transformation.
Chris Lattner7515cab2004-11-14 19:13:23 +00001187 for (unsigned i = 1; i != NumPHIValues; ++i)
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001188 if (!isa<Constant>(PN->getIncomingValue(i)))
1189 return 0;
1190
1191 // Okay, we can do the transformation: create the new PHI node.
1192 PHINode *NewPN = new PHINode(I.getType(), I.getName());
1193 I.setName("");
Chris Lattnerd8e20182005-01-29 00:39:08 +00001194 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001195 InsertNewInstBefore(NewPN, *PN);
1196
1197 // Next, add all of the operands to the PHI.
1198 if (I.getNumOperands() == 2) {
1199 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +00001200 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001201 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1202 NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C),
1203 PN->getIncomingBlock(i));
1204 }
1205 } else {
1206 assert(isa<CastInst>(I) && "Unary op should be a cast!");
1207 const Type *RetTy = I.getType();
Chris Lattner7515cab2004-11-14 19:13:23 +00001208 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001209 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1210 NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy),
1211 PN->getIncomingBlock(i));
1212 }
1213 }
1214 return ReplaceInstUsesWith(I, NewPN);
1215}
1216
Chris Lattner113f4f42002-06-25 16:13:24 +00001217Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00001218 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00001219 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattner9fa53de2002-05-06 16:49:18 +00001220
Chris Lattnercf4a9962004-04-10 22:01:55 +00001221 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattner81a7a232004-10-16 18:11:37 +00001222 // X + undef -> undef
1223 if (isa<UndefValue>(RHS))
1224 return ReplaceInstUsesWith(I, RHS);
1225
Chris Lattnercf4a9962004-04-10 22:01:55 +00001226 // X + 0 --> X
Chris Lattner7fde91e2005-10-17 17:56:38 +00001227 if (!I.getType()->isFloatingPoint()) { // NOTE: -0 + +0 = +0.
1228 if (RHSC->isNullValue())
1229 return ReplaceInstUsesWith(I, LHS);
Chris Lattnerda1b1522005-10-17 20:18:38 +00001230 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1231 if (CFP->isExactlyValue(-0.0))
1232 return ReplaceInstUsesWith(I, LHS);
Chris Lattner7fde91e2005-10-17 17:56:38 +00001233 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001234
Chris Lattnercf4a9962004-04-10 22:01:55 +00001235 // X + (signbit) --> X ^ signbit
1236 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattner92a68652006-02-07 08:05:22 +00001237 uint64_t Val = CI->getZExtValue();
Chris Lattner77defba2006-02-07 07:00:41 +00001238 if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001239 return BinaryOperator::createXor(LHS, RHS);
Chris Lattnercf4a9962004-04-10 22:01:55 +00001240 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001241
1242 if (isa<PHINode>(LHS))
1243 if (Instruction *NV = FoldOpIntoPhi(I))
1244 return NV;
Chris Lattner0b3557f2005-09-24 23:43:33 +00001245
Chris Lattner330628a2006-01-06 17:59:59 +00001246 ConstantInt *XorRHS = 0;
1247 Value *XorLHS = 0;
Chris Lattner0b3557f2005-09-24 23:43:33 +00001248 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1249 unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
1250 int64_t RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
1251 uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
1252
1253 uint64_t C0080Val = 1ULL << 31;
1254 int64_t CFF80Val = -C0080Val;
1255 unsigned Size = 32;
1256 do {
1257 if (TySizeBits > Size) {
1258 bool Found = false;
1259 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1260 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1261 if (RHSSExt == CFF80Val) {
1262 if (XorRHS->getZExtValue() == C0080Val)
1263 Found = true;
1264 } else if (RHSZExt == C0080Val) {
1265 if (XorRHS->getSExtValue() == CFF80Val)
1266 Found = true;
1267 }
1268 if (Found) {
1269 // This is a sign extend if the top bits are known zero.
Chris Lattner4534dd592006-02-09 07:38:58 +00001270 uint64_t Mask = ~0ULL;
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001271 Mask <<= 64-(TySizeBits-Size);
Chris Lattner4534dd592006-02-09 07:38:58 +00001272 Mask &= XorLHS->getType()->getIntegralTypeMask();
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001273 if (!MaskedValueIsZero(XorLHS, Mask))
Chris Lattner0b3557f2005-09-24 23:43:33 +00001274 Size = 0; // Not a sign ext, but can't be any others either.
1275 goto FoundSExt;
1276 }
1277 }
1278 Size >>= 1;
1279 C0080Val >>= Size;
1280 CFF80Val >>= Size;
1281 } while (Size >= 8);
1282
1283FoundSExt:
1284 const Type *MiddleType = 0;
1285 switch (Size) {
1286 default: break;
1287 case 32: MiddleType = Type::IntTy; break;
1288 case 16: MiddleType = Type::ShortTy; break;
1289 case 8: MiddleType = Type::SByteTy; break;
1290 }
1291 if (MiddleType) {
1292 Instruction *NewTrunc = new CastInst(XorLHS, MiddleType, "sext");
1293 InsertNewInstBefore(NewTrunc, I);
1294 return new CastInst(NewTrunc, I.getType());
1295 }
1296 }
Chris Lattnercf4a9962004-04-10 22:01:55 +00001297 }
Chris Lattner9fa53de2002-05-06 16:49:18 +00001298
Chris Lattnerb8b97502003-08-13 19:01:45 +00001299 // X + X --> X << 1
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00001300 if (I.getType()->isInteger()) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00001301 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner47060462005-04-07 17:14:51 +00001302
1303 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
1304 if (RHSI->getOpcode() == Instruction::Sub)
1305 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
1306 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
1307 }
1308 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
1309 if (LHSI->getOpcode() == Instruction::Sub)
1310 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
1311 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
1312 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00001313 }
Chris Lattnerede3fe02003-08-13 04:18:28 +00001314
Chris Lattner147e9752002-05-08 22:46:53 +00001315 // -A + B --> B - A
Chris Lattnerbb74e222003-03-10 23:06:50 +00001316 if (Value *V = dyn_castNegVal(LHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001317 return BinaryOperator::createSub(RHS, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00001318
1319 // A + -B --> A - B
Chris Lattnerbb74e222003-03-10 23:06:50 +00001320 if (!isa<Constant>(RHS))
1321 if (Value *V = dyn_castNegVal(RHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001322 return BinaryOperator::createSub(LHS, V);
Chris Lattner260ab202002-04-18 17:39:14 +00001323
Misha Brukmanb1c93172005-04-21 23:48:37 +00001324
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001325 ConstantInt *C2;
1326 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
1327 if (X == RHS) // X*C + X --> X * (C+1)
1328 return BinaryOperator::createMul(RHS, AddOne(C2));
1329
1330 // X*C1 + X*C2 --> X * (C1+C2)
1331 ConstantInt *C1;
1332 if (X == dyn_castFoldableMul(RHS, C1))
1333 return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
Chris Lattner57c8d992003-02-18 19:57:07 +00001334 }
1335
1336 // X + X*C --> X * (C+1)
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001337 if (dyn_castFoldableMul(RHS, C2) == LHS)
1338 return BinaryOperator::createMul(LHS, AddOne(C2));
1339
Chris Lattner57c8d992003-02-18 19:57:07 +00001340
Chris Lattnerb8b97502003-08-13 19:01:45 +00001341 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattnerd4252a72004-07-30 07:50:03 +00001342 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattnerb8b97502003-08-13 19:01:45 +00001343 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
Chris Lattner7fb29e12003-03-11 00:12:48 +00001344
Chris Lattnerb9cde762003-10-02 15:11:26 +00001345 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner330628a2006-01-06 17:59:59 +00001346 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00001347 if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X
1348 Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
1349 return BinaryOperator::createSub(C, X);
Chris Lattnerb9cde762003-10-02 15:11:26 +00001350 }
Chris Lattnerd4252a72004-07-30 07:50:03 +00001351
Chris Lattnerbff91d92004-10-08 05:07:56 +00001352 // (X & FF00) + xx00 -> (X+xx00) & FF00
1353 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
1354 Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
1355 if (Anded == CRHS) {
1356 // See if all bits from the first bit set in the Add RHS up are included
1357 // in the mask. First, get the rightmost bit.
1358 uint64_t AddRHSV = CRHS->getRawValue();
1359
1360 // Form a mask of all bits from the lowest bit added through the top.
1361 uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
Chris Lattner77defba2006-02-07 07:00:41 +00001362 AddRHSHighBits &= C2->getType()->getIntegralTypeMask();
Chris Lattnerbff91d92004-10-08 05:07:56 +00001363
1364 // See if the and mask includes all of these bits.
1365 uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001366
Chris Lattnerbff91d92004-10-08 05:07:56 +00001367 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1368 // Okay, the xform is safe. Insert the new add pronto.
1369 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
1370 LHS->getName()), I);
1371 return BinaryOperator::createAnd(NewAdd, C2);
1372 }
1373 }
1374 }
1375
Chris Lattnerd4252a72004-07-30 07:50:03 +00001376 // Try to fold constant add into select arguments.
1377 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner86102b82005-01-01 16:22:27 +00001378 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattnerd4252a72004-07-30 07:50:03 +00001379 return R;
Chris Lattnerb9cde762003-10-02 15:11:26 +00001380 }
1381
Chris Lattner113f4f42002-06-25 16:13:24 +00001382 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00001383}
1384
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00001385// isSignBit - Return true if the value represented by the constant only has the
1386// highest order bit set.
1387static bool isSignBit(ConstantInt *CI) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001388 unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattner2f1457f2005-04-24 17:46:05 +00001389 return (CI->getRawValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1));
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00001390}
1391
Chris Lattner022167f2004-03-13 00:11:49 +00001392/// RemoveNoopCast - Strip off nonconverting casts from the value.
1393///
1394static Value *RemoveNoopCast(Value *V) {
1395 if (CastInst *CI = dyn_cast<CastInst>(V)) {
1396 const Type *CTy = CI->getType();
1397 const Type *OpTy = CI->getOperand(0)->getType();
1398 if (CTy->isInteger() && OpTy->isInteger()) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001399 if (CTy->getPrimitiveSizeInBits() == OpTy->getPrimitiveSizeInBits())
Chris Lattner022167f2004-03-13 00:11:49 +00001400 return RemoveNoopCast(CI->getOperand(0));
1401 } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
1402 return RemoveNoopCast(CI->getOperand(0));
1403 }
1404 return V;
1405}
1406
Chris Lattner113f4f42002-06-25 16:13:24 +00001407Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +00001408 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001409
Chris Lattnere6794492002-08-12 21:17:25 +00001410 if (Op0 == Op1) // sub X, X -> 0
1411 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner260ab202002-04-18 17:39:14 +00001412
Chris Lattnere6794492002-08-12 21:17:25 +00001413 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattnerbb74e222003-03-10 23:06:50 +00001414 if (Value *V = dyn_castNegVal(Op1))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001415 return BinaryOperator::createAdd(Op0, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00001416
Chris Lattner81a7a232004-10-16 18:11:37 +00001417 if (isa<UndefValue>(Op0))
1418 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
1419 if (isa<UndefValue>(Op1))
1420 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
1421
Chris Lattner8f2f5982003-11-05 01:06:05 +00001422 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1423 // Replace (-1 - A) with (~A)...
Chris Lattner3082c5a2003-02-18 19:28:33 +00001424 if (C->isAllOnesValue())
1425 return BinaryOperator::createNot(Op1);
Chris Lattnerad3c4952002-05-09 01:29:19 +00001426
Chris Lattner8f2f5982003-11-05 01:06:05 +00001427 // C - ~X == X + (1+C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00001428 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00001429 if (match(Op1, m_Not(m_Value(X))))
1430 return BinaryOperator::createAdd(X,
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001431 ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
Chris Lattner92295c52004-03-12 23:53:13 +00001432 // -((uint)X >> 31) -> ((int)X >> 31)
1433 // -((int)X >> 31) -> ((uint)X >> 31)
Chris Lattner022167f2004-03-13 00:11:49 +00001434 if (C->isNullValue()) {
1435 Value *NoopCastedRHS = RemoveNoopCast(Op1);
1436 if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
Chris Lattner92295c52004-03-12 23:53:13 +00001437 if (SI->getOpcode() == Instruction::Shr)
1438 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
1439 const Type *NewTy;
Chris Lattner022167f2004-03-13 00:11:49 +00001440 if (SI->getType()->isSigned())
Chris Lattner97bfcea2004-06-17 18:16:02 +00001441 NewTy = SI->getType()->getUnsignedVersion();
Chris Lattner92295c52004-03-12 23:53:13 +00001442 else
Chris Lattner97bfcea2004-06-17 18:16:02 +00001443 NewTy = SI->getType()->getSignedVersion();
Chris Lattner92295c52004-03-12 23:53:13 +00001444 // Check to see if we are shifting out everything but the sign bit.
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001445 if (CU->getValue() == SI->getType()->getPrimitiveSizeInBits()-1) {
Chris Lattner92295c52004-03-12 23:53:13 +00001446 // Ok, the transformation is safe. Insert a cast of the incoming
1447 // value, then the new shift, then the new cast.
1448 Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
1449 SI->getOperand(0)->getName());
1450 Value *InV = InsertNewInstBefore(FirstCast, I);
1451 Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
1452 CU, SI->getName());
Chris Lattner022167f2004-03-13 00:11:49 +00001453 if (NewShift->getType() == I.getType())
1454 return NewShift;
1455 else {
1456 InV = InsertNewInstBefore(NewShift, I);
1457 return new CastInst(NewShift, I.getType());
1458 }
Chris Lattner92295c52004-03-12 23:53:13 +00001459 }
1460 }
Chris Lattner022167f2004-03-13 00:11:49 +00001461 }
Chris Lattner183b3362004-04-09 19:05:30 +00001462
1463 // Try to fold constant sub into select arguments.
1464 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00001465 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00001466 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001467
1468 if (isa<PHINode>(Op0))
1469 if (Instruction *NV = FoldOpIntoPhi(I))
1470 return NV;
Chris Lattner8f2f5982003-11-05 01:06:05 +00001471 }
1472
Chris Lattnera9be4492005-04-07 16:15:25 +00001473 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
1474 if (Op1I->getOpcode() == Instruction::Add &&
1475 !Op0->getType()->isFloatingPoint()) {
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00001476 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00001477 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00001478 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00001479 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00001480 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
1481 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
1482 // C1-(X+C2) --> (C1-C2)-X
1483 return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
1484 Op1I->getOperand(0));
1485 }
Chris Lattnera9be4492005-04-07 16:15:25 +00001486 }
1487
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001488 if (Op1I->hasOneUse()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00001489 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
1490 // is not used by anyone else...
1491 //
Chris Lattnerc2f0aa52004-02-02 20:09:56 +00001492 if (Op1I->getOpcode() == Instruction::Sub &&
1493 !Op1I->getType()->isFloatingPoint()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00001494 // Swap the two operands of the subexpr...
1495 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
1496 Op1I->setOperand(0, IIOp1);
1497 Op1I->setOperand(1, IIOp0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001498
Chris Lattner3082c5a2003-02-18 19:28:33 +00001499 // Create the new top level add instruction...
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001500 return BinaryOperator::createAdd(Op0, Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001501 }
1502
1503 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
1504 //
1505 if (Op1I->getOpcode() == Instruction::And &&
1506 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
1507 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
1508
Chris Lattner396dbfe2004-06-09 05:08:07 +00001509 Value *NewNot =
1510 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001511 return BinaryOperator::createAnd(Op0, NewNot);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001512 }
Chris Lattner57c8d992003-02-18 19:57:07 +00001513
Chris Lattner0aee4b72004-10-06 15:08:25 +00001514 // -(X sdiv C) -> (X sdiv -C)
1515 if (Op1I->getOpcode() == Instruction::Div)
1516 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
Chris Lattnera9be4492005-04-07 16:15:25 +00001517 if (CSI->isNullValue())
Chris Lattner0aee4b72004-10-06 15:08:25 +00001518 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Misha Brukmanb1c93172005-04-21 23:48:37 +00001519 return BinaryOperator::createDiv(Op1I->getOperand(0),
Chris Lattner0aee4b72004-10-06 15:08:25 +00001520 ConstantExpr::getNeg(DivRHS));
1521
Chris Lattner57c8d992003-02-18 19:57:07 +00001522 // X - X*C --> X * (1-C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00001523 ConstantInt *C2 = 0;
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001524 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00001525 Constant *CP1 =
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001526 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001527 return BinaryOperator::createMul(Op0, CP1);
Chris Lattner57c8d992003-02-18 19:57:07 +00001528 }
Chris Lattnerad3c4952002-05-09 01:29:19 +00001529 }
Chris Lattnera9be4492005-04-07 16:15:25 +00001530 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00001531
Chris Lattner47060462005-04-07 17:14:51 +00001532 if (!Op0->getType()->isFloatingPoint())
1533 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
1534 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner411336f2005-01-19 21:50:18 +00001535 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
1536 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
1537 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
1538 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner47060462005-04-07 17:14:51 +00001539 } else if (Op0I->getOpcode() == Instruction::Sub) {
1540 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
1541 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
Chris Lattner411336f2005-01-19 21:50:18 +00001542 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001543
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001544 ConstantInt *C1;
1545 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1546 if (X == Op1) { // X*C - X --> X * (C-1)
1547 Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
1548 return BinaryOperator::createMul(Op1, CP1);
1549 }
Chris Lattner57c8d992003-02-18 19:57:07 +00001550
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001551 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
1552 if (X == dyn_castFoldableMul(Op1, C2))
1553 return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
1554 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001555 return 0;
Chris Lattner260ab202002-04-18 17:39:14 +00001556}
1557
Chris Lattnere79e8542004-02-23 06:38:22 +00001558/// isSignBitCheck - Given an exploded setcc instruction, return true if it is
1559/// really just returns true if the most significant (sign) bit is set.
1560static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
1561 if (RHS->getType()->isSigned()) {
1562 // True if source is LHS < 0 or LHS <= -1
1563 return Opcode == Instruction::SetLT && RHS->isNullValue() ||
1564 Opcode == Instruction::SetLE && RHS->isAllOnesValue();
1565 } else {
1566 ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
1567 // True if source is LHS > 127 or LHS >= 128, where the constants depend on
1568 // the size of the integer type.
1569 if (Opcode == Instruction::SetGE)
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001570 return RHSC->getValue() ==
1571 1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1);
Chris Lattnere79e8542004-02-23 06:38:22 +00001572 if (Opcode == Instruction::SetGT)
1573 return RHSC->getValue() ==
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001574 (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
Chris Lattnere79e8542004-02-23 06:38:22 +00001575 }
1576 return false;
1577}
1578
Chris Lattner113f4f42002-06-25 16:13:24 +00001579Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00001580 bool Changed = SimplifyCommutative(I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001581 Value *Op0 = I.getOperand(0);
Chris Lattner260ab202002-04-18 17:39:14 +00001582
Chris Lattner81a7a232004-10-16 18:11:37 +00001583 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
1584 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1585
Chris Lattnere6794492002-08-12 21:17:25 +00001586 // Simplify mul instructions with a constant RHS...
Chris Lattner3082c5a2003-02-18 19:28:33 +00001587 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
1588 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerede3fe02003-08-13 04:18:28 +00001589
1590 // ((X << C1)*C2) == (X * (C2 << C1))
1591 if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
1592 if (SI->getOpcode() == Instruction::Shl)
1593 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001594 return BinaryOperator::createMul(SI->getOperand(0),
1595 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanb1c93172005-04-21 23:48:37 +00001596
Chris Lattnercce81be2003-09-11 22:24:54 +00001597 if (CI->isNullValue())
1598 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
1599 if (CI->equalsInt(1)) // X * 1 == X
1600 return ReplaceInstUsesWith(I, Op0);
1601 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner35236d82003-06-25 17:09:20 +00001602 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner31ba1292002-04-29 22:24:47 +00001603
Chris Lattnercce81be2003-09-11 22:24:54 +00001604 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
Chris Lattner22d00a82005-08-02 19:16:58 +00001605 if (isPowerOf2_64(Val)) { // Replace X*(2^C) with X << C
1606 uint64_t C = Log2_64(Val);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001607 return new ShiftInst(Instruction::Shl, Op0,
1608 ConstantUInt::get(Type::UByteTy, C));
Chris Lattner22d00a82005-08-02 19:16:58 +00001609 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00001610 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00001611 if (Op1F->isNullValue())
1612 return ReplaceInstUsesWith(I, Op1);
Chris Lattner31ba1292002-04-29 22:24:47 +00001613
Chris Lattner3082c5a2003-02-18 19:28:33 +00001614 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
1615 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
1616 if (Op1F->getValue() == 1.0)
1617 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
1618 }
Chris Lattner183b3362004-04-09 19:05:30 +00001619
1620 // Try to fold constant mul into select arguments.
1621 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00001622 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00001623 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001624
1625 if (isa<PHINode>(Op0))
1626 if (Instruction *NV = FoldOpIntoPhi(I))
1627 return NV;
Chris Lattner260ab202002-04-18 17:39:14 +00001628 }
1629
Chris Lattner934a64cf2003-03-10 23:23:04 +00001630 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
1631 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001632 return BinaryOperator::createMul(Op0v, Op1v);
Chris Lattner934a64cf2003-03-10 23:23:04 +00001633
Chris Lattner2635b522004-02-23 05:39:21 +00001634 // If one of the operands of the multiply is a cast from a boolean value, then
1635 // we know the bool is either zero or one, so this is a 'masking' multiply.
1636 // See if we can simplify things based on how the boolean was originally
1637 // formed.
1638 CastInst *BoolCast = 0;
1639 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
1640 if (CI->getOperand(0)->getType() == Type::BoolTy)
1641 BoolCast = CI;
1642 if (!BoolCast)
1643 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
1644 if (CI->getOperand(0)->getType() == Type::BoolTy)
1645 BoolCast = CI;
1646 if (BoolCast) {
1647 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
1648 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
1649 const Type *SCOpTy = SCIOp0->getType();
1650
Chris Lattnere79e8542004-02-23 06:38:22 +00001651 // If the setcc is true iff the sign bit of X is set, then convert this
1652 // multiply into a shift/and combination.
1653 if (isa<ConstantInt>(SCIOp1) &&
1654 isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
Chris Lattner2635b522004-02-23 05:39:21 +00001655 // Shift the X value right to turn it into "all signbits".
1656 Constant *Amt = ConstantUInt::get(Type::UByteTy,
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001657 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattnere79e8542004-02-23 06:38:22 +00001658 if (SCIOp0->getType()->isUnsigned()) {
Chris Lattner97bfcea2004-06-17 18:16:02 +00001659 const Type *NewTy = SCIOp0->getType()->getSignedVersion();
Chris Lattnere79e8542004-02-23 06:38:22 +00001660 SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
1661 SCIOp0->getName()), I);
1662 }
1663
1664 Value *V =
1665 InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
1666 BoolCast->getOperand(0)->getName()+
1667 ".mask"), I);
Chris Lattner2635b522004-02-23 05:39:21 +00001668
1669 // If the multiply type is not the same as the source type, sign extend
1670 // or truncate to the multiply type.
1671 if (I.getType() != V->getType())
Chris Lattnere79e8542004-02-23 06:38:22 +00001672 V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001673
Chris Lattner2635b522004-02-23 05:39:21 +00001674 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001675 return BinaryOperator::createAnd(V, OtherOp);
Chris Lattner2635b522004-02-23 05:39:21 +00001676 }
1677 }
1678 }
1679
Chris Lattner113f4f42002-06-25 16:13:24 +00001680 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00001681}
1682
Chris Lattner113f4f42002-06-25 16:13:24 +00001683Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001684 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner81a7a232004-10-16 18:11:37 +00001685
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001686 if (isa<UndefValue>(Op0)) // undef / X -> 0
1687 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1688 if (isa<UndefValue>(Op1))
1689 return ReplaceInstUsesWith(I, Op1); // X / undef -> undef
1690
1691 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere20c3342004-04-26 14:01:59 +00001692 // div X, 1 == X
Chris Lattnere6794492002-08-12 21:17:25 +00001693 if (RHS->equalsInt(1))
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001694 return ReplaceInstUsesWith(I, Op0);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001695
Chris Lattnere20c3342004-04-26 14:01:59 +00001696 // div X, -1 == -X
1697 if (RHS->isAllOnesValue())
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001698 return BinaryOperator::createNeg(Op0);
Chris Lattnere20c3342004-04-26 14:01:59 +00001699
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001700 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
Chris Lattner272d5ca2004-09-28 18:22:15 +00001701 if (LHS->getOpcode() == Instruction::Div)
1702 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Chris Lattner272d5ca2004-09-28 18:22:15 +00001703 // (X / C1) / C2 -> X / (C1*C2)
1704 return BinaryOperator::createDiv(LHS->getOperand(0),
1705 ConstantExpr::getMul(RHS, LHSRHS));
1706 }
1707
Chris Lattner3082c5a2003-02-18 19:28:33 +00001708 // Check to see if this is an unsigned division with an exact power of 2,
1709 // if so, convert to a right shift.
1710 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
1711 if (uint64_t Val = C->getValue()) // Don't break X / 0
Chris Lattner22d00a82005-08-02 19:16:58 +00001712 if (isPowerOf2_64(Val)) {
1713 uint64_t C = Log2_64(Val);
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001714 return new ShiftInst(Instruction::Shr, Op0,
Chris Lattner3082c5a2003-02-18 19:28:33 +00001715 ConstantUInt::get(Type::UByteTy, C));
Chris Lattner22d00a82005-08-02 19:16:58 +00001716 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001717
Chris Lattner4ad08352004-10-09 02:50:40 +00001718 // -X/C -> X/-C
1719 if (RHS->getType()->isSigned())
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001720 if (Value *LHSNeg = dyn_castNegVal(Op0))
Chris Lattner4ad08352004-10-09 02:50:40 +00001721 return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
1722
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001723 if (!RHS->isNullValue()) {
1724 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00001725 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001726 return R;
1727 if (isa<PHINode>(Op0))
1728 if (Instruction *NV = FoldOpIntoPhi(I))
1729 return NV;
1730 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00001731 }
1732
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001733 // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1734 // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
1735 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1736 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1737 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1738 if (STO->getValue() == 0) { // Couldn't be this argument.
1739 I.setOperand(1, SFO);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001740 return &I;
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001741 } else if (SFO->getValue() == 0) {
Chris Lattner89dc4f12005-06-16 04:55:52 +00001742 I.setOperand(1, STO);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001743 return &I;
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001744 }
1745
Chris Lattner42362612005-04-08 04:03:26 +00001746 uint64_t TVA = STO->getValue(), FVA = SFO->getValue();
Chris Lattner22d00a82005-08-02 19:16:58 +00001747 if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
1748 unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
Chris Lattner42362612005-04-08 04:03:26 +00001749 Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
1750 Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
1751 TC, SI->getName()+".t");
1752 TSI = InsertNewInstBefore(TSI, I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001753
Chris Lattner42362612005-04-08 04:03:26 +00001754 Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
1755 Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
1756 FC, SI->getName()+".f");
1757 FSI = InsertNewInstBefore(FSI, I);
1758 return new SelectInst(SI->getOperand(0), TSI, FSI);
1759 }
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001760 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001761
Chris Lattner3082c5a2003-02-18 19:28:33 +00001762 // 0 / X == 0, we don't need to preserve faults!
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001763 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattner3082c5a2003-02-18 19:28:33 +00001764 if (LHS->equalsInt(0))
1765 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1766
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001767 if (I.getType()->isSigned()) {
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001768 // If the sign bits of both operands are zero (i.e. we can prove they are
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001769 // unsigned inputs), turn this into a udiv.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001770 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1771 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001772 const Type *NTy = Op0->getType()->getUnsignedVersion();
1773 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1774 InsertNewInstBefore(LHS, I);
1775 Value *RHS;
1776 if (Constant *R = dyn_cast<Constant>(Op1))
1777 RHS = ConstantExpr::getCast(R, NTy);
1778 else
1779 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1780 Instruction *Div = BinaryOperator::createDiv(LHS, RHS, I.getName());
1781 InsertNewInstBefore(Div, I);
1782 return new CastInst(Div, I.getType());
1783 }
Chris Lattner2e90b732006-02-05 07:54:04 +00001784 } else {
1785 // Known to be an unsigned division.
1786 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1787 // Turn A / (C1 << N), where C1 is "1<<C2" into A >> (N+C2) [udiv only].
1788 if (RHSI->getOpcode() == Instruction::Shl &&
1789 isa<ConstantUInt>(RHSI->getOperand(0))) {
1790 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1791 if (isPowerOf2_64(C1)) {
1792 unsigned C2 = Log2_64(C1);
1793 Value *Add = RHSI->getOperand(1);
1794 if (C2) {
1795 Constant *C2V = ConstantUInt::get(Add->getType(), C2);
1796 Add = InsertNewInstBefore(BinaryOperator::createAdd(Add, C2V,
1797 "tmp"), I);
1798 }
1799 return new ShiftInst(Instruction::Shr, Op0, Add);
1800 }
1801 }
1802 }
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001803 }
1804
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001805 return 0;
1806}
1807
1808
Chris Lattner113f4f42002-06-25 16:13:24 +00001809Instruction *InstCombiner::visitRem(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001810 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00001811 if (I.getType()->isSigned()) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001812 if (Value *RHSNeg = dyn_castNegVal(Op1))
Chris Lattner98c6bdf2004-07-06 07:11:42 +00001813 if (!isa<ConstantSInt>(RHSNeg) ||
Chris Lattner8e726062004-08-09 21:05:48 +00001814 cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
Chris Lattner7fd5f072004-07-06 07:01:22 +00001815 // X % -Y -> X % Y
1816 AddUsesToWorkList(I);
1817 I.setOperand(1, RHSNeg);
1818 return &I;
1819 }
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00001820
1821 // If the top bits of both operands are zero (i.e. we can prove they are
1822 // unsigned inputs), turn this into a urem.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001823 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1824 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00001825 const Type *NTy = Op0->getType()->getUnsignedVersion();
1826 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1827 InsertNewInstBefore(LHS, I);
1828 Value *RHS;
1829 if (Constant *R = dyn_cast<Constant>(Op1))
1830 RHS = ConstantExpr::getCast(R, NTy);
1831 else
1832 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1833 Instruction *Rem = BinaryOperator::createRem(LHS, RHS, I.getName());
1834 InsertNewInstBefore(Rem, I);
1835 return new CastInst(Rem, I.getType());
1836 }
1837 }
Chris Lattner7fd5f072004-07-06 07:01:22 +00001838
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001839 if (isa<UndefValue>(Op0)) // undef % X -> 0
Chris Lattner81a7a232004-10-16 18:11:37 +00001840 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001841 if (isa<UndefValue>(Op1))
1842 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
Chris Lattner81a7a232004-10-16 18:11:37 +00001843
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001844 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00001845 if (RHS->equalsInt(1)) // X % 1 == 0
1846 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1847
1848 // Check to see if this is an unsigned remainder with an exact power of 2,
1849 // if so, convert to a bitwise and.
1850 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
1851 if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero)
Chris Lattnerd9e58132004-05-07 15:35:56 +00001852 if (!(Val & (Val-1))) // Power of 2
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001853 return BinaryOperator::createAnd(Op0,
1854 ConstantUInt::get(I.getType(), Val-1));
1855
1856 if (!RHS->isNullValue()) {
1857 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00001858 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001859 return R;
1860 if (isa<PHINode>(Op0))
1861 if (Instruction *NV = FoldOpIntoPhi(I))
1862 return NV;
1863 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00001864 }
1865
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001866 // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1867 // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
1868 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1869 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1870 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1871 if (STO->getValue() == 0) { // Couldn't be this argument.
1872 I.setOperand(1, SFO);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001873 return &I;
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001874 } else if (SFO->getValue() == 0) {
1875 I.setOperand(1, STO);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001876 return &I;
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001877 }
1878
1879 if (!(STO->getValue() & (STO->getValue()-1)) &&
1880 !(SFO->getValue() & (SFO->getValue()-1))) {
1881 Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1882 SubOne(STO), SI->getName()+".t"), I);
1883 Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1884 SubOne(SFO), SI->getName()+".f"), I);
1885 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
1886 }
1887 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001888
Chris Lattner3082c5a2003-02-18 19:28:33 +00001889 // 0 % X == 0, we don't need to preserve faults!
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001890 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattner3082c5a2003-02-18 19:28:33 +00001891 if (LHS->equalsInt(0))
Chris Lattnere6794492002-08-12 21:17:25 +00001892 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1893
Chris Lattner2e90b732006-02-05 07:54:04 +00001894
1895 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1896 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) [urem only].
1897 if (I.getType()->isUnsigned() &&
1898 RHSI->getOpcode() == Instruction::Shl &&
1899 isa<ConstantUInt>(RHSI->getOperand(0))) {
1900 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1901 if (isPowerOf2_64(C1)) {
1902 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
1903 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
1904 "tmp"), I);
1905 return BinaryOperator::createAnd(Op0, Add);
1906 }
1907 }
1908 }
1909
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001910 return 0;
1911}
1912
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001913// isMaxValueMinusOne - return true if this is Max-1
Chris Lattnere6794492002-08-12 21:17:25 +00001914static bool isMaxValueMinusOne(const ConstantInt *C) {
Chris Lattner77defba2006-02-07 07:00:41 +00001915 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1916 return CU->getValue() == C->getType()->getIntegralTypeMask()-1;
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001917
1918 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001919
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001920 // Calculate 0111111111..11111
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001921 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001922 int64_t Val = INT64_MAX; // All ones
1923 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
1924 return CS->getValue() == Val-1;
1925}
1926
1927// isMinValuePlusOne - return true if this is Min+1
Chris Lattnere6794492002-08-12 21:17:25 +00001928static bool isMinValuePlusOne(const ConstantInt *C) {
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001929 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1930 return CU->getValue() == 1;
1931
1932 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001933
1934 // Calculate 1111111111000000000000
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001935 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001936 int64_t Val = -1; // All ones
1937 Val <<= TypeBits-1; // Shift over to the right spot
1938 return CS->getValue() == Val+1;
1939}
1940
Chris Lattner35167c32004-06-09 07:59:58 +00001941// isOneBitSet - Return true if there is exactly one bit set in the specified
1942// constant.
1943static bool isOneBitSet(const ConstantInt *CI) {
1944 uint64_t V = CI->getRawValue();
1945 return V && (V & (V-1)) == 0;
1946}
1947
Chris Lattner8fc5af42004-09-23 21:46:38 +00001948#if 0 // Currently unused
1949// isLowOnes - Return true if the constant is of the form 0+1+.
1950static bool isLowOnes(const ConstantInt *CI) {
1951 uint64_t V = CI->getRawValue();
1952
1953 // There won't be bits set in parts that the type doesn't contain.
1954 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
1955
1956 uint64_t U = V+1; // If it is low ones, this should be a power of two.
1957 return U && V && (U & V) == 0;
1958}
1959#endif
1960
1961// isHighOnes - Return true if the constant is of the form 1+0+.
1962// This is the same as lowones(~X).
1963static bool isHighOnes(const ConstantInt *CI) {
1964 uint64_t V = ~CI->getRawValue();
Chris Lattner2c14cf72005-08-07 07:03:10 +00001965 if (~V == 0) return false; // 0's does not match "1+"
Chris Lattner8fc5af42004-09-23 21:46:38 +00001966
1967 // There won't be bits set in parts that the type doesn't contain.
1968 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
1969
1970 uint64_t U = V+1; // If it is low ones, this should be a power of two.
1971 return U && V && (U & V) == 0;
1972}
1973
1974
Chris Lattner3ac7c262003-08-13 20:16:26 +00001975/// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits
1976/// are carefully arranged to allow folding of expressions such as:
1977///
1978/// (A < B) | (A > B) --> (A != B)
1979///
1980/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
1981/// represents that the comparison is true if A == B, and bit value '1' is true
1982/// if A < B.
1983///
1984static unsigned getSetCondCode(const SetCondInst *SCI) {
1985 switch (SCI->getOpcode()) {
1986 // False -> 0
1987 case Instruction::SetGT: return 1;
1988 case Instruction::SetEQ: return 2;
1989 case Instruction::SetGE: return 3;
1990 case Instruction::SetLT: return 4;
1991 case Instruction::SetNE: return 5;
1992 case Instruction::SetLE: return 6;
1993 // True -> 7
1994 default:
1995 assert(0 && "Invalid SetCC opcode!");
1996 return 0;
1997 }
1998}
1999
2000/// getSetCCValue - This is the complement of getSetCondCode, which turns an
2001/// opcode and two operands into either a constant true or false, or a brand new
2002/// SetCC instruction.
2003static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
2004 switch (Opcode) {
2005 case 0: return ConstantBool::False;
2006 case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
2007 case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
2008 case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
2009 case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
2010 case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
2011 case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
2012 case 7: return ConstantBool::True;
2013 default: assert(0 && "Illegal SetCCCode!"); return 0;
2014 }
2015}
2016
2017// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
2018struct FoldSetCCLogical {
2019 InstCombiner &IC;
2020 Value *LHS, *RHS;
2021 FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
2022 : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
2023 bool shouldApply(Value *V) const {
2024 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
2025 return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
2026 SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
2027 return false;
2028 }
2029 Instruction *apply(BinaryOperator &Log) const {
2030 SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
2031 if (SCI->getOperand(0) != LHS) {
2032 assert(SCI->getOperand(1) == LHS);
2033 SCI->swapOperands(); // Swap the LHS and RHS of the SetCC
2034 }
2035
2036 unsigned LHSCode = getSetCondCode(SCI);
2037 unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
2038 unsigned Code;
2039 switch (Log.getOpcode()) {
2040 case Instruction::And: Code = LHSCode & RHSCode; break;
2041 case Instruction::Or: Code = LHSCode | RHSCode; break;
2042 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner2caaaba2003-09-22 20:33:34 +00002043 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattner3ac7c262003-08-13 20:16:26 +00002044 }
2045
2046 Value *RV = getSetCCValue(Code, LHS, RHS);
2047 if (Instruction *I = dyn_cast<Instruction>(RV))
2048 return I;
2049 // Otherwise, it's a constant boolean value...
2050 return IC.ReplaceInstUsesWith(Log, RV);
2051 }
2052};
2053
Chris Lattnerba1cb382003-09-19 17:17:26 +00002054// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
2055// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
2056// guaranteed to be either a shift instruction or a binary operator.
2057Instruction *InstCombiner::OptAndOp(Instruction *Op,
2058 ConstantIntegral *OpRHS,
2059 ConstantIntegral *AndRHS,
2060 BinaryOperator &TheAnd) {
2061 Value *X = Op->getOperand(0);
Chris Lattnerfcf21a72004-01-12 19:47:05 +00002062 Constant *Together = 0;
2063 if (!isa<ShiftInst>(Op))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002064 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002065
Chris Lattnerba1cb382003-09-19 17:17:26 +00002066 switch (Op->getOpcode()) {
2067 case Instruction::Xor:
Chris Lattner86102b82005-01-01 16:22:27 +00002068 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00002069 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2070 std::string OpName = Op->getName(); Op->setName("");
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002071 Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002072 InsertNewInstBefore(And, TheAnd);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002073 return BinaryOperator::createXor(And, Together);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002074 }
2075 break;
2076 case Instruction::Or:
Chris Lattner86102b82005-01-01 16:22:27 +00002077 if (Together == AndRHS) // (X | C) & C --> C
2078 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002079
Chris Lattner86102b82005-01-01 16:22:27 +00002080 if (Op->hasOneUse() && Together != OpRHS) {
2081 // (X | C1) & C2 --> (X | (C1&C2)) & C2
2082 std::string Op0Name = Op->getName(); Op->setName("");
2083 Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
2084 InsertNewInstBefore(Or, TheAnd);
2085 return BinaryOperator::createAnd(Or, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002086 }
2087 break;
2088 case Instruction::Add:
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002089 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00002090 // Adding a one to a single bit bit-field should be turned into an XOR
2091 // of the bit. First thing to check is to see if this AND is with a
2092 // single bit constant.
Chris Lattner35167c32004-06-09 07:59:58 +00002093 uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
Chris Lattnerba1cb382003-09-19 17:17:26 +00002094
2095 // Clear bits that are not part of the constant.
Chris Lattner77defba2006-02-07 07:00:41 +00002096 AndRHSV &= AndRHS->getType()->getIntegralTypeMask();
Chris Lattnerba1cb382003-09-19 17:17:26 +00002097
2098 // If there is only one bit set...
Chris Lattner35167c32004-06-09 07:59:58 +00002099 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00002100 // Ok, at this point, we know that we are masking the result of the
2101 // ADD down to exactly one bit. If the constant we are adding has
2102 // no bits set below this bit, then we can eliminate the ADD.
Chris Lattner35167c32004-06-09 07:59:58 +00002103 uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00002104
Chris Lattnerba1cb382003-09-19 17:17:26 +00002105 // Check to see if any bits below the one bit set in AndRHSV are set.
2106 if ((AddRHS & (AndRHSV-1)) == 0) {
2107 // If not, the only thing that can effect the output of the AND is
2108 // the bit specified by AndRHSV. If that bit is set, the effect of
2109 // the XOR is to toggle the bit. If it is clear, then the ADD has
2110 // no effect.
2111 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
2112 TheAnd.setOperand(0, X);
2113 return &TheAnd;
2114 } else {
2115 std::string Name = Op->getName(); Op->setName("");
2116 // Pull the XOR out of the AND.
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002117 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002118 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002119 return BinaryOperator::createXor(NewAnd, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002120 }
2121 }
2122 }
2123 }
2124 break;
Chris Lattner2da29172003-09-19 19:05:02 +00002125
2126 case Instruction::Shl: {
2127 // We know that the AND will not produce any of the bits shifted in, so if
2128 // the anded constant includes them, clear them now!
2129 //
2130 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner7e794272004-09-24 15:21:34 +00002131 Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
2132 Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002133
Chris Lattner7e794272004-09-24 15:21:34 +00002134 if (CI == ShlMask) { // Masking out bits that the shift already masks
2135 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
2136 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner2da29172003-09-19 19:05:02 +00002137 TheAnd.setOperand(1, CI);
2138 return &TheAnd;
2139 }
2140 break;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002141 }
Chris Lattner2da29172003-09-19 19:05:02 +00002142 case Instruction::Shr:
2143 // We know that the AND will not produce any of the bits shifted in, so if
2144 // the anded constant includes them, clear them now! This only applies to
2145 // unsigned shifts, because a signed shr may bring in set bits!
2146 //
2147 if (AndRHS->getType()->isUnsigned()) {
2148 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner7e794272004-09-24 15:21:34 +00002149 Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
2150 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
2151
2152 if (CI == ShrMask) { // Masking out bits that the shift already masks.
2153 return ReplaceInstUsesWith(TheAnd, Op);
2154 } else if (CI != AndRHS) {
2155 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
Chris Lattner2da29172003-09-19 19:05:02 +00002156 return &TheAnd;
2157 }
Chris Lattner7e794272004-09-24 15:21:34 +00002158 } else { // Signed shr.
2159 // See if this is shifting in some sign extension, then masking it out
2160 // with an and.
2161 if (Op->hasOneUse()) {
2162 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
2163 Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
2164 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
Chris Lattner5c3c21e2004-10-22 04:53:16 +00002165 if (CI == AndRHS) { // Masking out bits shifted in.
Chris Lattner7e794272004-09-24 15:21:34 +00002166 // Make the argument unsigned.
2167 Value *ShVal = Op->getOperand(0);
2168 ShVal = InsertCastBefore(ShVal,
2169 ShVal->getType()->getUnsignedVersion(),
2170 TheAnd);
2171 ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
2172 OpRHS, Op->getName()),
2173 TheAnd);
Chris Lattner70c20392004-10-27 05:57:15 +00002174 Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
2175 ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
2176 TheAnd.getName()),
2177 TheAnd);
Chris Lattner7e794272004-09-24 15:21:34 +00002178 return new CastInst(ShVal, Op->getType());
2179 }
2180 }
Chris Lattner2da29172003-09-19 19:05:02 +00002181 }
2182 break;
Chris Lattnerba1cb382003-09-19 17:17:26 +00002183 }
2184 return 0;
2185}
2186
Chris Lattner6d14f2a2002-08-09 23:47:40 +00002187
Chris Lattner6862fbd2004-09-29 17:40:11 +00002188/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
2189/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
2190/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. IB is the location to
2191/// insert new instructions.
2192Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
2193 bool Inside, Instruction &IB) {
2194 assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
2195 "Lo is not <= Hi in range emission code!");
2196 if (Inside) {
2197 if (Lo == Hi) // Trivially false.
2198 return new SetCondInst(Instruction::SetNE, V, V);
2199 if (cast<ConstantIntegral>(Lo)->isMinValue())
2200 return new SetCondInst(Instruction::SetLT, V, Hi);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002201
Chris Lattner6862fbd2004-09-29 17:40:11 +00002202 Constant *AddCST = ConstantExpr::getNeg(Lo);
2203 Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
2204 InsertNewInstBefore(Add, IB);
2205 // Convert to unsigned for the comparison.
2206 const Type *UnsType = Add->getType()->getUnsignedVersion();
2207 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2208 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2209 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2210 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2211 }
2212
2213 if (Lo == Hi) // Trivially true.
2214 return new SetCondInst(Instruction::SetEQ, V, V);
2215
2216 Hi = SubOne(cast<ConstantInt>(Hi));
2217 if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
2218 return new SetCondInst(Instruction::SetGT, V, Hi);
2219
2220 // Emit X-Lo > Hi-Lo-1
2221 Constant *AddCST = ConstantExpr::getNeg(Lo);
2222 Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
2223 InsertNewInstBefore(Add, IB);
2224 // Convert to unsigned for the comparison.
2225 const Type *UnsType = Add->getType()->getUnsignedVersion();
2226 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2227 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2228 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2229 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2230}
2231
Chris Lattnerb4b25302005-09-18 07:22:02 +00002232// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
2233// any number of 0s on either side. The 1s are allowed to wrap from LSB to
2234// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
2235// not, since all 1s are not contiguous.
2236static bool isRunOfOnes(ConstantIntegral *Val, unsigned &MB, unsigned &ME) {
2237 uint64_t V = Val->getRawValue();
2238 if (!isShiftedMask_64(V)) return false;
2239
2240 // look for the first zero bit after the run of ones
2241 MB = 64-CountLeadingZeros_64((V - 1) ^ V);
2242 // look for the first non-zero bit
2243 ME = 64-CountLeadingZeros_64(V);
2244 return true;
2245}
2246
2247
2248
2249/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
2250/// where isSub determines whether the operator is a sub. If we can fold one of
2251/// the following xforms:
Chris Lattneraf517572005-09-18 04:24:45 +00002252///
2253/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
2254/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2255/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2256///
2257/// return (A +/- B).
2258///
2259Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
2260 ConstantIntegral *Mask, bool isSub,
2261 Instruction &I) {
2262 Instruction *LHSI = dyn_cast<Instruction>(LHS);
2263 if (!LHSI || LHSI->getNumOperands() != 2 ||
2264 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
2265
2266 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
2267
2268 switch (LHSI->getOpcode()) {
2269 default: return 0;
2270 case Instruction::And:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002271 if (ConstantExpr::getAnd(N, Mask) == Mask) {
2272 // If the AndRHS is a power of two minus one (0+1+), this is simple.
2273 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0)
2274 break;
2275
2276 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
2277 // part, we don't need any explicit masks to take them out of A. If that
2278 // is all N is, ignore it.
2279 unsigned MB, ME;
2280 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002281 uint64_t Mask = RHS->getType()->getIntegralTypeMask();
2282 Mask >>= 64-MB+1;
2283 if (MaskedValueIsZero(RHS, Mask))
Chris Lattnerb4b25302005-09-18 07:22:02 +00002284 break;
2285 }
2286 }
Chris Lattneraf517572005-09-18 04:24:45 +00002287 return 0;
2288 case Instruction::Or:
2289 case Instruction::Xor:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002290 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
2291 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0 &&
2292 ConstantExpr::getAnd(N, Mask)->isNullValue())
Chris Lattneraf517572005-09-18 04:24:45 +00002293 break;
2294 return 0;
2295 }
2296
2297 Instruction *New;
2298 if (isSub)
2299 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
2300 else
2301 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
2302 return InsertNewInstBefore(New, I);
2303}
2304
Chris Lattner113f4f42002-06-25 16:13:24 +00002305Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002306 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002307 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002308
Chris Lattner81a7a232004-10-16 18:11:37 +00002309 if (isa<UndefValue>(Op1)) // X & undef -> 0
2310 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2311
Chris Lattner86102b82005-01-01 16:22:27 +00002312 // and X, X = X
2313 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00002314 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002315
Chris Lattner5b2edb12006-02-12 08:02:11 +00002316 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner5997cf92006-02-08 03:25:32 +00002317 // purpose is to compute bits we don't care about.
Chris Lattner0157e7f2006-02-11 09:31:47 +00002318 uint64_t KnownZero, KnownOne;
2319 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2320 KnownZero, KnownOne))
Chris Lattner5997cf92006-02-08 03:25:32 +00002321 return &I;
2322
Chris Lattner86102b82005-01-01 16:22:27 +00002323 if (ConstantIntegral *AndRHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00002324 uint64_t AndRHSMask = AndRHS->getZExtValue();
2325 uint64_t TypeMask = Op0->getType()->getIntegralTypeMask();
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00002326 uint64_t NotAndRHS = AndRHSMask^TypeMask;
Chris Lattner86102b82005-01-01 16:22:27 +00002327
Chris Lattnerba1cb382003-09-19 17:17:26 +00002328 // Optimize a variety of ((val OP C1) & C2) combinations...
2329 if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
2330 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner86102b82005-01-01 16:22:27 +00002331 Value *Op0LHS = Op0I->getOperand(0);
2332 Value *Op0RHS = Op0I->getOperand(1);
2333 switch (Op0I->getOpcode()) {
2334 case Instruction::Xor:
2335 case Instruction::Or:
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00002336 // If the mask is only needed on one incoming arm, push it up.
2337 if (Op0I->hasOneUse()) {
2338 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
2339 // Not masking anything out for the LHS, move to RHS.
2340 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
2341 Op0RHS->getName()+".masked");
2342 InsertNewInstBefore(NewRHS, I);
2343 return BinaryOperator::create(
2344 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002345 }
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002346 if (!isa<Constant>(Op0RHS) &&
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00002347 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
2348 // Not masking anything out for the RHS, move to LHS.
2349 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
2350 Op0LHS->getName()+".masked");
2351 InsertNewInstBefore(NewLHS, I);
2352 return BinaryOperator::create(
2353 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
2354 }
2355 }
2356
Chris Lattner86102b82005-01-01 16:22:27 +00002357 break;
Chris Lattneraf517572005-09-18 04:24:45 +00002358 case Instruction::Add:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002359 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
2360 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2361 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2362 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
2363 return BinaryOperator::createAnd(V, AndRHS);
2364 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
2365 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
Chris Lattneraf517572005-09-18 04:24:45 +00002366 break;
2367
2368 case Instruction::Sub:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002369 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
2370 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2371 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2372 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
2373 return BinaryOperator::createAnd(V, AndRHS);
Chris Lattneraf517572005-09-18 04:24:45 +00002374 break;
Chris Lattner86102b82005-01-01 16:22:27 +00002375 }
2376
Chris Lattner16464b32003-07-23 19:25:52 +00002377 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner86102b82005-01-01 16:22:27 +00002378 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerba1cb382003-09-19 17:17:26 +00002379 return Res;
Chris Lattner86102b82005-01-01 16:22:27 +00002380 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
2381 const Type *SrcTy = CI->getOperand(0)->getType();
2382
Chris Lattner2c14cf72005-08-07 07:03:10 +00002383 // If this is an integer truncation or change from signed-to-unsigned, and
2384 // if the source is an and/or with immediate, transform it. This
2385 // frequently occurs for bitfield accesses.
2386 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
2387 if (SrcTy->getPrimitiveSizeInBits() >=
2388 I.getType()->getPrimitiveSizeInBits() &&
2389 CastOp->getNumOperands() == 2)
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00002390 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
Chris Lattner2c14cf72005-08-07 07:03:10 +00002391 if (CastOp->getOpcode() == Instruction::And) {
2392 // Change: and (cast (and X, C1) to T), C2
2393 // into : and (cast X to T), trunc(C1)&C2
2394 // This will folds the two ands together, which may allow other
2395 // simplifications.
2396 Instruction *NewCast =
2397 new CastInst(CastOp->getOperand(0), I.getType(),
2398 CastOp->getName()+".shrunk");
2399 NewCast = InsertNewInstBefore(NewCast, I);
2400
2401 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2402 C3 = ConstantExpr::getAnd(C3, AndRHS); // trunc(C1)&C2
2403 return BinaryOperator::createAnd(NewCast, C3);
2404 } else if (CastOp->getOpcode() == Instruction::Or) {
2405 // Change: and (cast (or X, C1) to T), C2
2406 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
2407 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2408 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
2409 return ReplaceInstUsesWith(I, AndRHS);
2410 }
2411 }
Chris Lattner33217db2003-07-23 19:36:21 +00002412 }
Chris Lattner183b3362004-04-09 19:05:30 +00002413
2414 // Try to fold constant and into select arguments.
2415 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002416 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002417 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002418 if (isa<PHINode>(Op0))
2419 if (Instruction *NV = FoldOpIntoPhi(I))
2420 return NV;
Chris Lattner49b47ae2003-07-23 17:57:01 +00002421 }
2422
Chris Lattnerbb74e222003-03-10 23:06:50 +00002423 Value *Op0NotVal = dyn_castNotVal(Op0);
2424 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002425
Chris Lattner023a4832004-06-18 06:07:51 +00002426 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
2427 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2428
Misha Brukman9c003d82004-07-30 12:50:08 +00002429 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattnerbb74e222003-03-10 23:06:50 +00002430 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002431 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
2432 I.getName()+".demorgan");
Chris Lattner49b47ae2003-07-23 17:57:01 +00002433 InsertNewInstBefore(Or, I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002434 return BinaryOperator::createNot(Or);
2435 }
2436
Chris Lattner623826c2004-09-28 21:48:02 +00002437 if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
2438 // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
Chris Lattner3ac7c262003-08-13 20:16:26 +00002439 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2440 return R;
2441
Chris Lattner623826c2004-09-28 21:48:02 +00002442 Value *LHSVal, *RHSVal;
2443 ConstantInt *LHSCst, *RHSCst;
2444 Instruction::BinaryOps LHSCC, RHSCC;
2445 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2446 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2447 if (LHSVal == RHSVal && // Found (X setcc C1) & (X setcc C2)
2448 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanb1c93172005-04-21 23:48:37 +00002449 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattner623826c2004-09-28 21:48:02 +00002450 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2451 // Ensure that the larger constant is on the RHS.
2452 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2453 SetCondInst *LHS = cast<SetCondInst>(Op0);
2454 if (cast<ConstantBool>(Cmp)->getValue()) {
2455 std::swap(LHS, RHS);
2456 std::swap(LHSCst, RHSCst);
2457 std::swap(LHSCC, RHSCC);
2458 }
2459
2460 // At this point, we know we have have two setcc instructions
2461 // comparing a value against two constants and and'ing the result
2462 // together. Because of the above check, we know that we only have
2463 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2464 // FoldSetCCLogical check above), that the two constants are not
2465 // equal.
2466 assert(LHSCst != RHSCst && "Compares not folded above?");
2467
2468 switch (LHSCC) {
2469 default: assert(0 && "Unknown integer condition code!");
2470 case Instruction::SetEQ:
2471 switch (RHSCC) {
2472 default: assert(0 && "Unknown integer condition code!");
2473 case Instruction::SetEQ: // (X == 13 & X == 15) -> false
2474 case Instruction::SetGT: // (X == 13 & X > 15) -> false
2475 return ReplaceInstUsesWith(I, ConstantBool::False);
2476 case Instruction::SetNE: // (X == 13 & X != 15) -> X == 13
2477 case Instruction::SetLT: // (X == 13 & X < 15) -> X == 13
2478 return ReplaceInstUsesWith(I, LHS);
2479 }
2480 case Instruction::SetNE:
2481 switch (RHSCC) {
2482 default: assert(0 && "Unknown integer condition code!");
2483 case Instruction::SetLT:
2484 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
2485 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
2486 break; // (X != 13 & X < 15) -> no change
2487 case Instruction::SetEQ: // (X != 13 & X == 15) -> X == 15
2488 case Instruction::SetGT: // (X != 13 & X > 15) -> X > 15
2489 return ReplaceInstUsesWith(I, RHS);
2490 case Instruction::SetNE:
2491 if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
2492 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2493 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2494 LHSVal->getName()+".off");
2495 InsertNewInstBefore(Add, I);
2496 const Type *UnsType = Add->getType()->getUnsignedVersion();
2497 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2498 AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
2499 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2500 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2501 }
2502 break; // (X != 13 & X != 15) -> no change
2503 }
2504 break;
2505 case Instruction::SetLT:
2506 switch (RHSCC) {
2507 default: assert(0 && "Unknown integer condition code!");
2508 case Instruction::SetEQ: // (X < 13 & X == 15) -> false
2509 case Instruction::SetGT: // (X < 13 & X > 15) -> false
2510 return ReplaceInstUsesWith(I, ConstantBool::False);
2511 case Instruction::SetNE: // (X < 13 & X != 15) -> X < 13
2512 case Instruction::SetLT: // (X < 13 & X < 15) -> X < 13
2513 return ReplaceInstUsesWith(I, LHS);
2514 }
2515 case Instruction::SetGT:
2516 switch (RHSCC) {
2517 default: assert(0 && "Unknown integer condition code!");
2518 case Instruction::SetEQ: // (X > 13 & X == 15) -> X > 13
2519 return ReplaceInstUsesWith(I, LHS);
2520 case Instruction::SetGT: // (X > 13 & X > 15) -> X > 15
2521 return ReplaceInstUsesWith(I, RHS);
2522 case Instruction::SetNE:
2523 if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
2524 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
2525 break; // (X > 13 & X != 15) -> no change
Chris Lattner6862fbd2004-09-29 17:40:11 +00002526 case Instruction::SetLT: // (X > 13 & X < 15) -> (X-14) <u 1
2527 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
Chris Lattner623826c2004-09-28 21:48:02 +00002528 }
2529 }
2530 }
2531 }
2532
Chris Lattner113f4f42002-06-25 16:13:24 +00002533 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002534}
2535
Chris Lattner113f4f42002-06-25 16:13:24 +00002536Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002537 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002538 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002539
Chris Lattner81a7a232004-10-16 18:11:37 +00002540 if (isa<UndefValue>(Op1))
2541 return ReplaceInstUsesWith(I, // X | undef -> -1
2542 ConstantIntegral::getAllOnesValue(I.getType()));
2543
Chris Lattner5b2edb12006-02-12 08:02:11 +00002544 // or X, X = X
2545 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00002546 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002547
Chris Lattner5b2edb12006-02-12 08:02:11 +00002548 // See if we can simplify any instructions used by the instruction whose sole
2549 // purpose is to compute bits we don't care about.
2550 uint64_t KnownZero, KnownOne;
2551 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2552 KnownZero, KnownOne))
2553 return &I;
2554
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002555 // or X, -1 == -1
Chris Lattner8f0d1562003-07-23 18:29:44 +00002556 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner330628a2006-01-06 17:59:59 +00002557 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002558 // (X & C1) | C2 --> (X | C2) & (C1|C2)
2559 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattnerb62f5082005-05-09 04:58:36 +00002560 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName());
2561 Op0->setName("");
Chris Lattnerd4252a72004-07-30 07:50:03 +00002562 InsertNewInstBefore(Or, I);
2563 return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
2564 }
Chris Lattner8f0d1562003-07-23 18:29:44 +00002565
Chris Lattnerd4252a72004-07-30 07:50:03 +00002566 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2567 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
2568 std::string Op0Name = Op0->getName(); Op0->setName("");
2569 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
2570 InsertNewInstBefore(Or, I);
2571 return BinaryOperator::createXor(Or,
2572 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
Chris Lattner8f0d1562003-07-23 18:29:44 +00002573 }
Chris Lattner183b3362004-04-09 19:05:30 +00002574
2575 // Try to fold constant and into select arguments.
2576 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002577 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002578 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002579 if (isa<PHINode>(Op0))
2580 if (Instruction *NV = FoldOpIntoPhi(I))
2581 return NV;
Chris Lattner8f0d1562003-07-23 18:29:44 +00002582 }
2583
Chris Lattner330628a2006-01-06 17:59:59 +00002584 Value *A = 0, *B = 0;
2585 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattner4294cec2005-05-07 23:49:08 +00002586
2587 if (match(Op0, m_And(m_Value(A), m_Value(B))))
2588 if (A == Op1 || B == Op1) // (A & ?) | A --> A
2589 return ReplaceInstUsesWith(I, Op1);
2590 if (match(Op1, m_And(m_Value(A), m_Value(B))))
2591 if (A == Op0 || B == Op0) // A | (A & ?) --> A
2592 return ReplaceInstUsesWith(I, Op0);
2593
Chris Lattnerb62f5082005-05-09 04:58:36 +00002594 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2595 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002596 MaskedValueIsZero(Op1, C1->getZExtValue())) {
Chris Lattnerb62f5082005-05-09 04:58:36 +00002597 Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName());
2598 Op0->setName("");
2599 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2600 }
2601
2602 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2603 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002604 MaskedValueIsZero(Op0, C1->getZExtValue())) {
Chris Lattnerb62f5082005-05-09 04:58:36 +00002605 Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName());
2606 Op0->setName("");
2607 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2608 }
2609
Chris Lattner15212982005-09-18 03:42:07 +00002610 // (A & C1)|(B & C2)
Chris Lattnerd4252a72004-07-30 07:50:03 +00002611 if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner15212982005-09-18 03:42:07 +00002612 match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
2613
2614 if (A == B) // (A & C1)|(A & C2) == A & (C1|C2)
2615 return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
2616
2617
Chris Lattner01f56c62005-09-18 06:02:59 +00002618 // If we have: ((V + N) & C1) | (V & C2)
2619 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2620 // replace with V+N.
2621 if (C1 == ConstantExpr::getNot(C2)) {
Chris Lattner330628a2006-01-06 17:59:59 +00002622 Value *V1 = 0, *V2 = 0;
Chris Lattner01f56c62005-09-18 06:02:59 +00002623 if ((C2->getRawValue() & (C2->getRawValue()+1)) == 0 && // C2 == 0+1+
2624 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
2625 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002626 if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002627 return ReplaceInstUsesWith(I, A);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002628 if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002629 return ReplaceInstUsesWith(I, A);
2630 }
2631 // Or commutes, try both ways.
2632 if ((C1->getRawValue() & (C1->getRawValue()+1)) == 0 &&
2633 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
2634 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002635 if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002636 return ReplaceInstUsesWith(I, B);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002637 if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002638 return ReplaceInstUsesWith(I, B);
Chris Lattner15212982005-09-18 03:42:07 +00002639 }
2640 }
2641 }
Chris Lattner812aab72003-08-12 19:11:07 +00002642
Chris Lattnerd4252a72004-07-30 07:50:03 +00002643 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
2644 if (A == Op1) // ~A | A == -1
Misha Brukmanb1c93172005-04-21 23:48:37 +00002645 return ReplaceInstUsesWith(I,
Chris Lattnerd4252a72004-07-30 07:50:03 +00002646 ConstantIntegral::getAllOnesValue(I.getType()));
2647 } else {
2648 A = 0;
2649 }
Chris Lattner4294cec2005-05-07 23:49:08 +00002650 // Note, A is still live here!
Chris Lattnerd4252a72004-07-30 07:50:03 +00002651 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
2652 if (Op0 == B)
Misha Brukmanb1c93172005-04-21 23:48:37 +00002653 return ReplaceInstUsesWith(I,
Chris Lattnerd4252a72004-07-30 07:50:03 +00002654 ConstantIntegral::getAllOnesValue(I.getType()));
Chris Lattner3e327a42003-03-10 23:13:59 +00002655
Misha Brukman9c003d82004-07-30 12:50:08 +00002656 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattnerd4252a72004-07-30 07:50:03 +00002657 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
2658 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
2659 I.getName()+".demorgan"), I);
2660 return BinaryOperator::createNot(And);
2661 }
Chris Lattner3e327a42003-03-10 23:13:59 +00002662 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00002663
Chris Lattner3ac7c262003-08-13 20:16:26 +00002664 // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002665 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
Chris Lattner3ac7c262003-08-13 20:16:26 +00002666 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2667 return R;
2668
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002669 Value *LHSVal, *RHSVal;
2670 ConstantInt *LHSCst, *RHSCst;
2671 Instruction::BinaryOps LHSCC, RHSCC;
2672 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2673 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2674 if (LHSVal == RHSVal && // Found (X setcc C1) | (X setcc C2)
2675 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanb1c93172005-04-21 23:48:37 +00002676 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002677 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2678 // Ensure that the larger constant is on the RHS.
2679 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2680 SetCondInst *LHS = cast<SetCondInst>(Op0);
2681 if (cast<ConstantBool>(Cmp)->getValue()) {
2682 std::swap(LHS, RHS);
2683 std::swap(LHSCst, RHSCst);
2684 std::swap(LHSCC, RHSCC);
2685 }
2686
2687 // At this point, we know we have have two setcc instructions
2688 // comparing a value against two constants and or'ing the result
2689 // together. Because of the above check, we know that we only have
2690 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2691 // FoldSetCCLogical check above), that the two constants are not
2692 // equal.
2693 assert(LHSCst != RHSCst && "Compares not folded above?");
2694
2695 switch (LHSCC) {
2696 default: assert(0 && "Unknown integer condition code!");
2697 case Instruction::SetEQ:
2698 switch (RHSCC) {
2699 default: assert(0 && "Unknown integer condition code!");
2700 case Instruction::SetEQ:
2701 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
2702 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2703 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2704 LHSVal->getName()+".off");
2705 InsertNewInstBefore(Add, I);
2706 const Type *UnsType = Add->getType()->getUnsignedVersion();
2707 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2708 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
2709 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2710 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2711 }
2712 break; // (X == 13 | X == 15) -> no change
2713
Chris Lattner5c219462005-04-19 06:04:18 +00002714 case Instruction::SetGT: // (X == 13 | X > 14) -> no change
2715 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002716 case Instruction::SetNE: // (X == 13 | X != 15) -> X != 15
2717 case Instruction::SetLT: // (X == 13 | X < 15) -> X < 15
2718 return ReplaceInstUsesWith(I, RHS);
2719 }
2720 break;
2721 case Instruction::SetNE:
2722 switch (RHSCC) {
2723 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002724 case Instruction::SetEQ: // (X != 13 | X == 15) -> X != 13
2725 case Instruction::SetGT: // (X != 13 | X > 15) -> X != 13
2726 return ReplaceInstUsesWith(I, LHS);
2727 case Instruction::SetNE: // (X != 13 | X != 15) -> true
Chris Lattner2ceb6ee2005-06-17 03:59:17 +00002728 case Instruction::SetLT: // (X != 13 | X < 15) -> true
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002729 return ReplaceInstUsesWith(I, ConstantBool::True);
2730 }
2731 break;
2732 case Instruction::SetLT:
2733 switch (RHSCC) {
2734 default: assert(0 && "Unknown integer condition code!");
2735 case Instruction::SetEQ: // (X < 13 | X == 14) -> no change
2736 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00002737 case Instruction::SetGT: // (X < 13 | X > 15) -> (X-13) > 2
2738 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002739 case Instruction::SetNE: // (X < 13 | X != 15) -> X != 15
2740 case Instruction::SetLT: // (X < 13 | X < 15) -> X < 15
2741 return ReplaceInstUsesWith(I, RHS);
2742 }
2743 break;
2744 case Instruction::SetGT:
2745 switch (RHSCC) {
2746 default: assert(0 && "Unknown integer condition code!");
2747 case Instruction::SetEQ: // (X > 13 | X == 15) -> X > 13
2748 case Instruction::SetGT: // (X > 13 | X > 15) -> X > 13
2749 return ReplaceInstUsesWith(I, LHS);
2750 case Instruction::SetNE: // (X > 13 | X != 15) -> true
2751 case Instruction::SetLT: // (X > 13 | X < 15) -> true
2752 return ReplaceInstUsesWith(I, ConstantBool::True);
2753 }
2754 }
2755 }
2756 }
Chris Lattner15212982005-09-18 03:42:07 +00002757
Chris Lattner113f4f42002-06-25 16:13:24 +00002758 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002759}
2760
Chris Lattnerc2076352004-02-16 01:20:27 +00002761// XorSelf - Implements: X ^ X --> 0
2762struct XorSelf {
2763 Value *RHS;
2764 XorSelf(Value *rhs) : RHS(rhs) {}
2765 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2766 Instruction *apply(BinaryOperator &Xor) const {
2767 return &Xor;
2768 }
2769};
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002770
2771
Chris Lattner113f4f42002-06-25 16:13:24 +00002772Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002773 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002774 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002775
Chris Lattner81a7a232004-10-16 18:11:37 +00002776 if (isa<UndefValue>(Op1))
2777 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
2778
Chris Lattnerc2076352004-02-16 01:20:27 +00002779 // xor X, X = 0, even if X is nested in a sequence of Xor's.
2780 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
2781 assert(Result == &I && "AssociativeOpt didn't work?");
Chris Lattnere6794492002-08-12 21:17:25 +00002782 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc2076352004-02-16 01:20:27 +00002783 }
Chris Lattner5b2edb12006-02-12 08:02:11 +00002784
2785 // See if we can simplify any instructions used by the instruction whose sole
2786 // purpose is to compute bits we don't care about.
2787 uint64_t KnownZero, KnownOne;
2788 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2789 KnownZero, KnownOne))
2790 return &I;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002791
Chris Lattner97638592003-07-23 21:37:07 +00002792 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner97638592003-07-23 21:37:07 +00002793 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattnerb8d6e402002-08-20 18:24:26 +00002794 // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
Chris Lattner97638592003-07-23 21:37:07 +00002795 if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002796 if (RHS == ConstantBool::True && SCI->hasOneUse())
Chris Lattnerb8d6e402002-08-20 18:24:26 +00002797 return new SetCondInst(SCI->getInverseCondition(),
2798 SCI->getOperand(0), SCI->getOperand(1));
Chris Lattnere5806662003-11-04 23:50:51 +00002799
Chris Lattner8f2f5982003-11-05 01:06:05 +00002800 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002801 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2802 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002803 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2804 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002805 ConstantInt::get(I.getType(), 1));
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002806 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002807 }
Chris Lattner023a4832004-06-18 06:07:51 +00002808
2809 // ~(~X & Y) --> (X | ~Y)
2810 if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
2811 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
2812 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2813 Instruction *NotY =
Misha Brukmanb1c93172005-04-21 23:48:37 +00002814 BinaryOperator::createNot(Op0I->getOperand(1),
Chris Lattner023a4832004-06-18 06:07:51 +00002815 Op0I->getOperand(1)->getName()+".not");
2816 InsertNewInstBefore(NotY, I);
2817 return BinaryOperator::createOr(Op0NotVal, NotY);
2818 }
2819 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002820
Chris Lattner97638592003-07-23 21:37:07 +00002821 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner5b2edb12006-02-12 08:02:11 +00002822 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner0f68fa62003-11-04 23:37:10 +00002823 // ~(X-c) --> (-c-1)-X
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002824 if (RHS->isAllOnesValue()) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002825 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2826 return BinaryOperator::createSub(
2827 ConstantExpr::getSub(NegOp0CI,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002828 ConstantInt::get(I.getType(), 1)),
Chris Lattner0f68fa62003-11-04 23:37:10 +00002829 Op0I->getOperand(0));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002830 }
Chris Lattner97638592003-07-23 21:37:07 +00002831 }
Chris Lattnerb8d6e402002-08-20 18:24:26 +00002832 }
Chris Lattner183b3362004-04-09 19:05:30 +00002833
2834 // Try to fold constant and into select arguments.
2835 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002836 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002837 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002838 if (isa<PHINode>(Op0))
2839 if (Instruction *NV = FoldOpIntoPhi(I))
2840 return NV;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002841 }
2842
Chris Lattnerbb74e222003-03-10 23:06:50 +00002843 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00002844 if (X == Op1)
2845 return ReplaceInstUsesWith(I,
2846 ConstantIntegral::getAllOnesValue(I.getType()));
2847
Chris Lattnerbb74e222003-03-10 23:06:50 +00002848 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00002849 if (X == Op0)
2850 return ReplaceInstUsesWith(I,
2851 ConstantIntegral::getAllOnesValue(I.getType()));
2852
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002853 if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
Chris Lattnerb36d9082004-02-16 03:54:20 +00002854 if (Op1I->getOpcode() == Instruction::Or) {
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002855 if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B
2856 cast<BinaryOperator>(Op1I)->swapOperands();
2857 I.swapOperands();
2858 std::swap(Op0, Op1);
2859 } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B
2860 I.swapOperands();
2861 std::swap(Op0, Op1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002862 }
Chris Lattnerb36d9082004-02-16 03:54:20 +00002863 } else if (Op1I->getOpcode() == Instruction::Xor) {
2864 if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B
2865 return ReplaceInstUsesWith(I, Op1I->getOperand(1));
2866 else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B
2867 return ReplaceInstUsesWith(I, Op1I->getOperand(0));
2868 }
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002869
2870 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002871 if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002872 if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
2873 cast<BinaryOperator>(Op0I)->swapOperands();
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002874 if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
Chris Lattner396dbfe2004-06-09 05:08:07 +00002875 Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
2876 Op1->getName()+".not"), I);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002877 return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002878 }
Chris Lattnerb36d9082004-02-16 03:54:20 +00002879 } else if (Op0I->getOpcode() == Instruction::Xor) {
2880 if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B
2881 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2882 else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B
2883 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002884 }
2885
Chris Lattner3ac7c262003-08-13 20:16:26 +00002886 // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
2887 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
2888 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2889 return R;
2890
Chris Lattner113f4f42002-06-25 16:13:24 +00002891 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002892}
2893
Chris Lattner6862fbd2004-09-29 17:40:11 +00002894/// MulWithOverflow - Compute Result = In1*In2, returning true if the result
2895/// overflowed for this type.
2896static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
2897 ConstantInt *In2) {
2898 Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
2899 return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
2900}
2901
2902static bool isPositive(ConstantInt *C) {
2903 return cast<ConstantSInt>(C)->getValue() >= 0;
2904}
2905
2906/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
2907/// overflowed for this type.
2908static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
2909 ConstantInt *In2) {
2910 Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
2911
2912 if (In1->getType()->isUnsigned())
2913 return cast<ConstantUInt>(Result)->getValue() <
2914 cast<ConstantUInt>(In1)->getValue();
2915 if (isPositive(In1) != isPositive(In2))
2916 return false;
2917 if (isPositive(In1))
2918 return cast<ConstantSInt>(Result)->getValue() <
2919 cast<ConstantSInt>(In1)->getValue();
2920 return cast<ConstantSInt>(Result)->getValue() >
2921 cast<ConstantSInt>(In1)->getValue();
2922}
2923
Chris Lattner0798af32005-01-13 20:14:25 +00002924/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
2925/// code necessary to compute the offset from the base pointer (without adding
2926/// in the base pointer). Return the result as a signed integer of intptr size.
2927static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
2928 TargetData &TD = IC.getTargetData();
2929 gep_type_iterator GTI = gep_type_begin(GEP);
2930 const Type *UIntPtrTy = TD.getIntPtrType();
2931 const Type *SIntPtrTy = UIntPtrTy->getSignedVersion();
2932 Value *Result = Constant::getNullValue(SIntPtrTy);
2933
2934 // Build a mask for high order bits.
Chris Lattner77defba2006-02-07 07:00:41 +00002935 uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
Chris Lattner0798af32005-01-13 20:14:25 +00002936
Chris Lattner0798af32005-01-13 20:14:25 +00002937 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
2938 Value *Op = GEP->getOperand(i);
Chris Lattnerd35d2102005-01-13 23:26:48 +00002939 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
Chris Lattner0798af32005-01-13 20:14:25 +00002940 Constant *Scale = ConstantExpr::getCast(ConstantUInt::get(UIntPtrTy, Size),
2941 SIntPtrTy);
2942 if (Constant *OpC = dyn_cast<Constant>(Op)) {
2943 if (!OpC->isNullValue()) {
Chris Lattner4cb9fa32005-01-13 20:40:58 +00002944 OpC = ConstantExpr::getCast(OpC, SIntPtrTy);
Chris Lattner0798af32005-01-13 20:14:25 +00002945 Scale = ConstantExpr::getMul(OpC, Scale);
2946 if (Constant *RC = dyn_cast<Constant>(Result))
2947 Result = ConstantExpr::getAdd(RC, Scale);
2948 else {
2949 // Emit an add instruction.
2950 Result = IC.InsertNewInstBefore(
2951 BinaryOperator::createAdd(Result, Scale,
2952 GEP->getName()+".offs"), I);
2953 }
2954 }
2955 } else {
Chris Lattner7aa41cf2005-01-14 17:17:59 +00002956 // Convert to correct type.
2957 Op = IC.InsertNewInstBefore(new CastInst(Op, SIntPtrTy,
2958 Op->getName()+".c"), I);
2959 if (Size != 1)
Chris Lattner4cb9fa32005-01-13 20:40:58 +00002960 // We'll let instcombine(mul) convert this to a shl if possible.
2961 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
2962 GEP->getName()+".idx"), I);
Chris Lattner0798af32005-01-13 20:14:25 +00002963
2964 // Emit an add instruction.
Chris Lattner4cb9fa32005-01-13 20:40:58 +00002965 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
Chris Lattner0798af32005-01-13 20:14:25 +00002966 GEP->getName()+".offs"), I);
2967 }
2968 }
2969 return Result;
2970}
2971
2972/// FoldGEPSetCC - Fold comparisons between a GEP instruction and something
2973/// else. At this point we know that the GEP is on the LHS of the comparison.
2974Instruction *InstCombiner::FoldGEPSetCC(User *GEPLHS, Value *RHS,
2975 Instruction::BinaryOps Cond,
2976 Instruction &I) {
2977 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattner81e84172005-01-13 22:25:21 +00002978
2979 if (CastInst *CI = dyn_cast<CastInst>(RHS))
2980 if (isa<PointerType>(CI->getOperand(0)->getType()))
2981 RHS = CI->getOperand(0);
2982
Chris Lattner0798af32005-01-13 20:14:25 +00002983 Value *PtrBase = GEPLHS->getOperand(0);
2984 if (PtrBase == RHS) {
2985 // As an optimization, we don't actually have to compute the actual value of
2986 // OFFSET if this is a seteq or setne comparison, just return whether each
2987 // index is zero or not.
Chris Lattner81e84172005-01-13 22:25:21 +00002988 if (Cond == Instruction::SetEQ || Cond == Instruction::SetNE) {
2989 Instruction *InVal = 0;
Chris Lattnercd517ff2005-01-28 19:32:01 +00002990 gep_type_iterator GTI = gep_type_begin(GEPLHS);
2991 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
Chris Lattner81e84172005-01-13 22:25:21 +00002992 bool EmitIt = true;
2993 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
2994 if (isa<UndefValue>(C)) // undef index -> undef.
2995 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2996 if (C->isNullValue())
2997 EmitIt = false;
Chris Lattnercd517ff2005-01-28 19:32:01 +00002998 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
2999 EmitIt = false; // This is indexing into a zero sized array?
Misha Brukmanb1c93172005-04-21 23:48:37 +00003000 } else if (isa<ConstantInt>(C))
Chris Lattner81e84172005-01-13 22:25:21 +00003001 return ReplaceInstUsesWith(I, // No comparison is needed here.
3002 ConstantBool::get(Cond == Instruction::SetNE));
3003 }
3004
3005 if (EmitIt) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00003006 Instruction *Comp =
Chris Lattner81e84172005-01-13 22:25:21 +00003007 new SetCondInst(Cond, GEPLHS->getOperand(i),
3008 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
3009 if (InVal == 0)
3010 InVal = Comp;
3011 else {
3012 InVal = InsertNewInstBefore(InVal, I);
3013 InsertNewInstBefore(Comp, I);
3014 if (Cond == Instruction::SetNE) // True if any are unequal
3015 InVal = BinaryOperator::createOr(InVal, Comp);
3016 else // True if all are equal
3017 InVal = BinaryOperator::createAnd(InVal, Comp);
3018 }
3019 }
3020 }
3021
3022 if (InVal)
3023 return InVal;
3024 else
3025 ReplaceInstUsesWith(I, // No comparison is needed here, all indexes = 0
3026 ConstantBool::get(Cond == Instruction::SetEQ));
3027 }
Chris Lattner0798af32005-01-13 20:14:25 +00003028
3029 // Only lower this if the setcc is the only user of the GEP or if we expect
3030 // the result to fold to a constant!
3031 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
3032 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
3033 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
3034 return new SetCondInst(Cond, Offset,
3035 Constant::getNullValue(Offset->getType()));
3036 }
3037 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera21bf8d2005-04-25 20:17:30 +00003038 // If the base pointers are different, but the indices are the same, just
3039 // compare the base pointer.
3040 if (PtrBase != GEPRHS->getOperand(0)) {
3041 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00003042 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattnerbd43b9d2005-04-26 14:40:41 +00003043 GEPRHS->getOperand(0)->getType();
Chris Lattnera21bf8d2005-04-25 20:17:30 +00003044 if (IndicesTheSame)
3045 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3046 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
3047 IndicesTheSame = false;
3048 break;
3049 }
3050
3051 // If all indices are the same, just compare the base pointers.
3052 if (IndicesTheSame)
3053 return new SetCondInst(Cond, GEPLHS->getOperand(0),
3054 GEPRHS->getOperand(0));
3055
3056 // Otherwise, the base pointers are different and the indices are
3057 // different, bail out.
Chris Lattner0798af32005-01-13 20:14:25 +00003058 return 0;
Chris Lattnera21bf8d2005-04-25 20:17:30 +00003059 }
Chris Lattner0798af32005-01-13 20:14:25 +00003060
Chris Lattner81e84172005-01-13 22:25:21 +00003061 // If one of the GEPs has all zero indices, recurse.
3062 bool AllZeros = true;
3063 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3064 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
3065 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
3066 AllZeros = false;
3067 break;
3068 }
3069 if (AllZeros)
3070 return FoldGEPSetCC(GEPRHS, GEPLHS->getOperand(0),
3071 SetCondInst::getSwappedCondition(Cond), I);
Chris Lattner4fa89822005-01-14 00:20:05 +00003072
3073 // If the other GEP has all zero indices, recurse.
Chris Lattner81e84172005-01-13 22:25:21 +00003074 AllZeros = true;
3075 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3076 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
3077 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
3078 AllZeros = false;
3079 break;
3080 }
3081 if (AllZeros)
3082 return FoldGEPSetCC(GEPLHS, GEPRHS->getOperand(0), Cond, I);
3083
Chris Lattner4fa89822005-01-14 00:20:05 +00003084 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
3085 // If the GEPs only differ by one index, compare it.
3086 unsigned NumDifferences = 0; // Keep track of # differences.
3087 unsigned DiffOperand = 0; // The operand that differs.
3088 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3089 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003090 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
3091 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00003092 // Irreconcilable differences.
Chris Lattner4fa89822005-01-14 00:20:05 +00003093 NumDifferences = 2;
3094 break;
3095 } else {
3096 if (NumDifferences++) break;
3097 DiffOperand = i;
3098 }
3099 }
3100
3101 if (NumDifferences == 0) // SAME GEP?
3102 return ReplaceInstUsesWith(I, // No comparison is needed here.
3103 ConstantBool::get(Cond == Instruction::SetEQ));
3104 else if (NumDifferences == 1) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00003105 Value *LHSV = GEPLHS->getOperand(DiffOperand);
3106 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Chris Lattner247aef82005-07-18 23:07:33 +00003107
3108 // Convert the operands to signed values to make sure to perform a
3109 // signed comparison.
3110 const Type *NewTy = LHSV->getType()->getSignedVersion();
3111 if (LHSV->getType() != NewTy)
3112 LHSV = InsertNewInstBefore(new CastInst(LHSV, NewTy,
3113 LHSV->getName()), I);
3114 if (RHSV->getType() != NewTy)
3115 RHSV = InsertNewInstBefore(new CastInst(RHSV, NewTy,
3116 RHSV->getName()), I);
3117 return new SetCondInst(Cond, LHSV, RHSV);
Chris Lattner4fa89822005-01-14 00:20:05 +00003118 }
3119 }
3120
Chris Lattner0798af32005-01-13 20:14:25 +00003121 // Only lower this if the setcc is the only user of the GEP or if we expect
3122 // the result to fold to a constant!
3123 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
3124 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
3125 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
3126 Value *L = EmitGEPOffset(GEPLHS, I, *this);
3127 Value *R = EmitGEPOffset(GEPRHS, I, *this);
3128 return new SetCondInst(Cond, L, R);
3129 }
3130 }
3131 return 0;
3132}
3133
3134
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003135Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00003136 bool Changed = SimplifyCommutative(I);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003137 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3138 const Type *Ty = Op0->getType();
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003139
3140 // setcc X, X
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003141 if (Op0 == Op1)
3142 return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
Chris Lattner1fc23f32002-05-09 20:11:54 +00003143
Chris Lattner81a7a232004-10-16 18:11:37 +00003144 if (isa<UndefValue>(Op1)) // X setcc undef -> undef
3145 return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
3146
Chris Lattner15ff1e12004-11-14 07:33:16 +00003147 // setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
3148 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003149 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
3150 isa<ConstantPointerNull>(Op0)) &&
3151 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner15ff1e12004-11-14 07:33:16 +00003152 isa<ConstantPointerNull>(Op1)))
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003153 return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
3154
3155 // setcc's with boolean values can always be turned into bitwise operations
3156 if (Ty == Type::BoolTy) {
Chris Lattner4456da62004-08-11 00:50:51 +00003157 switch (I.getOpcode()) {
3158 default: assert(0 && "Invalid setcc instruction!");
3159 case Instruction::SetEQ: { // seteq bool %A, %B -> ~(A^B)
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003160 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003161 InsertNewInstBefore(Xor, I);
Chris Lattner16930792003-11-03 04:25:02 +00003162 return BinaryOperator::createNot(Xor);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003163 }
Chris Lattner4456da62004-08-11 00:50:51 +00003164 case Instruction::SetNE:
3165 return BinaryOperator::createXor(Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003166
Chris Lattner4456da62004-08-11 00:50:51 +00003167 case Instruction::SetGT:
3168 std::swap(Op0, Op1); // Change setgt -> setlt
3169 // FALL THROUGH
3170 case Instruction::SetLT: { // setlt bool A, B -> ~X & Y
3171 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3172 InsertNewInstBefore(Not, I);
3173 return BinaryOperator::createAnd(Not, Op1);
3174 }
3175 case Instruction::SetGE:
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003176 std::swap(Op0, Op1); // Change setge -> setle
Chris Lattner4456da62004-08-11 00:50:51 +00003177 // FALL THROUGH
3178 case Instruction::SetLE: { // setle bool %A, %B -> ~A | B
3179 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3180 InsertNewInstBefore(Not, I);
3181 return BinaryOperator::createOr(Not, Op1);
3182 }
3183 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003184 }
3185
Chris Lattner2dd01742004-06-09 04:24:29 +00003186 // See if we are doing a comparison between a constant and an instruction that
3187 // can be folded into the comparison.
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003188 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner6862fbd2004-09-29 17:40:11 +00003189 // Check to see if we are comparing against the minimum or maximum value...
3190 if (CI->isMinValue()) {
3191 if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE
3192 return ReplaceInstUsesWith(I, ConstantBool::False);
3193 if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE
3194 return ReplaceInstUsesWith(I, ConstantBool::True);
3195 if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN
3196 return BinaryOperator::createSetEQ(Op0, Op1);
3197 if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN
3198 return BinaryOperator::createSetNE(Op0, Op1);
3199
3200 } else if (CI->isMaxValue()) {
3201 if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE
3202 return ReplaceInstUsesWith(I, ConstantBool::False);
3203 if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE
3204 return ReplaceInstUsesWith(I, ConstantBool::True);
3205 if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX
3206 return BinaryOperator::createSetEQ(Op0, Op1);
3207 if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX
3208 return BinaryOperator::createSetNE(Op0, Op1);
3209
3210 // Comparing against a value really close to min or max?
3211 } else if (isMinValuePlusOne(CI)) {
3212 if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN
3213 return BinaryOperator::createSetEQ(Op0, SubOne(CI));
3214 if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN
3215 return BinaryOperator::createSetNE(Op0, SubOne(CI));
3216
3217 } else if (isMaxValueMinusOne(CI)) {
3218 if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX
3219 return BinaryOperator::createSetEQ(Op0, AddOne(CI));
3220 if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX
3221 return BinaryOperator::createSetNE(Op0, AddOne(CI));
3222 }
3223
3224 // If we still have a setle or setge instruction, turn it into the
3225 // appropriate setlt or setgt instruction. Since the border cases have
3226 // already been handled above, this requires little checking.
3227 //
3228 if (I.getOpcode() == Instruction::SetLE)
3229 return BinaryOperator::createSetLT(Op0, AddOne(CI));
3230 if (I.getOpcode() == Instruction::SetGE)
3231 return BinaryOperator::createSetGT(Op0, SubOne(CI));
3232
Chris Lattneree0f2802006-02-12 02:07:56 +00003233
3234 // See if we can fold the comparison based on bits known to be zero or one
3235 // in the input.
3236 uint64_t KnownZero, KnownOne;
3237 if (SimplifyDemandedBits(Op0, Ty->getIntegralTypeMask(),
3238 KnownZero, KnownOne, 0))
3239 return &I;
3240
3241 // Given the known and unknown bits, compute a range that the LHS could be
3242 // in.
3243 if (KnownOne | KnownZero) {
3244 if (Ty->isUnsigned()) { // Unsigned comparison.
3245 uint64_t Min, Max;
3246 uint64_t RHSVal = CI->getZExtValue();
3247 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3248 Min, Max);
3249 switch (I.getOpcode()) { // LE/GE have been folded already.
3250 default: assert(0 && "Unknown setcc opcode!");
3251 case Instruction::SetEQ:
3252 if (Max < RHSVal || Min > RHSVal)
3253 return ReplaceInstUsesWith(I, ConstantBool::False);
3254 break;
3255 case Instruction::SetNE:
3256 if (Max < RHSVal || Min > RHSVal)
3257 return ReplaceInstUsesWith(I, ConstantBool::True);
3258 break;
3259 case Instruction::SetLT:
3260 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3261 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3262 break;
3263 case Instruction::SetGT:
3264 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3265 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3266 break;
3267 }
3268 } else { // Signed comparison.
3269 int64_t Min, Max;
3270 int64_t RHSVal = CI->getSExtValue();
3271 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3272 Min, Max);
3273 switch (I.getOpcode()) { // LE/GE have been folded already.
3274 default: assert(0 && "Unknown setcc opcode!");
3275 case Instruction::SetEQ:
3276 if (Max < RHSVal || Min > RHSVal)
3277 return ReplaceInstUsesWith(I, ConstantBool::False);
3278 break;
3279 case Instruction::SetNE:
3280 if (Max < RHSVal || Min > RHSVal)
3281 return ReplaceInstUsesWith(I, ConstantBool::True);
3282 break;
3283 case Instruction::SetLT:
3284 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3285 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3286 break;
3287 case Instruction::SetGT:
3288 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3289 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3290 break;
3291 }
3292 }
3293 }
3294
3295
Chris Lattnere1e10e12004-05-25 06:32:08 +00003296 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003297 switch (LHSI->getOpcode()) {
3298 case Instruction::And:
3299 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
3300 LHSI->getOperand(0)->hasOneUse()) {
3301 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
3302 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
3303 // happens a LOT in code produced by the C front-end, for bitfield
3304 // access.
3305 ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
Chris Lattneree0f2802006-02-12 02:07:56 +00003306 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
3307
3308 // Check to see if there is a noop-cast between the shift and the and.
3309 if (!Shift) {
3310 if (CastInst *CI = dyn_cast<CastInst>(LHSI->getOperand(0)))
3311 if (CI->getOperand(0)->getType()->isIntegral() &&
3312 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
3313 CI->getType()->getPrimitiveSizeInBits())
3314 Shift = dyn_cast<ShiftInst>(CI->getOperand(0));
3315 }
3316
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003317 ConstantUInt *ShAmt;
3318 ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
Chris Lattneree0f2802006-02-12 02:07:56 +00003319 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
3320 const Type *AndTy = AndCST->getType(); // Type of the and.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003321
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003322 // We can fold this as long as we can't shift unknown bits
3323 // into the mask. This can only happen with signed shift
3324 // rights, as they sign-extend.
3325 if (ShAmt) {
3326 bool CanFold = Shift->getOpcode() != Instruction::Shr ||
Chris Lattneree0f2802006-02-12 02:07:56 +00003327 Ty->isUnsigned();
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003328 if (!CanFold) {
3329 // To test for the bad case of the signed shr, see if any
3330 // of the bits shifted in could be tested after the mask.
Chris Lattnerc53cb9d2005-06-17 01:29:28 +00003331 int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getValue();
3332 if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
3333
3334 Constant *OShAmt = ConstantUInt::get(Type::UByteTy, ShAmtVal);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003335 Constant *ShVal =
Chris Lattneree0f2802006-02-12 02:07:56 +00003336 ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy),
3337 OShAmt);
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003338 if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
3339 CanFold = true;
3340 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003341
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003342 if (CanFold) {
Chris Lattner6afc02f2004-09-28 17:54:07 +00003343 Constant *NewCst;
3344 if (Shift->getOpcode() == Instruction::Shl)
3345 NewCst = ConstantExpr::getUShr(CI, ShAmt);
3346 else
3347 NewCst = ConstantExpr::getShl(CI, ShAmt);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003348
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003349 // Check to see if we are shifting out any of the bits being
3350 // compared.
3351 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
3352 // If we shifted bits out, the fold is not going to work out.
3353 // As a special case, check to see if this means that the
3354 // result is always true or false now.
3355 if (I.getOpcode() == Instruction::SetEQ)
3356 return ReplaceInstUsesWith(I, ConstantBool::False);
3357 if (I.getOpcode() == Instruction::SetNE)
3358 return ReplaceInstUsesWith(I, ConstantBool::True);
3359 } else {
3360 I.setOperand(1, NewCst);
Chris Lattner6afc02f2004-09-28 17:54:07 +00003361 Constant *NewAndCST;
3362 if (Shift->getOpcode() == Instruction::Shl)
3363 NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
3364 else
3365 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
3366 LHSI->setOperand(1, NewAndCST);
Chris Lattneree0f2802006-02-12 02:07:56 +00003367 if (AndTy == Ty)
3368 LHSI->setOperand(0, Shift->getOperand(0));
3369 else {
3370 Value *NewCast = InsertCastBefore(Shift->getOperand(0), AndTy,
3371 *Shift);
3372 LHSI->setOperand(0, NewCast);
3373 }
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003374 WorkList.push_back(Shift); // Shift is dead.
3375 AddUsesToWorkList(I);
3376 return &I;
Chris Lattner1638de42004-07-21 19:50:44 +00003377 }
3378 }
Chris Lattner35167c32004-06-09 07:59:58 +00003379 }
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003380 }
3381 break;
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003382
Chris Lattner272d5ca2004-09-28 18:22:15 +00003383 case Instruction::Shl: // (setcc (shl X, ShAmt), CI)
3384 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
3385 switch (I.getOpcode()) {
3386 default: break;
3387 case Instruction::SetEQ:
3388 case Instruction::SetNE: {
Chris Lattner19b57f52005-06-15 20:53:31 +00003389 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
3390
3391 // Check that the shift amount is in range. If not, don't perform
3392 // undefined shifts. When the shift is visited it will be
3393 // simplified.
3394 if (ShAmt->getValue() >= TypeBits)
3395 break;
3396
Chris Lattner272d5ca2004-09-28 18:22:15 +00003397 // If we are comparing against bits always shifted out, the
3398 // comparison cannot succeed.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003399 Constant *Comp =
Chris Lattner272d5ca2004-09-28 18:22:15 +00003400 ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
3401 if (Comp != CI) {// Comparing against a bit that we know is zero.
3402 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3403 Constant *Cst = ConstantBool::get(IsSetNE);
3404 return ReplaceInstUsesWith(I, Cst);
3405 }
3406
3407 if (LHSI->hasOneUse()) {
3408 // Otherwise strength reduce the shift into an and.
Chris Lattnerfdfe3e492005-01-08 19:42:22 +00003409 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00003410 uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
3411
3412 Constant *Mask;
3413 if (CI->getType()->isUnsigned()) {
3414 Mask = ConstantUInt::get(CI->getType(), Val);
3415 } else if (ShAmtVal != 0) {
3416 Mask = ConstantSInt::get(CI->getType(), Val);
3417 } else {
3418 Mask = ConstantInt::getAllOnesValue(CI->getType());
3419 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003420
Chris Lattner272d5ca2004-09-28 18:22:15 +00003421 Instruction *AndI =
3422 BinaryOperator::createAnd(LHSI->getOperand(0),
3423 Mask, LHSI->getName()+".mask");
3424 Value *And = InsertNewInstBefore(AndI, I);
3425 return new SetCondInst(I.getOpcode(), And,
3426 ConstantExpr::getUShr(CI, ShAmt));
3427 }
3428 }
3429 }
3430 }
3431 break;
3432
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003433 case Instruction::Shr: // (setcc (shr X, ShAmt), CI)
Chris Lattner1023b872004-09-27 16:18:50 +00003434 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
Chris Lattner1023b872004-09-27 16:18:50 +00003435 switch (I.getOpcode()) {
3436 default: break;
3437 case Instruction::SetEQ:
3438 case Instruction::SetNE: {
Chris Lattner19b57f52005-06-15 20:53:31 +00003439
3440 // Check that the shift amount is in range. If not, don't perform
3441 // undefined shifts. When the shift is visited it will be
3442 // simplified.
Chris Lattner104002b2005-06-16 01:52:07 +00003443 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattner19b57f52005-06-15 20:53:31 +00003444 if (ShAmt->getValue() >= TypeBits)
3445 break;
3446
Chris Lattner1023b872004-09-27 16:18:50 +00003447 // If we are comparing against bits always shifted out, the
3448 // comparison cannot succeed.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003449 Constant *Comp =
Chris Lattner1023b872004-09-27 16:18:50 +00003450 ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003451
Chris Lattner1023b872004-09-27 16:18:50 +00003452 if (Comp != CI) {// Comparing against a bit that we know is zero.
3453 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3454 Constant *Cst = ConstantBool::get(IsSetNE);
3455 return ReplaceInstUsesWith(I, Cst);
3456 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003457
Chris Lattner1023b872004-09-27 16:18:50 +00003458 if (LHSI->hasOneUse() || CI->isNullValue()) {
Chris Lattnerfdfe3e492005-01-08 19:42:22 +00003459 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00003460
Chris Lattner1023b872004-09-27 16:18:50 +00003461 // Otherwise strength reduce the shift into an and.
3462 uint64_t Val = ~0ULL; // All ones.
3463 Val <<= ShAmtVal; // Shift over to the right spot.
3464
3465 Constant *Mask;
3466 if (CI->getType()->isUnsigned()) {
Chris Lattner2f1457f2005-04-24 17:46:05 +00003467 Val &= ~0ULL >> (64-TypeBits);
Chris Lattner1023b872004-09-27 16:18:50 +00003468 Mask = ConstantUInt::get(CI->getType(), Val);
3469 } else {
3470 Mask = ConstantSInt::get(CI->getType(), Val);
3471 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003472
Chris Lattner1023b872004-09-27 16:18:50 +00003473 Instruction *AndI =
3474 BinaryOperator::createAnd(LHSI->getOperand(0),
3475 Mask, LHSI->getName()+".mask");
3476 Value *And = InsertNewInstBefore(AndI, I);
3477 return new SetCondInst(I.getOpcode(), And,
3478 ConstantExpr::getShl(CI, ShAmt));
3479 }
3480 break;
3481 }
3482 }
3483 }
3484 break;
Chris Lattner7e794272004-09-24 15:21:34 +00003485
Chris Lattner6862fbd2004-09-29 17:40:11 +00003486 case Instruction::Div:
3487 // Fold: (div X, C1) op C2 -> range check
3488 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
3489 // Fold this div into the comparison, producing a range check.
3490 // Determine, based on the divide type, what the range is being
3491 // checked. If there is an overflow on the low or high side, remember
3492 // it, otherwise compute the range [low, hi) bounding the new value.
3493 bool LoOverflow = false, HiOverflow = 0;
3494 ConstantInt *LoBound = 0, *HiBound = 0;
3495
3496 ConstantInt *Prod;
3497 bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
3498
Chris Lattnera92af962004-10-11 19:40:04 +00003499 Instruction::BinaryOps Opcode = I.getOpcode();
3500
Chris Lattner6862fbd2004-09-29 17:40:11 +00003501 if (DivRHS->isNullValue()) { // Don't hack on divide by zeros.
3502 } else if (LHSI->getType()->isUnsigned()) { // udiv
3503 LoBound = Prod;
3504 LoOverflow = ProdOV;
3505 HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
3506 } else if (isPositive(DivRHS)) { // Divisor is > 0.
3507 if (CI->isNullValue()) { // (X / pos) op 0
3508 // Can't overflow.
3509 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
3510 HiBound = DivRHS;
3511 } else if (isPositive(CI)) { // (X / pos) op pos
3512 LoBound = Prod;
3513 LoOverflow = ProdOV;
3514 HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
3515 } else { // (X / pos) op neg
3516 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
3517 LoOverflow = AddWithOverflow(LoBound, Prod,
3518 cast<ConstantInt>(DivRHSH));
3519 HiBound = Prod;
3520 HiOverflow = ProdOV;
3521 }
3522 } else { // Divisor is < 0.
3523 if (CI->isNullValue()) { // (X / neg) op 0
3524 LoBound = AddOne(DivRHS);
3525 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner73bcba52005-06-17 02:05:55 +00003526 if (HiBound == DivRHS)
3527 LoBound = 0; // - INTMIN = INTMIN
Chris Lattner6862fbd2004-09-29 17:40:11 +00003528 } else if (isPositive(CI)) { // (X / neg) op pos
3529 HiOverflow = LoOverflow = ProdOV;
3530 if (!LoOverflow)
3531 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
3532 HiBound = AddOne(Prod);
3533 } else { // (X / neg) op neg
3534 LoBound = Prod;
3535 LoOverflow = HiOverflow = ProdOV;
3536 HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
3537 }
Chris Lattner0b41e862004-10-08 19:15:44 +00003538
Chris Lattnera92af962004-10-11 19:40:04 +00003539 // Dividing by a negate swaps the condition.
3540 Opcode = SetCondInst::getSwappedCondition(Opcode);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003541 }
3542
3543 if (LoBound) {
3544 Value *X = LHSI->getOperand(0);
Chris Lattnera92af962004-10-11 19:40:04 +00003545 switch (Opcode) {
Chris Lattner6862fbd2004-09-29 17:40:11 +00003546 default: assert(0 && "Unhandled setcc opcode!");
3547 case Instruction::SetEQ:
3548 if (LoOverflow && HiOverflow)
3549 return ReplaceInstUsesWith(I, ConstantBool::False);
3550 else if (HiOverflow)
3551 return new SetCondInst(Instruction::SetGE, X, LoBound);
3552 else if (LoOverflow)
3553 return new SetCondInst(Instruction::SetLT, X, HiBound);
3554 else
3555 return InsertRangeTest(X, LoBound, HiBound, true, I);
3556 case Instruction::SetNE:
3557 if (LoOverflow && HiOverflow)
3558 return ReplaceInstUsesWith(I, ConstantBool::True);
3559 else if (HiOverflow)
3560 return new SetCondInst(Instruction::SetLT, X, LoBound);
3561 else if (LoOverflow)
3562 return new SetCondInst(Instruction::SetGE, X, HiBound);
3563 else
3564 return InsertRangeTest(X, LoBound, HiBound, false, I);
3565 case Instruction::SetLT:
3566 if (LoOverflow)
3567 return ReplaceInstUsesWith(I, ConstantBool::False);
3568 return new SetCondInst(Instruction::SetLT, X, LoBound);
3569 case Instruction::SetGT:
3570 if (HiOverflow)
3571 return ReplaceInstUsesWith(I, ConstantBool::False);
3572 return new SetCondInst(Instruction::SetGE, X, HiBound);
3573 }
3574 }
3575 }
3576 break;
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003577 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003578
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003579 // Simplify seteq and setne instructions...
3580 if (I.getOpcode() == Instruction::SetEQ ||
3581 I.getOpcode() == Instruction::SetNE) {
3582 bool isSetNE = I.getOpcode() == Instruction::SetNE;
3583
Chris Lattnercfbce7c2003-07-23 17:26:36 +00003584 // If the first operand is (and|or|xor) with a constant, and the second
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003585 // operand is a constant, simplify a bit.
Chris Lattnerc992add2003-08-13 05:33:12 +00003586 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
3587 switch (BO->getOpcode()) {
Chris Lattner23b47b62004-07-06 07:38:18 +00003588 case Instruction::Rem:
3589 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3590 if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
3591 BO->hasOneUse() &&
Chris Lattner22d00a82005-08-02 19:16:58 +00003592 cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1) {
3593 int64_t V = cast<ConstantSInt>(BO->getOperand(1))->getValue();
3594 if (isPowerOf2_64(V)) {
3595 unsigned L2 = Log2_64(V);
Chris Lattner23b47b62004-07-06 07:38:18 +00003596 const Type *UTy = BO->getType()->getUnsignedVersion();
3597 Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
3598 UTy, "tmp"), I);
3599 Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
3600 Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
3601 RHSCst, BO->getName()), I);
3602 return BinaryOperator::create(I.getOpcode(), NewRem,
3603 Constant::getNullValue(UTy));
3604 }
Chris Lattner22d00a82005-08-02 19:16:58 +00003605 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003606 break;
Chris Lattner23b47b62004-07-06 07:38:18 +00003607
Chris Lattnerc992add2003-08-13 05:33:12 +00003608 case Instruction::Add:
Chris Lattner6e079362004-06-27 22:51:36 +00003609 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3610 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerb121ae12004-09-21 21:35:23 +00003611 if (BO->hasOneUse())
3612 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3613 ConstantExpr::getSub(CI, BOp1C));
Chris Lattner6e079362004-06-27 22:51:36 +00003614 } else if (CI->isNullValue()) {
Chris Lattnerc992add2003-08-13 05:33:12 +00003615 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3616 // efficiently invertible, or if the add has just this one use.
3617 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003618
Chris Lattnerc992add2003-08-13 05:33:12 +00003619 if (Value *NegVal = dyn_castNegVal(BOp1))
3620 return new SetCondInst(I.getOpcode(), BOp0, NegVal);
3621 else if (Value *NegVal = dyn_castNegVal(BOp0))
3622 return new SetCondInst(I.getOpcode(), NegVal, BOp1);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00003623 else if (BO->hasOneUse()) {
Chris Lattnerc992add2003-08-13 05:33:12 +00003624 Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
3625 BO->setName("");
3626 InsertNewInstBefore(Neg, I);
3627 return new SetCondInst(I.getOpcode(), BOp0, Neg);
3628 }
3629 }
3630 break;
3631 case Instruction::Xor:
3632 // For the xor case, we can xor two constants together, eliminating
3633 // the explicit xor.
3634 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
3635 return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003636 ConstantExpr::getXor(CI, BOC));
Chris Lattnerc992add2003-08-13 05:33:12 +00003637
3638 // FALLTHROUGH
3639 case Instruction::Sub:
3640 // Replace (([sub|xor] A, B) != 0) with (A != B)
3641 if (CI->isNullValue())
3642 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3643 BO->getOperand(1));
3644 break;
3645
3646 case Instruction::Or:
3647 // If bits are being or'd in that are not present in the constant we
3648 // are comparing against, then the comparison could never succeed!
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00003649 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Chris Lattnerc8e7e292004-06-10 02:12:35 +00003650 Constant *NotCI = ConstantExpr::getNot(CI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003651 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003652 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00003653 }
Chris Lattnerc992add2003-08-13 05:33:12 +00003654 break;
3655
3656 case Instruction::And:
3657 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003658 // If bits are being compared against that are and'd out, then the
3659 // comparison can never succeed!
Chris Lattnerc8e7e292004-06-10 02:12:35 +00003660 if (!ConstantExpr::getAnd(CI,
3661 ConstantExpr::getNot(BOC))->isNullValue())
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003662 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattnerc992add2003-08-13 05:33:12 +00003663
Chris Lattner35167c32004-06-09 07:59:58 +00003664 // If we have ((X & C) == C), turn it into ((X & C) != 0).
Chris Lattneree59d4b2004-06-10 02:33:20 +00003665 if (CI == BOC && isOneBitSet(CI))
Chris Lattner35167c32004-06-09 07:59:58 +00003666 return new SetCondInst(isSetNE ? Instruction::SetEQ :
3667 Instruction::SetNE, Op0,
3668 Constant::getNullValue(CI->getType()));
Chris Lattner35167c32004-06-09 07:59:58 +00003669
Chris Lattnerc992add2003-08-13 05:33:12 +00003670 // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
3671 // to be a signed value as appropriate.
3672 if (isSignBit(BOC)) {
3673 Value *X = BO->getOperand(0);
3674 // If 'X' is not signed, insert a cast now...
3675 if (!BOC->getType()->isSigned()) {
Chris Lattner97bfcea2004-06-17 18:16:02 +00003676 const Type *DestTy = BOC->getType()->getSignedVersion();
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003677 X = InsertCastBefore(X, DestTy, I);
Chris Lattnerc992add2003-08-13 05:33:12 +00003678 }
3679 return new SetCondInst(isSetNE ? Instruction::SetLT :
3680 Instruction::SetGE, X,
3681 Constant::getNullValue(X->getType()));
3682 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003683
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003684 // ((X & ~7) == 0) --> X < 8
Chris Lattner8fc5af42004-09-23 21:46:38 +00003685 if (CI->isNullValue() && isHighOnes(BOC)) {
3686 Value *X = BO->getOperand(0);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003687 Constant *NegX = ConstantExpr::getNeg(BOC);
Chris Lattner8fc5af42004-09-23 21:46:38 +00003688
3689 // If 'X' is signed, insert a cast now.
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003690 if (NegX->getType()->isSigned()) {
3691 const Type *DestTy = NegX->getType()->getUnsignedVersion();
3692 X = InsertCastBefore(X, DestTy, I);
3693 NegX = ConstantExpr::getCast(NegX, DestTy);
Chris Lattner8fc5af42004-09-23 21:46:38 +00003694 }
3695
3696 return new SetCondInst(isSetNE ? Instruction::SetGE :
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003697 Instruction::SetLT, X, NegX);
Chris Lattner8fc5af42004-09-23 21:46:38 +00003698 }
3699
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003700 }
Chris Lattnerc992add2003-08-13 05:33:12 +00003701 default: break;
3702 }
3703 }
Chris Lattner2b55ea32004-02-23 07:16:20 +00003704 } else { // Not a SetEQ/SetNE
Misha Brukmanb1c93172005-04-21 23:48:37 +00003705 // If the LHS is a cast from an integral value of the same size,
Chris Lattner2b55ea32004-02-23 07:16:20 +00003706 if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
3707 Value *CastOp = Cast->getOperand(0);
3708 const Type *SrcTy = CastOp->getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003709 unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
Chris Lattner2b55ea32004-02-23 07:16:20 +00003710 if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003711 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00003712 assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) &&
Chris Lattner2b55ea32004-02-23 07:16:20 +00003713 "Source and destination signednesses should differ!");
3714 if (Cast->getType()->isSigned()) {
3715 // If this is a signed comparison, check for comparisons in the
3716 // vicinity of zero.
3717 if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
3718 // X < 0 => x > 127
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003719 return BinaryOperator::createSetGT(CastOp,
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003720 ConstantUInt::get(SrcTy, (1ULL << (SrcTySize-1))-1));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003721 else if (I.getOpcode() == Instruction::SetGT &&
3722 cast<ConstantSInt>(CI)->getValue() == -1)
3723 // X > -1 => x < 128
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003724 return BinaryOperator::createSetLT(CastOp,
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003725 ConstantUInt::get(SrcTy, 1ULL << (SrcTySize-1)));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003726 } else {
3727 ConstantUInt *CUI = cast<ConstantUInt>(CI);
3728 if (I.getOpcode() == Instruction::SetLT &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003729 CUI->getValue() == 1ULL << (SrcTySize-1))
Chris Lattner2b55ea32004-02-23 07:16:20 +00003730 // X < 128 => X > -1
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003731 return BinaryOperator::createSetGT(CastOp,
3732 ConstantSInt::get(SrcTy, -1));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003733 else if (I.getOpcode() == Instruction::SetGT &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003734 CUI->getValue() == (1ULL << (SrcTySize-1))-1)
Chris Lattner2b55ea32004-02-23 07:16:20 +00003735 // X > 127 => X < 0
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003736 return BinaryOperator::createSetLT(CastOp,
3737 Constant::getNullValue(SrcTy));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003738 }
3739 }
3740 }
Chris Lattnere967b342003-06-04 05:10:11 +00003741 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003742 }
3743
Chris Lattner77c32c32005-04-23 15:31:55 +00003744 // Handle setcc with constant RHS's that can be integer, FP or pointer.
3745 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3746 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3747 switch (LHSI->getOpcode()) {
Chris Lattnera816eee2005-05-01 04:42:15 +00003748 case Instruction::GetElementPtr:
3749 if (RHSC->isNullValue()) {
3750 // Transform setcc GEP P, int 0, int 0, int 0, null -> setcc P, null
3751 bool isAllZeros = true;
3752 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
3753 if (!isa<Constant>(LHSI->getOperand(i)) ||
3754 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
3755 isAllZeros = false;
3756 break;
3757 }
3758 if (isAllZeros)
3759 return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),
3760 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3761 }
3762 break;
3763
Chris Lattner77c32c32005-04-23 15:31:55 +00003764 case Instruction::PHI:
3765 if (Instruction *NV = FoldOpIntoPhi(I))
3766 return NV;
3767 break;
3768 case Instruction::Select:
3769 // If either operand of the select is a constant, we can fold the
3770 // comparison into the select arms, which will cause one to be
3771 // constant folded and the select turned into a bitwise or.
3772 Value *Op1 = 0, *Op2 = 0;
3773 if (LHSI->hasOneUse()) {
3774 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3775 // Fold the known value into the constant operand.
3776 Op1 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3777 // Insert a new SetCC of the other select operand.
3778 Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3779 LHSI->getOperand(2), RHSC,
3780 I.getName()), I);
3781 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3782 // Fold the known value into the constant operand.
3783 Op2 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3784 // Insert a new SetCC of the other select operand.
3785 Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3786 LHSI->getOperand(1), RHSC,
3787 I.getName()), I);
3788 }
3789 }
Jeff Cohen82639852005-04-23 21:38:35 +00003790
Chris Lattner77c32c32005-04-23 15:31:55 +00003791 if (Op1)
3792 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
3793 break;
3794 }
3795 }
3796
Chris Lattner0798af32005-01-13 20:14:25 +00003797 // If we can optimize a 'setcc GEP, P' or 'setcc P, GEP', do so now.
3798 if (User *GEP = dyn_castGetElementPtr(Op0))
3799 if (Instruction *NI = FoldGEPSetCC(GEP, Op1, I.getOpcode(), I))
3800 return NI;
3801 if (User *GEP = dyn_castGetElementPtr(Op1))
3802 if (Instruction *NI = FoldGEPSetCC(GEP, Op0,
3803 SetCondInst::getSwappedCondition(I.getOpcode()), I))
3804 return NI;
3805
Chris Lattner16930792003-11-03 04:25:02 +00003806 // Test to see if the operands of the setcc are casted versions of other
3807 // values. If the cast can be stripped off both arguments, we do so now.
Chris Lattner6444c372003-11-03 05:17:03 +00003808 if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3809 Value *CastOp0 = CI->getOperand(0);
3810 if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
Chris Lattner7d2a5392004-03-13 23:54:27 +00003811 (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
Chris Lattner16930792003-11-03 04:25:02 +00003812 (I.getOpcode() == Instruction::SetEQ ||
3813 I.getOpcode() == Instruction::SetNE)) {
3814 // We keep moving the cast from the left operand over to the right
3815 // operand, where it can often be eliminated completely.
Chris Lattner6444c372003-11-03 05:17:03 +00003816 Op0 = CastOp0;
Misha Brukmanb1c93172005-04-21 23:48:37 +00003817
Chris Lattner16930792003-11-03 04:25:02 +00003818 // If operand #1 is a cast instruction, see if we can eliminate it as
3819 // well.
Chris Lattner6444c372003-11-03 05:17:03 +00003820 if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
3821 if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
Chris Lattner16930792003-11-03 04:25:02 +00003822 Op0->getType()))
Chris Lattner6444c372003-11-03 05:17:03 +00003823 Op1 = CI2->getOperand(0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003824
Chris Lattner16930792003-11-03 04:25:02 +00003825 // If Op1 is a constant, we can fold the cast into the constant.
3826 if (Op1->getType() != Op0->getType())
3827 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3828 Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
3829 } else {
3830 // Otherwise, cast the RHS right before the setcc
3831 Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
3832 InsertNewInstBefore(cast<Instruction>(Op1), I);
3833 }
3834 return BinaryOperator::create(I.getOpcode(), Op0, Op1);
3835 }
3836
Chris Lattner6444c372003-11-03 05:17:03 +00003837 // Handle the special case of: setcc (cast bool to X), <cst>
3838 // This comes up when you have code like
3839 // int X = A < B;
3840 // if (X) ...
3841 // For generality, we handle any zero-extension of any operand comparison
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003842 // with a constant or another cast from the same type.
3843 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
3844 if (Instruction *R = visitSetCondInstWithCastAndCast(I))
3845 return R;
Chris Lattner6444c372003-11-03 05:17:03 +00003846 }
Chris Lattner113f4f42002-06-25 16:13:24 +00003847 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003848}
3849
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003850// visitSetCondInstWithCastAndCast - Handle setcond (cast x to y), (cast/cst).
3851// We only handle extending casts so far.
3852//
3853Instruction *InstCombiner::visitSetCondInstWithCastAndCast(SetCondInst &SCI) {
3854 Value *LHSCIOp = cast<CastInst>(SCI.getOperand(0))->getOperand(0);
3855 const Type *SrcTy = LHSCIOp->getType();
3856 const Type *DestTy = SCI.getOperand(0)->getType();
3857 Value *RHSCIOp;
3858
3859 if (!DestTy->isIntegral() || !SrcTy->isIntegral())
Chris Lattner03f06f12005-01-17 03:20:02 +00003860 return 0;
3861
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003862 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
3863 unsigned DestBits = DestTy->getPrimitiveSizeInBits();
3864 if (SrcBits >= DestBits) return 0; // Only handle extending cast.
3865
3866 // Is this a sign or zero extension?
3867 bool isSignSrc = SrcTy->isSigned();
3868 bool isSignDest = DestTy->isSigned();
3869
3870 if (CastInst *CI = dyn_cast<CastInst>(SCI.getOperand(1))) {
3871 // Not an extension from the same type?
3872 RHSCIOp = CI->getOperand(0);
3873 if (RHSCIOp->getType() != LHSCIOp->getType()) return 0;
3874 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(SCI.getOperand(1))) {
3875 // Compute the constant that would happen if we truncated to SrcTy then
3876 // reextended to DestTy.
3877 Constant *Res = ConstantExpr::getCast(CI, SrcTy);
3878
3879 if (ConstantExpr::getCast(Res, DestTy) == CI) {
3880 RHSCIOp = Res;
3881 } else {
3882 // If the value cannot be represented in the shorter type, we cannot emit
3883 // a simple comparison.
3884 if (SCI.getOpcode() == Instruction::SetEQ)
3885 return ReplaceInstUsesWith(SCI, ConstantBool::False);
3886 if (SCI.getOpcode() == Instruction::SetNE)
3887 return ReplaceInstUsesWith(SCI, ConstantBool::True);
3888
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003889 // Evaluate the comparison for LT.
3890 Value *Result;
3891 if (DestTy->isSigned()) {
3892 // We're performing a signed comparison.
3893 if (isSignSrc) {
3894 // Signed extend and signed comparison.
3895 if (cast<ConstantSInt>(CI)->getValue() < 0) // X < (small) --> false
3896 Result = ConstantBool::False;
3897 else
3898 Result = ConstantBool::True; // X < (large) --> true
3899 } else {
3900 // Unsigned extend and signed comparison.
3901 if (cast<ConstantSInt>(CI)->getValue() < 0)
3902 Result = ConstantBool::False;
3903 else
3904 Result = ConstantBool::True;
3905 }
3906 } else {
3907 // We're performing an unsigned comparison.
3908 if (!isSignSrc) {
3909 // Unsigned extend & compare -> always true.
3910 Result = ConstantBool::True;
3911 } else {
3912 // We're performing an unsigned comp with a sign extended value.
3913 // This is true if the input is >= 0. [aka >s -1]
3914 Constant *NegOne = ConstantIntegral::getAllOnesValue(SrcTy);
3915 Result = InsertNewInstBefore(BinaryOperator::createSetGT(LHSCIOp,
3916 NegOne, SCI.getName()), SCI);
3917 }
Reid Spencer279fa252004-11-28 21:31:15 +00003918 }
Chris Lattner03f06f12005-01-17 03:20:02 +00003919
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00003920 // Finally, return the value computed.
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003921 if (SCI.getOpcode() == Instruction::SetLT) {
3922 return ReplaceInstUsesWith(SCI, Result);
3923 } else {
3924 assert(SCI.getOpcode()==Instruction::SetGT &&"SetCC should be folded!");
3925 if (Constant *CI = dyn_cast<Constant>(Result))
3926 return ReplaceInstUsesWith(SCI, ConstantExpr::getNot(CI));
3927 else
3928 return BinaryOperator::createNot(Result);
3929 }
Chris Lattner03f06f12005-01-17 03:20:02 +00003930 }
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003931 } else {
3932 return 0;
Reid Spencer279fa252004-11-28 21:31:15 +00003933 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003934
Chris Lattner252a8452005-06-16 03:00:08 +00003935 // Okay, just insert a compare of the reduced operands now!
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003936 return BinaryOperator::create(SCI.getOpcode(), LHSCIOp, RHSCIOp);
3937}
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003938
Chris Lattnere8d6c602003-03-10 19:16:08 +00003939Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +00003940 assert(I.getOperand(1)->getType() == Type::UByteTy);
3941 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00003942 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003943
3944 // shl X, 0 == X and shr X, 0 == X
3945 // shl 0, X == 0 and shr 0, X == 0
3946 if (Op1 == Constant::getNullValue(Type::UByteTy) ||
Chris Lattnere6794492002-08-12 21:17:25 +00003947 Op0 == Constant::getNullValue(Op0->getType()))
3948 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00003949
Chris Lattner81a7a232004-10-16 18:11:37 +00003950 if (isa<UndefValue>(Op0)) { // undef >>s X -> undef
3951 if (!isLeftShift && I.getType()->isSigned())
Chris Lattner67f05452004-10-16 23:28:04 +00003952 return ReplaceInstUsesWith(I, Op0);
Chris Lattner81a7a232004-10-16 18:11:37 +00003953 else // undef << X -> 0 AND undef >>u X -> 0
3954 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3955 }
3956 if (isa<UndefValue>(Op1)) {
Chris Lattner18aa4d82005-07-20 18:49:28 +00003957 if (isLeftShift || I.getType()->isUnsigned())// X << undef, X >>u undef -> 0
Chris Lattner81a7a232004-10-16 18:11:37 +00003958 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3959 else
3960 return ReplaceInstUsesWith(I, Op0); // X >>s undef -> X
3961 }
3962
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00003963 // shr int -1, X = -1 (for any arithmetic shift rights of ~0)
3964 if (!isLeftShift)
3965 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
3966 if (CSI->isAllOnesValue())
3967 return ReplaceInstUsesWith(I, CSI);
3968
Chris Lattner183b3362004-04-09 19:05:30 +00003969 // Try to fold constant and into select arguments.
3970 if (isa<Constant>(Op0))
3971 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00003972 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00003973 return R;
3974
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00003975 // See if we can turn a signed shr into an unsigned shr.
3976 if (!isLeftShift && I.getType()->isSigned()) {
Chris Lattnerc3ebf402006-02-07 07:27:52 +00003977 if (MaskedValueIsZero(Op0,
3978 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00003979 Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I);
3980 V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, V, Op1,
3981 I.getName()), I);
3982 return new CastInst(V, I.getType());
3983 }
3984 }
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00003985
Chris Lattner14553932006-01-06 07:12:35 +00003986 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1))
3987 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
3988 return Res;
3989 return 0;
3990}
3991
3992Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
3993 ShiftInst &I) {
3994 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattnerb3309392006-01-06 07:22:22 +00003995 bool isSignedShift = Op0->getType()->isSigned();
3996 bool isUnsignedShift = !isSignedShift;
Chris Lattner14553932006-01-06 07:12:35 +00003997
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00003998 // See if we can simplify any instructions used by the instruction whose sole
3999 // purpose is to compute bits we don't care about.
4000 uint64_t KnownZero, KnownOne;
4001 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
4002 KnownZero, KnownOne))
4003 return &I;
4004
Chris Lattner14553932006-01-06 07:12:35 +00004005 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
4006 // of a signed value.
4007 //
4008 unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
4009 if (Op1->getValue() >= TypeBits) {
Chris Lattnerb3309392006-01-06 07:22:22 +00004010 if (isUnsignedShift || isLeftShift)
Chris Lattner14553932006-01-06 07:12:35 +00004011 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
4012 else {
4013 I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
4014 return &I;
Chris Lattnerf5ce2542004-02-23 20:30:06 +00004015 }
Chris Lattner14553932006-01-06 07:12:35 +00004016 }
4017
4018 // ((X*C1) << C2) == (X * (C1 << C2))
4019 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
4020 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
4021 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
4022 return BinaryOperator::createMul(BO->getOperand(0),
4023 ConstantExpr::getShl(BOOp, Op1));
4024
4025 // Try to fold constant and into select arguments.
4026 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4027 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4028 return R;
4029 if (isa<PHINode>(Op0))
4030 if (Instruction *NV = FoldOpIntoPhi(I))
4031 return NV;
4032
4033 if (Op0->hasOneUse()) {
Chris Lattner14553932006-01-06 07:12:35 +00004034 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
4035 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
4036 Value *V1, *V2;
4037 ConstantInt *CC;
4038 switch (Op0BO->getOpcode()) {
Chris Lattner27cb9db2005-09-18 05:12:10 +00004039 default: break;
4040 case Instruction::Add:
4041 case Instruction::And:
4042 case Instruction::Or:
4043 case Instruction::Xor:
4044 // These operators commute.
4045 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00004046 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4047 match(Op0BO->getOperand(1),
Chris Lattner14553932006-01-06 07:12:35 +00004048 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner797dee72005-09-18 06:30:59 +00004049 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004050 Op0BO->getOperand(0), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004051 Op0BO->getName());
4052 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004053 Instruction *X =
4054 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4055 Op0BO->getOperand(1)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00004056 InsertNewInstBefore(X, I); // (X + (Y << C))
4057 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00004058 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00004059 return BinaryOperator::createAnd(X, C2);
4060 }
Chris Lattner14553932006-01-06 07:12:35 +00004061
Chris Lattner797dee72005-09-18 06:30:59 +00004062 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
4063 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4064 match(Op0BO->getOperand(1),
4065 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner14553932006-01-06 07:12:35 +00004066 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004067 cast<BinaryOperator>(Op0BO->getOperand(1))->getOperand(0)->hasOneUse()) {
Chris Lattner797dee72005-09-18 06:30:59 +00004068 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004069 Op0BO->getOperand(0), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004070 Op0BO->getName());
4071 InsertNewInstBefore(YS, I); // (Y << C)
4072 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00004073 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00004074 V1->getName()+".mask");
4075 InsertNewInstBefore(XM, I); // X & (CC << C)
4076
4077 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4078 }
Chris Lattner14553932006-01-06 07:12:35 +00004079
Chris Lattner797dee72005-09-18 06:30:59 +00004080 // FALL THROUGH.
Chris Lattner27cb9db2005-09-18 05:12:10 +00004081 case Instruction::Sub:
4082 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00004083 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4084 match(Op0BO->getOperand(0),
Chris Lattner14553932006-01-06 07:12:35 +00004085 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner797dee72005-09-18 06:30:59 +00004086 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004087 Op0BO->getOperand(1), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004088 Op0BO->getName());
4089 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004090 Instruction *X =
4091 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4092 Op0BO->getOperand(0)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00004093 InsertNewInstBefore(X, I); // (X + (Y << C))
4094 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00004095 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00004096 return BinaryOperator::createAnd(X, C2);
4097 }
Chris Lattner14553932006-01-06 07:12:35 +00004098
Chris Lattner797dee72005-09-18 06:30:59 +00004099 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4100 match(Op0BO->getOperand(0),
4101 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner14553932006-01-06 07:12:35 +00004102 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004103 cast<BinaryOperator>(Op0BO->getOperand(0))
4104 ->getOperand(0)->hasOneUse()) {
Chris Lattner797dee72005-09-18 06:30:59 +00004105 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004106 Op0BO->getOperand(1), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004107 Op0BO->getName());
4108 InsertNewInstBefore(YS, I); // (Y << C)
4109 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00004110 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00004111 V1->getName()+".mask");
4112 InsertNewInstBefore(XM, I); // X & (CC << C)
4113
4114 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4115 }
Chris Lattner14553932006-01-06 07:12:35 +00004116
Chris Lattner27cb9db2005-09-18 05:12:10 +00004117 break;
Chris Lattner14553932006-01-06 07:12:35 +00004118 }
4119
4120
4121 // If the operand is an bitwise operator with a constant RHS, and the
4122 // shift is the only use, we can pull it out of the shift.
4123 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
4124 bool isValid = true; // Valid only for And, Or, Xor
4125 bool highBitSet = false; // Transform if high bit of constant set?
4126
4127 switch (Op0BO->getOpcode()) {
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004128 default: isValid = false; break; // Do not perform transform!
Chris Lattner44bd3922004-10-08 03:46:20 +00004129 case Instruction::Add:
4130 isValid = isLeftShift;
4131 break;
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004132 case Instruction::Or:
4133 case Instruction::Xor:
4134 highBitSet = false;
4135 break;
4136 case Instruction::And:
4137 highBitSet = true;
4138 break;
Chris Lattner14553932006-01-06 07:12:35 +00004139 }
4140
4141 // If this is a signed shift right, and the high bit is modified
4142 // by the logical operation, do not perform the transformation.
4143 // The highBitSet boolean indicates the value of the high bit of
4144 // the constant which would cause it to be modified for this
4145 // operation.
4146 //
Chris Lattnerb3309392006-01-06 07:22:22 +00004147 if (isValid && !isLeftShift && isSignedShift) {
Chris Lattner14553932006-01-06 07:12:35 +00004148 uint64_t Val = Op0C->getRawValue();
4149 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
4150 }
4151
4152 if (isValid) {
4153 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
4154
4155 Instruction *NewShift =
4156 new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), Op1,
4157 Op0BO->getName());
4158 Op0BO->setName("");
4159 InsertNewInstBefore(NewShift, I);
4160
4161 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
4162 NewRHS);
4163 }
4164 }
4165 }
4166 }
4167
Chris Lattnereb372a02006-01-06 07:52:12 +00004168 // Find out if this is a shift of a shift by a constant.
4169 ShiftInst *ShiftOp = 0;
Chris Lattner14553932006-01-06 07:12:35 +00004170 if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
Chris Lattnereb372a02006-01-06 07:52:12 +00004171 ShiftOp = Op0SI;
4172 else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
4173 // If this is a noop-integer case of a shift instruction, use the shift.
4174 if (CI->getOperand(0)->getType()->isInteger() &&
4175 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
4176 CI->getType()->getPrimitiveSizeInBits() &&
4177 isa<ShiftInst>(CI->getOperand(0))) {
4178 ShiftOp = cast<ShiftInst>(CI->getOperand(0));
4179 }
4180 }
4181
4182 if (ShiftOp && isa<ConstantUInt>(ShiftOp->getOperand(1))) {
4183 // Find the operands and properties of the input shift. Note that the
4184 // signedness of the input shift may differ from the current shift if there
4185 // is a noop cast between the two.
4186 bool isShiftOfLeftShift = ShiftOp->getOpcode() == Instruction::Shl;
4187 bool isShiftOfSignedShift = ShiftOp->getType()->isSigned();
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004188 bool isShiftOfUnsignedShift = !isShiftOfSignedShift;
Chris Lattnereb372a02006-01-06 07:52:12 +00004189
4190 ConstantUInt *ShiftAmt1C = cast<ConstantUInt>(ShiftOp->getOperand(1));
4191
4192 unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getValue();
4193 unsigned ShiftAmt2 = (unsigned)Op1->getValue();
4194
4195 // Check for (A << c1) << c2 and (A >> c1) >> c2.
4196 if (isLeftShift == isShiftOfLeftShift) {
4197 // Do not fold these shifts if the first one is signed and the second one
4198 // is unsigned and this is a right shift. Further, don't do any folding
4199 // on them.
4200 if (isShiftOfSignedShift && isUnsignedShift && !isLeftShift)
4201 return 0;
Chris Lattner14553932006-01-06 07:12:35 +00004202
Chris Lattnereb372a02006-01-06 07:52:12 +00004203 unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
4204 if (Amt > Op0->getType()->getPrimitiveSizeInBits())
4205 Amt = Op0->getType()->getPrimitiveSizeInBits();
Chris Lattner14553932006-01-06 07:12:35 +00004206
Chris Lattnereb372a02006-01-06 07:52:12 +00004207 Value *Op = ShiftOp->getOperand(0);
4208 if (isShiftOfSignedShift != isSignedShift)
4209 Op = InsertNewInstBefore(new CastInst(Op, I.getType(), "tmp"), I);
4210 return new ShiftInst(I.getOpcode(), Op,
4211 ConstantUInt::get(Type::UByteTy, Amt));
4212 }
4213
4214 // Check for (A << c1) >> c2 or (A >> c1) << c2. If we are dealing with
4215 // signed types, we can only support the (A >> c1) << c2 configuration,
4216 // because it can not turn an arbitrary bit of A into a sign bit.
4217 if (isUnsignedShift || isLeftShift) {
4218 // Calculate bitmask for what gets shifted off the edge.
4219 Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
4220 if (isLeftShift)
4221 C = ConstantExpr::getShl(C, ShiftAmt1C);
4222 else
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004223 C = ConstantExpr::getUShr(C, ShiftAmt1C);
Chris Lattnereb372a02006-01-06 07:52:12 +00004224
4225 Value *Op = ShiftOp->getOperand(0);
4226 if (isShiftOfSignedShift != isSignedShift)
4227 Op = InsertNewInstBefore(new CastInst(Op, I.getType(),Op->getName()),I);
4228
4229 Instruction *Mask =
4230 BinaryOperator::createAnd(Op, C, Op->getName()+".mask");
4231 InsertNewInstBefore(Mask, I);
4232
4233 // Figure out what flavor of shift we should use...
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004234 if (ShiftAmt1 == ShiftAmt2) {
Chris Lattnereb372a02006-01-06 07:52:12 +00004235 return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004236 } else if (ShiftAmt1 < ShiftAmt2) {
Chris Lattnereb372a02006-01-06 07:52:12 +00004237 return new ShiftInst(I.getOpcode(), Mask,
4238 ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004239 } else if (isShiftOfUnsignedShift || isShiftOfLeftShift) {
4240 if (isShiftOfUnsignedShift && !isShiftOfLeftShift && isSignedShift) {
4241 // Make sure to emit an unsigned shift right, not a signed one.
4242 Mask = InsertNewInstBefore(new CastInst(Mask,
4243 Mask->getType()->getUnsignedVersion(),
4244 Op->getName()), I);
4245 Mask = new ShiftInst(Instruction::Shr, Mask,
Chris Lattnereb372a02006-01-06 07:52:12 +00004246 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004247 InsertNewInstBefore(Mask, I);
4248 return new CastInst(Mask, I.getType());
4249 } else {
4250 return new ShiftInst(ShiftOp->getOpcode(), Mask,
4251 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4252 }
4253 } else {
4254 // (X >>s C1) << C2 where C1 > C2 === (X >>s (C1-C2)) & mask
4255 Op = InsertNewInstBefore(new CastInst(Mask,
4256 I.getType()->getSignedVersion(),
4257 Mask->getName()), I);
4258 Instruction *Shift =
4259 new ShiftInst(ShiftOp->getOpcode(), Op,
4260 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4261 InsertNewInstBefore(Shift, I);
4262
4263 C = ConstantIntegral::getAllOnesValue(Shift->getType());
4264 C = ConstantExpr::getShl(C, Op1);
4265 Mask = BinaryOperator::createAnd(Shift, C, Op->getName()+".mask");
4266 InsertNewInstBefore(Mask, I);
4267 return new CastInst(Mask, I.getType());
Chris Lattnereb372a02006-01-06 07:52:12 +00004268 }
4269 } else {
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004270 // We can handle signed (X << C1) >>s C2 if it's a sign extend. In
Chris Lattnereb372a02006-01-06 07:52:12 +00004271 // this case, C1 == C2 and C1 is 8, 16, or 32.
4272 if (ShiftAmt1 == ShiftAmt2) {
4273 const Type *SExtType = 0;
4274 switch (ShiftAmt1) {
4275 case 8 : SExtType = Type::SByteTy; break;
4276 case 16: SExtType = Type::ShortTy; break;
4277 case 32: SExtType = Type::IntTy; break;
4278 }
4279
4280 if (SExtType) {
4281 Instruction *NewTrunc = new CastInst(ShiftOp->getOperand(0),
4282 SExtType, "sext");
4283 InsertNewInstBefore(NewTrunc, I);
4284 return new CastInst(NewTrunc, I.getType());
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004285 }
Chris Lattner27cb9db2005-09-18 05:12:10 +00004286 }
Chris Lattner86102b82005-01-01 16:22:27 +00004287 }
Chris Lattnereb372a02006-01-06 07:52:12 +00004288 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004289 return 0;
4290}
4291
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004292enum CastType {
4293 Noop = 0,
4294 Truncate = 1,
4295 Signext = 2,
4296 Zeroext = 3
4297};
4298
4299/// getCastType - In the future, we will split the cast instruction into these
4300/// various types. Until then, we have to do the analysis here.
4301static CastType getCastType(const Type *Src, const Type *Dest) {
4302 assert(Src->isIntegral() && Dest->isIntegral() &&
4303 "Only works on integral types!");
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004304 unsigned SrcSize = Src->getPrimitiveSizeInBits();
4305 unsigned DestSize = Dest->getPrimitiveSizeInBits();
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004306
4307 if (SrcSize == DestSize) return Noop;
4308 if (SrcSize > DestSize) return Truncate;
4309 if (Src->isSigned()) return Signext;
4310 return Zeroext;
4311}
4312
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004313
Chris Lattner48a44f72002-05-02 17:06:02 +00004314// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
4315// instruction.
4316//
Chris Lattnere154abf2006-01-19 07:40:22 +00004317static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
4318 const Type *DstTy, TargetData *TD) {
Chris Lattner48a44f72002-05-02 17:06:02 +00004319
Chris Lattner650b6da2002-08-02 20:00:25 +00004320 // It is legal to eliminate the instruction if casting A->B->A if the sizes
Misha Brukmanb1c93172005-04-21 23:48:37 +00004321 // are identical and the bits don't get reinterpreted (for example
Chris Lattner1638de42004-07-21 19:50:44 +00004322 // int->float->int would not be allowed).
Misha Brukmane5838c42003-05-20 18:45:36 +00004323 if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
Chris Lattner650b6da2002-08-02 20:00:25 +00004324 return true;
Chris Lattner48a44f72002-05-02 17:06:02 +00004325
Chris Lattner4fbad962004-07-21 04:27:24 +00004326 // If we are casting between pointer and integer types, treat pointers as
4327 // integers of the appropriate size for the code below.
4328 if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
4329 if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
4330 if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
Chris Lattner11ffd592004-07-20 05:21:00 +00004331
Chris Lattner48a44f72002-05-02 17:06:02 +00004332 // Allow free casting and conversion of sizes as long as the sign doesn't
4333 // change...
Chris Lattnerb0b412e2002-09-03 01:08:28 +00004334 if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004335 CastType FirstCast = getCastType(SrcTy, MidTy);
4336 CastType SecondCast = getCastType(MidTy, DstTy);
Chris Lattner650b6da2002-08-02 20:00:25 +00004337
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004338 // Capture the effect of these two casts. If the result is a legal cast,
4339 // the CastType is stored here, otherwise a special code is used.
4340 static const unsigned CastResult[] = {
4341 // First cast is noop
4342 0, 1, 2, 3,
4343 // First cast is a truncate
4344 1, 1, 4, 4, // trunc->extend is not safe to eliminate
4345 // First cast is a sign ext
Chris Lattner1638de42004-07-21 19:50:44 +00004346 2, 5, 2, 4, // signext->zeroext never ok
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004347 // First cast is a zero ext
Chris Lattner1638de42004-07-21 19:50:44 +00004348 3, 5, 3, 3,
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004349 };
4350
4351 unsigned Result = CastResult[FirstCast*4+SecondCast];
4352 switch (Result) {
4353 default: assert(0 && "Illegal table value!");
4354 case 0:
4355 case 1:
4356 case 2:
4357 case 3:
4358 // FIXME: in the future, when LLVM has explicit sign/zeroextends and
4359 // truncates, we could eliminate more casts.
4360 return (unsigned)getCastType(SrcTy, DstTy) == Result;
4361 case 4:
4362 return false; // Not possible to eliminate this here.
4363 case 5:
Chris Lattner1638de42004-07-21 19:50:44 +00004364 // Sign or zero extend followed by truncate is always ok if the result
4365 // is a truncate or noop.
4366 CastType ResultCast = getCastType(SrcTy, DstTy);
4367 if (ResultCast == Noop || ResultCast == Truncate)
4368 return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +00004369 // Otherwise we are still growing the value, we are only safe if the
Chris Lattner1638de42004-07-21 19:50:44 +00004370 // result will match the sign/zeroextendness of the result.
4371 return ResultCast == FirstCast;
Chris Lattner3732aca2002-08-15 16:15:25 +00004372 }
Chris Lattner650b6da2002-08-02 20:00:25 +00004373 }
Chris Lattnere154abf2006-01-19 07:40:22 +00004374
4375 // If this is a cast from 'float -> double -> integer', cast from
4376 // 'float -> integer' directly, as the value isn't changed by the
4377 // float->double conversion.
4378 if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() &&
4379 DstTy->isIntegral() &&
4380 SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize())
4381 return true;
4382
Chris Lattner48a44f72002-05-02 17:06:02 +00004383 return false;
4384}
4385
Chris Lattner11ffd592004-07-20 05:21:00 +00004386static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004387 if (V->getType() == Ty || isa<Constant>(V)) return false;
4388 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner11ffd592004-07-20 05:21:00 +00004389 if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
4390 TD))
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004391 return false;
4392 return true;
4393}
4394
4395/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
4396/// InsertBefore instruction. This is specialized a bit to avoid inserting
4397/// casts that are known to not do anything...
4398///
4399Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
4400 Instruction *InsertBefore) {
4401 if (V->getType() == DestTy) return V;
4402 if (Constant *C = dyn_cast<Constant>(V))
4403 return ConstantExpr::getCast(C, DestTy);
4404
4405 CastInst *CI = new CastInst(V, DestTy, V->getName());
4406 InsertNewInstBefore(CI, *InsertBefore);
4407 return CI;
4408}
Chris Lattner48a44f72002-05-02 17:06:02 +00004409
Chris Lattner8f663e82005-10-29 04:36:15 +00004410/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
4411/// expression. If so, decompose it, returning some value X, such that Val is
4412/// X*Scale+Offset.
4413///
4414static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
4415 unsigned &Offset) {
4416 assert(Val->getType() == Type::UIntTy && "Unexpected allocation size type!");
4417 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(Val)) {
4418 Offset = CI->getValue();
4419 Scale = 1;
4420 return ConstantUInt::get(Type::UIntTy, 0);
4421 } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
4422 if (I->getNumOperands() == 2) {
4423 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I->getOperand(1))) {
4424 if (I->getOpcode() == Instruction::Shl) {
4425 // This is a value scaled by '1 << the shift amt'.
4426 Scale = 1U << CUI->getValue();
4427 Offset = 0;
4428 return I->getOperand(0);
4429 } else if (I->getOpcode() == Instruction::Mul) {
4430 // This value is scaled by 'CUI'.
4431 Scale = CUI->getValue();
4432 Offset = 0;
4433 return I->getOperand(0);
4434 } else if (I->getOpcode() == Instruction::Add) {
4435 // We have X+C. Check to see if we really have (X*C2)+C1, where C1 is
4436 // divisible by C2.
4437 unsigned SubScale;
4438 Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
4439 Offset);
4440 Offset += CUI->getValue();
4441 if (SubScale > 1 && (Offset % SubScale == 0)) {
4442 Scale = SubScale;
4443 return SubVal;
4444 }
4445 }
4446 }
4447 }
4448 }
4449
4450 // Otherwise, we can't look past this.
4451 Scale = 1;
4452 Offset = 0;
4453 return Val;
4454}
4455
4456
Chris Lattner216be912005-10-24 06:03:58 +00004457/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
4458/// try to eliminate the cast by moving the type information into the alloc.
4459Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
4460 AllocationInst &AI) {
4461 const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
Chris Lattnerbb171802005-10-27 05:53:56 +00004462 if (!PTy) return 0; // Not casting the allocation to a pointer type.
Chris Lattner216be912005-10-24 06:03:58 +00004463
Chris Lattnerac87beb2005-10-24 06:22:12 +00004464 // Remove any uses of AI that are dead.
4465 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
4466 std::vector<Instruction*> DeadUsers;
4467 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
4468 Instruction *User = cast<Instruction>(*UI++);
4469 if (isInstructionTriviallyDead(User)) {
4470 while (UI != E && *UI == User)
4471 ++UI; // If this instruction uses AI more than once, don't break UI.
4472
4473 // Add operands to the worklist.
4474 AddUsesToWorkList(*User);
4475 ++NumDeadInst;
4476 DEBUG(std::cerr << "IC: DCE: " << *User);
4477
4478 User->eraseFromParent();
4479 removeFromWorkList(User);
4480 }
4481 }
4482
Chris Lattner216be912005-10-24 06:03:58 +00004483 // Get the type really allocated and the type casted to.
4484 const Type *AllocElTy = AI.getAllocatedType();
4485 const Type *CastElTy = PTy->getElementType();
4486 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00004487
4488 unsigned AllocElTyAlign = TD->getTypeSize(AllocElTy);
4489 unsigned CastElTyAlign = TD->getTypeSize(CastElTy);
4490 if (CastElTyAlign < AllocElTyAlign) return 0;
4491
Chris Lattner46705b22005-10-24 06:35:18 +00004492 // If the allocation has multiple uses, only promote it if we are strictly
4493 // increasing the alignment of the resultant allocation. If we keep it the
4494 // same, we open the door to infinite loops of various kinds.
4495 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
4496
Chris Lattner216be912005-10-24 06:03:58 +00004497 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
4498 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
Chris Lattnerbb171802005-10-27 05:53:56 +00004499 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00004500
Chris Lattner8270c332005-10-29 03:19:53 +00004501 // See if we can satisfy the modulus by pulling a scale out of the array
4502 // size argument.
Chris Lattner8f663e82005-10-29 04:36:15 +00004503 unsigned ArraySizeScale, ArrayOffset;
4504 Value *NumElements = // See if the array size is a decomposable linear expr.
4505 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
4506
Chris Lattner8270c332005-10-29 03:19:53 +00004507 // If we can now satisfy the modulus, by using a non-1 scale, we really can
4508 // do the xform.
Chris Lattner8f663e82005-10-29 04:36:15 +00004509 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
4510 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattnerb3ecf962005-10-27 06:12:00 +00004511
Chris Lattner8270c332005-10-29 03:19:53 +00004512 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
4513 Value *Amt = 0;
4514 if (Scale == 1) {
4515 Amt = NumElements;
4516 } else {
4517 Amt = ConstantUInt::get(Type::UIntTy, Scale);
4518 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(NumElements))
4519 Amt = ConstantExpr::getMul(CI, cast<ConstantUInt>(Amt));
4520 else if (Scale != 1) {
4521 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
4522 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattnerb3ecf962005-10-27 06:12:00 +00004523 }
Chris Lattnerbb171802005-10-27 05:53:56 +00004524 }
4525
Chris Lattner8f663e82005-10-29 04:36:15 +00004526 if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
4527 Value *Off = ConstantUInt::get(Type::UIntTy, Offset);
4528 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
4529 Amt = InsertNewInstBefore(Tmp, AI);
4530 }
4531
Chris Lattner216be912005-10-24 06:03:58 +00004532 std::string Name = AI.getName(); AI.setName("");
4533 AllocationInst *New;
4534 if (isa<MallocInst>(AI))
Nate Begeman848622f2005-11-05 09:21:28 +00004535 New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattner216be912005-10-24 06:03:58 +00004536 else
Nate Begeman848622f2005-11-05 09:21:28 +00004537 New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattner216be912005-10-24 06:03:58 +00004538 InsertNewInstBefore(New, AI);
Chris Lattner46705b22005-10-24 06:35:18 +00004539
4540 // If the allocation has multiple uses, insert a cast and change all things
4541 // that used it to use the new cast. This will also hack on CI, but it will
4542 // die soon.
4543 if (!AI.hasOneUse()) {
4544 AddUsesToWorkList(AI);
4545 CastInst *NewCast = new CastInst(New, AI.getType(), "tmpcast");
4546 InsertNewInstBefore(NewCast, AI);
4547 AI.replaceAllUsesWith(NewCast);
4548 }
Chris Lattner216be912005-10-24 06:03:58 +00004549 return ReplaceInstUsesWith(CI, New);
4550}
4551
4552
Chris Lattner48a44f72002-05-02 17:06:02 +00004553// CastInst simplification
Chris Lattner260ab202002-04-18 17:39:14 +00004554//
Chris Lattner113f4f42002-06-25 16:13:24 +00004555Instruction *InstCombiner::visitCastInst(CastInst &CI) {
Chris Lattner55d4bda2003-06-23 21:59:52 +00004556 Value *Src = CI.getOperand(0);
4557
Chris Lattner48a44f72002-05-02 17:06:02 +00004558 // If the user is casting a value to the same type, eliminate this cast
4559 // instruction...
Chris Lattner55d4bda2003-06-23 21:59:52 +00004560 if (CI.getType() == Src->getType())
4561 return ReplaceInstUsesWith(CI, Src);
Chris Lattner48a44f72002-05-02 17:06:02 +00004562
Chris Lattner81a7a232004-10-16 18:11:37 +00004563 if (isa<UndefValue>(Src)) // cast undef -> undef
4564 return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
4565
Chris Lattner48a44f72002-05-02 17:06:02 +00004566 // If casting the result of another cast instruction, try to eliminate this
4567 // one!
4568 //
Chris Lattner86102b82005-01-01 16:22:27 +00004569 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
4570 Value *A = CSrc->getOperand(0);
4571 if (isEliminableCastOfCast(A->getType(), CSrc->getType(),
4572 CI.getType(), TD)) {
Chris Lattner48a44f72002-05-02 17:06:02 +00004573 // This instruction now refers directly to the cast's src operand. This
4574 // has a good chance of making CSrc dead.
Chris Lattner113f4f42002-06-25 16:13:24 +00004575 CI.setOperand(0, CSrc->getOperand(0));
4576 return &CI;
Chris Lattner48a44f72002-05-02 17:06:02 +00004577 }
4578
Chris Lattner650b6da2002-08-02 20:00:25 +00004579 // If this is an A->B->A cast, and we are dealing with integral types, try
4580 // to convert this into a logical 'and' instruction.
4581 //
Misha Brukmanb1c93172005-04-21 23:48:37 +00004582 if (A->getType()->isInteger() &&
Chris Lattnerb0b412e2002-09-03 01:08:28 +00004583 CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
Chris Lattner86102b82005-01-01 16:22:27 +00004584 CSrc->getType()->isUnsigned() && // B->A cast must zero extend
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004585 CSrc->getType()->getPrimitiveSizeInBits() <
4586 CI.getType()->getPrimitiveSizeInBits()&&
4587 A->getType()->getPrimitiveSizeInBits() ==
4588 CI.getType()->getPrimitiveSizeInBits()) {
Chris Lattner650b6da2002-08-02 20:00:25 +00004589 assert(CSrc->getType() != Type::ULongTy &&
4590 "Cannot have type bigger than ulong!");
Chris Lattner77defba2006-02-07 07:00:41 +00004591 uint64_t AndValue = CSrc->getType()->getIntegralTypeMask();
Chris Lattner86102b82005-01-01 16:22:27 +00004592 Constant *AndOp = ConstantUInt::get(A->getType()->getUnsignedVersion(),
4593 AndValue);
4594 AndOp = ConstantExpr::getCast(AndOp, A->getType());
4595 Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
4596 if (And->getType() != CI.getType()) {
4597 And->setName(CSrc->getName()+".mask");
4598 InsertNewInstBefore(And, CI);
4599 And = new CastInst(And, CI.getType());
4600 }
4601 return And;
Chris Lattner650b6da2002-08-02 20:00:25 +00004602 }
4603 }
Chris Lattner2590e512006-02-07 06:56:34 +00004604
Chris Lattner03841652004-05-25 04:29:21 +00004605 // If this is a cast to bool, turn it into the appropriate setne instruction.
4606 if (CI.getType() == Type::BoolTy)
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004607 return BinaryOperator::createSetNE(CI.getOperand(0),
Chris Lattner03841652004-05-25 04:29:21 +00004608 Constant::getNullValue(CI.getOperand(0)->getType()));
4609
Chris Lattner2590e512006-02-07 06:56:34 +00004610 // See if we can simplify any instructions used by the LHS whose sole
4611 // purpose is to compute bits we don't care about.
Chris Lattner0157e7f2006-02-11 09:31:47 +00004612 if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral()) {
4613 uint64_t KnownZero, KnownOne;
4614 if (SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask(),
4615 KnownZero, KnownOne))
4616 return &CI;
4617 }
Chris Lattner2590e512006-02-07 06:56:34 +00004618
Chris Lattnerd0d51602003-06-21 23:12:02 +00004619 // If casting the result of a getelementptr instruction with no offset, turn
4620 // this into a cast of the original pointer!
4621 //
Chris Lattner55d4bda2003-06-23 21:59:52 +00004622 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattnerd0d51602003-06-21 23:12:02 +00004623 bool AllZeroOperands = true;
4624 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
4625 if (!isa<Constant>(GEP->getOperand(i)) ||
4626 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
4627 AllZeroOperands = false;
4628 break;
4629 }
4630 if (AllZeroOperands) {
4631 CI.setOperand(0, GEP->getOperand(0));
4632 return &CI;
4633 }
4634 }
4635
Chris Lattnerf4ad1652003-11-02 05:57:39 +00004636 // If we are casting a malloc or alloca to a pointer to a type of the same
4637 // size, rewrite the allocation instruction to allocate the "right" type.
4638 //
4639 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
Chris Lattner216be912005-10-24 06:03:58 +00004640 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
4641 return V;
Chris Lattnerf4ad1652003-11-02 05:57:39 +00004642
Chris Lattner86102b82005-01-01 16:22:27 +00004643 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
4644 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
4645 return NV;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004646 if (isa<PHINode>(Src))
4647 if (Instruction *NV = FoldOpIntoPhi(CI))
4648 return NV;
4649
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004650 // If the source value is an instruction with only this use, we can attempt to
4651 // propagate the cast into the instruction. Also, only handle integral types
4652 // for now.
4653 if (Instruction *SrcI = dyn_cast<Instruction>(Src))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00004654 if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004655 CI.getType()->isInteger()) { // Don't mess with casts to bool here
4656 const Type *DestTy = CI.getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004657 unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits();
4658 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004659
4660 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
4661 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
4662
4663 switch (SrcI->getOpcode()) {
4664 case Instruction::Add:
4665 case Instruction::Mul:
4666 case Instruction::And:
4667 case Instruction::Or:
4668 case Instruction::Xor:
4669 // If we are discarding information, or just changing the sign, rewrite.
4670 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
4671 // Don't insert two casts if they cannot be eliminated. We allow two
4672 // casts to be inserted if the sizes are the same. This could only be
4673 // converting signedness, which is a noop.
Chris Lattner11ffd592004-07-20 05:21:00 +00004674 if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
4675 !ValueRequiresCast(Op0, DestTy, TD)) {
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004676 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4677 Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
4678 return BinaryOperator::create(cast<BinaryOperator>(SrcI)
4679 ->getOpcode(), Op0c, Op1c);
4680 }
4681 }
Chris Lattner72086162005-05-06 02:07:39 +00004682
4683 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
4684 if (SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor &&
4685 Op1 == ConstantBool::True &&
4686 (!Op0->hasOneUse() || !isa<SetCondInst>(Op0))) {
4687 Value *New = InsertOperandCastBefore(Op0, DestTy, &CI);
4688 return BinaryOperator::createXor(New,
4689 ConstantInt::get(CI.getType(), 1));
4690 }
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004691 break;
4692 case Instruction::Shl:
4693 // Allow changing the sign of the source operand. Do not allow changing
4694 // the size of the shift, UNLESS the shift amount is a constant. We
4695 // mush not change variable sized shifts to a smaller size, because it
4696 // is undefined to shift more bits out than exist in the value.
4697 if (DestBitSize == SrcBitSize ||
4698 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
4699 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4700 return new ShiftInst(Instruction::Shl, Op0c, Op1);
4701 }
4702 break;
Chris Lattner87380412005-05-06 04:18:52 +00004703 case Instruction::Shr:
4704 // If this is a signed shr, and if all bits shifted in are about to be
4705 // truncated off, turn it into an unsigned shr to allow greater
4706 // simplifications.
4707 if (DestBitSize < SrcBitSize && Src->getType()->isSigned() &&
4708 isa<ConstantInt>(Op1)) {
4709 unsigned ShiftAmt = cast<ConstantUInt>(Op1)->getValue();
4710 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
4711 // Convert to unsigned.
4712 Value *N1 = InsertOperandCastBefore(Op0,
4713 Op0->getType()->getUnsignedVersion(), &CI);
4714 // Insert the new shift, which is now unsigned.
4715 N1 = InsertNewInstBefore(new ShiftInst(Instruction::Shr, N1,
4716 Op1, Src->getName()), CI);
4717 return new CastInst(N1, CI.getType());
4718 }
4719 }
4720 break;
4721
Chris Lattner809dfac2005-05-04 19:10:26 +00004722 case Instruction::SetNE:
Chris Lattner809dfac2005-05-04 19:10:26 +00004723 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner4c2d3782005-05-06 01:53:19 +00004724 if (Op1C->getRawValue() == 0) {
4725 // If the input only has the low bit set, simplify directly.
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00004726 Constant *Not1 =
Chris Lattner809dfac2005-05-04 19:10:26 +00004727 ConstantExpr::getNot(ConstantInt::get(Op0->getType(), 1));
Chris Lattner4c2d3782005-05-06 01:53:19 +00004728 // cast (X != 0) to int --> X if X&~1 == 0
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004729 if (MaskedValueIsZero(Op0,
4730 cast<ConstantIntegral>(Not1)->getZExtValue())) {
Chris Lattner809dfac2005-05-04 19:10:26 +00004731 if (CI.getType() == Op0->getType())
4732 return ReplaceInstUsesWith(CI, Op0);
4733 else
4734 return new CastInst(Op0, CI.getType());
4735 }
Chris Lattner4c2d3782005-05-06 01:53:19 +00004736
4737 // If the input is an and with a single bit, shift then simplify.
4738 ConstantInt *AndRHS;
4739 if (match(Op0, m_And(m_Value(), m_ConstantInt(AndRHS))))
4740 if (AndRHS->getRawValue() &&
4741 (AndRHS->getRawValue() & (AndRHS->getRawValue()-1)) == 0) {
Chris Lattner22d00a82005-08-02 19:16:58 +00004742 unsigned ShiftAmt = Log2_64(AndRHS->getRawValue());
Chris Lattner4c2d3782005-05-06 01:53:19 +00004743 // Perform an unsigned shr by shiftamt. Convert input to
4744 // unsigned if it is signed.
4745 Value *In = Op0;
4746 if (In->getType()->isSigned())
4747 In = InsertNewInstBefore(new CastInst(In,
4748 In->getType()->getUnsignedVersion(), In->getName()),CI);
4749 // Insert the shift to put the result in the low bit.
4750 In = InsertNewInstBefore(new ShiftInst(Instruction::Shr, In,
4751 ConstantInt::get(Type::UByteTy, ShiftAmt),
4752 In->getName()+".lobit"), CI);
Chris Lattner4c2d3782005-05-06 01:53:19 +00004753 if (CI.getType() == In->getType())
4754 return ReplaceInstUsesWith(CI, In);
4755 else
4756 return new CastInst(In, CI.getType());
4757 }
4758 }
4759 }
4760 break;
4761 case Instruction::SetEQ:
4762 // We if we are just checking for a seteq of a single bit and casting it
4763 // to an integer. If so, shift the bit to the appropriate place then
4764 // cast to integer to avoid the comparison.
4765 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
4766 // Is Op1C a power of two or zero?
4767 if ((Op1C->getRawValue() & Op1C->getRawValue()-1) == 0) {
4768 // cast (X == 1) to int -> X iff X has only the low bit set.
4769 if (Op1C->getRawValue() == 1) {
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00004770 Constant *Not1 =
Chris Lattner4c2d3782005-05-06 01:53:19 +00004771 ConstantExpr::getNot(ConstantInt::get(Op0->getType(), 1));
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004772 if (MaskedValueIsZero(Op0,
4773 cast<ConstantIntegral>(Not1)->getZExtValue())) {
Chris Lattner4c2d3782005-05-06 01:53:19 +00004774 if (CI.getType() == Op0->getType())
4775 return ReplaceInstUsesWith(CI, Op0);
4776 else
4777 return new CastInst(Op0, CI.getType());
4778 }
4779 }
Chris Lattner809dfac2005-05-04 19:10:26 +00004780 }
4781 }
4782 break;
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004783 }
4784 }
Chris Lattnerbb171802005-10-27 05:53:56 +00004785
Chris Lattner260ab202002-04-18 17:39:14 +00004786 return 0;
Chris Lattnerca081252001-12-14 16:52:21 +00004787}
4788
Chris Lattner56e4d3d2004-04-09 23:46:01 +00004789/// GetSelectFoldableOperands - We want to turn code that looks like this:
4790/// %C = or %A, %B
4791/// %D = select %cond, %C, %A
4792/// into:
4793/// %C = select %cond, %B, 0
4794/// %D = or %A, %C
4795///
4796/// Assuming that the specified instruction is an operand to the select, return
4797/// a bitmask indicating which operands of this instruction are foldable if they
4798/// equal the other incoming value of the select.
4799///
4800static unsigned GetSelectFoldableOperands(Instruction *I) {
4801 switch (I->getOpcode()) {
4802 case Instruction::Add:
4803 case Instruction::Mul:
4804 case Instruction::And:
4805 case Instruction::Or:
4806 case Instruction::Xor:
4807 return 3; // Can fold through either operand.
4808 case Instruction::Sub: // Can only fold on the amount subtracted.
4809 case Instruction::Shl: // Can only fold on the shift amount.
4810 case Instruction::Shr:
Misha Brukmanb1c93172005-04-21 23:48:37 +00004811 return 1;
Chris Lattner56e4d3d2004-04-09 23:46:01 +00004812 default:
4813 return 0; // Cannot fold
4814 }
4815}
4816
4817/// GetSelectFoldableConstant - For the same transformation as the previous
4818/// function, return the identity constant that goes into the select.
4819static Constant *GetSelectFoldableConstant(Instruction *I) {
4820 switch (I->getOpcode()) {
4821 default: assert(0 && "This cannot happen!"); abort();
4822 case Instruction::Add:
4823 case Instruction::Sub:
4824 case Instruction::Or:
4825 case Instruction::Xor:
4826 return Constant::getNullValue(I->getType());
4827 case Instruction::Shl:
4828 case Instruction::Shr:
4829 return Constant::getNullValue(Type::UByteTy);
4830 case Instruction::And:
4831 return ConstantInt::getAllOnesValue(I->getType());
4832 case Instruction::Mul:
4833 return ConstantInt::get(I->getType(), 1);
4834 }
4835}
4836
Chris Lattner411336f2005-01-19 21:50:18 +00004837/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
4838/// have the same opcode and only one use each. Try to simplify this.
4839Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
4840 Instruction *FI) {
4841 if (TI->getNumOperands() == 1) {
4842 // If this is a non-volatile load or a cast from the same type,
4843 // merge.
4844 if (TI->getOpcode() == Instruction::Cast) {
4845 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
4846 return 0;
4847 } else {
4848 return 0; // unknown unary op.
4849 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00004850
Chris Lattner411336f2005-01-19 21:50:18 +00004851 // Fold this by inserting a select from the input values.
4852 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
4853 FI->getOperand(0), SI.getName()+".v");
4854 InsertNewInstBefore(NewSI, SI);
4855 return new CastInst(NewSI, TI->getType());
4856 }
4857
4858 // Only handle binary operators here.
4859 if (!isa<ShiftInst>(TI) && !isa<BinaryOperator>(TI))
4860 return 0;
4861
4862 // Figure out if the operations have any operands in common.
4863 Value *MatchOp, *OtherOpT, *OtherOpF;
4864 bool MatchIsOpZero;
4865 if (TI->getOperand(0) == FI->getOperand(0)) {
4866 MatchOp = TI->getOperand(0);
4867 OtherOpT = TI->getOperand(1);
4868 OtherOpF = FI->getOperand(1);
4869 MatchIsOpZero = true;
4870 } else if (TI->getOperand(1) == FI->getOperand(1)) {
4871 MatchOp = TI->getOperand(1);
4872 OtherOpT = TI->getOperand(0);
4873 OtherOpF = FI->getOperand(0);
4874 MatchIsOpZero = false;
4875 } else if (!TI->isCommutative()) {
4876 return 0;
4877 } else if (TI->getOperand(0) == FI->getOperand(1)) {
4878 MatchOp = TI->getOperand(0);
4879 OtherOpT = TI->getOperand(1);
4880 OtherOpF = FI->getOperand(0);
4881 MatchIsOpZero = true;
4882 } else if (TI->getOperand(1) == FI->getOperand(0)) {
4883 MatchOp = TI->getOperand(1);
4884 OtherOpT = TI->getOperand(0);
4885 OtherOpF = FI->getOperand(1);
4886 MatchIsOpZero = true;
4887 } else {
4888 return 0;
4889 }
4890
4891 // If we reach here, they do have operations in common.
4892 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
4893 OtherOpF, SI.getName()+".v");
4894 InsertNewInstBefore(NewSI, SI);
4895
4896 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
4897 if (MatchIsOpZero)
4898 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
4899 else
4900 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
4901 } else {
4902 if (MatchIsOpZero)
4903 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), MatchOp, NewSI);
4904 else
4905 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), NewSI, MatchOp);
4906 }
4907}
4908
Chris Lattnerb909e8b2004-03-12 05:52:32 +00004909Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattner533bc492004-03-30 19:37:13 +00004910 Value *CondVal = SI.getCondition();
4911 Value *TrueVal = SI.getTrueValue();
4912 Value *FalseVal = SI.getFalseValue();
4913
4914 // select true, X, Y -> X
4915 // select false, X, Y -> Y
4916 if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
Chris Lattnerb909e8b2004-03-12 05:52:32 +00004917 if (C == ConstantBool::True)
Chris Lattner533bc492004-03-30 19:37:13 +00004918 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattnerb909e8b2004-03-12 05:52:32 +00004919 else {
4920 assert(C == ConstantBool::False);
Chris Lattner533bc492004-03-30 19:37:13 +00004921 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattnerb909e8b2004-03-12 05:52:32 +00004922 }
Chris Lattner533bc492004-03-30 19:37:13 +00004923
4924 // select C, X, X -> X
4925 if (TrueVal == FalseVal)
4926 return ReplaceInstUsesWith(SI, TrueVal);
4927
Chris Lattner81a7a232004-10-16 18:11:37 +00004928 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
4929 return ReplaceInstUsesWith(SI, FalseVal);
4930 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
4931 return ReplaceInstUsesWith(SI, TrueVal);
4932 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
4933 if (isa<Constant>(TrueVal))
4934 return ReplaceInstUsesWith(SI, TrueVal);
4935 else
4936 return ReplaceInstUsesWith(SI, FalseVal);
4937 }
4938
Chris Lattner1c631e82004-04-08 04:43:23 +00004939 if (SI.getType() == Type::BoolTy)
4940 if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
4941 if (C == ConstantBool::True) {
4942 // Change: A = select B, true, C --> A = or B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004943 return BinaryOperator::createOr(CondVal, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00004944 } else {
4945 // Change: A = select B, false, C --> A = and !B, C
4946 Value *NotCond =
4947 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
4948 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004949 return BinaryOperator::createAnd(NotCond, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00004950 }
4951 } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
4952 if (C == ConstantBool::False) {
4953 // Change: A = select B, C, false --> A = and B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004954 return BinaryOperator::createAnd(CondVal, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00004955 } else {
4956 // Change: A = select B, C, true --> A = or !B, C
4957 Value *NotCond =
4958 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
4959 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004960 return BinaryOperator::createOr(NotCond, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00004961 }
4962 }
4963
Chris Lattner183b3362004-04-09 19:05:30 +00004964 // Selecting between two integer constants?
4965 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
4966 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
4967 // select C, 1, 0 -> cast C to int
4968 if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
4969 return new CastInst(CondVal, SI.getType());
4970 } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
4971 // select C, 0, 1 -> cast !C to int
4972 Value *NotCond =
4973 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
Chris Lattnercf7baf32004-04-09 18:19:44 +00004974 "not."+CondVal->getName()), SI);
Chris Lattner183b3362004-04-09 19:05:30 +00004975 return new CastInst(NotCond, SI.getType());
Chris Lattnercf7baf32004-04-09 18:19:44 +00004976 }
Chris Lattner35167c32004-06-09 07:59:58 +00004977
4978 // If one of the constants is zero (we know they can't both be) and we
4979 // have a setcc instruction with zero, and we have an 'and' with the
4980 // non-constant value, eliminate this whole mess. This corresponds to
4981 // cases like this: ((X & 27) ? 27 : 0)
4982 if (TrueValC->isNullValue() || FalseValC->isNullValue())
4983 if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
4984 if ((IC->getOpcode() == Instruction::SetEQ ||
4985 IC->getOpcode() == Instruction::SetNE) &&
4986 isa<ConstantInt>(IC->getOperand(1)) &&
4987 cast<Constant>(IC->getOperand(1))->isNullValue())
4988 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
4989 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00004990 isa<ConstantInt>(ICA->getOperand(1)) &&
4991 (ICA->getOperand(1) == TrueValC ||
4992 ICA->getOperand(1) == FalseValC) &&
Chris Lattner35167c32004-06-09 07:59:58 +00004993 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
4994 // Okay, now we know that everything is set up, we just don't
4995 // know whether we have a setne or seteq and whether the true or
4996 // false val is the zero.
4997 bool ShouldNotVal = !TrueValC->isNullValue();
4998 ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
4999 Value *V = ICA;
5000 if (ShouldNotVal)
5001 V = InsertNewInstBefore(BinaryOperator::create(
5002 Instruction::Xor, V, ICA->getOperand(1)), SI);
5003 return ReplaceInstUsesWith(SI, V);
5004 }
Chris Lattner533bc492004-03-30 19:37:13 +00005005 }
Chris Lattner623fba12004-04-10 22:21:27 +00005006
5007 // See if we are selecting two values based on a comparison of the two values.
5008 if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
5009 if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
5010 // Transform (X == Y) ? X : Y -> Y
5011 if (SCI->getOpcode() == Instruction::SetEQ)
5012 return ReplaceInstUsesWith(SI, FalseVal);
5013 // Transform (X != Y) ? X : Y -> X
5014 if (SCI->getOpcode() == Instruction::SetNE)
5015 return ReplaceInstUsesWith(SI, TrueVal);
5016 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5017
5018 } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
5019 // Transform (X == Y) ? Y : X -> X
5020 if (SCI->getOpcode() == Instruction::SetEQ)
Chris Lattner24cf0202004-04-11 01:39:19 +00005021 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattner623fba12004-04-10 22:21:27 +00005022 // Transform (X != Y) ? Y : X -> Y
5023 if (SCI->getOpcode() == Instruction::SetNE)
Chris Lattner24cf0202004-04-11 01:39:19 +00005024 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattner623fba12004-04-10 22:21:27 +00005025 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5026 }
5027 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005028
Chris Lattnera04c9042005-01-13 22:52:24 +00005029 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
5030 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
5031 if (TI->hasOneUse() && FI->hasOneUse()) {
5032 bool isInverse = false;
5033 Instruction *AddOp = 0, *SubOp = 0;
5034
Chris Lattner411336f2005-01-19 21:50:18 +00005035 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
5036 if (TI->getOpcode() == FI->getOpcode())
5037 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
5038 return IV;
5039
5040 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
5041 // even legal for FP.
Chris Lattnera04c9042005-01-13 22:52:24 +00005042 if (TI->getOpcode() == Instruction::Sub &&
5043 FI->getOpcode() == Instruction::Add) {
5044 AddOp = FI; SubOp = TI;
5045 } else if (FI->getOpcode() == Instruction::Sub &&
5046 TI->getOpcode() == Instruction::Add) {
5047 AddOp = TI; SubOp = FI;
5048 }
5049
5050 if (AddOp) {
5051 Value *OtherAddOp = 0;
5052 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
5053 OtherAddOp = AddOp->getOperand(1);
5054 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
5055 OtherAddOp = AddOp->getOperand(0);
5056 }
5057
5058 if (OtherAddOp) {
5059 // So at this point we know we have:
5060 // select C, (add X, Y), (sub X, ?)
5061 // We can do the transform profitably if either 'Y' = '?' or '?' is
5062 // a constant.
5063 if (SubOp->getOperand(1) == AddOp ||
5064 isa<Constant>(SubOp->getOperand(1))) {
5065 Value *NegVal;
5066 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
5067 NegVal = ConstantExpr::getNeg(C);
5068 } else {
5069 NegVal = InsertNewInstBefore(
5070 BinaryOperator::createNeg(SubOp->getOperand(1)), SI);
5071 }
5072
Chris Lattner51726c42005-01-14 17:35:12 +00005073 Value *NewTrueOp = OtherAddOp;
Chris Lattnera04c9042005-01-13 22:52:24 +00005074 Value *NewFalseOp = NegVal;
5075 if (AddOp != TI)
5076 std::swap(NewTrueOp, NewFalseOp);
5077 Instruction *NewSel =
5078 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
Misha Brukmanb1c93172005-04-21 23:48:37 +00005079
Chris Lattnera04c9042005-01-13 22:52:24 +00005080 NewSel = InsertNewInstBefore(NewSel, SI);
Chris Lattner51726c42005-01-14 17:35:12 +00005081 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
Chris Lattnera04c9042005-01-13 22:52:24 +00005082 }
5083 }
5084 }
5085 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005086
Chris Lattner56e4d3d2004-04-09 23:46:01 +00005087 // See if we can fold the select into one of our operands.
5088 if (SI.getType()->isInteger()) {
5089 // See the comment above GetSelectFoldableOperands for a description of the
5090 // transformation we are doing here.
5091 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
5092 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
5093 !isa<Constant>(FalseVal))
5094 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
5095 unsigned OpToFold = 0;
5096 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
5097 OpToFold = 1;
5098 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
5099 OpToFold = 2;
5100 }
5101
5102 if (OpToFold) {
5103 Constant *C = GetSelectFoldableConstant(TVI);
5104 std::string Name = TVI->getName(); TVI->setName("");
5105 Instruction *NewSel =
5106 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
5107 Name);
5108 InsertNewInstBefore(NewSel, SI);
5109 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
5110 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
5111 else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
5112 return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
5113 else {
5114 assert(0 && "Unknown instruction!!");
5115 }
5116 }
5117 }
Chris Lattner6862fbd2004-09-29 17:40:11 +00005118
Chris Lattner56e4d3d2004-04-09 23:46:01 +00005119 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
5120 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
5121 !isa<Constant>(TrueVal))
5122 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
5123 unsigned OpToFold = 0;
5124 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
5125 OpToFold = 1;
5126 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
5127 OpToFold = 2;
5128 }
5129
5130 if (OpToFold) {
5131 Constant *C = GetSelectFoldableConstant(FVI);
5132 std::string Name = FVI->getName(); FVI->setName("");
5133 Instruction *NewSel =
5134 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
5135 Name);
5136 InsertNewInstBefore(NewSel, SI);
5137 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
5138 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
5139 else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
5140 return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
5141 else {
5142 assert(0 && "Unknown instruction!!");
5143 }
5144 }
5145 }
5146 }
Chris Lattnerd6f636a2005-04-24 07:30:14 +00005147
5148 if (BinaryOperator::isNot(CondVal)) {
5149 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
5150 SI.setOperand(1, FalseVal);
5151 SI.setOperand(2, TrueVal);
5152 return &SI;
5153 }
5154
Chris Lattnerb909e8b2004-03-12 05:52:32 +00005155 return 0;
5156}
5157
5158
Chris Lattnerc66b2232006-01-13 20:11:04 +00005159/// visitCallInst - CallInst simplification. This mostly only handles folding
5160/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
5161/// the heavy lifting.
5162///
Chris Lattner970c33a2003-06-19 17:00:31 +00005163Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattnerc66b2232006-01-13 20:11:04 +00005164 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
5165 if (!II) return visitCallSite(&CI);
5166
Chris Lattner51ea1272004-02-28 05:22:00 +00005167 // Intrinsics cannot occur in an invoke, so handle them here instead of in
5168 // visitCallSite.
Chris Lattnerc66b2232006-01-13 20:11:04 +00005169 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner00648e12004-10-12 04:52:52 +00005170 bool Changed = false;
5171
5172 // memmove/cpy/set of zero bytes is a noop.
5173 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
5174 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
5175
5176 // FIXME: Increase alignment here.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005177
Chris Lattner00648e12004-10-12 04:52:52 +00005178 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
5179 if (CI->getRawValue() == 1) {
5180 // Replace the instruction with just byte operations. We would
5181 // transform other cases to loads/stores, but we don't know if
5182 // alignment is sufficient.
5183 }
Chris Lattner51ea1272004-02-28 05:22:00 +00005184 }
5185
Chris Lattner00648e12004-10-12 04:52:52 +00005186 // If we have a memmove and the source operation is a constant global,
5187 // then the source and dest pointers can't alias, so we can change this
5188 // into a call to memcpy.
Chris Lattnerc66b2232006-01-13 20:11:04 +00005189 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II))
Chris Lattner00648e12004-10-12 04:52:52 +00005190 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
5191 if (GVSrc->isConstant()) {
5192 Module *M = CI.getParent()->getParent()->getParent();
5193 Function *MemCpy = M->getOrInsertFunction("llvm.memcpy",
5194 CI.getCalledFunction()->getFunctionType());
5195 CI.setOperand(0, MemCpy);
5196 Changed = true;
5197 }
5198
Chris Lattnerc66b2232006-01-13 20:11:04 +00005199 if (Changed) return II;
5200 } else if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(II)) {
Chris Lattner95307542004-11-18 21:41:39 +00005201 // If this stoppoint is at the same source location as the previous
5202 // stoppoint in the chain, it is not needed.
5203 if (DbgStopPointInst *PrevSPI =
5204 dyn_cast<DbgStopPointInst>(SPI->getChain()))
5205 if (SPI->getLineNo() == PrevSPI->getLineNo() &&
5206 SPI->getColNo() == PrevSPI->getColNo()) {
5207 SPI->replaceAllUsesWith(PrevSPI);
5208 return EraseInstFromFunction(CI);
5209 }
Chris Lattner503221f2006-01-13 21:28:09 +00005210 } else {
5211 switch (II->getIntrinsicID()) {
5212 default: break;
5213 case Intrinsic::stackrestore: {
5214 // If the save is right next to the restore, remove the restore. This can
5215 // happen when variable allocas are DCE'd.
5216 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
5217 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
5218 BasicBlock::iterator BI = SS;
5219 if (&*++BI == II)
5220 return EraseInstFromFunction(CI);
5221 }
5222 }
5223
5224 // If the stack restore is in a return/unwind block and if there are no
5225 // allocas or calls between the restore and the return, nuke the restore.
5226 TerminatorInst *TI = II->getParent()->getTerminator();
5227 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
5228 BasicBlock::iterator BI = II;
5229 bool CannotRemove = false;
5230 for (++BI; &*BI != TI; ++BI) {
5231 if (isa<AllocaInst>(BI) ||
5232 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
5233 CannotRemove = true;
5234 break;
5235 }
5236 }
5237 if (!CannotRemove)
5238 return EraseInstFromFunction(CI);
5239 }
5240 break;
5241 }
5242 }
Chris Lattner00648e12004-10-12 04:52:52 +00005243 }
5244
Chris Lattnerc66b2232006-01-13 20:11:04 +00005245 return visitCallSite(II);
Chris Lattner970c33a2003-06-19 17:00:31 +00005246}
5247
5248// InvokeInst simplification
5249//
5250Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattneraec3d942003-10-07 22:32:43 +00005251 return visitCallSite(&II);
Chris Lattner970c33a2003-06-19 17:00:31 +00005252}
5253
Chris Lattneraec3d942003-10-07 22:32:43 +00005254// visitCallSite - Improvements for call and invoke instructions.
5255//
5256Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005257 bool Changed = false;
5258
5259 // If the callee is a constexpr cast of a function, attempt to move the cast
5260 // to the arguments of the call/invoke.
Chris Lattneraec3d942003-10-07 22:32:43 +00005261 if (transformConstExprCastCall(CS)) return 0;
5262
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005263 Value *Callee = CS.getCalledValue();
Chris Lattner81a7a232004-10-16 18:11:37 +00005264
Chris Lattner61d9d812005-05-13 07:09:09 +00005265 if (Function *CalleeF = dyn_cast<Function>(Callee))
5266 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
5267 Instruction *OldCall = CS.getInstruction();
5268 // If the call and callee calling conventions don't match, this call must
5269 // be unreachable, as the call is undefined.
5270 new StoreInst(ConstantBool::True,
5271 UndefValue::get(PointerType::get(Type::BoolTy)), OldCall);
5272 if (!OldCall->use_empty())
5273 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
5274 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
5275 return EraseInstFromFunction(*OldCall);
5276 return 0;
5277 }
5278
Chris Lattner8ba9ec92004-10-18 02:59:09 +00005279 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
5280 // This instruction is not reachable, just remove it. We insert a store to
5281 // undef so that we know that this code is not reachable, despite the fact
5282 // that we can't modify the CFG here.
5283 new StoreInst(ConstantBool::True,
5284 UndefValue::get(PointerType::get(Type::BoolTy)),
5285 CS.getInstruction());
5286
5287 if (!CS.getInstruction()->use_empty())
5288 CS.getInstruction()->
5289 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
5290
5291 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
5292 // Don't break the CFG, insert a dummy cond branch.
5293 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
5294 ConstantBool::True, II);
Chris Lattner81a7a232004-10-16 18:11:37 +00005295 }
Chris Lattner8ba9ec92004-10-18 02:59:09 +00005296 return EraseInstFromFunction(*CS.getInstruction());
5297 }
Chris Lattner81a7a232004-10-16 18:11:37 +00005298
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005299 const PointerType *PTy = cast<PointerType>(Callee->getType());
5300 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
5301 if (FTy->isVarArg()) {
5302 // See if we can optimize any arguments passed through the varargs area of
5303 // the call.
5304 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
5305 E = CS.arg_end(); I != E; ++I)
5306 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
5307 // If this cast does not effect the value passed through the varargs
5308 // area, we can eliminate the use of the cast.
5309 Value *Op = CI->getOperand(0);
5310 if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
5311 *I = Op;
5312 Changed = true;
5313 }
5314 }
5315 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005316
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005317 return Changed ? CS.getInstruction() : 0;
Chris Lattneraec3d942003-10-07 22:32:43 +00005318}
5319
Chris Lattner970c33a2003-06-19 17:00:31 +00005320// transformConstExprCastCall - If the callee is a constexpr cast of a function,
5321// attempt to move the cast to the arguments of the call/invoke.
5322//
5323bool InstCombiner::transformConstExprCastCall(CallSite CS) {
5324 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
5325 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Chris Lattnerf3edc492004-07-18 18:59:44 +00005326 if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
Chris Lattner970c33a2003-06-19 17:00:31 +00005327 return false;
Reid Spencer87436872004-07-18 00:38:32 +00005328 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner970c33a2003-06-19 17:00:31 +00005329 Instruction *Caller = CS.getInstruction();
5330
5331 // Okay, this is a cast from a function to a different type. Unless doing so
5332 // would cause a type conversion of one of our arguments, change this call to
5333 // be a direct call with arguments casted to the appropriate types.
5334 //
5335 const FunctionType *FT = Callee->getFunctionType();
5336 const Type *OldRetTy = Caller->getType();
5337
Chris Lattner1f7942f2004-01-14 06:06:08 +00005338 // Check to see if we are changing the return type...
5339 if (OldRetTy != FT->getReturnType()) {
5340 if (Callee->isExternal() &&
5341 !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
5342 !Caller->use_empty())
5343 return false; // Cannot transform this return value...
5344
5345 // If the callsite is an invoke instruction, and the return value is used by
5346 // a PHI node in a successor, we cannot change the return type of the call
5347 // because there is no place to put the cast instruction (without breaking
5348 // the critical edge). Bail out in this case.
5349 if (!Caller->use_empty())
5350 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
5351 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
5352 UI != E; ++UI)
5353 if (PHINode *PN = dyn_cast<PHINode>(*UI))
5354 if (PN->getParent() == II->getNormalDest() ||
Chris Lattnerfae8ab32004-02-08 21:44:31 +00005355 PN->getParent() == II->getUnwindDest())
Chris Lattner1f7942f2004-01-14 06:06:08 +00005356 return false;
5357 }
Chris Lattner970c33a2003-06-19 17:00:31 +00005358
5359 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
5360 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005361
Chris Lattner970c33a2003-06-19 17:00:31 +00005362 CallSite::arg_iterator AI = CS.arg_begin();
5363 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
5364 const Type *ParamTy = FT->getParamType(i);
5365 bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005366 if (Callee->isExternal() && !isConvertible) return false;
Chris Lattner970c33a2003-06-19 17:00:31 +00005367 }
5368
5369 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
5370 Callee->isExternal())
5371 return false; // Do not delete arguments unless we have a function body...
5372
5373 // Okay, we decided that this is a safe thing to do: go ahead and start
5374 // inserting cast instructions as necessary...
5375 std::vector<Value*> Args;
5376 Args.reserve(NumActualArgs);
5377
5378 AI = CS.arg_begin();
5379 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
5380 const Type *ParamTy = FT->getParamType(i);
5381 if ((*AI)->getType() == ParamTy) {
5382 Args.push_back(*AI);
5383 } else {
Chris Lattner1c631e82004-04-08 04:43:23 +00005384 Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
5385 *Caller));
Chris Lattner970c33a2003-06-19 17:00:31 +00005386 }
5387 }
5388
5389 // If the function takes more arguments than the call was taking, add them
5390 // now...
5391 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
5392 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
5393
5394 // If we are removing arguments to the function, emit an obnoxious warning...
5395 if (FT->getNumParams() < NumActualArgs)
5396 if (!FT->isVarArg()) {
5397 std::cerr << "WARNING: While resolving call to function '"
5398 << Callee->getName() << "' arguments were dropped!\n";
5399 } else {
5400 // Add all of the arguments in their promoted form to the arg list...
5401 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
5402 const Type *PTy = getPromotedType((*AI)->getType());
5403 if (PTy != (*AI)->getType()) {
5404 // Must promote to pass through va_arg area!
5405 Instruction *Cast = new CastInst(*AI, PTy, "tmp");
5406 InsertNewInstBefore(Cast, *Caller);
5407 Args.push_back(Cast);
5408 } else {
5409 Args.push_back(*AI);
5410 }
5411 }
5412 }
5413
5414 if (FT->getReturnType() == Type::VoidTy)
5415 Caller->setName(""); // Void type should not have a name...
5416
5417 Instruction *NC;
5418 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Chris Lattnerfae8ab32004-02-08 21:44:31 +00005419 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
Chris Lattner970c33a2003-06-19 17:00:31 +00005420 Args, Caller->getName(), Caller);
Chris Lattner05c703e2005-05-14 12:25:32 +00005421 cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00005422 } else {
5423 NC = new CallInst(Callee, Args, Caller->getName(), Caller);
Chris Lattner6aacb0f2005-05-06 06:48:21 +00005424 if (cast<CallInst>(Caller)->isTailCall())
5425 cast<CallInst>(NC)->setTailCall();
Chris Lattner05c703e2005-05-14 12:25:32 +00005426 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00005427 }
5428
5429 // Insert a cast of the return type as necessary...
5430 Value *NV = NC;
5431 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
5432 if (NV->getType() != Type::VoidTy) {
5433 NV = NC = new CastInst(NC, Caller->getType(), "tmp");
Chris Lattner686767f2003-10-30 00:46:41 +00005434
5435 // If this is an invoke instruction, we should insert it after the first
5436 // non-phi, instruction in the normal successor block.
5437 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
5438 BasicBlock::iterator I = II->getNormalDest()->begin();
5439 while (isa<PHINode>(I)) ++I;
5440 InsertNewInstBefore(NC, *I);
5441 } else {
5442 // Otherwise, it's a call, just insert cast right after the call instr
5443 InsertNewInstBefore(NC, *Caller);
5444 }
Chris Lattner51ea1272004-02-28 05:22:00 +00005445 AddUsersToWorkList(*Caller);
Chris Lattner970c33a2003-06-19 17:00:31 +00005446 } else {
Chris Lattnere29d6342004-10-17 21:22:38 +00005447 NV = UndefValue::get(Caller->getType());
Chris Lattner970c33a2003-06-19 17:00:31 +00005448 }
5449 }
5450
5451 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
5452 Caller->replaceAllUsesWith(NV);
5453 Caller->getParent()->getInstList().erase(Caller);
5454 removeFromWorkList(Caller);
5455 return true;
5456}
5457
5458
Chris Lattner7515cab2004-11-14 19:13:23 +00005459// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
5460// operator and they all are only used by the PHI, PHI together their
5461// inputs, and do the operation once, to the result of the PHI.
5462Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
5463 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
5464
5465 // Scan the instruction, looking for input operations that can be folded away.
5466 // If all input operands to the phi are the same instruction (e.g. a cast from
5467 // the same type or "+42") we can pull the operation through the PHI, reducing
5468 // code size and simplifying code.
5469 Constant *ConstantOp = 0;
5470 const Type *CastSrcTy = 0;
5471 if (isa<CastInst>(FirstInst)) {
5472 CastSrcTy = FirstInst->getOperand(0)->getType();
5473 } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
5474 // Can fold binop or shift if the RHS is a constant.
5475 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
5476 if (ConstantOp == 0) return 0;
5477 } else {
5478 return 0; // Cannot fold this operation.
5479 }
5480
5481 // Check to see if all arguments are the same operation.
5482 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5483 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
5484 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
5485 if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
5486 return 0;
5487 if (CastSrcTy) {
5488 if (I->getOperand(0)->getType() != CastSrcTy)
5489 return 0; // Cast operation must match.
5490 } else if (I->getOperand(1) != ConstantOp) {
5491 return 0;
5492 }
5493 }
5494
5495 // Okay, they are all the same operation. Create a new PHI node of the
5496 // correct type, and PHI together all of the LHS's of the instructions.
5497 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
5498 PN.getName()+".in");
Chris Lattnerd8e20182005-01-29 00:39:08 +00005499 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattner46dd5a62004-11-14 19:29:34 +00005500
5501 Value *InVal = FirstInst->getOperand(0);
5502 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00005503
5504 // Add all operands to the new PHI.
Chris Lattner46dd5a62004-11-14 19:29:34 +00005505 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5506 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
5507 if (NewInVal != InVal)
5508 InVal = 0;
5509 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
5510 }
5511
5512 Value *PhiVal;
5513 if (InVal) {
5514 // The new PHI unions all of the same values together. This is really
5515 // common, so we handle it intelligently here for compile-time speed.
5516 PhiVal = InVal;
5517 delete NewPN;
5518 } else {
5519 InsertNewInstBefore(NewPN, PN);
5520 PhiVal = NewPN;
5521 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005522
Chris Lattner7515cab2004-11-14 19:13:23 +00005523 // Insert and return the new operation.
5524 if (isa<CastInst>(FirstInst))
Chris Lattner46dd5a62004-11-14 19:29:34 +00005525 return new CastInst(PhiVal, PN.getType());
Chris Lattner7515cab2004-11-14 19:13:23 +00005526 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattner46dd5a62004-11-14 19:29:34 +00005527 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattner7515cab2004-11-14 19:13:23 +00005528 else
5529 return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
Chris Lattner46dd5a62004-11-14 19:29:34 +00005530 PhiVal, ConstantOp);
Chris Lattner7515cab2004-11-14 19:13:23 +00005531}
Chris Lattner48a44f72002-05-02 17:06:02 +00005532
Chris Lattner71536432005-01-17 05:10:15 +00005533/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
5534/// that is dead.
5535static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
5536 if (PN->use_empty()) return true;
5537 if (!PN->hasOneUse()) return false;
5538
5539 // Remember this node, and if we find the cycle, return.
5540 if (!PotentiallyDeadPHIs.insert(PN).second)
5541 return true;
5542
5543 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
5544 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005545
Chris Lattner71536432005-01-17 05:10:15 +00005546 return false;
5547}
5548
Chris Lattnerbbbdd852002-05-06 18:06:38 +00005549// PHINode simplification
5550//
Chris Lattner113f4f42002-06-25 16:13:24 +00005551Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Chris Lattner9f9c2602005-08-05 01:04:30 +00005552 if (Value *V = PN.hasConstantValue())
5553 return ReplaceInstUsesWith(PN, V);
Chris Lattner4db2d222004-02-16 05:07:08 +00005554
5555 // If the only user of this instruction is a cast instruction, and all of the
5556 // incoming values are constants, change this PHI to merge together the casted
5557 // constants.
5558 if (PN.hasOneUse())
5559 if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
5560 if (CI->getType() != PN.getType()) { // noop casts will be folded
5561 bool AllConstant = true;
5562 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
5563 if (!isa<Constant>(PN.getIncomingValue(i))) {
5564 AllConstant = false;
5565 break;
5566 }
5567 if (AllConstant) {
5568 // Make a new PHI with all casted values.
5569 PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
5570 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
5571 Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
5572 New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
5573 PN.getIncomingBlock(i));
5574 }
5575
5576 // Update the cast instruction.
5577 CI->setOperand(0, New);
5578 WorkList.push_back(CI); // revisit the cast instruction to fold.
5579 WorkList.push_back(New); // Make sure to revisit the new Phi
5580 return &PN; // PN is now dead!
5581 }
5582 }
Chris Lattner7515cab2004-11-14 19:13:23 +00005583
5584 // If all PHI operands are the same operation, pull them through the PHI,
5585 // reducing code size.
5586 if (isa<Instruction>(PN.getIncomingValue(0)) &&
5587 PN.getIncomingValue(0)->hasOneUse())
5588 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
5589 return Result;
5590
Chris Lattner71536432005-01-17 05:10:15 +00005591 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
5592 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
5593 // PHI)... break the cycle.
5594 if (PN.hasOneUse())
5595 if (PHINode *PU = dyn_cast<PHINode>(PN.use_back())) {
5596 std::set<PHINode*> PotentiallyDeadPHIs;
5597 PotentiallyDeadPHIs.insert(&PN);
5598 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
5599 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
5600 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005601
Chris Lattner91daeb52003-12-19 05:58:40 +00005602 return 0;
Chris Lattnerbbbdd852002-05-06 18:06:38 +00005603}
5604
Chris Lattner69193f92004-04-05 01:30:19 +00005605static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
5606 Instruction *InsertPoint,
5607 InstCombiner *IC) {
5608 unsigned PS = IC->getTargetData().getPointerSize();
5609 const Type *VTy = V->getType();
Chris Lattner69193f92004-04-05 01:30:19 +00005610 if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
5611 // We must insert a cast to ensure we sign-extend.
5612 V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
5613 V->getName()), *InsertPoint);
5614 return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
5615 *InsertPoint);
5616}
5617
Chris Lattner48a44f72002-05-02 17:06:02 +00005618
Chris Lattner113f4f42002-06-25 16:13:24 +00005619Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner5f667a62004-05-07 22:09:22 +00005620 Value *PtrOp = GEP.getOperand(0);
Chris Lattner471bd762003-05-22 19:07:21 +00005621 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
Chris Lattner113f4f42002-06-25 16:13:24 +00005622 // If so, eliminate the noop.
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005623 if (GEP.getNumOperands() == 1)
Chris Lattner5f667a62004-05-07 22:09:22 +00005624 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005625
Chris Lattner81a7a232004-10-16 18:11:37 +00005626 if (isa<UndefValue>(GEP.getOperand(0)))
5627 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
5628
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005629 bool HasZeroPointerIndex = false;
5630 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
5631 HasZeroPointerIndex = C->isNullValue();
5632
5633 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner5f667a62004-05-07 22:09:22 +00005634 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner48a44f72002-05-02 17:06:02 +00005635
Chris Lattner69193f92004-04-05 01:30:19 +00005636 // Eliminate unneeded casts for indices.
5637 bool MadeChange = false;
Chris Lattner2b2412d2004-04-07 18:38:20 +00005638 gep_type_iterator GTI = gep_type_begin(GEP);
5639 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
5640 if (isa<SequentialType>(*GTI)) {
5641 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
5642 Value *Src = CI->getOperand(0);
5643 const Type *SrcTy = Src->getType();
5644 const Type *DestTy = CI->getType();
5645 if (Src->getType()->isInteger()) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005646 if (SrcTy->getPrimitiveSizeInBits() ==
5647 DestTy->getPrimitiveSizeInBits()) {
Chris Lattner2b2412d2004-04-07 18:38:20 +00005648 // We can always eliminate a cast from ulong or long to the other.
5649 // We can always eliminate a cast from uint to int or the other on
5650 // 32-bit pointer platforms.
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005651 if (DestTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()){
Chris Lattner2b2412d2004-04-07 18:38:20 +00005652 MadeChange = true;
5653 GEP.setOperand(i, Src);
5654 }
5655 } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
5656 SrcTy->getPrimitiveSize() == 4) {
5657 // We can always eliminate a cast from int to [u]long. We can
5658 // eliminate a cast from uint to [u]long iff the target is a 32-bit
5659 // pointer target.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005660 if (SrcTy->isSigned() ||
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005661 SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
Chris Lattner2b2412d2004-04-07 18:38:20 +00005662 MadeChange = true;
5663 GEP.setOperand(i, Src);
5664 }
Chris Lattner69193f92004-04-05 01:30:19 +00005665 }
5666 }
5667 }
Chris Lattner2b2412d2004-04-07 18:38:20 +00005668 // If we are using a wider index than needed for this platform, shrink it
5669 // to what we need. If the incoming value needs a cast instruction,
5670 // insert it. This explicit cast can make subsequent optimizations more
5671 // obvious.
5672 Value *Op = GEP.getOperand(i);
5673 if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00005674 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner44d0b952004-07-20 01:48:15 +00005675 GEP.setOperand(i, ConstantExpr::getCast(C,
5676 TD->getIntPtrType()->getSignedVersion()));
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00005677 MadeChange = true;
5678 } else {
Chris Lattner2b2412d2004-04-07 18:38:20 +00005679 Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
5680 Op->getName()), GEP);
5681 GEP.setOperand(i, Op);
5682 MadeChange = true;
5683 }
Chris Lattner44d0b952004-07-20 01:48:15 +00005684
5685 // If this is a constant idx, make sure to canonicalize it to be a signed
5686 // operand, otherwise CSE and other optimizations are pessimized.
5687 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
5688 GEP.setOperand(i, ConstantExpr::getCast(CUI,
5689 CUI->getType()->getSignedVersion()));
5690 MadeChange = true;
5691 }
Chris Lattner69193f92004-04-05 01:30:19 +00005692 }
5693 if (MadeChange) return &GEP;
5694
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005695 // Combine Indices - If the source pointer to this getelementptr instruction
5696 // is a getelementptr instruction, combine the indices of the two
5697 // getelementptr instructions into a single instruction.
5698 //
Chris Lattner57c67b02004-03-25 22:59:29 +00005699 std::vector<Value*> SrcGEPOperands;
Chris Lattner0798af32005-01-13 20:14:25 +00005700 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattner57c67b02004-03-25 22:59:29 +00005701 SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
Chris Lattner57c67b02004-03-25 22:59:29 +00005702
5703 if (!SrcGEPOperands.empty()) {
Chris Lattner5f667a62004-05-07 22:09:22 +00005704 // Note that if our source is a gep chain itself that we wait for that
5705 // chain to be resolved before we perform this transformation. This
5706 // avoids us creating a TON of code in some cases.
5707 //
5708 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
5709 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
5710 return 0; // Wait until our source is folded to completion.
5711
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005712 std::vector<Value *> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00005713
5714 // Find out whether the last index in the source GEP is a sequential idx.
5715 bool EndsWithSequential = false;
5716 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
5717 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattner8ec5f882004-05-08 22:41:42 +00005718 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005719
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005720 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00005721 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00005722 // Replace: gep (gep %P, long B), long A, ...
5723 // With: T = long A+B; gep %P, T, ...
5724 //
Chris Lattner5f667a62004-05-07 22:09:22 +00005725 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner69193f92004-04-05 01:30:19 +00005726 if (SO1 == Constant::getNullValue(SO1->getType())) {
5727 Sum = GO1;
5728 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
5729 Sum = SO1;
5730 } else {
5731 // If they aren't the same type, convert both to an integer of the
5732 // target's pointer size.
5733 if (SO1->getType() != GO1->getType()) {
5734 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
5735 SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
5736 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
5737 GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
5738 } else {
5739 unsigned PS = TD->getPointerSize();
Chris Lattner69193f92004-04-05 01:30:19 +00005740 if (SO1->getType()->getPrimitiveSize() == PS) {
5741 // Convert GO1 to SO1's type.
5742 GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
5743
5744 } else if (GO1->getType()->getPrimitiveSize() == PS) {
5745 // Convert SO1 to GO1's type.
5746 SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
5747 } else {
5748 const Type *PT = TD->getIntPtrType();
5749 SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
5750 GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
5751 }
5752 }
5753 }
Chris Lattner5f667a62004-05-07 22:09:22 +00005754 if (isa<Constant>(SO1) && isa<Constant>(GO1))
5755 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
5756 else {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005757 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
5758 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner5f667a62004-05-07 22:09:22 +00005759 }
Chris Lattner69193f92004-04-05 01:30:19 +00005760 }
Chris Lattner5f667a62004-05-07 22:09:22 +00005761
5762 // Recycle the GEP we already have if possible.
5763 if (SrcGEPOperands.size() == 2) {
5764 GEP.setOperand(0, SrcGEPOperands[0]);
5765 GEP.setOperand(1, Sum);
5766 return &GEP;
5767 } else {
5768 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5769 SrcGEPOperands.end()-1);
5770 Indices.push_back(Sum);
5771 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
5772 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005773 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00005774 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00005775 SrcGEPOperands.size() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005776 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattner57c67b02004-03-25 22:59:29 +00005777 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5778 SrcGEPOperands.end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005779 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
5780 }
5781
5782 if (!Indices.empty())
Chris Lattner57c67b02004-03-25 22:59:29 +00005783 return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
Chris Lattnerc59af1d2002-08-17 22:21:59 +00005784
Chris Lattner5f667a62004-05-07 22:09:22 +00005785 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattnerc59af1d2002-08-17 22:21:59 +00005786 // GEP of global variable. If all of the indices for this GEP are
5787 // constants, we can promote this to a constexpr instead of an instruction.
5788
5789 // Scan for nonconstants...
5790 std::vector<Constant*> Indices;
5791 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
5792 for (; I != E && isa<Constant>(*I); ++I)
5793 Indices.push_back(cast<Constant>(*I));
5794
5795 if (I == E) { // If they are all constants...
Chris Lattnerf3edc492004-07-18 18:59:44 +00005796 Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
Chris Lattnerc59af1d2002-08-17 22:21:59 +00005797
5798 // Replace all uses of the GEP with the new constexpr...
5799 return ReplaceInstUsesWith(GEP, CE);
5800 }
Chris Lattner567b81f2005-09-13 00:40:14 +00005801 } else if (Value *X = isCast(PtrOp)) { // Is the operand a cast?
5802 if (!isa<PointerType>(X->getType())) {
5803 // Not interesting. Source pointer must be a cast from pointer.
5804 } else if (HasZeroPointerIndex) {
5805 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
5806 // into : GEP [10 x ubyte]* X, long 0, ...
5807 //
5808 // This occurs when the program declares an array extern like "int X[];"
5809 //
5810 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
5811 const PointerType *XTy = cast<PointerType>(X->getType());
5812 if (const ArrayType *XATy =
5813 dyn_cast<ArrayType>(XTy->getElementType()))
5814 if (const ArrayType *CATy =
5815 dyn_cast<ArrayType>(CPTy->getElementType()))
5816 if (CATy->getElementType() == XATy->getElementType()) {
5817 // At this point, we know that the cast source type is a pointer
5818 // to an array of the same type as the destination pointer
5819 // array. Because the array type is never stepped over (there
5820 // is a leading zero) we can fold the cast into this GEP.
5821 GEP.setOperand(0, X);
5822 return &GEP;
5823 }
5824 } else if (GEP.getNumOperands() == 2) {
5825 // Transform things like:
Chris Lattner2a893292005-09-13 18:36:04 +00005826 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
5827 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
Chris Lattner567b81f2005-09-13 00:40:14 +00005828 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
5829 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
5830 if (isa<ArrayType>(SrcElTy) &&
5831 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
5832 TD->getTypeSize(ResElTy)) {
5833 Value *V = InsertNewInstBefore(
5834 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
5835 GEP.getOperand(1), GEP.getName()), GEP);
5836 return new CastInst(V, GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005837 }
Chris Lattner2a893292005-09-13 18:36:04 +00005838
5839 // Transform things like:
5840 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
5841 // (where tmp = 8*tmp2) into:
5842 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
5843
5844 if (isa<ArrayType>(SrcElTy) &&
5845 (ResElTy == Type::SByteTy || ResElTy == Type::UByteTy)) {
5846 uint64_t ArrayEltSize =
5847 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
5848
5849 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
5850 // allow either a mul, shift, or constant here.
5851 Value *NewIdx = 0;
5852 ConstantInt *Scale = 0;
5853 if (ArrayEltSize == 1) {
5854 NewIdx = GEP.getOperand(1);
5855 Scale = ConstantInt::get(NewIdx->getType(), 1);
5856 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattnera393e4d2005-09-14 17:32:56 +00005857 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner2a893292005-09-13 18:36:04 +00005858 Scale = CI;
5859 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
5860 if (Inst->getOpcode() == Instruction::Shl &&
5861 isa<ConstantInt>(Inst->getOperand(1))) {
5862 unsigned ShAmt =cast<ConstantUInt>(Inst->getOperand(1))->getValue();
5863 if (Inst->getType()->isSigned())
5864 Scale = ConstantSInt::get(Inst->getType(), 1ULL << ShAmt);
5865 else
5866 Scale = ConstantUInt::get(Inst->getType(), 1ULL << ShAmt);
5867 NewIdx = Inst->getOperand(0);
5868 } else if (Inst->getOpcode() == Instruction::Mul &&
5869 isa<ConstantInt>(Inst->getOperand(1))) {
5870 Scale = cast<ConstantInt>(Inst->getOperand(1));
5871 NewIdx = Inst->getOperand(0);
5872 }
5873 }
5874
5875 // If the index will be to exactly the right offset with the scale taken
5876 // out, perform the transformation.
5877 if (Scale && Scale->getRawValue() % ArrayEltSize == 0) {
5878 if (ConstantSInt *C = dyn_cast<ConstantSInt>(Scale))
5879 Scale = ConstantSInt::get(C->getType(),
Chris Lattnera393e4d2005-09-14 17:32:56 +00005880 (int64_t)C->getRawValue() /
5881 (int64_t)ArrayEltSize);
Chris Lattner2a893292005-09-13 18:36:04 +00005882 else
5883 Scale = ConstantUInt::get(Scale->getType(),
5884 Scale->getRawValue() / ArrayEltSize);
5885 if (Scale->getRawValue() != 1) {
5886 Constant *C = ConstantExpr::getCast(Scale, NewIdx->getType());
5887 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
5888 NewIdx = InsertNewInstBefore(Sc, GEP);
5889 }
5890
5891 // Insert the new GEP instruction.
5892 Instruction *Idx =
5893 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
5894 NewIdx, GEP.getName());
5895 Idx = InsertNewInstBefore(Idx, GEP);
5896 return new CastInst(Idx, GEP.getType());
5897 }
5898 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005899 }
Chris Lattnerca081252001-12-14 16:52:21 +00005900 }
5901
Chris Lattnerca081252001-12-14 16:52:21 +00005902 return 0;
5903}
5904
Chris Lattner1085bdf2002-11-04 16:18:53 +00005905Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
5906 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
5907 if (AI.isArrayAllocation()) // Check C != 1
5908 if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
5909 const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
Chris Lattnera2620ac2002-11-09 00:49:43 +00005910 AllocationInst *New = 0;
Chris Lattner1085bdf2002-11-04 16:18:53 +00005911
5912 // Create and insert the replacement instruction...
5913 if (isa<MallocInst>(AI))
Nate Begeman848622f2005-11-05 09:21:28 +00005914 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00005915 else {
5916 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman848622f2005-11-05 09:21:28 +00005917 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00005918 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00005919
5920 InsertNewInstBefore(New, AI);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005921
Chris Lattner1085bdf2002-11-04 16:18:53 +00005922 // Scan to the end of the allocation instructions, to skip over a block of
5923 // allocas if possible...
5924 //
5925 BasicBlock::iterator It = New;
5926 while (isa<AllocationInst>(*It)) ++It;
5927
5928 // Now that I is pointing to the first non-allocation-inst in the block,
5929 // insert our getelementptr instruction...
5930 //
Chris Lattner809dfac2005-05-04 19:10:26 +00005931 Value *NullIdx = Constant::getNullValue(Type::IntTy);
5932 Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
5933 New->getName()+".sub", It);
Chris Lattner1085bdf2002-11-04 16:18:53 +00005934
5935 // Now make everything use the getelementptr instead of the original
5936 // allocation.
Chris Lattnerabb77c92004-03-19 06:08:10 +00005937 return ReplaceInstUsesWith(AI, V);
Chris Lattner81a7a232004-10-16 18:11:37 +00005938 } else if (isa<UndefValue>(AI.getArraySize())) {
5939 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner1085bdf2002-11-04 16:18:53 +00005940 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00005941
5942 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
5943 // Note that we only do this for alloca's, because malloc should allocate and
5944 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005945 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Chris Lattner49df6ce2004-07-02 22:55:47 +00005946 TD->getTypeSize(AI.getAllocatedType()) == 0)
Chris Lattnerabb77c92004-03-19 06:08:10 +00005947 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
5948
Chris Lattner1085bdf2002-11-04 16:18:53 +00005949 return 0;
5950}
5951
Chris Lattner8427bff2003-12-07 01:24:23 +00005952Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
5953 Value *Op = FI.getOperand(0);
5954
5955 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
5956 if (CastInst *CI = dyn_cast<CastInst>(Op))
5957 if (isa<PointerType>(CI->getOperand(0)->getType())) {
5958 FI.setOperand(0, CI->getOperand(0));
5959 return &FI;
5960 }
5961
Chris Lattner8ba9ec92004-10-18 02:59:09 +00005962 // free undef -> unreachable.
5963 if (isa<UndefValue>(Op)) {
5964 // Insert a new store to null because we cannot modify the CFG here.
5965 new StoreInst(ConstantBool::True,
5966 UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
5967 return EraseInstFromFunction(FI);
5968 }
5969
Chris Lattnerf3a36602004-02-28 04:57:37 +00005970 // If we have 'free null' delete the instruction. This can happen in stl code
5971 // when lots of inlining happens.
Chris Lattner8ba9ec92004-10-18 02:59:09 +00005972 if (isa<ConstantPointerNull>(Op))
Chris Lattner51ea1272004-02-28 05:22:00 +00005973 return EraseInstFromFunction(FI);
Chris Lattnerf3a36602004-02-28 04:57:37 +00005974
Chris Lattner8427bff2003-12-07 01:24:23 +00005975 return 0;
5976}
5977
5978
Chris Lattner72684fe2005-01-31 05:51:45 +00005979/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Chris Lattner35e24772004-07-13 01:49:43 +00005980static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
5981 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00005982 Value *CastOp = CI->getOperand(0);
Chris Lattner35e24772004-07-13 01:49:43 +00005983
5984 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00005985 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattner35e24772004-07-13 01:49:43 +00005986 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00005987
5988 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
5989 // If the source is an array, the code below will not succeed. Check to
5990 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
5991 // constants.
5992 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
5993 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
5994 if (ASrcTy->getNumElements() != 0) {
5995 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
5996 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
5997 SrcTy = cast<PointerType>(CastOp->getType());
5998 SrcPTy = SrcTy->getElementType();
5999 }
6000
6001 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Chris Lattnerecfa9b52005-03-29 06:37:47 +00006002 // Do not allow turning this into a load of an integer, which is then
6003 // casted to a pointer, this pessimizes pointer analysis a lot.
6004 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00006005 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00006006 IC.getTargetData().getTypeSize(DestPTy)) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00006007
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00006008 // Okay, we are casting from one integer or pointer type to another of
6009 // the same size. Instead of casting the pointer before the load, cast
6010 // the result of the loaded value.
6011 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
6012 CI->getName(),
6013 LI.isVolatile()),LI);
6014 // Now cast the result of the load.
6015 return new CastInst(NewLoad, LI.getType());
6016 }
Chris Lattner35e24772004-07-13 01:49:43 +00006017 }
6018 }
6019 return 0;
6020}
6021
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006022/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattnere6f13092004-09-19 19:18:10 +00006023/// from this value cannot trap. If it is not obviously safe to load from the
6024/// specified pointer, we do a quick local scan of the basic block containing
6025/// ScanFrom, to determine if the address is already accessed.
6026static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
6027 // If it is an alloca or global variable, it is always safe to load from.
6028 if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
6029
6030 // Otherwise, be a little bit agressive by scanning the local block where we
6031 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00006032 // from/to. If so, the previous load or store would have already trapped,
6033 // so there is no harm doing an extra load (also, CSE will later eliminate
6034 // the load entirely).
Chris Lattnere6f13092004-09-19 19:18:10 +00006035 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
6036
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00006037 while (BBI != E) {
Chris Lattnere6f13092004-09-19 19:18:10 +00006038 --BBI;
6039
6040 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
6041 if (LI->getOperand(0) == V) return true;
6042 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6043 if (SI->getOperand(1) == V) return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +00006044
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00006045 }
Chris Lattnere6f13092004-09-19 19:18:10 +00006046 return false;
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006047}
6048
Chris Lattner0f1d8a32003-06-26 05:06:25 +00006049Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
6050 Value *Op = LI.getOperand(0);
Chris Lattner7e8af382004-01-12 04:13:56 +00006051
Chris Lattnera9d84e32005-05-01 04:24:53 +00006052 // load (cast X) --> cast (load X) iff safe
6053 if (CastInst *CI = dyn_cast<CastInst>(Op))
6054 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6055 return Res;
6056
6057 // None of the following transforms are legal for volatile loads.
6058 if (LI.isVolatile()) return 0;
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006059
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006060 if (&LI.getParent()->front() != &LI) {
6061 BasicBlock::iterator BBI = &LI; --BBI;
Chris Lattnere0bfdf12005-09-12 22:21:03 +00006062 // If the instruction immediately before this is a store to the same
6063 // address, do a simple form of store->load forwarding.
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006064 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6065 if (SI->getOperand(1) == LI.getOperand(0))
6066 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Chris Lattnere0bfdf12005-09-12 22:21:03 +00006067 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
6068 if (LIB->getOperand(0) == LI.getOperand(0))
6069 return ReplaceInstUsesWith(LI, LIB);
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006070 }
Chris Lattnera9d84e32005-05-01 04:24:53 +00006071
6072 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
6073 if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
6074 isa<UndefValue>(GEPI->getOperand(0))) {
6075 // Insert a new store to null instruction before the load to indicate
6076 // that this code is not reachable. We do this instead of inserting
6077 // an unreachable instruction directly because we cannot modify the
6078 // CFG.
6079 new StoreInst(UndefValue::get(LI.getType()),
6080 Constant::getNullValue(Op->getType()), &LI);
6081 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6082 }
6083
Chris Lattner81a7a232004-10-16 18:11:37 +00006084 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattnera9d84e32005-05-01 04:24:53 +00006085 // load null/undef -> undef
6086 if ((C->isNullValue() || isa<UndefValue>(C))) {
Chris Lattner8ba9ec92004-10-18 02:59:09 +00006087 // Insert a new store to null instruction before the load to indicate that
6088 // this code is not reachable. We do this instead of inserting an
6089 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattnera9d84e32005-05-01 04:24:53 +00006090 new StoreInst(UndefValue::get(LI.getType()),
6091 Constant::getNullValue(Op->getType()), &LI);
Chris Lattner81a7a232004-10-16 18:11:37 +00006092 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner8ba9ec92004-10-18 02:59:09 +00006093 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00006094
Chris Lattner81a7a232004-10-16 18:11:37 +00006095 // Instcombine load (constant global) into the value loaded.
6096 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
6097 if (GV->isConstant() && !GV->isExternal())
6098 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanb1c93172005-04-21 23:48:37 +00006099
Chris Lattner81a7a232004-10-16 18:11:37 +00006100 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
6101 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
6102 if (CE->getOpcode() == Instruction::GetElementPtr) {
6103 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
6104 if (GV->isConstant() && !GV->isExternal())
Chris Lattner0b011ec2005-09-26 05:28:06 +00006105 if (Constant *V =
6106 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattner81a7a232004-10-16 18:11:37 +00006107 return ReplaceInstUsesWith(LI, V);
Chris Lattnera9d84e32005-05-01 04:24:53 +00006108 if (CE->getOperand(0)->isNullValue()) {
6109 // Insert a new store to null instruction before the load to indicate
6110 // that this code is not reachable. We do this instead of inserting
6111 // an unreachable instruction directly because we cannot modify the
6112 // CFG.
6113 new StoreInst(UndefValue::get(LI.getType()),
6114 Constant::getNullValue(Op->getType()), &LI);
6115 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6116 }
6117
Chris Lattner81a7a232004-10-16 18:11:37 +00006118 } else if (CE->getOpcode() == Instruction::Cast) {
6119 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6120 return Res;
6121 }
6122 }
Chris Lattnere228ee52004-04-08 20:39:49 +00006123
Chris Lattnera9d84e32005-05-01 04:24:53 +00006124 if (Op->hasOneUse()) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006125 // Change select and PHI nodes to select values instead of addresses: this
6126 // helps alias analysis out a lot, allows many others simplifications, and
6127 // exposes redundancy in the code.
6128 //
6129 // Note that we cannot do the transformation unless we know that the
6130 // introduced loads cannot trap! Something like this is valid as long as
6131 // the condition is always false: load (select bool %C, int* null, int* %G),
6132 // but it would not be valid if we transformed it to load from null
6133 // unconditionally.
6134 //
6135 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
6136 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattnere6f13092004-09-19 19:18:10 +00006137 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
6138 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006139 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner42618552004-09-20 10:15:10 +00006140 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006141 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner42618552004-09-20 10:15:10 +00006142 SI->getOperand(2)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006143 return new SelectInst(SI->getCondition(), V1, V2);
6144 }
6145
Chris Lattnerbdcf41a2004-09-23 15:46:00 +00006146 // load (select (cond, null, P)) -> load P
6147 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
6148 if (C->isNullValue()) {
6149 LI.setOperand(0, SI->getOperand(2));
6150 return &LI;
6151 }
6152
6153 // load (select (cond, P, null)) -> load P
6154 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
6155 if (C->isNullValue()) {
6156 LI.setOperand(0, SI->getOperand(1));
6157 return &LI;
6158 }
6159
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006160 } else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
6161 // load (phi (&V1, &V2, &V3)) --> phi(load &V1, load &V2, load &V3)
Chris Lattner42618552004-09-20 10:15:10 +00006162 bool Safe = PN->getParent() == LI.getParent();
6163
6164 // Scan all of the instructions between the PHI and the load to make
6165 // sure there are no instructions that might possibly alter the value
6166 // loaded from the PHI.
6167 if (Safe) {
6168 BasicBlock::iterator I = &LI;
6169 for (--I; !isa<PHINode>(I); --I)
6170 if (isa<StoreInst>(I) || isa<CallInst>(I)) {
6171 Safe = false;
6172 break;
6173 }
6174 }
6175
6176 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
Chris Lattnere6f13092004-09-19 19:18:10 +00006177 if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
Chris Lattner42618552004-09-20 10:15:10 +00006178 PN->getIncomingBlock(i)->getTerminator()))
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006179 Safe = false;
Chris Lattner42618552004-09-20 10:15:10 +00006180
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006181 if (Safe) {
6182 // Create the PHI.
6183 PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
6184 InsertNewInstBefore(NewPN, *PN);
6185 std::map<BasicBlock*,Value*> LoadMap; // Don't insert duplicate loads
6186
6187 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6188 BasicBlock *BB = PN->getIncomingBlock(i);
6189 Value *&TheLoad = LoadMap[BB];
6190 if (TheLoad == 0) {
6191 Value *InVal = PN->getIncomingValue(i);
6192 TheLoad = InsertNewInstBefore(new LoadInst(InVal,
6193 InVal->getName()+".val"),
6194 *BB->getTerminator());
6195 }
6196 NewPN->addIncoming(TheLoad, BB);
6197 }
6198 return ReplaceInstUsesWith(LI, NewPN);
6199 }
6200 }
6201 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00006202 return 0;
6203}
6204
Chris Lattner72684fe2005-01-31 05:51:45 +00006205/// InstCombineStoreToCast - Fold 'store V, (cast P)' -> store (cast V), P'
6206/// when possible.
6207static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
6208 User *CI = cast<User>(SI.getOperand(1));
6209 Value *CastOp = CI->getOperand(0);
6210
6211 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
6212 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
6213 const Type *SrcPTy = SrcTy->getElementType();
6214
6215 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
6216 // If the source is an array, the code below will not succeed. Check to
6217 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
6218 // constants.
6219 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
6220 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
6221 if (ASrcTy->getNumElements() != 0) {
6222 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
6223 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
6224 SrcTy = cast<PointerType>(CastOp->getType());
6225 SrcPTy = SrcTy->getElementType();
6226 }
6227
6228 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00006229 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattner72684fe2005-01-31 05:51:45 +00006230 IC.getTargetData().getTypeSize(DestPTy)) {
6231
6232 // Okay, we are casting from one integer or pointer type to another of
6233 // the same size. Instead of casting the pointer before the store, cast
6234 // the value to be stored.
6235 Value *NewCast;
6236 if (Constant *C = dyn_cast<Constant>(SI.getOperand(0)))
6237 NewCast = ConstantExpr::getCast(C, SrcPTy);
6238 else
6239 NewCast = IC.InsertNewInstBefore(new CastInst(SI.getOperand(0),
6240 SrcPTy,
6241 SI.getOperand(0)->getName()+".c"), SI);
6242
6243 return new StoreInst(NewCast, CastOp);
6244 }
6245 }
6246 }
6247 return 0;
6248}
6249
Chris Lattner31f486c2005-01-31 05:36:43 +00006250Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
6251 Value *Val = SI.getOperand(0);
6252 Value *Ptr = SI.getOperand(1);
6253
6254 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner5997cf92006-02-08 03:25:32 +00006255 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00006256 ++NumCombined;
6257 return 0;
6258 }
6259
Chris Lattner5997cf92006-02-08 03:25:32 +00006260 // Do really simple DSE, to catch cases where there are several consequtive
6261 // stores to the same location, separated by a few arithmetic operations. This
6262 // situation often occurs with bitfield accesses.
6263 BasicBlock::iterator BBI = &SI;
6264 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
6265 --ScanInsts) {
6266 --BBI;
6267
6268 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
6269 // Prev store isn't volatile, and stores to the same location?
6270 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
6271 ++NumDeadStore;
6272 ++BBI;
6273 EraseInstFromFunction(*PrevSI);
6274 continue;
6275 }
6276 break;
6277 }
6278
6279 // Don't skip over loads or things that can modify memory.
6280 if (BBI->mayWriteToMemory() || isa<LoadInst>(BBI))
6281 break;
6282 }
6283
6284
6285 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner31f486c2005-01-31 05:36:43 +00006286
6287 // store X, null -> turns into 'unreachable' in SimplifyCFG
6288 if (isa<ConstantPointerNull>(Ptr)) {
6289 if (!isa<UndefValue>(Val)) {
6290 SI.setOperand(0, UndefValue::get(Val->getType()));
6291 if (Instruction *U = dyn_cast<Instruction>(Val))
6292 WorkList.push_back(U); // Dropped a use.
6293 ++NumCombined;
6294 }
6295 return 0; // Do not modify these!
6296 }
6297
6298 // store undef, Ptr -> noop
6299 if (isa<UndefValue>(Val)) {
Chris Lattner5997cf92006-02-08 03:25:32 +00006300 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00006301 ++NumCombined;
6302 return 0;
6303 }
6304
Chris Lattner72684fe2005-01-31 05:51:45 +00006305 // If the pointer destination is a cast, see if we can fold the cast into the
6306 // source instead.
6307 if (CastInst *CI = dyn_cast<CastInst>(Ptr))
6308 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6309 return Res;
6310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
6311 if (CE->getOpcode() == Instruction::Cast)
6312 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6313 return Res;
6314
Chris Lattner219175c2005-09-12 23:23:25 +00006315
6316 // If this store is the last instruction in the basic block, and if the block
6317 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner5997cf92006-02-08 03:25:32 +00006318 BBI = &SI; ++BBI;
Chris Lattner219175c2005-09-12 23:23:25 +00006319 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
6320 if (BI->isUnconditional()) {
6321 // Check to see if the successor block has exactly two incoming edges. If
6322 // so, see if the other predecessor contains a store to the same location.
6323 // if so, insert a PHI node (if needed) and move the stores down.
6324 BasicBlock *Dest = BI->getSuccessor(0);
6325
6326 pred_iterator PI = pred_begin(Dest);
6327 BasicBlock *Other = 0;
6328 if (*PI != BI->getParent())
6329 Other = *PI;
6330 ++PI;
6331 if (PI != pred_end(Dest)) {
6332 if (*PI != BI->getParent())
6333 if (Other)
6334 Other = 0;
6335 else
6336 Other = *PI;
6337 if (++PI != pred_end(Dest))
6338 Other = 0;
6339 }
6340 if (Other) { // If only one other pred...
6341 BBI = Other->getTerminator();
6342 // Make sure this other block ends in an unconditional branch and that
6343 // there is an instruction before the branch.
6344 if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
6345 BBI != Other->begin()) {
6346 --BBI;
6347 StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
6348
6349 // If this instruction is a store to the same location.
6350 if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
6351 // Okay, we know we can perform this transformation. Insert a PHI
6352 // node now if we need it.
6353 Value *MergedVal = OtherStore->getOperand(0);
6354 if (MergedVal != SI.getOperand(0)) {
6355 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
6356 PN->reserveOperandSpace(2);
6357 PN->addIncoming(SI.getOperand(0), SI.getParent());
6358 PN->addIncoming(OtherStore->getOperand(0), Other);
6359 MergedVal = InsertNewInstBefore(PN, Dest->front());
6360 }
6361
6362 // Advance to a place where it is safe to insert the new store and
6363 // insert it.
6364 BBI = Dest->begin();
6365 while (isa<PHINode>(BBI)) ++BBI;
6366 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
6367 OtherStore->isVolatile()), *BBI);
6368
6369 // Nuke the old stores.
Chris Lattner5997cf92006-02-08 03:25:32 +00006370 EraseInstFromFunction(SI);
6371 EraseInstFromFunction(*OtherStore);
Chris Lattner219175c2005-09-12 23:23:25 +00006372 ++NumCombined;
6373 return 0;
6374 }
6375 }
6376 }
6377 }
6378
Chris Lattner31f486c2005-01-31 05:36:43 +00006379 return 0;
6380}
6381
6382
Chris Lattner9eef8a72003-06-04 04:46:00 +00006383Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
6384 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4fdd96c2005-06-18 17:37:34 +00006385 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00006386 BasicBlock *TrueDest;
6387 BasicBlock *FalseDest;
6388 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
6389 !isa<Constant>(X)) {
6390 // Swap Destinations and condition...
6391 BI.setCondition(X);
6392 BI.setSuccessor(0, FalseDest);
6393 BI.setSuccessor(1, TrueDest);
6394 return &BI;
6395 }
6396
6397 // Cannonicalize setne -> seteq
6398 Instruction::BinaryOps Op; Value *Y;
6399 if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
6400 TrueDest, FalseDest)))
6401 if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
6402 Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
6403 SetCondInst *I = cast<SetCondInst>(BI.getCondition());
6404 std::string Name = I->getName(); I->setName("");
6405 Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
6406 Value *NewSCC = BinaryOperator::create(NewOpcode, X, Y, Name, I);
Chris Lattnere967b342003-06-04 05:10:11 +00006407 // Swap Destinations and condition...
Chris Lattnerd4252a72004-07-30 07:50:03 +00006408 BI.setCondition(NewSCC);
Chris Lattnere967b342003-06-04 05:10:11 +00006409 BI.setSuccessor(0, FalseDest);
6410 BI.setSuccessor(1, TrueDest);
Chris Lattnerd4252a72004-07-30 07:50:03 +00006411 removeFromWorkList(I);
6412 I->getParent()->getInstList().erase(I);
6413 WorkList.push_back(cast<Instruction>(NewSCC));
Chris Lattnere967b342003-06-04 05:10:11 +00006414 return &BI;
6415 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00006416
Chris Lattner9eef8a72003-06-04 04:46:00 +00006417 return 0;
6418}
Chris Lattner1085bdf2002-11-04 16:18:53 +00006419
Chris Lattner4c9c20a2004-07-03 00:26:11 +00006420Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
6421 Value *Cond = SI.getCondition();
6422 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
6423 if (I->getOpcode() == Instruction::Add)
6424 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6425 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
6426 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattner81a7a232004-10-16 18:11:37 +00006427 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner4c9c20a2004-07-03 00:26:11 +00006428 AddRHS));
6429 SI.setOperand(0, I->getOperand(0));
6430 WorkList.push_back(I);
6431 return &SI;
6432 }
6433 }
6434 return 0;
6435}
6436
Robert Bocchinoa8352962006-01-13 22:48:06 +00006437Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
6438 if (ConstantAggregateZero *C =
6439 dyn_cast<ConstantAggregateZero>(EI.getOperand(0))) {
6440 // If packed val is constant 0, replace extract with scalar 0
6441 const Type *Ty = cast<PackedType>(C->getType())->getElementType();
6442 EI.replaceAllUsesWith(Constant::getNullValue(Ty));
6443 return ReplaceInstUsesWith(EI, Constant::getNullValue(Ty));
6444 }
6445 if (ConstantPacked *C = dyn_cast<ConstantPacked>(EI.getOperand(0))) {
6446 // If packed val is constant with uniform operands, replace EI
6447 // with that operand
6448 Constant *op0 = cast<Constant>(C->getOperand(0));
6449 for (unsigned i = 1; i < C->getNumOperands(); ++i)
6450 if (C->getOperand(i) != op0) return 0;
6451 return ReplaceInstUsesWith(EI, op0);
6452 }
6453 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0)))
6454 if (I->hasOneUse()) {
6455 // Push extractelement into predecessor operation if legal and
6456 // profitable to do so
6457 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
6458 if (!isa<Constant>(BO->getOperand(0)) &&
6459 !isa<Constant>(BO->getOperand(1)))
6460 return 0;
6461 ExtractElementInst *newEI0 =
6462 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
6463 EI.getName());
6464 ExtractElementInst *newEI1 =
6465 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
6466 EI.getName());
6467 InsertNewInstBefore(newEI0, EI);
6468 InsertNewInstBefore(newEI1, EI);
6469 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
6470 }
6471 switch(I->getOpcode()) {
6472 case Instruction::Load: {
6473 Value *Ptr = InsertCastBefore(I->getOperand(0),
6474 PointerType::get(EI.getType()), EI);
6475 GetElementPtrInst *GEP =
6476 new GetElementPtrInst(Ptr, EI.getOperand(1),
6477 I->getName() + ".gep");
6478 InsertNewInstBefore(GEP, EI);
6479 return new LoadInst(GEP);
6480 }
6481 default:
6482 return 0;
6483 }
6484 }
6485 return 0;
6486}
6487
6488
Chris Lattner99f48c62002-09-02 04:59:56 +00006489void InstCombiner::removeFromWorkList(Instruction *I) {
6490 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
6491 WorkList.end());
6492}
6493
Chris Lattner39c98bb2004-12-08 23:43:58 +00006494
6495/// TryToSinkInstruction - Try to move the specified instruction from its
6496/// current block into the beginning of DestBlock, which can only happen if it's
6497/// safe to move the instruction past all of the instructions between it and the
6498/// end of its block.
6499static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
6500 assert(I->hasOneUse() && "Invariants didn't hold!");
6501
Chris Lattnerc4f67e62005-10-27 17:13:11 +00006502 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
6503 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00006504
Chris Lattner39c98bb2004-12-08 23:43:58 +00006505 // Do not sink alloca instructions out of the entry block.
6506 if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
6507 return false;
6508
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00006509 // We can only sink load instructions if there is nothing between the load and
6510 // the end of block that could change the value.
6511 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00006512 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
6513 Scan != E; ++Scan)
6514 if (Scan->mayWriteToMemory())
6515 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00006516 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00006517
6518 BasicBlock::iterator InsertPos = DestBlock->begin();
6519 while (isa<PHINode>(InsertPos)) ++InsertPos;
6520
Chris Lattner9f269e42005-08-08 19:11:57 +00006521 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00006522 ++NumSunkInst;
6523 return true;
6524}
6525
Chris Lattner113f4f42002-06-25 16:13:24 +00006526bool InstCombiner::runOnFunction(Function &F) {
Chris Lattner260ab202002-04-18 17:39:14 +00006527 bool Changed = false;
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006528 TD = &getAnalysis<TargetData>();
Chris Lattnerca081252001-12-14 16:52:21 +00006529
Chris Lattner4ed40f72005-07-07 20:40:38 +00006530 {
6531 // Populate the worklist with the reachable instructions.
6532 std::set<BasicBlock*> Visited;
6533 for (df_ext_iterator<BasicBlock*> BB = df_ext_begin(&F.front(), Visited),
6534 E = df_ext_end(&F.front(), Visited); BB != E; ++BB)
6535 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
6536 WorkList.push_back(I);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00006537
Chris Lattner4ed40f72005-07-07 20:40:38 +00006538 // Do a quick scan over the function. If we find any blocks that are
6539 // unreachable, remove any instructions inside of them. This prevents
6540 // the instcombine code from having to deal with some bad special cases.
6541 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
6542 if (!Visited.count(BB)) {
6543 Instruction *Term = BB->getTerminator();
6544 while (Term != BB->begin()) { // Remove instrs bottom-up
6545 BasicBlock::iterator I = Term; --I;
Chris Lattner2d3a7a62004-04-27 15:13:33 +00006546
Chris Lattner4ed40f72005-07-07 20:40:38 +00006547 DEBUG(std::cerr << "IC: DCE: " << *I);
6548 ++NumDeadInst;
6549
6550 if (!I->use_empty())
6551 I->replaceAllUsesWith(UndefValue::get(I->getType()));
6552 I->eraseFromParent();
6553 }
6554 }
6555 }
Chris Lattnerca081252001-12-14 16:52:21 +00006556
6557 while (!WorkList.empty()) {
6558 Instruction *I = WorkList.back(); // Get an instruction from the worklist
6559 WorkList.pop_back();
6560
Misha Brukman632df282002-10-29 23:06:16 +00006561 // Check to see if we can DCE or ConstantPropagate the instruction...
Chris Lattner99f48c62002-09-02 04:59:56 +00006562 // Check to see if we can DIE the instruction...
6563 if (isInstructionTriviallyDead(I)) {
6564 // Add operands to the worklist...
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006565 if (I->getNumOperands() < 4)
Chris Lattner51ea1272004-02-28 05:22:00 +00006566 AddUsesToWorkList(*I);
Chris Lattner99f48c62002-09-02 04:59:56 +00006567 ++NumDeadInst;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006568
Chris Lattnercd517ff2005-01-28 19:32:01 +00006569 DEBUG(std::cerr << "IC: DCE: " << *I);
6570
6571 I->eraseFromParent();
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006572 removeFromWorkList(I);
6573 continue;
6574 }
Chris Lattner99f48c62002-09-02 04:59:56 +00006575
Misha Brukman632df282002-10-29 23:06:16 +00006576 // Instruction isn't dead, see if we can constant propagate it...
Chris Lattner99f48c62002-09-02 04:59:56 +00006577 if (Constant *C = ConstantFoldInstruction(I)) {
Alkis Evlogimenosa1291a02004-12-08 23:10:30 +00006578 Value* Ptr = I->getOperand(0);
Chris Lattner6580e092004-10-16 19:44:59 +00006579 if (isa<GetElementPtrInst>(I) &&
Alkis Evlogimenosa1291a02004-12-08 23:10:30 +00006580 cast<Constant>(Ptr)->isNullValue() &&
6581 !isa<ConstantPointerNull>(C) &&
6582 cast<PointerType>(Ptr->getType())->getElementType()->isSized()) {
Chris Lattner6580e092004-10-16 19:44:59 +00006583 // If this is a constant expr gep that is effectively computing an
6584 // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12'
6585 bool isFoldableGEP = true;
6586 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
6587 if (!isa<ConstantInt>(I->getOperand(i)))
6588 isFoldableGEP = false;
6589 if (isFoldableGEP) {
Alkis Evlogimenosa1291a02004-12-08 23:10:30 +00006590 uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
Chris Lattner6580e092004-10-16 19:44:59 +00006591 std::vector<Value*>(I->op_begin()+1, I->op_end()));
6592 C = ConstantUInt::get(Type::ULongTy, Offset);
Chris Lattner684c5c62004-10-16 19:46:33 +00006593 C = ConstantExpr::getCast(C, TD->getIntPtrType());
Chris Lattner6580e092004-10-16 19:44:59 +00006594 C = ConstantExpr::getCast(C, I->getType());
6595 }
6596 }
6597
Chris Lattnercd517ff2005-01-28 19:32:01 +00006598 DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *I);
6599
Chris Lattner99f48c62002-09-02 04:59:56 +00006600 // Add operands to the worklist...
Chris Lattner51ea1272004-02-28 05:22:00 +00006601 AddUsesToWorkList(*I);
Chris Lattnerc6509f42002-12-05 22:41:53 +00006602 ReplaceInstUsesWith(*I, C);
6603
Chris Lattner99f48c62002-09-02 04:59:56 +00006604 ++NumConstProp;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006605 I->getParent()->getInstList().erase(I);
Chris Lattner800aaaf2003-10-07 15:17:02 +00006606 removeFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006607 continue;
Chris Lattner99f48c62002-09-02 04:59:56 +00006608 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006609
Chris Lattner39c98bb2004-12-08 23:43:58 +00006610 // See if we can trivially sink this instruction to a successor basic block.
6611 if (I->hasOneUse()) {
6612 BasicBlock *BB = I->getParent();
6613 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
6614 if (UserParent != BB) {
6615 bool UserIsSuccessor = false;
6616 // See if the user is one of our successors.
6617 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
6618 if (*SI == UserParent) {
6619 UserIsSuccessor = true;
6620 break;
6621 }
6622
6623 // If the user is one of our immediate successors, and if that successor
6624 // only has us as a predecessors (we'd have to split the critical edge
6625 // otherwise), we can keep going.
6626 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
6627 next(pred_begin(UserParent)) == pred_end(UserParent))
6628 // Okay, the CFG is simple enough, try to sink this instruction.
6629 Changed |= TryToSinkInstruction(I, UserParent);
6630 }
6631 }
6632
Chris Lattnerca081252001-12-14 16:52:21 +00006633 // Now that we have an instruction, try combining it to simplify it...
Chris Lattnerae7a0d32002-08-02 19:29:35 +00006634 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00006635 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00006636 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00006637 if (Result != I) {
Chris Lattner7d2a5392004-03-13 23:54:27 +00006638 DEBUG(std::cerr << "IC: Old = " << *I
6639 << " New = " << *Result);
6640
Chris Lattner396dbfe2004-06-09 05:08:07 +00006641 // Everything uses the new instruction now.
6642 I->replaceAllUsesWith(Result);
6643
6644 // Push the new instruction and any users onto the worklist.
6645 WorkList.push_back(Result);
6646 AddUsersToWorkList(*Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006647
6648 // Move the name to the new instruction first...
6649 std::string OldName = I->getName(); I->setName("");
Chris Lattner950fc782003-10-07 22:58:41 +00006650 Result->setName(OldName);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006651
6652 // Insert the new instruction into the basic block...
6653 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +00006654 BasicBlock::iterator InsertPos = I;
6655
6656 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
6657 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
6658 ++InsertPos;
6659
6660 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006661
Chris Lattner63d75af2004-05-01 23:27:23 +00006662 // Make sure that we reprocess all operands now that we reduced their
6663 // use counts.
Chris Lattnerb643a9e2004-05-01 23:19:52 +00006664 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6665 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6666 WorkList.push_back(OpI);
6667
Chris Lattner396dbfe2004-06-09 05:08:07 +00006668 // Instructions can end up on the worklist more than once. Make sure
6669 // we do not process an instruction that has been deleted.
6670 removeFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006671
6672 // Erase the old instruction.
6673 InstParent->getInstList().erase(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00006674 } else {
Chris Lattner7d2a5392004-03-13 23:54:27 +00006675 DEBUG(std::cerr << "IC: MOD = " << *I);
6676
Chris Lattnerae7a0d32002-08-02 19:29:35 +00006677 // If the instruction was modified, it's possible that it is now dead.
6678 // if so, remove it.
Chris Lattner63d75af2004-05-01 23:27:23 +00006679 if (isInstructionTriviallyDead(I)) {
6680 // Make sure we process all operands now that we are reducing their
6681 // use counts.
6682 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6683 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6684 WorkList.push_back(OpI);
Misha Brukmanb1c93172005-04-21 23:48:37 +00006685
Chris Lattner63d75af2004-05-01 23:27:23 +00006686 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchinoa8352962006-01-13 22:48:06 +00006687 // occurrences of this instruction.
Chris Lattner99f48c62002-09-02 04:59:56 +00006688 removeFromWorkList(I);
Chris Lattner31f486c2005-01-31 05:36:43 +00006689 I->eraseFromParent();
Chris Lattner396dbfe2004-06-09 05:08:07 +00006690 } else {
6691 WorkList.push_back(Result);
6692 AddUsersToWorkList(*Result);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00006693 }
Chris Lattner053c0932002-05-14 15:24:07 +00006694 }
Chris Lattner260ab202002-04-18 17:39:14 +00006695 Changed = true;
Chris Lattnerca081252001-12-14 16:52:21 +00006696 }
6697 }
6698
Chris Lattner260ab202002-04-18 17:39:14 +00006699 return Changed;
Chris Lattner04805fa2002-02-26 21:46:54 +00006700}
6701
Brian Gaeke38b79e82004-07-27 17:43:21 +00006702FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattner260ab202002-04-18 17:39:14 +00006703 return new InstCombiner();
Chris Lattner04805fa2002-02-26 21:46:54 +00006704}
Brian Gaeke960707c2003-11-11 22:41:34 +00006705