blob: 9c3bf7df89b288c05bc7067607fa8e18e160d451 [file] [log] [blame]
David Blaikie1213dbf2015-06-26 16:57:30 +00001//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines vectorizer utilities.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carruth6bda14b2017-06-06 11:49:48 +000014#include "llvm/Analysis/VectorUtils.h"
James Molloy55d633b2015-10-12 12:34:45 +000015#include "llvm/ADT/EquivalenceClasses.h"
16#include "llvm/Analysis/DemandedBits.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000017#include "llvm/Analysis/LoopInfo.h"
Florian Hahn1086ce22018-09-12 08:01:57 +000018#include "llvm/Analysis/LoopIterator.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000019#include "llvm/Analysis/ScalarEvolution.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000020#include "llvm/Analysis/ScalarEvolutionExpressions.h"
James Molloy55d633b2015-10-12 12:34:45 +000021#include "llvm/Analysis/TargetTransformInfo.h"
David Majnemerb4b27232016-04-19 19:10:21 +000022#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000023#include "llvm/IR/Constants.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000024#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000025#include "llvm/IR/IRBuilder.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000026#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Value.h"
Renato Golin3b1d3b02015-08-30 10:49:04 +000028
Florian Hahn1086ce22018-09-12 08:01:57 +000029#define DEBUG_TYPE "vectorutils"
30
David Majnemer5eaf08f2015-08-18 22:07:20 +000031using namespace llvm;
32using namespace llvm::PatternMatch;
David Blaikie1213dbf2015-06-26 16:57:30 +000033
Florian Hahn1086ce22018-09-12 08:01:57 +000034/// Maximum factor for an interleaved memory access.
35static cl::opt<unsigned> MaxInterleaveGroupFactor(
36 "max-interleave-group-factor", cl::Hidden,
37 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38 cl::init(8));
39
Sanjay Patel0f4f48062018-11-12 15:10:30 +000040/// Return true if all of the intrinsic's arguments and return type are scalars
41/// for the scalar form of the intrinsic and vectors for the vector form of the
42/// intrinsic.
David Blaikie1213dbf2015-06-26 16:57:30 +000043bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
44 switch (ID) {
Sanjay Patel0f4f48062018-11-12 15:10:30 +000045 case Intrinsic::bswap: // Begin integer bit-manipulation.
46 case Intrinsic::bitreverse:
47 case Intrinsic::ctpop:
48 case Intrinsic::ctlz:
49 case Intrinsic::cttz:
Sanjay Patel1456fd72018-11-12 15:20:14 +000050 case Intrinsic::fshl:
51 case Intrinsic::fshr:
Sanjay Patel0f4f48062018-11-12 15:10:30 +000052 case Intrinsic::sqrt: // Begin floating-point.
David Blaikie1213dbf2015-06-26 16:57:30 +000053 case Intrinsic::sin:
54 case Intrinsic::cos:
55 case Intrinsic::exp:
56 case Intrinsic::exp2:
57 case Intrinsic::log:
58 case Intrinsic::log10:
59 case Intrinsic::log2:
60 case Intrinsic::fabs:
61 case Intrinsic::minnum:
62 case Intrinsic::maxnum:
Thomas Lively8a91cf12018-10-19 21:11:43 +000063 case Intrinsic::minimum:
64 case Intrinsic::maximum:
David Blaikie1213dbf2015-06-26 16:57:30 +000065 case Intrinsic::copysign:
66 case Intrinsic::floor:
67 case Intrinsic::ceil:
68 case Intrinsic::trunc:
69 case Intrinsic::rint:
70 case Intrinsic::nearbyint:
71 case Intrinsic::round:
David Blaikie1213dbf2015-06-26 16:57:30 +000072 case Intrinsic::pow:
73 case Intrinsic::fma:
74 case Intrinsic::fmuladd:
David Blaikie1213dbf2015-06-26 16:57:30 +000075 case Intrinsic::powi:
Matt Arsenault80ea6dd2018-09-17 13:24:30 +000076 case Intrinsic::canonicalize:
David Blaikie1213dbf2015-06-26 16:57:30 +000077 return true;
78 default:
79 return false;
80 }
81}
82
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000083/// Identifies if the intrinsic has a scalar operand. It check for
David Blaikie1213dbf2015-06-26 16:57:30 +000084/// ctlz,cttz and powi special intrinsics whose argument is scalar.
85bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
86 unsigned ScalarOpdIdx) {
87 switch (ID) {
88 case Intrinsic::ctlz:
89 case Intrinsic::cttz:
90 case Intrinsic::powi:
91 return (ScalarOpdIdx == 1);
92 default:
93 return false;
94 }
95}
96
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000097/// Returns intrinsic ID for call.
David Blaikie1213dbf2015-06-26 16:57:30 +000098/// For the input call instruction it finds mapping intrinsic and returns
99/// its ID, in case it does not found it return not_intrinsic.
David Majnemerb4b27232016-04-19 19:10:21 +0000100Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
101 const TargetLibraryInfo *TLI) {
102 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
103 if (ID == Intrinsic::not_intrinsic)
David Blaikie1213dbf2015-06-26 16:57:30 +0000104 return Intrinsic::not_intrinsic;
105
David Majnemerb4b27232016-04-19 19:10:21 +0000106 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
Dan Gohman2c74fe92017-11-08 21:59:51 +0000107 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
108 ID == Intrinsic::sideeffect)
David Majnemerb4b27232016-04-19 19:10:21 +0000109 return ID;
David Blaikie1213dbf2015-06-26 16:57:30 +0000110 return Intrinsic::not_intrinsic;
111}
Hal Finkel9cf58c42015-07-11 10:52:42 +0000112
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000113/// Find the operand of the GEP that should be checked for consecutive
Hal Finkel9cf58c42015-07-11 10:52:42 +0000114/// stores. This ignores trailing indices that have no effect on the final
115/// pointer.
116unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
117 const DataLayout &DL = Gep->getModule()->getDataLayout();
118 unsigned LastOperand = Gep->getNumOperands() - 1;
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000119 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000120
121 // Walk backwards and try to peel off zeros.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000122 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000123 // Find the type we're currently indexing into.
124 gep_type_iterator GEPTI = gep_type_begin(Gep);
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000125 std::advance(GEPTI, LastOperand - 2);
Hal Finkel9cf58c42015-07-11 10:52:42 +0000126
127 // If it's a type with the same allocation size as the result of the GEP we
128 // can peel off the zero index.
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000129 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
Hal Finkel9cf58c42015-07-11 10:52:42 +0000130 break;
131 --LastOperand;
132 }
133
134 return LastOperand;
135}
136
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000137/// If the argument is a GEP, then returns the operand identified by
Hal Finkel9cf58c42015-07-11 10:52:42 +0000138/// getGEPInductionOperand. However, if there is some other non-loop-invariant
139/// operand, it returns that instead.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000140Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000141 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
142 if (!GEP)
143 return Ptr;
144
145 unsigned InductionOperand = getGEPInductionOperand(GEP);
146
147 // Check that all of the gep indices are uniform except for our induction
148 // operand.
149 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
150 if (i != InductionOperand &&
151 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
152 return Ptr;
153 return GEP->getOperand(InductionOperand);
154}
155
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000156/// If a value has only one user that is a CastInst, return it.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000157Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
158 Value *UniqueCast = nullptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000159 for (User *U : Ptr->users()) {
160 CastInst *CI = dyn_cast<CastInst>(U);
161 if (CI && CI->getType() == Ty) {
162 if (!UniqueCast)
163 UniqueCast = CI;
164 else
165 return nullptr;
166 }
167 }
168 return UniqueCast;
169}
170
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000171/// Get the stride of a pointer access in a loop. Looks for symbolic
Hal Finkel9cf58c42015-07-11 10:52:42 +0000172/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000173Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000174 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000175 if (!PtrTy || PtrTy->isAggregateType())
176 return nullptr;
177
178 // Try to remove a gep instruction to make the pointer (actually index at this
Vedant Kumard3196742018-02-28 19:08:52 +0000179 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
Hal Finkel9cf58c42015-07-11 10:52:42 +0000180 // pointer, otherwise, we are analyzing the index.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000181 Value *OrigPtr = Ptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000182
183 // The size of the pointer access.
184 int64_t PtrAccessSize = 1;
185
186 Ptr = stripGetElementPtr(Ptr, SE, Lp);
187 const SCEV *V = SE->getSCEV(Ptr);
188
189 if (Ptr != OrigPtr)
190 // Strip off casts.
191 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
192 V = C->getOperand();
193
194 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
195 if (!S)
196 return nullptr;
197
198 V = S->getStepRecurrence(*SE);
199 if (!V)
200 return nullptr;
201
202 // Strip off the size of access multiplication if we are still analyzing the
203 // pointer.
204 if (OrigPtr == Ptr) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000205 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
206 if (M->getOperand(0)->getSCEVType() != scConstant)
207 return nullptr;
208
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000209 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000210
211 // Huge step value - give up.
212 if (APStepVal.getBitWidth() > 64)
213 return nullptr;
214
215 int64_t StepVal = APStepVal.getSExtValue();
216 if (PtrAccessSize != StepVal)
217 return nullptr;
218 V = M->getOperand(1);
219 }
220 }
221
222 // Strip off casts.
223 Type *StripedOffRecurrenceCast = nullptr;
224 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
225 StripedOffRecurrenceCast = C->getType();
226 V = C->getOperand();
227 }
228
229 // Look for the loop invariant symbolic value.
230 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
231 if (!U)
232 return nullptr;
233
David Majnemer5eaf08f2015-08-18 22:07:20 +0000234 Value *Stride = U->getValue();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000235 if (!Lp->isLoopInvariant(Stride))
236 return nullptr;
237
238 // If we have stripped off the recurrence cast we have to make sure that we
239 // return the value that is used in this loop so that we can replace it later.
240 if (StripedOffRecurrenceCast)
241 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
242
243 return Stride;
244}
David Majnemer599ca442015-07-13 01:15:53 +0000245
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000246/// Given a vector and an element number, see if the scalar value is
David Majnemer599ca442015-07-13 01:15:53 +0000247/// already around as a register, for example if it were inserted then extracted
248/// from the vector.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000249Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
David Majnemer599ca442015-07-13 01:15:53 +0000250 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
251 VectorType *VTy = cast<VectorType>(V->getType());
252 unsigned Width = VTy->getNumElements();
253 if (EltNo >= Width) // Out of range access.
254 return UndefValue::get(VTy->getElementType());
255
256 if (Constant *C = dyn_cast<Constant>(V))
257 return C->getAggregateElement(EltNo);
258
259 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
260 // If this is an insert to a variable element, we don't know what it is.
261 if (!isa<ConstantInt>(III->getOperand(2)))
262 return nullptr;
263 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
264
265 // If this is an insert to the element we are looking for, return the
266 // inserted value.
267 if (EltNo == IIElt)
268 return III->getOperand(1);
269
270 // Otherwise, the insertelement doesn't modify the value, recurse on its
271 // vector input.
272 return findScalarElement(III->getOperand(0), EltNo);
273 }
274
275 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
276 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
277 int InEl = SVI->getMaskValue(EltNo);
278 if (InEl < 0)
279 return UndefValue::get(VTy->getElementType());
280 if (InEl < (int)LHSWidth)
281 return findScalarElement(SVI->getOperand(0), InEl);
282 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
283 }
284
285 // Extract a value from a vector add operation with a constant zero.
Sanjay Patel3413a662018-09-24 17:18:32 +0000286 // TODO: Use getBinOpIdentity() to generalize this.
287 Value *Val; Constant *C;
288 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
289 if (Constant *Elt = C->getAggregateElement(EltNo))
David Majnemerc6bb0e22015-08-18 22:07:25 +0000290 if (Elt->isNullValue())
291 return findScalarElement(Val, EltNo);
David Majnemer599ca442015-07-13 01:15:53 +0000292
293 // Otherwise, we don't know.
294 return nullptr;
295}
Renato Golin3b1d3b02015-08-30 10:49:04 +0000296
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000297/// Get splat value if the input is a splat vector or return nullptr.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000298/// This function is not fully general. It checks only 2 cases:
299/// the input value is (1) a splat constants vector or (2) a sequence
300/// of instructions that broadcast a single value into a vector.
301///
Elena Demikhovsky0781d7b2015-12-01 12:08:36 +0000302const llvm::Value *llvm::getSplatValue(const Value *V) {
303
304 if (auto *C = dyn_cast<Constant>(V))
Elena Demikhovsky47fa2712015-12-01 12:30:40 +0000305 if (isa<VectorType>(V->getType()))
306 return C->getSplatValue();
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000307
308 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
Renato Golin3b1d3b02015-08-30 10:49:04 +0000309 if (!ShuffleInst)
310 return nullptr;
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000311 // All-zero (or undef) shuffle mask elements.
312 for (int MaskElt : ShuffleInst->getShuffleMask())
313 if (MaskElt != 0 && MaskElt != -1)
Renato Golin3b1d3b02015-08-30 10:49:04 +0000314 return nullptr;
315 // The first shuffle source is 'insertelement' with index 0.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000316 auto *InsertEltInst =
317 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
Renato Golin3b1d3b02015-08-30 10:49:04 +0000318 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
Craig Topper79ab6432017-07-06 18:39:47 +0000319 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
Renato Golin3b1d3b02015-08-30 10:49:04 +0000320 return nullptr;
321
322 return InsertEltInst->getOperand(1);
323}
James Molloy55d633b2015-10-12 12:34:45 +0000324
Charlie Turner54336a52015-11-26 20:39:51 +0000325MapVector<Instruction *, uint64_t>
James Molloy45f67d52015-11-09 14:32:05 +0000326llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
327 const TargetTransformInfo *TTI) {
James Molloy55d633b2015-10-12 12:34:45 +0000328
329 // DemandedBits will give us every value's live-out bits. But we want
330 // to ensure no extra casts would need to be inserted, so every DAG
331 // of connected values must have the same minimum bitwidth.
James Molloy45f67d52015-11-09 14:32:05 +0000332 EquivalenceClasses<Value *> ECs;
333 SmallVector<Value *, 16> Worklist;
334 SmallPtrSet<Value *, 4> Roots;
335 SmallPtrSet<Value *, 16> Visited;
336 DenseMap<Value *, uint64_t> DBits;
337 SmallPtrSet<Instruction *, 4> InstructionSet;
Charlie Turner54336a52015-11-26 20:39:51 +0000338 MapVector<Instruction *, uint64_t> MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000339
James Molloy55d633b2015-10-12 12:34:45 +0000340 // Determine the roots. We work bottom-up, from truncs or icmps.
341 bool SeenExtFromIllegalType = false;
342 for (auto *BB : Blocks)
343 for (auto &I : *BB) {
344 InstructionSet.insert(&I);
345
346 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
347 !TTI->isTypeLegal(I.getOperand(0)->getType()))
348 SeenExtFromIllegalType = true;
James Molloy45f67d52015-11-09 14:32:05 +0000349
James Molloy55d633b2015-10-12 12:34:45 +0000350 // Only deal with non-vector integers up to 64-bits wide.
351 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
352 !I.getType()->isVectorTy() &&
353 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
354 // Don't make work for ourselves. If we know the loaded type is legal,
355 // don't add it to the worklist.
356 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
357 continue;
James Molloy45f67d52015-11-09 14:32:05 +0000358
James Molloy55d633b2015-10-12 12:34:45 +0000359 Worklist.push_back(&I);
360 Roots.insert(&I);
361 }
362 }
363 // Early exit.
364 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
365 return MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000366
James Molloy55d633b2015-10-12 12:34:45 +0000367 // Now proceed breadth-first, unioning values together.
368 while (!Worklist.empty()) {
369 Value *Val = Worklist.pop_back_val();
370 Value *Leader = ECs.getOrInsertLeaderValue(Val);
James Molloy45f67d52015-11-09 14:32:05 +0000371
James Molloy55d633b2015-10-12 12:34:45 +0000372 if (Visited.count(Val))
373 continue;
374 Visited.insert(Val);
375
376 // Non-instructions terminate a chain successfully.
377 if (!isa<Instruction>(Val))
378 continue;
379 Instruction *I = cast<Instruction>(Val);
380
381 // If we encounter a type that is larger than 64 bits, we can't represent
382 // it so bail out.
James Molloyaa1d6382016-05-10 12:27:23 +0000383 if (DB.getDemandedBits(I).getBitWidth() > 64)
Charlie Turner54336a52015-11-26 20:39:51 +0000384 return MapVector<Instruction *, uint64_t>();
James Molloy45f67d52015-11-09 14:32:05 +0000385
James Molloyaa1d6382016-05-10 12:27:23 +0000386 uint64_t V = DB.getDemandedBits(I).getZExtValue();
387 DBits[Leader] |= V;
388 DBits[I] = V;
James Molloy45f67d52015-11-09 14:32:05 +0000389
James Molloy55d633b2015-10-12 12:34:45 +0000390 // Casts, loads and instructions outside of our range terminate a chain
391 // successfully.
392 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
393 !InstructionSet.count(I))
394 continue;
395
396 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
397 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
398 // transform anything that relies on them.
399 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
400 !I->getType()->isIntegerTy()) {
401 DBits[Leader] |= ~0ULL;
402 continue;
403 }
404
405 // We don't modify the types of PHIs. Reductions will already have been
406 // truncated if possible, and inductions' sizes will have been chosen by
407 // indvars.
408 if (isa<PHINode>(I))
409 continue;
410
411 if (DBits[Leader] == ~0ULL)
412 // All bits demanded, no point continuing.
413 continue;
414
415 for (Value *O : cast<User>(I)->operands()) {
416 ECs.unionSets(Leader, O);
417 Worklist.push_back(O);
418 }
419 }
420
421 // Now we've discovered all values, walk them to see if there are
422 // any users we didn't see. If there are, we can't optimize that
423 // chain.
424 for (auto &I : DBits)
425 for (auto *U : I.first->users())
426 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
427 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
James Molloy45f67d52015-11-09 14:32:05 +0000428
James Molloy55d633b2015-10-12 12:34:45 +0000429 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
430 uint64_t LeaderDemandedBits = 0;
431 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
432 LeaderDemandedBits |= DBits[*MI];
433
434 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
435 llvm::countLeadingZeros(LeaderDemandedBits);
436 // Round up to a power of 2
437 if (!isPowerOf2_64((uint64_t)MinBW))
438 MinBW = NextPowerOf2(MinBW);
James Molloy8e46cd02016-03-30 10:11:43 +0000439
440 // We don't modify the types of PHIs. Reductions will already have been
441 // truncated if possible, and inductions' sizes will have been chosen by
442 // indvars.
443 // If we are required to shrink a PHI, abandon this entire equivalence class.
444 bool Abort = false;
445 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
446 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
447 Abort = true;
448 break;
449 }
450 if (Abort)
451 continue;
452
James Molloy55d633b2015-10-12 12:34:45 +0000453 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
454 if (!isa<Instruction>(*MI))
455 continue;
456 Type *Ty = (*MI)->getType();
457 if (Roots.count(*MI))
458 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
459 if (MinBW < Ty->getScalarSizeInBits())
460 MinBWs[cast<Instruction>(*MI)] = MinBW;
461 }
462 }
463
464 return MinBWs;
465}
Matt Arsenault727e2792016-06-30 21:17:59 +0000466
467/// \returns \p I after propagating metadata from \p VL.
468Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
469 Instruction *I0 = cast<Instruction>(VL[0]);
470 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
471 I0->getAllMetadataOtherThanDebugLoc(Metadata);
472
Justin Lebar11a32042016-09-11 01:39:08 +0000473 for (auto Kind :
474 {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
475 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
476 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
Matt Arsenault727e2792016-06-30 21:17:59 +0000477 MDNode *MD = I0->getMetadata(Kind);
478
479 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
480 const Instruction *IJ = cast<Instruction>(VL[J]);
481 MDNode *IMD = IJ->getMetadata(Kind);
482 switch (Kind) {
483 case LLVMContext::MD_tbaa:
484 MD = MDNode::getMostGenericTBAA(MD, IMD);
485 break;
486 case LLVMContext::MD_alias_scope:
487 MD = MDNode::getMostGenericAliasScope(MD, IMD);
488 break;
Matt Arsenault727e2792016-06-30 21:17:59 +0000489 case LLVMContext::MD_fpmath:
490 MD = MDNode::getMostGenericFPMath(MD, IMD);
491 break;
Justin Lebar11a32042016-09-11 01:39:08 +0000492 case LLVMContext::MD_noalias:
Matt Arsenault727e2792016-06-30 21:17:59 +0000493 case LLVMContext::MD_nontemporal:
Justin Lebar11a32042016-09-11 01:39:08 +0000494 case LLVMContext::MD_invariant_load:
Matt Arsenault727e2792016-06-30 21:17:59 +0000495 MD = MDNode::intersect(MD, IMD);
496 break;
497 default:
498 llvm_unreachable("unhandled metadata");
499 }
500 }
501
502 Inst->setMetadata(Kind, MD);
503 }
504
505 return Inst;
506}
Matthew Simpsonba5cf9d2017-02-01 17:45:46 +0000507
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000508Constant *
509llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
510 const InterleaveGroup<Instruction> &Group) {
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000511 // All 1's means mask is not needed.
512 if (Group.getNumMembers() == Group.getFactor())
513 return nullptr;
514
515 // TODO: support reversed access.
516 assert(!Group.isReverse() && "Reversed group not supported.");
517
518 SmallVector<Constant *, 16> Mask;
519 for (unsigned i = 0; i < VF; i++)
520 for (unsigned j = 0; j < Group.getFactor(); ++j) {
521 unsigned HasMember = Group.getMember(j) ? 1 : 0;
522 Mask.push_back(Builder.getInt1(HasMember));
523 }
524
525 return ConstantVector::get(Mask);
526}
527
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000528Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
529 unsigned ReplicationFactor, unsigned VF) {
530 SmallVector<Constant *, 16> MaskVec;
531 for (unsigned i = 0; i < VF; i++)
532 for (unsigned j = 0; j < ReplicationFactor; j++)
533 MaskVec.push_back(Builder.getInt32(i));
534
535 return ConstantVector::get(MaskVec);
536}
537
Matthew Simpsonba5cf9d2017-02-01 17:45:46 +0000538Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
539 unsigned NumVecs) {
540 SmallVector<Constant *, 16> Mask;
541 for (unsigned i = 0; i < VF; i++)
542 for (unsigned j = 0; j < NumVecs; j++)
543 Mask.push_back(Builder.getInt32(j * VF + i));
544
545 return ConstantVector::get(Mask);
546}
547
548Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
549 unsigned Stride, unsigned VF) {
550 SmallVector<Constant *, 16> Mask;
551 for (unsigned i = 0; i < VF; i++)
552 Mask.push_back(Builder.getInt32(Start + i * Stride));
553
554 return ConstantVector::get(Mask);
555}
556
557Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
558 unsigned NumInts, unsigned NumUndefs) {
559 SmallVector<Constant *, 16> Mask;
560 for (unsigned i = 0; i < NumInts; i++)
561 Mask.push_back(Builder.getInt32(Start + i));
562
563 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
564 for (unsigned i = 0; i < NumUndefs; i++)
565 Mask.push_back(Undef);
566
567 return ConstantVector::get(Mask);
568}
569
570/// A helper function for concatenating vectors. This function concatenates two
571/// vectors having the same element type. If the second vector has fewer
572/// elements than the first, it is padded with undefs.
573static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
574 Value *V2) {
575 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
576 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
577 assert(VecTy1 && VecTy2 &&
578 VecTy1->getScalarType() == VecTy2->getScalarType() &&
579 "Expect two vectors with the same element type");
580
581 unsigned NumElts1 = VecTy1->getNumElements();
582 unsigned NumElts2 = VecTy2->getNumElements();
583 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
584
585 if (NumElts1 > NumElts2) {
586 // Extend with UNDEFs.
587 Constant *ExtMask =
588 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
589 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
590 }
591
592 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
593 return Builder.CreateShuffleVector(V1, V2, Mask);
594}
595
596Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
597 unsigned NumVecs = Vecs.size();
598 assert(NumVecs > 1 && "Should be at least two vectors");
599
600 SmallVector<Value *, 8> ResList;
601 ResList.append(Vecs.begin(), Vecs.end());
602 do {
603 SmallVector<Value *, 8> TmpList;
604 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
605 Value *V0 = ResList[i], *V1 = ResList[i + 1];
606 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
607 "Only the last vector may have a different type");
608
609 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
610 }
611
612 // Push the last vector if the total number of vectors is odd.
613 if (NumVecs % 2 != 0)
614 TmpList.push_back(ResList[NumVecs - 1]);
615
616 ResList = TmpList;
617 NumVecs = ResList.size();
618 } while (NumVecs > 1);
619
620 return ResList[0];
621}
Florian Hahn1086ce22018-09-12 08:01:57 +0000622
623bool InterleavedAccessInfo::isStrided(int Stride) {
624 unsigned Factor = std::abs(Stride);
625 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
626}
627
628void InterleavedAccessInfo::collectConstStrideAccesses(
629 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
630 const ValueToValueMap &Strides) {
631 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
632
633 // Since it's desired that the load/store instructions be maintained in
634 // "program order" for the interleaved access analysis, we have to visit the
635 // blocks in the loop in reverse postorder (i.e., in a topological order).
636 // Such an ordering will ensure that any load/store that may be executed
637 // before a second load/store will precede the second load/store in
638 // AccessStrideInfo.
639 LoopBlocksDFS DFS(TheLoop);
640 DFS.perform(LI);
641 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
642 for (auto &I : *BB) {
643 auto *LI = dyn_cast<LoadInst>(&I);
644 auto *SI = dyn_cast<StoreInst>(&I);
645 if (!LI && !SI)
646 continue;
647
648 Value *Ptr = getLoadStorePointerOperand(&I);
649 // We don't check wrapping here because we don't know yet if Ptr will be
650 // part of a full group or a group with gaps. Checking wrapping for all
651 // pointers (even those that end up in groups with no gaps) will be overly
652 // conservative. For full groups, wrapping should be ok since if we would
653 // wrap around the address space we would do a memory access at nullptr
654 // even without the transformation. The wrapping checks are therefore
655 // deferred until after we've formed the interleaved groups.
656 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
657 /*Assume=*/true, /*ShouldCheckWrap=*/false);
658
659 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
660 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
661 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
662
663 // An alignment of 0 means target ABI alignment.
664 unsigned Align = getLoadStoreAlignment(&I);
665 if (!Align)
666 Align = DL.getABITypeAlignment(PtrTy->getElementType());
667
668 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
669 }
670}
671
672// Analyze interleaved accesses and collect them into interleaved load and
673// store groups.
674//
675// When generating code for an interleaved load group, we effectively hoist all
676// loads in the group to the location of the first load in program order. When
677// generating code for an interleaved store group, we sink all stores to the
678// location of the last store. This code motion can change the order of load
679// and store instructions and may break dependences.
680//
681// The code generation strategy mentioned above ensures that we won't violate
682// any write-after-read (WAR) dependences.
683//
684// E.g., for the WAR dependence: a = A[i]; // (1)
685// A[i] = b; // (2)
686//
687// The store group of (2) is always inserted at or below (2), and the load
688// group of (1) is always inserted at or above (1). Thus, the instructions will
689// never be reordered. All other dependences are checked to ensure the
690// correctness of the instruction reordering.
691//
692// The algorithm visits all memory accesses in the loop in bottom-up program
693// order. Program order is established by traversing the blocks in the loop in
694// reverse postorder when collecting the accesses.
695//
696// We visit the memory accesses in bottom-up order because it can simplify the
697// construction of store groups in the presence of write-after-write (WAW)
698// dependences.
699//
700// E.g., for the WAW dependence: A[i] = a; // (1)
701// A[i] = b; // (2)
702// A[i + 1] = c; // (3)
703//
704// We will first create a store group with (3) and (2). (1) can't be added to
705// this group because it and (2) are dependent. However, (1) can be grouped
706// with other accesses that may precede it in program order. Note that a
707// bottom-up order does not imply that WAW dependences should not be checked.
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000708void InterleavedAccessInfo::analyzeInterleaving(
709 bool EnablePredicatedInterleavedMemAccesses) {
Florian Hahn1086ce22018-09-12 08:01:57 +0000710 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
711 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
712
713 // Holds all accesses with a constant stride.
714 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
715 collectConstStrideAccesses(AccessStrideInfo, Strides);
716
717 if (AccessStrideInfo.empty())
718 return;
719
720 // Collect the dependences in the loop.
721 collectDependences();
722
723 // Holds all interleaved store groups temporarily.
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000724 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
Florian Hahn1086ce22018-09-12 08:01:57 +0000725 // Holds all interleaved load groups temporarily.
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000726 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
Florian Hahn1086ce22018-09-12 08:01:57 +0000727
728 // Search in bottom-up program order for pairs of accesses (A and B) that can
729 // form interleaved load or store groups. In the algorithm below, access A
730 // precedes access B in program order. We initialize a group for B in the
731 // outer loop of the algorithm, and then in the inner loop, we attempt to
732 // insert each A into B's group if:
733 //
734 // 1. A and B have the same stride,
735 // 2. A and B have the same memory object size, and
736 // 3. A belongs in B's group according to its distance from B.
737 //
738 // Special care is taken to ensure group formation will not break any
739 // dependences.
740 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
741 BI != E; ++BI) {
742 Instruction *B = BI->first;
743 StrideDescriptor DesB = BI->second;
744
745 // Initialize a group for B if it has an allowable stride. Even if we don't
746 // create a group for B, we continue with the bottom-up algorithm to ensure
747 // we don't break any of B's dependences.
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000748 InterleaveGroup<Instruction> *Group = nullptr;
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000749 if (isStrided(DesB.Stride) &&
750 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
Florian Hahn1086ce22018-09-12 08:01:57 +0000751 Group = getInterleaveGroup(B);
752 if (!Group) {
753 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
754 << '\n');
755 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
756 }
757 if (B->mayWriteToMemory())
758 StoreGroups.insert(Group);
759 else
760 LoadGroups.insert(Group);
761 }
762
763 for (auto AI = std::next(BI); AI != E; ++AI) {
764 Instruction *A = AI->first;
765 StrideDescriptor DesA = AI->second;
766
767 // Our code motion strategy implies that we can't have dependences
768 // between accesses in an interleaved group and other accesses located
769 // between the first and last member of the group. Note that this also
770 // means that a group can't have more than one member at a given offset.
771 // The accesses in a group can have dependences with other accesses, but
772 // we must ensure we don't extend the boundaries of the group such that
773 // we encompass those dependent accesses.
774 //
775 // For example, assume we have the sequence of accesses shown below in a
776 // stride-2 loop:
777 //
778 // (1, 2) is a group | A[i] = a; // (1)
779 // | A[i-1] = b; // (2) |
780 // A[i-3] = c; // (3)
781 // A[i] = d; // (4) | (2, 4) is not a group
782 //
783 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
784 // but not with (4). If we did, the dependent access (3) would be within
785 // the boundaries of the (2, 4) group.
786 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
787 // If a dependence exists and A is already in a group, we know that A
788 // must be a store since A precedes B and WAR dependences are allowed.
789 // Thus, A would be sunk below B. We release A's group to prevent this
790 // illegal code motion. A will then be free to form another group with
791 // instructions that precede it.
792 if (isInterleaved(A)) {
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000793 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
Florian Hahn1086ce22018-09-12 08:01:57 +0000794 StoreGroups.remove(StoreGroup);
795 releaseGroup(StoreGroup);
796 }
797
798 // If a dependence exists and A is not already in a group (or it was
799 // and we just released it), B might be hoisted above A (if B is a
800 // load) or another store might be sunk below A (if B is a store). In
801 // either case, we can't add additional instructions to B's group. B
802 // will only form a group with instructions that it precedes.
803 break;
804 }
805
806 // At this point, we've checked for illegal code motion. If either A or B
807 // isn't strided, there's nothing left to do.
808 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
809 continue;
810
811 // Ignore A if it's already in a group or isn't the same kind of memory
812 // operation as B.
813 // Note that mayReadFromMemory() isn't mutually exclusive to
814 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
815 // here, canVectorizeMemory() should have returned false - except for the
816 // case we asked for optimization remarks.
817 if (isInterleaved(A) ||
818 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
819 (A->mayWriteToMemory() != B->mayWriteToMemory()))
820 continue;
821
822 // Check rules 1 and 2. Ignore A if its stride or size is different from
823 // that of B.
824 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
825 continue;
826
827 // Ignore A if the memory object of A and B don't belong to the same
828 // address space
829 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
830 continue;
831
832 // Calculate the distance from A to B.
833 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
834 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
835 if (!DistToB)
836 continue;
837 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
838
839 // Check rule 3. Ignore A if its distance to B is not a multiple of the
840 // size.
841 if (DistanceToB % static_cast<int64_t>(DesB.Size))
842 continue;
843
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000844 // All members of a predicated interleave-group must have the same predicate,
845 // and currently must reside in the same BB.
846 BasicBlock *BlockA = A->getParent();
847 BasicBlock *BlockB = B->getParent();
848 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
849 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
Florian Hahn1086ce22018-09-12 08:01:57 +0000850 continue;
851
852 // The index of A is the index of B plus A's distance to B in multiples
853 // of the size.
854 int IndexA =
855 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
856
857 // Try to insert A into B's group.
858 if (Group->insertMember(A, IndexA, DesA.Align)) {
859 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
860 << " into the interleave group with" << *B
861 << '\n');
862 InterleaveGroupMap[A] = Group;
863
864 // Set the first load in program order as the insert position.
865 if (A->mayReadFromMemory())
866 Group->setInsertPos(A);
867 }
868 } // Iteration over A accesses.
869 } // Iteration over B accesses.
870
871 // Remove interleaved store groups with gaps.
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000872 for (auto *Group : StoreGroups)
Florian Hahn1086ce22018-09-12 08:01:57 +0000873 if (Group->getNumMembers() != Group->getFactor()) {
874 LLVM_DEBUG(
875 dbgs() << "LV: Invalidate candidate interleaved store group due "
876 "to gaps.\n");
877 releaseGroup(Group);
878 }
879 // Remove interleaved groups with gaps (currently only loads) whose memory
880 // accesses may wrap around. We have to revisit the getPtrStride analysis,
881 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
882 // not check wrapping (see documentation there).
883 // FORNOW we use Assume=false;
884 // TODO: Change to Assume=true but making sure we don't exceed the threshold
885 // of runtime SCEV assumptions checks (thereby potentially failing to
886 // vectorize altogether).
887 // Additional optional optimizations:
888 // TODO: If we are peeling the loop and we know that the first pointer doesn't
889 // wrap then we can deduce that all pointers in the group don't wrap.
890 // This means that we can forcefully peel the loop in order to only have to
891 // check the first pointer for no-wrap. When we'll change to use Assume=true
892 // we'll only need at most one runtime check per interleaved group.
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000893 for (auto *Group : LoadGroups) {
Florian Hahn1086ce22018-09-12 08:01:57 +0000894 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
895 // load would wrap around the address space we would do a memory access at
896 // nullptr even without the transformation.
897 if (Group->getNumMembers() == Group->getFactor())
898 continue;
899
900 // Case 2: If first and last members of the group don't wrap this implies
901 // that all the pointers in the group don't wrap.
902 // So we check only group member 0 (which is always guaranteed to exist),
903 // and group member Factor - 1; If the latter doesn't exist we rely on
904 // peeling (if it is a non-reveresed accsess -- see Case 3).
905 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
906 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
907 /*ShouldCheckWrap=*/true)) {
908 LLVM_DEBUG(
909 dbgs() << "LV: Invalidate candidate interleaved group due to "
910 "first group member potentially pointer-wrapping.\n");
911 releaseGroup(Group);
912 continue;
913 }
914 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
915 if (LastMember) {
916 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
917 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
918 /*ShouldCheckWrap=*/true)) {
919 LLVM_DEBUG(
920 dbgs() << "LV: Invalidate candidate interleaved group due to "
921 "last group member potentially pointer-wrapping.\n");
922 releaseGroup(Group);
923 }
924 } else {
925 // Case 3: A non-reversed interleaved load group with gaps: We need
926 // to execute at least one scalar epilogue iteration. This will ensure
927 // we don't speculatively access memory out-of-bounds. We only need
928 // to look for a member at index factor - 1, since every group must have
929 // a member at index zero.
930 if (Group->isReverse()) {
931 LLVM_DEBUG(
932 dbgs() << "LV: Invalidate candidate interleaved group due to "
933 "a reverse access with gaps.\n");
934 releaseGroup(Group);
935 continue;
936 }
937 LLVM_DEBUG(
938 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
939 RequiresScalarEpilogue = true;
940 }
941 }
942}
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000943
944void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
945 // If no group had triggered the requirement to create an epilogue loop,
946 // there is nothing to do.
947 if (!requiresScalarEpilogue())
948 return;
949
950 // Avoid releasing a Group twice.
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000951 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000952 for (auto &I : InterleaveGroupMap) {
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000953 InterleaveGroup<Instruction> *Group = I.second;
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000954 if (Group->requiresScalarEpilogue())
955 DelSet.insert(Group);
956 }
957 for (auto *Ptr : DelSet) {
958 LLVM_DEBUG(
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000959 dbgs()
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000960 << "LV: Invalidate candidate interleaved group due to gaps that "
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000961 "require a scalar epilogue (not allowed under optsize) and cannot "
962 "be masked (not enabled). \n");
Dorit Nuzman3ec99fe2018-10-22 06:17:09 +0000963 releaseGroup(Ptr);
964 }
965
966 RequiresScalarEpilogue = false;
967}
Florian Hahna4dc7fe2018-11-13 15:58:18 +0000968
969template <>
970void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
971 SmallVector<Value *, 4> VL;
972 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
973 [](std::pair<int, Instruction *> p) { return p.second; });
974 propagateMetadata(NewInst, VL);
975}
976
977template <typename InstT>
978void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
979 llvm_unreachable("addMetadata can only be used for Instruction");
980}