blob: 87d93a4bd5f91316c235928a9ab118dbed3f1f02 [file] [log] [blame]
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +00001//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loops should be simplified before this analysis.
11//
12//===----------------------------------------------------------------------===//
13
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000014#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
15#include "llvm/ADT/APFloat.h"
Duncan P. N. Exon Smith87c40fd2014-05-06 01:57:42 +000016#include "llvm/ADT/SCCIterator.h"
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000017#include "llvm/Support/raw_ostream.h"
18#include <deque>
19
20using namespace llvm;
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +000021using namespace llvm::bfi_detail;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000022
Chandler Carruth1b9dde02014-04-22 02:02:50 +000023#define DEBUG_TYPE "block-freq"
24
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000025//===----------------------------------------------------------------------===//
26//
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000027// UnsignedFloat implementation.
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000028//
29//===----------------------------------------------------------------------===//
30#ifndef _MSC_VER
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000031const int32_t UnsignedFloatBase::MaxExponent;
32const int32_t UnsignedFloatBase::MinExponent;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000033#endif
34
35static void appendDigit(std::string &Str, unsigned D) {
36 assert(D < 10);
37 Str += '0' + D % 10;
38}
39
40static void appendNumber(std::string &Str, uint64_t N) {
41 while (N) {
42 appendDigit(Str, N % 10);
43 N /= 10;
44 }
45}
46
47static bool doesRoundUp(char Digit) {
48 switch (Digit) {
49 case '5':
50 case '6':
51 case '7':
52 case '8':
53 case '9':
54 return true;
55 default:
56 return false;
57 }
58}
59
60static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000061 assert(E >= UnsignedFloatBase::MinExponent);
62 assert(E <= UnsignedFloatBase::MaxExponent);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000063
64 // Find a new E, but don't let it increase past MaxExponent.
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000065 int LeadingZeros = UnsignedFloatBase::countLeadingZeros64(D);
66 int NewE = std::min(UnsignedFloatBase::MaxExponent, E + 63 - LeadingZeros);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000067 int Shift = 63 - (NewE - E);
68 assert(Shift <= LeadingZeros);
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000069 assert(Shift == LeadingZeros || NewE == UnsignedFloatBase::MaxExponent);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000070 D <<= Shift;
71 E = NewE;
72
73 // Check for a denormal.
74 unsigned AdjustedE = E + 16383;
75 if (!(D >> 63)) {
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000076 assert(E == UnsignedFloatBase::MaxExponent);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000077 AdjustedE = 0;
78 }
79
80 // Build the float and print it.
81 uint64_t RawBits[2] = {D, AdjustedE};
82 APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
83 SmallVector<char, 24> Chars;
84 Float.toString(Chars, Precision, 0);
85 return std::string(Chars.begin(), Chars.end());
86}
87
88static std::string stripTrailingZeros(const std::string &Float) {
89 size_t NonZero = Float.find_last_not_of('0');
90 assert(NonZero != std::string::npos && "no . in floating point string");
91
92 if (Float[NonZero] == '.')
93 ++NonZero;
94
95 return Float.substr(0, NonZero + 1);
96}
97
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +000098std::string UnsignedFloatBase::toString(uint64_t D, int16_t E, int Width,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +000099 unsigned Precision) {
100 if (!D)
101 return "0.0";
102
103 // Canonicalize exponent and digits.
104 uint64_t Above0 = 0;
105 uint64_t Below0 = 0;
106 uint64_t Extra = 0;
107 int ExtraShift = 0;
108 if (E == 0) {
109 Above0 = D;
110 } else if (E > 0) {
111 if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
112 D <<= Shift;
113 E -= Shift;
114
115 if (!E)
116 Above0 = D;
117 }
118 } else if (E > -64) {
119 Above0 = D >> -E;
120 Below0 = D << (64 + E);
121 } else if (E > -120) {
122 Below0 = D >> (-E - 64);
123 Extra = D << (128 + E);
124 ExtraShift = -64 - E;
125 }
126
127 // Fall back on APFloat for very small and very large numbers.
128 if (!Above0 && !Below0)
129 return toStringAPFloat(D, E, Precision);
130
131 // Append the digits before the decimal.
132 std::string Str;
133 size_t DigitsOut = 0;
134 if (Above0) {
135 appendNumber(Str, Above0);
136 DigitsOut = Str.size();
137 } else
138 appendDigit(Str, 0);
139 std::reverse(Str.begin(), Str.end());
140
141 // Return early if there's nothing after the decimal.
142 if (!Below0)
143 return Str + ".0";
144
145 // Append the decimal and beyond.
146 Str += '.';
147 uint64_t Error = UINT64_C(1) << (64 - Width);
148
149 // We need to shift Below0 to the right to make space for calculating
150 // digits. Save the precision we're losing in Extra.
151 Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
152 Below0 >>= 4;
153 size_t SinceDot = 0;
154 size_t AfterDot = Str.size();
155 do {
156 if (ExtraShift) {
157 --ExtraShift;
158 Error *= 5;
159 } else
160 Error *= 10;
161
162 Below0 *= 10;
163 Extra *= 10;
164 Below0 += (Extra >> 60);
165 Extra = Extra & (UINT64_MAX >> 4);
166 appendDigit(Str, Below0 >> 60);
167 Below0 = Below0 & (UINT64_MAX >> 4);
168 if (DigitsOut || Str.back() != '0')
169 ++DigitsOut;
170 ++SinceDot;
171 } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
172 (!Precision || DigitsOut <= Precision || SinceDot < 2));
173
174 // Return early for maximum precision.
175 if (!Precision || DigitsOut <= Precision)
176 return stripTrailingZeros(Str);
177
178 // Find where to truncate.
179 size_t Truncate =
180 std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
181
182 // Check if there's anything to truncate.
183 if (Truncate >= Str.size())
184 return stripTrailingZeros(Str);
185
186 bool Carry = doesRoundUp(Str[Truncate]);
187 if (!Carry)
188 return stripTrailingZeros(Str.substr(0, Truncate));
189
190 // Round with the first truncated digit.
191 for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
192 I != E; ++I) {
193 if (*I == '.')
194 continue;
195 if (*I == '9') {
196 *I = '0';
197 continue;
198 }
199
200 ++*I;
201 Carry = false;
202 break;
203 }
204
205 // Add "1" in front if we still need to carry.
206 return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
207}
208
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000209raw_ostream &UnsignedFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000210 int Width, unsigned Precision) {
211 return OS << toString(D, E, Width, Precision);
212}
213
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000214void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000215 print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
216 << "]";
217}
218
219static std::pair<uint64_t, int16_t>
220getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
221 if (ShouldRound)
222 if (!++N)
223 // Rounding caused an overflow.
224 return std::make_pair(UINT64_C(1), Shift + 64);
225 return std::make_pair(N, Shift);
226}
227
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000228std::pair<uint64_t, int16_t> UnsignedFloatBase::divide64(uint64_t Dividend,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000229 uint64_t Divisor) {
230 // Input should be sanitized.
231 assert(Divisor);
232 assert(Dividend);
233
234 // Minimize size of divisor.
235 int16_t Shift = 0;
236 if (int Zeros = countTrailingZeros(Divisor)) {
237 Shift -= Zeros;
238 Divisor >>= Zeros;
239 }
240
241 // Check for powers of two.
242 if (Divisor == 1)
243 return std::make_pair(Dividend, Shift);
244
245 // Maximize size of dividend.
246 if (int Zeros = countLeadingZeros64(Dividend)) {
247 Shift -= Zeros;
248 Dividend <<= Zeros;
249 }
250
251 // Start with the result of a divide.
252 uint64_t Quotient = Dividend / Divisor;
253 Dividend %= Divisor;
254
255 // Continue building the quotient with long division.
256 //
257 // TODO: continue with largers digits.
258 while (!(Quotient >> 63) && Dividend) {
259 // Shift Dividend, and check for overflow.
260 bool IsOverflow = Dividend >> 63;
261 Dividend <<= 1;
262 --Shift;
263
264 // Divide.
265 bool DoesDivide = IsOverflow || Divisor <= Dividend;
266 Quotient = (Quotient << 1) | uint64_t(DoesDivide);
267 Dividend -= DoesDivide ? Divisor : 0;
268 }
269
270 // Round.
271 if (Dividend >= getHalf(Divisor))
272 if (!++Quotient)
273 // Rounding caused an overflow in Quotient.
274 return std::make_pair(UINT64_C(1), Shift + 64);
275
276 return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
277}
278
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000279std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000280 uint64_t R) {
281 // Separate into two 32-bit digits (U.L).
282 uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
283
284 // Compute cross products.
285 uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
286
287 // Sum into two 64-bit digits.
288 uint64_t Upper = P1, Lower = P4;
289 auto addWithCarry = [&](uint64_t N) {
290 uint64_t NewLower = Lower + (N << 32);
291 Upper += (N >> 32) + (NewLower < Lower);
292 Lower = NewLower;
293 };
294 addWithCarry(P2);
295 addWithCarry(P3);
296
297 // Check whether the upper digit is empty.
298 if (!Upper)
299 return std::make_pair(Lower, 0);
300
301 // Shift as little as possible to maximize precision.
302 unsigned LeadingZeros = countLeadingZeros64(Upper);
303 int16_t Shift = 64 - LeadingZeros;
304 if (LeadingZeros)
305 Upper = Upper << LeadingZeros | Lower >> Shift;
306 bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
307 return getRoundedFloat(Upper, ShouldRound, Shift);
308}
309
310//===----------------------------------------------------------------------===//
311//
312// BlockMass implementation.
313//
314//===----------------------------------------------------------------------===//
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000315UnsignedFloat<uint64_t> BlockMass::toFloat() const {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000316 if (isFull())
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000317 return UnsignedFloat<uint64_t>(1, 0);
318 return UnsignedFloat<uint64_t>(getMass() + 1, -64);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000319}
320
321void BlockMass::dump() const { print(dbgs()); }
322
323static char getHexDigit(int N) {
324 assert(N < 16);
325 if (N < 10)
326 return '0' + N;
327 return 'a' + N - 10;
328}
329raw_ostream &BlockMass::print(raw_ostream &OS) const {
330 for (int Digits = 0; Digits < 16; ++Digits)
331 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
332 return OS;
333}
334
335//===----------------------------------------------------------------------===//
336//
337// BlockFrequencyInfoImpl implementation.
338//
339//===----------------------------------------------------------------------===//
340namespace {
341
342typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
343typedef BlockFrequencyInfoImplBase::Distribution Distribution;
344typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
345typedef BlockFrequencyInfoImplBase::Float Float;
Duncan P. N. Exon Smithcc88ebf2014-04-22 03:31:31 +0000346typedef BlockFrequencyInfoImplBase::LoopData LoopData;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000347typedef BlockFrequencyInfoImplBase::Weight Weight;
348typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
349
350/// \brief Dithering mass distributer.
351///
352/// This class splits up a single mass into portions by weight, dithering to
353/// spread out error. No mass is lost. The dithering precision depends on the
354/// precision of the product of \a BlockMass and \a BranchProbability.
355///
356/// The distribution algorithm follows.
357///
358/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
359/// mass to distribute in \a RemMass.
360///
361/// 2. For each portion:
362///
363/// 1. Construct a branch probability, P, as the portion's weight divided
364/// by the current value of \a RemWeight.
365/// 2. Calculate the portion's mass as \a RemMass times P.
366/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
367/// the current portion's weight and mass.
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000368struct DitheringDistributer {
369 uint32_t RemWeight;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000370 BlockMass RemMass;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000371
372 DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
373
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000374 BlockMass takeMass(uint32_t Weight);
375};
376}
377
378DitheringDistributer::DitheringDistributer(Distribution &Dist,
379 const BlockMass &Mass) {
380 Dist.normalize();
381 RemWeight = Dist.Total;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000382 RemMass = Mass;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000383}
384
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000385BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
386 assert(Weight && "invalid weight");
387 assert(Weight <= RemWeight);
388 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
389
390 // Decrement totals (dither).
391 RemWeight -= Weight;
392 RemMass -= Mass;
393 return Mass;
394}
395
396void Distribution::add(const BlockNode &Node, uint64_t Amount,
397 Weight::DistType Type) {
398 assert(Amount && "invalid weight of 0");
399 uint64_t NewTotal = Total + Amount;
400
401 // Check for overflow. It should be impossible to overflow twice.
402 bool IsOverflow = NewTotal < Total;
403 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
404 DidOverflow |= IsOverflow;
405
406 // Update the total.
407 Total = NewTotal;
408
409 // Save the weight.
410 Weight W;
411 W.TargetNode = Node;
412 W.Amount = Amount;
413 W.Type = Type;
414 Weights.push_back(W);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000415}
416
417static void combineWeight(Weight &W, const Weight &OtherW) {
418 assert(OtherW.TargetNode.isValid());
419 if (!W.Amount) {
420 W = OtherW;
421 return;
422 }
423 assert(W.Type == OtherW.Type);
424 assert(W.TargetNode == OtherW.TargetNode);
Duncan P. N. Exon Smithebf76262014-04-25 04:38:40 +0000425 assert(W.Amount < W.Amount + OtherW.Amount && "Unexpected overflow");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000426 W.Amount += OtherW.Amount;
427}
428static void combineWeightsBySorting(WeightList &Weights) {
429 // Sort so edges to the same node are adjacent.
430 std::sort(Weights.begin(), Weights.end(),
431 [](const Weight &L,
432 const Weight &R) { return L.TargetNode < R.TargetNode; });
433
434 // Combine adjacent edges.
435 WeightList::iterator O = Weights.begin();
436 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
437 ++O, (I = L)) {
438 *O = *I;
439
440 // Find the adjacent weights to the same node.
441 for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
442 combineWeight(*O, *L);
443 }
444
445 // Erase extra entries.
446 Weights.erase(O, Weights.end());
447 return;
448}
449static void combineWeightsByHashing(WeightList &Weights) {
450 // Collect weights into a DenseMap.
451 typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
452 HashTable Combined(NextPowerOf2(2 * Weights.size()));
453 for (const Weight &W : Weights)
454 combineWeight(Combined[W.TargetNode.Index], W);
455
456 // Check whether anything changed.
457 if (Weights.size() == Combined.size())
458 return;
459
460 // Fill in the new weights.
461 Weights.clear();
462 Weights.reserve(Combined.size());
463 for (const auto &I : Combined)
464 Weights.push_back(I.second);
465}
466static void combineWeights(WeightList &Weights) {
467 // Use a hash table for many successors to keep this linear.
468 if (Weights.size() > 128) {
469 combineWeightsByHashing(Weights);
470 return;
471 }
472
473 combineWeightsBySorting(Weights);
474}
475static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
476 assert(Shift >= 0);
477 assert(Shift < 64);
478 if (!Shift)
479 return N;
480 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
481}
482void Distribution::normalize() {
483 // Early exit for termination nodes.
484 if (Weights.empty())
485 return;
486
487 // Only bother if there are multiple successors.
488 if (Weights.size() > 1)
489 combineWeights(Weights);
490
491 // Early exit when combined into a single successor.
492 if (Weights.size() == 1) {
493 Total = 1;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000494 Weights.front().Amount = 1;
495 return;
496 }
497
498 // Determine how much to shift right so that the total fits into 32-bits.
499 //
500 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
501 // for each weight can cause a 32-bit overflow.
502 int Shift = 0;
503 if (DidOverflow)
504 Shift = 33;
505 else if (Total > UINT32_MAX)
506 Shift = 33 - countLeadingZeros(Total);
507
508 // Early exit if nothing needs to be scaled.
509 if (!Shift)
510 return;
511
512 // Recompute the total through accumulation (rather than shifting it) so that
Duncan P. N. Exon Smithcb7d29d2014-04-25 04:38:43 +0000513 // it's accurate after shifting.
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000514 Total = 0;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000515
516 // Sum the weights to each node and shift right if necessary.
517 for (Weight &W : Weights) {
518 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
519 // can round here without concern about overflow.
520 assert(W.TargetNode.isValid());
521 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
522 assert(W.Amount <= UINT32_MAX);
523
524 // Update the total.
525 Total += W.Amount;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000526 }
527 assert(Total <= UINT32_MAX);
528}
529
530void BlockFrequencyInfoImplBase::clear() {
Duncan P. N. Exon Smithdc2d66e2014-04-22 03:31:34 +0000531 // Swap with a default-constructed std::vector, since std::vector<>::clear()
532 // does not actually clear heap storage.
533 std::vector<FrequencyData>().swap(Freqs);
534 std::vector<WorkingData>().swap(Working);
Duncan P. N. Exon Smithfc7dc932014-04-25 04:30:06 +0000535 Loops.clear();
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000536}
537
538/// \brief Clear all memory not needed downstream.
539///
540/// Releases all memory not used downstream. In particular, saves Freqs.
541static void cleanup(BlockFrequencyInfoImplBase &BFI) {
542 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
543 BFI.clear();
544 BFI.Freqs = std::move(SavedFreqs);
545}
546
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000547bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000548 const LoopData *OuterLoop,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000549 const BlockNode &Pred,
550 const BlockNode &Succ,
551 uint64_t Weight) {
552 if (!Weight)
553 Weight = 1;
554
Duncan P. N. Exon Smith39cc6482014-04-25 04:38:06 +0000555 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
556 return OuterLoop && OuterLoop->isHeader(Node);
557 };
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000558
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000559 BlockNode Resolved = Working[Succ.Index].getResolvedNode();
560
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000561#ifndef NDEBUG
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000562 auto debugSuccessor = [&](const char *Type) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000563 dbgs() << " =>"
564 << " [" << Type << "] weight = " << Weight;
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000565 if (!isLoopHeader(Resolved))
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000566 dbgs() << ", succ = " << getBlockName(Succ);
567 if (Resolved != Succ)
568 dbgs() << ", resolved = " << getBlockName(Resolved);
569 dbgs() << "\n";
570 };
571 (void)debugSuccessor;
572#endif
573
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000574 if (isLoopHeader(Resolved)) {
575 DEBUG(debugSuccessor("backedge"));
Duncan P. N. Exon Smith39cc6482014-04-25 04:38:06 +0000576 Dist.addBackedge(OuterLoop->getHeader(), Weight);
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000577 return true;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000578 }
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000579
Duncan P. N. Exon Smith39cc6482014-04-25 04:38:06 +0000580 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000581 DEBUG(debugSuccessor(" exit "));
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000582 Dist.addExit(Resolved, Weight);
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000583 return true;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000584 }
585
Duncan P. N. Exon Smithb3380ea2014-04-22 03:31:53 +0000586 if (Resolved < Pred) {
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000587 if (!isLoopHeader(Pred)) {
588 // If OuterLoop is an irreducible loop, we can't actually handle this.
589 assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
590 "unhandled irreducible control flow");
591
592 // Irreducible backedge. Abort.
593 DEBUG(debugSuccessor("abort!!!"));
594 return false;
595 }
596
597 // If "Pred" is a loop header, then this isn't really a backedge; rather,
598 // OuterLoop must be irreducible. These false backedges can come only from
599 // secondary loop headers.
600 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
601 "unhandled irreducible control flow");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000602 }
603
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000604 DEBUG(debugSuccessor(" local "));
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000605 Dist.addLocal(Resolved, Weight);
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000606 return true;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000607}
608
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000609bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000610 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000611 // Copy the exit map into Dist.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000612 for (const auto &I : Loop.Exits)
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000613 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
614 I.second.getMass()))
615 // Irreducible backedge.
616 return false;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000617
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000618 return true;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000619}
620
621/// \brief Get the maximum allowed loop scale.
622///
Duncan P. N. Exon Smith254689f2014-04-21 18:31:58 +0000623/// Gives the maximum number of estimated iterations allowed for a loop. Very
624/// large numbers cause problems downstream (even within 64-bits).
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000625static Float getMaxLoopScale() { return Float(1, 12); }
626
627/// \brief Compute the loop scale for a loop.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000628void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000629 // Compute loop scale.
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000630 DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000631
632 // LoopScale == 1 / ExitMass
633 // ExitMass == HeadMass - BackedgeMass
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000634 BlockMass ExitMass = BlockMass::getFull() - Loop.BackedgeMass;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000635
636 // Block scale stores the inverse of the scale.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000637 Loop.Scale = ExitMass.toFloat().inverse();
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000638
639 DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000640 << " - " << Loop.BackedgeMass << ")\n"
641 << " - scale = " << Loop.Scale << "\n");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000642
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000643 if (Loop.Scale > getMaxLoopScale()) {
644 Loop.Scale = getMaxLoopScale();
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000645 DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
646 }
647}
648
649/// \brief Package up a loop.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000650void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000651 DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
652
653 // Clear the subloop exits to prevent quadratic memory usage.
654 for (const BlockNode &M : Loop.Nodes) {
655 if (auto *Loop = Working[M.Index].getPackagedLoop())
656 Loop->Exits.clear();
657 DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
658 }
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000659 Loop.IsPackaged = true;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000660}
661
662void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000663 LoopData *OuterLoop,
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000664 Distribution &Dist) {
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000665 BlockMass Mass = Working[Source.Index].getMass();
Duncan P. N. Exon Smithcb7d29d2014-04-25 04:38:43 +0000666 DEBUG(dbgs() << " => mass: " << Mass << "\n");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000667
668 // Distribute mass to successors as laid out in Dist.
669 DitheringDistributer D(Dist, Mass);
670
671#ifndef NDEBUG
672 auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
673 const char *Desc) {
Duncan P. N. Exon Smithcb7d29d2014-04-25 04:38:43 +0000674 dbgs() << " => assign " << M << " (" << D.RemMass << ")";
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000675 if (Desc)
676 dbgs() << " [" << Desc << "]";
677 if (T.isValid())
678 dbgs() << " to " << getBlockName(T);
679 dbgs() << "\n";
680 };
681 (void)debugAssign;
682#endif
683
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000684 for (const Weight &W : Dist.Weights) {
Duncan P. N. Exon Smithcb7d29d2014-04-25 04:38:43 +0000685 // Check for a local edge (non-backedge and non-exit).
686 BlockMass Taken = D.takeMass(W.Amount);
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000687 if (W.Type == Weight::Local) {
Duncan P. N. Exon Smithda5eaed2014-04-25 18:47:04 +0000688 Working[W.TargetNode.Index].getMass() += Taken;
Duncan P. N. Exon Smithcb7d29d2014-04-25 04:38:43 +0000689 DEBUG(debugAssign(W.TargetNode, Taken, nullptr));
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000690 continue;
691 }
692
693 // Backedges and exits only make sense if we're processing a loop.
Duncan P. N. Exon Smithd1320402014-04-25 04:38:01 +0000694 assert(OuterLoop && "backedge or exit outside of loop");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000695
696 // Check for a backedge.
697 if (W.Type == Weight::Backedge) {
Duncan P. N. Exon Smithcb7d29d2014-04-25 04:38:43 +0000698 OuterLoop->BackedgeMass += Taken;
699 DEBUG(debugAssign(BlockNode(), Taken, "back"));
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000700 continue;
701 }
702
703 // This must be an exit.
704 assert(W.Type == Weight::Exit);
Duncan P. N. Exon Smithcb7d29d2014-04-25 04:38:43 +0000705 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
706 DEBUG(debugAssign(W.TargetNode, Taken, "exit"));
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000707 }
708}
709
710static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
711 const Float &Min, const Float &Max) {
712 // Scale the Factor to a size that creates integers. Ideally, integers would
713 // be scaled so that Max == UINT64_MAX so that they can be best
714 // differentiated. However, the register allocator currently deals poorly
715 // with large numbers. Instead, push Min up a little from 1 to give some
716 // room to differentiate small, unequal numbers.
717 //
718 // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
719 Float ScalingFactor = Min.inverse();
720 if ((Max / Min).lg() < 60)
721 ScalingFactor <<= 3;
722
723 // Translate the floats to integers.
724 DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
725 << ", factor = " << ScalingFactor << "\n");
726 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
727 Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
728 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
729 DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
730 << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
731 << ", int = " << BFI.Freqs[Index].Integer << "\n");
732 }
733}
734
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000735/// \brief Unwrap a loop package.
736///
737/// Visits all the members of a loop, adjusting their BlockData according to
738/// the loop's pseudo-node.
Duncan P. N. Exon Smith0633f0e2014-04-25 04:38:25 +0000739static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000740 DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
Duncan P. N. Exon Smith0633f0e2014-04-25 04:38:25 +0000741 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
742 << "\n");
Duncan P. N. Exon Smith5291d2a2014-04-25 04:38:27 +0000743 Loop.Scale *= Loop.Mass.toFloat();
744 Loop.IsPackaged = false;
Duncan P. N. Exon Smith3f086782014-04-25 04:38:32 +0000745 DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000746
747 // Propagate the head scale through the loop. Since members are visited in
748 // RPO, the head scale will be updated by the loop scale first, and then the
749 // final head scale will be used for updated the rest of the members.
Duncan P. N. Exon Smith5291d2a2014-04-25 04:38:27 +0000750 for (const BlockNode &N : Loop.Nodes) {
751 const auto &Working = BFI.Working[N.Index];
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000752 Float &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
Duncan P. N. Exon Smith5291d2a2014-04-25 04:38:27 +0000753 : BFI.Freqs[N.Index].Floating;
754 Float New = Loop.Scale * F;
755 DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
756 << "\n");
757 F = New;
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000758 }
759}
760
Duncan P. N. Exon Smith46d9a562014-04-25 04:38:17 +0000761void BlockFrequencyInfoImplBase::unwrapLoops() {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000762 // Set initial frequencies from loop-local masses.
763 for (size_t Index = 0; Index < Working.size(); ++Index)
764 Freqs[Index].Floating = Working[Index].Mass.toFloat();
765
Duncan P. N. Exon Smithda0b21c2014-04-25 04:38:23 +0000766 for (LoopData &Loop : Loops)
Duncan P. N. Exon Smith0633f0e2014-04-25 04:38:25 +0000767 unwrapLoop(*this, Loop);
Duncan P. N. Exon Smith46d9a562014-04-25 04:38:17 +0000768}
769
770void BlockFrequencyInfoImplBase::finalizeMetrics() {
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000771 // Unwrap loop packages in reverse post-order, tracking min and max
772 // frequencies.
773 auto Min = Float::getLargest();
774 auto Max = Float::getZero();
775 for (size_t Index = 0; Index < Working.size(); ++Index) {
Duncan P. N. Exon Smith46d9a562014-04-25 04:38:17 +0000776 // Update min/max scale.
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000777 Min = std::min(Min, Freqs[Index].Floating);
778 Max = std::max(Max, Freqs[Index].Floating);
779 }
780
781 // Convert to integers.
782 convertFloatingToInteger(*this, Min, Max);
783
784 // Clean up data structures.
785 cleanup(*this);
786
787 // Print out the final stats.
788 DEBUG(dump());
789}
790
791BlockFrequency
792BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
793 if (!Node.isValid())
794 return 0;
795 return Freqs[Node.Index].Integer;
796}
797Float
798BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
799 if (!Node.isValid())
800 return Float::getZero();
801 return Freqs[Node.Index].Floating;
802}
803
804std::string
805BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
806 return std::string();
807}
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000808std::string
809BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
810 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
811}
Duncan P. N. Exon Smith10be9a82014-04-21 17:57:07 +0000812
813raw_ostream &
814BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
815 const BlockNode &Node) const {
816 return OS << getFloatingBlockFreq(Node);
817}
818
819raw_ostream &
820BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
821 const BlockFrequency &Freq) const {
822 Float Block(Freq.getFrequency(), 0);
823 Float Entry(getEntryFreq(), 0);
824
825 return OS << Block / Entry;
826}
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000827
828void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
829 Start = OuterLoop.getHeader();
830 Nodes.reserve(OuterLoop.Nodes.size());
831 for (auto N : OuterLoop.Nodes)
832 addNode(N);
833 indexNodes();
834}
835void IrreducibleGraph::addNodesInFunction() {
836 Start = 0;
837 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
838 if (!BFI.Working[Index].isPackaged())
839 addNode(Index);
840 indexNodes();
841}
842void IrreducibleGraph::indexNodes() {
843 for (auto &I : Nodes)
844 Lookup[I.Node.Index] = &I;
845}
846void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
847 const BFIBase::LoopData *OuterLoop) {
848 if (OuterLoop && OuterLoop->isHeader(Succ))
849 return;
850 auto L = Lookup.find(Succ.Index);
851 if (L == Lookup.end())
852 return;
853 IrrNode &SuccIrr = *L->second;
854 Irr.Edges.push_back(&SuccIrr);
855 SuccIrr.Edges.push_front(&Irr);
856 ++SuccIrr.NumIn;
857}
858
859namespace llvm {
860template <> struct GraphTraits<IrreducibleGraph> {
861 typedef bfi_detail::IrreducibleGraph GraphT;
862
Duncan P. N. Exon Smith295b5e72014-04-28 20:22:29 +0000863 typedef const GraphT::IrrNode NodeType;
864 typedef GraphT::IrrNode::iterator ChildIteratorType;
Duncan P. N. Exon Smithc5a31392014-04-28 20:02:29 +0000865
866 static const NodeType *getEntryNode(const GraphT &G) {
867 return G.StartIrr;
868 }
869 static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); }
870 static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); }
871};
872}
873
874/// \brief Find extra irreducible headers.
875///
876/// Find entry blocks and other blocks with backedges, which exist when \c G
877/// contains irreducible sub-SCCs.
878static void findIrreducibleHeaders(
879 const BlockFrequencyInfoImplBase &BFI,
880 const IrreducibleGraph &G,
881 const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
882 LoopData::NodeList &Headers, LoopData::NodeList &Others) {
883 // Map from nodes in the SCC to whether it's an entry block.
884 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
885
886 // InSCC also acts the set of nodes in the graph. Seed it.
887 for (const auto *I : SCC)
888 InSCC[I] = false;
889
890 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
891 auto &Irr = *I->first;
892 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
893 if (InSCC.count(P))
894 continue;
895
896 // This is an entry block.
897 I->second = true;
898 Headers.push_back(Irr.Node);
899 DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) << "\n");
900 break;
901 }
902 }
903 assert(Headers.size() >= 2 && "Should be irreducible");
904 if (Headers.size() == InSCC.size()) {
905 // Every block is a header.
906 std::sort(Headers.begin(), Headers.end());
907 return;
908 }
909
910 // Look for extra headers from irreducible sub-SCCs.
911 for (const auto &I : InSCC) {
912 // Entry blocks are already headers.
913 if (I.second)
914 continue;
915
916 auto &Irr = *I.first;
917 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
918 // Skip forward edges.
919 if (P->Node < Irr.Node)
920 continue;
921
922 // Skip predecessors from entry blocks. These can have inverted
923 // ordering.
924 if (InSCC.lookup(P))
925 continue;
926
927 // Store the extra header.
928 Headers.push_back(Irr.Node);
929 DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) << "\n");
930 break;
931 }
932 if (Headers.back() == Irr.Node)
933 // Added this as a header.
934 continue;
935
936 // This is not a header.
937 Others.push_back(Irr.Node);
938 DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
939 }
940 std::sort(Headers.begin(), Headers.end());
941 std::sort(Others.begin(), Others.end());
942}
943
944static void createIrreducibleLoop(
945 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
946 LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
947 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
948 // Translate the SCC into RPO.
949 DEBUG(dbgs() << " - found-scc\n");
950
951 LoopData::NodeList Headers;
952 LoopData::NodeList Others;
953 findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
954
955 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
956 Headers.end(), Others.begin(), Others.end());
957
958 // Update loop hierarchy.
959 for (const auto &N : Loop->Nodes)
960 if (BFI.Working[N.Index].isLoopHeader())
961 BFI.Working[N.Index].Loop->Parent = &*Loop;
962 else
963 BFI.Working[N.Index].Loop = &*Loop;
964}
965
966iterator_range<std::list<LoopData>::iterator>
967BlockFrequencyInfoImplBase::analyzeIrreducible(
968 const IrreducibleGraph &G, LoopData *OuterLoop,
969 std::list<LoopData>::iterator Insert) {
970 assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
971 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
972
973 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
974 if (I->size() < 2)
975 continue;
976
977 // Translate the SCC into RPO.
978 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
979 }
980
981 if (OuterLoop)
982 return make_range(std::next(Prev), Insert);
983 return make_range(Loops.begin(), Insert);
984}
985
986void
987BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
988 OuterLoop.Exits.clear();
989 OuterLoop.BackedgeMass = BlockMass::getEmpty();
990 auto O = OuterLoop.Nodes.begin() + 1;
991 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
992 if (!Working[I->Index].isPackaged())
993 *O++ = *I;
994 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
995}