blob: 43a18099d39aa9af2c4f23a3083142266f2b01df [file] [log] [blame]
Brendon Cahoon254f8892016-07-29 16:44:44 +00001//===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
13// that overlap loop iterations and explioits ILP via a compiler transformation.
14//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000064#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000065#include "llvm/ADT/MapVector.h"
66#include "llvm/ADT/PriorityQueue.h"
67#include "llvm/ADT/SetVector.h"
68#include "llvm/ADT/SmallPtrSet.h"
69#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000070#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000071#include "llvm/ADT/Statistic.h"
72#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
76#include "llvm/CodeGen/LiveIntervalAnalysis.h"
77#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000083#include "llvm/CodeGen/MachineInstrBundle.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000084#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000085#include "llvm/CodeGen/MachineMemOperand.h"
86#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000088#include "llvm/CodeGen/RegisterClassInfo.h"
89#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000090#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000091#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000092#include "llvm/CodeGen/ScheduleDAGMutation.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000093#include "llvm/IR/Attributes.h"
94#include "llvm/IR/DebugLoc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000095#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000096#include "llvm/PassAnalysisSupport.h"
97#include "llvm/PassRegistry.h"
98#include "llvm/PassSupport.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000099#include "llvm/Support/CommandLine.h"
100#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000101#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000102#include "llvm/Support/raw_ostream.h"
103#include "llvm/Target/TargetInstrInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104#include "llvm/Target/TargetRegisterInfo.h"
105#include "llvm/Target/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000106#include <algorithm>
107#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000108#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000109#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000110#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000111#include <functional>
112#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113#include <map>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000114#include <tuple>
115#include <utility>
116#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000117
118using namespace llvm;
119
120#define DEBUG_TYPE "pipeliner"
121
122STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
123STATISTIC(NumPipelined, "Number of loops software pipelined");
124
125/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000126static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
127 cl::ZeroOrMore,
128 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000129
130/// A command line option to enable SWP at -Os.
131static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
132 cl::desc("Enable SWP at Os."), cl::Hidden,
133 cl::init(false));
134
135/// A command line argument to limit minimum initial interval for pipelining.
136static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
137 cl::desc("Size limit for the the MII."),
138 cl::Hidden, cl::init(27));
139
140/// A command line argument to limit the number of stages in the pipeline.
141static cl::opt<int>
142 SwpMaxStages("pipeliner-max-stages",
143 cl::desc("Maximum stages allowed in the generated scheduled."),
144 cl::Hidden, cl::init(3));
145
146/// A command line option to disable the pruning of chain dependences due to
147/// an unrelated Phi.
148static cl::opt<bool>
149 SwpPruneDeps("pipeliner-prune-deps",
150 cl::desc("Prune dependences between unrelated Phi nodes."),
151 cl::Hidden, cl::init(true));
152
153/// A command line option to disable the pruning of loop carried order
154/// dependences.
155static cl::opt<bool>
156 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
157 cl::desc("Prune loop carried order dependences."),
158 cl::Hidden, cl::init(true));
159
160#ifndef NDEBUG
161static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
162#endif
163
164static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
165 cl::ReallyHidden, cl::init(false),
166 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
167
168namespace {
169
170class NodeSet;
171class SMSchedule;
172class SwingSchedulerDAG;
173
174/// The main class in the implementation of the target independent
175/// software pipeliner pass.
176class MachinePipeliner : public MachineFunctionPass {
177public:
178 MachineFunction *MF = nullptr;
179 const MachineLoopInfo *MLI = nullptr;
180 const MachineDominatorTree *MDT = nullptr;
181 const InstrItineraryData *InstrItins;
182 const TargetInstrInfo *TII = nullptr;
183 RegisterClassInfo RegClassInfo;
184
185#ifndef NDEBUG
186 static int NumTries;
187#endif
188 /// Cache the target analysis information about the loop.
189 struct LoopInfo {
190 MachineBasicBlock *TBB = nullptr;
191 MachineBasicBlock *FBB = nullptr;
192 SmallVector<MachineOperand, 4> BrCond;
193 MachineInstr *LoopInductionVar = nullptr;
194 MachineInstr *LoopCompare = nullptr;
195 };
196 LoopInfo LI;
197
198 static char ID;
199 MachinePipeliner() : MachineFunctionPass(ID) {
200 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
201 }
202
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000203 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000204
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000205 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000206 AU.addRequired<AAResultsWrapperPass>();
207 AU.addPreserved<AAResultsWrapperPass>();
208 AU.addRequired<MachineLoopInfo>();
209 AU.addRequired<MachineDominatorTree>();
210 AU.addRequired<LiveIntervals>();
211 MachineFunctionPass::getAnalysisUsage(AU);
212 }
213
214private:
215 bool canPipelineLoop(MachineLoop &L);
216 bool scheduleLoop(MachineLoop &L);
217 bool swingModuloScheduler(MachineLoop &L);
218};
219
220/// This class builds the dependence graph for the instructions in a loop,
221/// and attempts to schedule the instructions using the SMS algorithm.
222class SwingSchedulerDAG : public ScheduleDAGInstrs {
223 MachinePipeliner &Pass;
224 /// The minimum initiation interval between iterations for this schedule.
225 unsigned MII;
226 /// Set to true if a valid pipelined schedule is found for the loop.
227 bool Scheduled;
228 MachineLoop &Loop;
229 LiveIntervals &LIS;
230 const RegisterClassInfo &RegClassInfo;
231
232 /// A toplogical ordering of the SUnits, which is needed for changing
233 /// dependences and iterating over the SUnits.
234 ScheduleDAGTopologicalSort Topo;
235
236 struct NodeInfo {
237 int ASAP;
238 int ALAP;
239 NodeInfo() : ASAP(0), ALAP(0) {}
240 };
241 /// Computed properties for each node in the graph.
242 std::vector<NodeInfo> ScheduleInfo;
243
244 enum OrderKind { BottomUp = 0, TopDown = 1 };
245 /// Computed node ordering for scheduling.
246 SetVector<SUnit *> NodeOrder;
247
248 typedef SmallVector<NodeSet, 8> NodeSetType;
249 typedef DenseMap<unsigned, unsigned> ValueMapTy;
250 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
251 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
252
253 /// Instructions to change when emitting the final schedule.
254 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
255
256 /// We may create a new instruction, so remember it because it
257 /// must be deleted when the pass is finished.
258 SmallPtrSet<MachineInstr *, 4> NewMIs;
259
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000260 /// Ordered list of DAG postprocessing steps.
261 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
262
Brendon Cahoon254f8892016-07-29 16:44:44 +0000263 /// Helper class to implement Johnson's circuit finding algorithm.
264 class Circuits {
265 std::vector<SUnit> &SUnits;
266 SetVector<SUnit *> Stack;
267 BitVector Blocked;
268 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
269 SmallVector<SmallVector<int, 4>, 16> AdjK;
270 unsigned NumPaths;
271 static unsigned MaxPaths;
272
273 public:
274 Circuits(std::vector<SUnit> &SUs)
275 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
276 AdjK(SUs.size()) {}
277 /// Reset the data structures used in the circuit algorithm.
278 void reset() {
279 Stack.clear();
280 Blocked.reset();
281 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
282 NumPaths = 0;
283 }
284 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
285 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
286 void unblock(int U);
287 };
288
289public:
290 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
291 const RegisterClassInfo &rci)
292 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
293 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000294 Topo(SUnits, &ExitSU) {
295 P.MF->getSubtarget().getSMSMutations(Mutations);
296 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000297
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000298 void schedule() override;
299 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000300
301 /// Return true if the loop kernel has been scheduled.
302 bool hasNewSchedule() { return Scheduled; }
303
304 /// Return the earliest time an instruction may be scheduled.
305 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
306
307 /// Return the latest time an instruction my be scheduled.
308 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
309
310 /// The mobility function, which the the number of slots in which
311 /// an instruction may be scheduled.
312 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
313
314 /// The depth, in the dependence graph, for a node.
315 int getDepth(SUnit *Node) { return Node->getDepth(); }
316
317 /// The height, in the dependence graph, for a node.
318 int getHeight(SUnit *Node) { return Node->getHeight(); }
319
320 /// Return true if the dependence is a back-edge in the data dependence graph.
321 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
322 /// using an anti dependence from a Phi to an instruction.
323 bool isBackedge(SUnit *Source, const SDep &Dep) {
324 if (Dep.getKind() != SDep::Anti)
325 return false;
326 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
327 }
328
329 /// Return true if the dependence is an order dependence between non-Phis.
330 static bool isOrder(SUnit *Source, const SDep &Dep) {
331 if (Dep.getKind() != SDep::Order)
332 return false;
333 return (!Source->getInstr()->isPHI() &&
334 !Dep.getSUnit()->getInstr()->isPHI());
335 }
336
337 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
338
339 /// The latency of the dependence.
340 unsigned getLatency(SUnit *Source, const SDep &Dep) {
341 // Anti dependences represent recurrences, so use the latency of the
342 // instruction on the back-edge.
343 if (Dep.getKind() == SDep::Anti) {
344 if (Source->getInstr()->isPHI())
345 return Dep.getSUnit()->Latency;
346 if (Dep.getSUnit()->getInstr()->isPHI())
347 return Source->Latency;
348 return Dep.getLatency();
349 }
350 return Dep.getLatency();
351 }
352
353 /// The distance function, which indicates that operation V of iteration I
354 /// depends on operations U of iteration I-distance.
355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
356 // Instructions that feed a Phi have a distance of 1. Computing larger
357 // values for arrays requires data dependence information.
358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
359 return 1;
360 return 0;
361 }
362
363 /// Set the Minimum Initiation Interval for this schedule attempt.
364 void setMII(unsigned mii) { MII = mii; }
365
366 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
367 bool UpdateDAG = false);
368
369 /// Return the new base register that was stored away for the changed
370 /// instruction.
371 unsigned getInstrBaseReg(SUnit *SU) {
372 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
373 InstrChanges.find(SU);
374 if (It != InstrChanges.end())
375 return It->second.first;
376 return 0;
377 }
378
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000379 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
380 Mutations.push_back(std::move(Mutation));
381 }
382
Brendon Cahoon254f8892016-07-29 16:44:44 +0000383private:
384 void addLoopCarriedDependences(AliasAnalysis *AA);
385 void updatePhiDependences();
386 void changeDependences();
387 unsigned calculateResMII();
388 unsigned calculateRecMII(NodeSetType &RecNodeSets);
389 void findCircuits(NodeSetType &NodeSets);
390 void fuseRecs(NodeSetType &NodeSets);
391 void removeDuplicateNodes(NodeSetType &NodeSets);
392 void computeNodeFunctions(NodeSetType &NodeSets);
393 void registerPressureFilter(NodeSetType &NodeSets);
394 void colocateNodeSets(NodeSetType &NodeSets);
395 void checkNodeSets(NodeSetType &NodeSets);
396 void groupRemainingNodes(NodeSetType &NodeSets);
397 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
398 SetVector<SUnit *> &NodesAdded);
399 void computeNodeOrder(NodeSetType &NodeSets);
400 bool schedulePipeline(SMSchedule &Schedule);
401 void generatePipelinedLoop(SMSchedule &Schedule);
402 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
403 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
404 MBBVectorTy &PrologBBs);
405 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
406 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
407 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
408 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
409 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
410 SMSchedule &Schedule, ValueMapTy *VRMap,
411 InstrMapTy &InstrMap, unsigned LastStageNum,
412 unsigned CurStageNum, bool IsLast);
413 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
414 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
415 SMSchedule &Schedule, ValueMapTy *VRMap,
416 InstrMapTy &InstrMap, unsigned LastStageNum,
417 unsigned CurStageNum, bool IsLast);
418 void removeDeadInstructions(MachineBasicBlock *KernelBB,
419 MBBVectorTy &EpilogBBs);
420 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
421 SMSchedule &Schedule);
422 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
423 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
424 ValueMapTy *VRMap);
425 bool computeDelta(MachineInstr &MI, unsigned &Delta);
426 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
427 unsigned Num);
428 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
429 unsigned InstStageNum);
430 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
431 unsigned InstStageNum,
432 SMSchedule &Schedule);
433 void updateInstruction(MachineInstr *NewMI, bool LastDef,
434 unsigned CurStageNum, unsigned InstStageNum,
435 SMSchedule &Schedule, ValueMapTy *VRMap);
436 MachineInstr *findDefInLoop(unsigned Reg);
437 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
438 unsigned LoopStage, ValueMapTy *VRMap,
439 MachineBasicBlock *BB);
440 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
441 SMSchedule &Schedule, ValueMapTy *VRMap,
442 InstrMapTy &InstrMap);
443 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
444 InstrMapTy &InstrMap, unsigned CurStageNum,
445 unsigned PhiNum, MachineInstr *Phi,
446 unsigned OldReg, unsigned NewReg,
447 unsigned PrevReg = 0);
448 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
449 unsigned &OffsetPos, unsigned &NewBase,
450 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000451 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000452};
453
454/// A NodeSet contains a set of SUnit DAG nodes with additional information
455/// that assigns a priority to the set.
456class NodeSet {
457 SetVector<SUnit *> Nodes;
458 bool HasRecurrence;
459 unsigned RecMII = 0;
460 int MaxMOV = 0;
461 int MaxDepth = 0;
462 unsigned Colocate = 0;
463 SUnit *ExceedPressure = nullptr;
464
465public:
466 typedef SetVector<SUnit *>::const_iterator iterator;
467
468 NodeSet() : Nodes(), HasRecurrence(false) {}
469
470 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
471
472 bool insert(SUnit *SU) { return Nodes.insert(SU); }
473
474 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
475
476 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
477 return Nodes.remove_if(P);
478 }
479
480 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
481
482 bool hasRecurrence() { return HasRecurrence; };
483
484 unsigned size() const { return Nodes.size(); }
485
486 bool empty() const { return Nodes.empty(); }
487
488 SUnit *getNode(unsigned i) const { return Nodes[i]; };
489
490 void setRecMII(unsigned mii) { RecMII = mii; };
491
492 void setColocate(unsigned c) { Colocate = c; };
493
494 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
495
496 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
497
498 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
499
500 int getRecMII() { return RecMII; }
501
502 /// Summarize node functions for the entire node set.
503 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
504 for (SUnit *SU : *this) {
505 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
506 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
507 }
508 }
509
510 void clear() {
511 Nodes.clear();
512 RecMII = 0;
513 HasRecurrence = false;
514 MaxMOV = 0;
515 MaxDepth = 0;
516 Colocate = 0;
517 ExceedPressure = nullptr;
518 }
519
520 operator SetVector<SUnit *> &() { return Nodes; }
521
522 /// Sort the node sets by importance. First, rank them by recurrence MII,
523 /// then by mobility (least mobile done first), and finally by depth.
524 /// Each node set may contain a colocate value which is used as the first
525 /// tie breaker, if it's set.
526 bool operator>(const NodeSet &RHS) const {
527 if (RecMII == RHS.RecMII) {
528 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
529 return Colocate < RHS.Colocate;
530 if (MaxMOV == RHS.MaxMOV)
531 return MaxDepth > RHS.MaxDepth;
532 return MaxMOV < RHS.MaxMOV;
533 }
534 return RecMII > RHS.RecMII;
535 }
536
537 bool operator==(const NodeSet &RHS) const {
538 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
539 MaxDepth == RHS.MaxDepth;
540 }
541
542 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
543
544 iterator begin() { return Nodes.begin(); }
545 iterator end() { return Nodes.end(); }
546
547 void print(raw_ostream &os) const {
548 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
549 << " depth " << MaxDepth << " col " << Colocate << "\n";
550 for (const auto &I : Nodes)
551 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
552 os << "\n";
553 }
554
555 void dump() const { print(dbgs()); }
556};
557
558/// This class repesents the scheduled code. The main data structure is a
559/// map from scheduled cycle to instructions. During scheduling, the
560/// data structure explicitly represents all stages/iterations. When
561/// the algorithm finshes, the schedule is collapsed into a single stage,
562/// which represents instructions from different loop iterations.
563///
564/// The SMS algorithm allows negative values for cycles, so the first cycle
565/// in the schedule is the smallest cycle value.
566class SMSchedule {
567private:
568 /// Map from execution cycle to instructions.
569 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
570
571 /// Map from instruction to execution cycle.
572 std::map<SUnit *, int> InstrToCycle;
573
574 /// Map for each register and the max difference between its uses and def.
575 /// The first element in the pair is the max difference in stages. The
576 /// second is true if the register defines a Phi value and loop value is
577 /// scheduled before the Phi.
578 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
579
580 /// Keep track of the first cycle value in the schedule. It starts
581 /// as zero, but the algorithm allows negative values.
582 int FirstCycle;
583
584 /// Keep track of the last cycle value in the schedule.
585 int LastCycle;
586
587 /// The initiation interval (II) for the schedule.
588 int InitiationInterval;
589
590 /// Target machine information.
591 const TargetSubtargetInfo &ST;
592
593 /// Virtual register information.
594 MachineRegisterInfo &MRI;
595
596 DFAPacketizer *Resources;
597
598public:
599 SMSchedule(MachineFunction *mf)
600 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
601 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
602 FirstCycle = 0;
603 LastCycle = 0;
604 InitiationInterval = 0;
605 }
606
607 ~SMSchedule() {
608 ScheduledInstrs.clear();
609 InstrToCycle.clear();
610 RegToStageDiff.clear();
611 delete Resources;
612 }
613
614 void reset() {
615 ScheduledInstrs.clear();
616 InstrToCycle.clear();
617 RegToStageDiff.clear();
618 FirstCycle = 0;
619 LastCycle = 0;
620 InitiationInterval = 0;
621 }
622
623 /// Set the initiation interval for this schedule.
624 void setInitiationInterval(int ii) { InitiationInterval = ii; }
625
626 /// Return the first cycle in the completed schedule. This
627 /// can be a negative value.
628 int getFirstCycle() const { return FirstCycle; }
629
630 /// Return the last cycle in the finalized schedule.
631 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
632
633 /// Return the cycle of the earliest scheduled instruction in the dependence
634 /// chain.
635 int earliestCycleInChain(const SDep &Dep);
636
637 /// Return the cycle of the latest scheduled instruction in the dependence
638 /// chain.
639 int latestCycleInChain(const SDep &Dep);
640
641 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
642 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
643 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
644
645 /// Iterators for the cycle to instruction map.
646 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
647 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
648 const_sched_iterator;
649
650 /// Return true if the instruction is scheduled at the specified stage.
651 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
652 return (stageScheduled(SU) == (int)StageNum);
653 }
654
655 /// Return the stage for a scheduled instruction. Return -1 if
656 /// the instruction has not been scheduled.
657 int stageScheduled(SUnit *SU) const {
658 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
659 if (it == InstrToCycle.end())
660 return -1;
661 return (it->second - FirstCycle) / InitiationInterval;
662 }
663
664 /// Return the cycle for a scheduled instruction. This function normalizes
665 /// the first cycle to be 0.
666 unsigned cycleScheduled(SUnit *SU) const {
667 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
668 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
669 return (it->second - FirstCycle) % InitiationInterval;
670 }
671
672 /// Return the maximum stage count needed for this schedule.
673 unsigned getMaxStageCount() {
674 return (LastCycle - FirstCycle) / InitiationInterval;
675 }
676
677 /// Return the max. number of stages/iterations that can occur between a
678 /// register definition and its uses.
679 unsigned getStagesForReg(int Reg, unsigned CurStage) {
680 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
681 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
682 return 1;
683 return Stages.first;
684 }
685
686 /// The number of stages for a Phi is a little different than other
687 /// instructions. The minimum value computed in RegToStageDiff is 1
688 /// because we assume the Phi is needed for at least 1 iteration.
689 /// This is not the case if the loop value is scheduled prior to the
690 /// Phi in the same stage. This function returns the number of stages
691 /// or iterations needed between the Phi definition and any uses.
692 unsigned getStagesForPhi(int Reg) {
693 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
694 if (Stages.second)
695 return Stages.first;
696 return Stages.first - 1;
697 }
698
699 /// Return the instructions that are scheduled at the specified cycle.
700 std::deque<SUnit *> &getInstructions(int cycle) {
701 return ScheduledInstrs[cycle];
702 }
703
704 bool isValidSchedule(SwingSchedulerDAG *SSD);
705 void finalizeSchedule(SwingSchedulerDAG *SSD);
706 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
707 std::deque<SUnit *> &Insts);
708 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
709 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
710 MachineOperand &MO);
711 void print(raw_ostream &os) const;
712 void dump() const;
713};
714
715} // end anonymous namespace
716
717unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
718char MachinePipeliner::ID = 0;
719#ifndef NDEBUG
720int MachinePipeliner::NumTries = 0;
721#endif
722char &llvm::MachinePipelinerID = MachinePipeliner::ID;
723INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
724 "Modulo Software Pipelining", false, false)
725INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
726INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
727INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
728INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
729INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
730 "Modulo Software Pipelining", false, false)
731
732/// The "main" function for implementing Swing Modulo Scheduling.
733bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
734 if (skipFunction(*mf.getFunction()))
735 return false;
736
737 if (!EnableSWP)
738 return false;
739
740 if (mf.getFunction()->getAttributes().hasAttribute(
741 AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
742 !EnableSWPOptSize.getPosition())
743 return false;
744
745 MF = &mf;
746 MLI = &getAnalysis<MachineLoopInfo>();
747 MDT = &getAnalysis<MachineDominatorTree>();
748 TII = MF->getSubtarget().getInstrInfo();
749 RegClassInfo.runOnMachineFunction(*MF);
750
751 for (auto &L : *MLI)
752 scheduleLoop(*L);
753
754 return false;
755}
756
757/// Attempt to perform the SMS algorithm on the specified loop. This function is
758/// the main entry point for the algorithm. The function identifies candidate
759/// loops, calculates the minimum initiation interval, and attempts to schedule
760/// the loop.
761bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
762 bool Changed = false;
763 for (auto &InnerLoop : L)
764 Changed |= scheduleLoop(*InnerLoop);
765
766#ifndef NDEBUG
767 // Stop trying after reaching the limit (if any).
768 int Limit = SwpLoopLimit;
769 if (Limit >= 0) {
770 if (NumTries >= SwpLoopLimit)
771 return Changed;
772 NumTries++;
773 }
774#endif
775
776 if (!canPipelineLoop(L))
777 return Changed;
778
779 ++NumTrytoPipeline;
780
781 Changed = swingModuloScheduler(L);
782
783 return Changed;
784}
785
786/// Return true if the loop can be software pipelined. The algorithm is
787/// restricted to loops with a single basic block. Make sure that the
788/// branch in the loop can be analyzed.
789bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
790 if (L.getNumBlocks() != 1)
791 return false;
792
793 // Check if the branch can't be understood because we can't do pipelining
794 // if that's the case.
795 LI.TBB = nullptr;
796 LI.FBB = nullptr;
797 LI.BrCond.clear();
798 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
799 return false;
800
801 LI.LoopInductionVar = nullptr;
802 LI.LoopCompare = nullptr;
803 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
804 return false;
805
806 if (!L.getLoopPreheader())
807 return false;
808
809 // If any of the Phis contain subregs, then we can't pipeline
810 // because we don't know how to maintain subreg information in the
811 // VMap structure.
812 MachineBasicBlock *MBB = L.getHeader();
813 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
814 BBE = MBB->getFirstNonPHI();
815 BBI != BBE; ++BBI)
816 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
817 if (BBI->getOperand(i).getSubReg() != 0)
818 return false;
819
820 return true;
821}
822
823/// The SMS algorithm consists of the following main steps:
824/// 1. Computation and analysis of the dependence graph.
825/// 2. Ordering of the nodes (instructions).
826/// 3. Attempt to Schedule the loop.
827bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
828 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
829
830 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
831
832 MachineBasicBlock *MBB = L.getHeader();
833 // The kernel should not include any terminator instructions. These
834 // will be added back later.
835 SMS.startBlock(MBB);
836
837 // Compute the number of 'real' instructions in the basic block by
838 // ignoring terminators.
839 unsigned size = MBB->size();
840 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
841 E = MBB->instr_end();
842 I != E; ++I, --size)
843 ;
844
845 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
846 SMS.schedule();
847 SMS.exitRegion();
848
849 SMS.finishBlock();
850 return SMS.hasNewSchedule();
851}
852
853/// We override the schedule function in ScheduleDAGInstrs to implement the
854/// scheduling part of the Swing Modulo Scheduling algorithm.
855void SwingSchedulerDAG::schedule() {
856 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
857 buildSchedGraph(AA);
858 addLoopCarriedDependences(AA);
859 updatePhiDependences();
860 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000861 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000862 changeDependences();
863 DEBUG({
864 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
865 SUnits[su].dumpAll(this);
866 });
867
868 NodeSetType NodeSets;
869 findCircuits(NodeSets);
870
871 // Calculate the MII.
872 unsigned ResMII = calculateResMII();
873 unsigned RecMII = calculateRecMII(NodeSets);
874
875 fuseRecs(NodeSets);
876
877 // This flag is used for testing and can cause correctness problems.
878 if (SwpIgnoreRecMII)
879 RecMII = 0;
880
881 MII = std::max(ResMII, RecMII);
882 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
883 << ")\n");
884
885 // Can't schedule a loop without a valid MII.
886 if (MII == 0)
887 return;
888
889 // Don't pipeline large loops.
890 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
891 return;
892
893 computeNodeFunctions(NodeSets);
894
895 registerPressureFilter(NodeSets);
896
897 colocateNodeSets(NodeSets);
898
899 checkNodeSets(NodeSets);
900
901 DEBUG({
902 for (auto &I : NodeSets) {
903 dbgs() << " Rec NodeSet ";
904 I.dump();
905 }
906 });
907
908 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
909
910 groupRemainingNodes(NodeSets);
911
912 removeDuplicateNodes(NodeSets);
913
914 DEBUG({
915 for (auto &I : NodeSets) {
916 dbgs() << " NodeSet ";
917 I.dump();
918 }
919 });
920
921 computeNodeOrder(NodeSets);
922
923 SMSchedule Schedule(Pass.MF);
924 Scheduled = schedulePipeline(Schedule);
925
926 if (!Scheduled)
927 return;
928
929 unsigned numStages = Schedule.getMaxStageCount();
930 // No need to generate pipeline if there are no overlapped iterations.
931 if (numStages == 0)
932 return;
933
934 // Check that the maximum stage count is less than user-defined limit.
935 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
936 return;
937
938 generatePipelinedLoop(Schedule);
939 ++NumPipelined;
940}
941
942/// Clean up after the software pipeliner runs.
943void SwingSchedulerDAG::finishBlock() {
944 for (MachineInstr *I : NewMIs)
945 MF.DeleteMachineInstr(I);
946 NewMIs.clear();
947
948 // Call the superclass.
949 ScheduleDAGInstrs::finishBlock();
950}
951
952/// Return the register values for the operands of a Phi instruction.
953/// This function assume the instruction is a Phi.
954static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
955 unsigned &InitVal, unsigned &LoopVal) {
956 assert(Phi.isPHI() && "Expecting a Phi.");
957
958 InitVal = 0;
959 LoopVal = 0;
960 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
961 if (Phi.getOperand(i + 1).getMBB() != Loop)
962 InitVal = Phi.getOperand(i).getReg();
963 else if (Phi.getOperand(i + 1).getMBB() == Loop)
964 LoopVal = Phi.getOperand(i).getReg();
965
966 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
967}
968
969/// Return the Phi register value that comes from the incoming block.
970static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
971 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
972 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
973 return Phi.getOperand(i).getReg();
974 return 0;
975}
976
977/// Return the Phi register value that comes the the loop block.
978static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
979 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
980 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
981 return Phi.getOperand(i).getReg();
982 return 0;
983}
984
985/// Return true if SUb can be reached from SUa following the chain edges.
986static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
987 SmallPtrSet<SUnit *, 8> Visited;
988 SmallVector<SUnit *, 8> Worklist;
989 Worklist.push_back(SUa);
990 while (!Worklist.empty()) {
991 const SUnit *SU = Worklist.pop_back_val();
992 for (auto &SI : SU->Succs) {
993 SUnit *SuccSU = SI.getSUnit();
994 if (SI.getKind() == SDep::Order) {
995 if (Visited.count(SuccSU))
996 continue;
997 if (SuccSU == SUb)
998 return true;
999 Worklist.push_back(SuccSU);
1000 Visited.insert(SuccSU);
1001 }
1002 }
1003 }
1004 return false;
1005}
1006
1007/// Return true if the instruction causes a chain between memory
1008/// references before and after it.
1009static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1010 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1011 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001012 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001013}
1014
1015/// Return the underlying objects for the memory references of an instruction.
1016/// This function calls the code in ValueTracking, but first checks that the
1017/// instruction has a memory operand.
1018static void getUnderlyingObjects(MachineInstr *MI,
1019 SmallVectorImpl<Value *> &Objs,
1020 const DataLayout &DL) {
1021 if (!MI->hasOneMemOperand())
1022 return;
1023 MachineMemOperand *MM = *MI->memoperands_begin();
1024 if (!MM->getValue())
1025 return;
1026 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1027}
1028
1029/// Add a chain edge between a load and store if the store can be an
1030/// alias of the load on a subsequent iteration, i.e., a loop carried
1031/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1032/// but that code doesn't create loop carried dependences.
1033void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1034 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1035 for (auto &SU : SUnits) {
1036 MachineInstr &MI = *SU.getInstr();
1037 if (isDependenceBarrier(MI, AA))
1038 PendingLoads.clear();
1039 else if (MI.mayLoad()) {
1040 SmallVector<Value *, 4> Objs;
1041 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1042 for (auto V : Objs) {
1043 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1044 SUs.push_back(&SU);
1045 }
1046 } else if (MI.mayStore()) {
1047 SmallVector<Value *, 4> Objs;
1048 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1049 for (auto V : Objs) {
1050 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1051 PendingLoads.find(V);
1052 if (I == PendingLoads.end())
1053 continue;
1054 for (auto Load : I->second) {
1055 if (isSuccOrder(Load, &SU))
1056 continue;
1057 MachineInstr &LdMI = *Load->getInstr();
1058 // First, perform the cheaper check that compares the base register.
1059 // If they are the same and the load offset is less than the store
1060 // offset, then mark the dependence as loop carried potentially.
1061 unsigned BaseReg1, BaseReg2;
1062 int64_t Offset1, Offset2;
1063 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1064 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1065 SU.addPred(SDep(Load, SDep::Barrier));
1066 continue;
1067 }
1068 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1069 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1070 "What happened to the chain edge?");
1071 SU.addPred(SDep(Load, SDep::Barrier));
1072 continue;
1073 }
1074 // Second, the more expensive check that uses alias analysis on the
1075 // base registers. If they alias, and the load offset is less than
1076 // the store offset, the mark the dependence as loop carried.
1077 if (!AA) {
1078 SU.addPred(SDep(Load, SDep::Barrier));
1079 continue;
1080 }
1081 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1082 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1083 if (!MMO1->getValue() || !MMO2->getValue()) {
1084 SU.addPred(SDep(Load, SDep::Barrier));
1085 continue;
1086 }
1087 if (MMO1->getValue() == MMO2->getValue() &&
1088 MMO1->getOffset() <= MMO2->getOffset()) {
1089 SU.addPred(SDep(Load, SDep::Barrier));
1090 continue;
1091 }
1092 AliasResult AAResult = AA->alias(
1093 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1094 MMO1->getAAInfo()),
1095 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1096 MMO2->getAAInfo()));
1097
1098 if (AAResult != NoAlias)
1099 SU.addPred(SDep(Load, SDep::Barrier));
1100 }
1101 }
1102 }
1103 }
1104}
1105
1106/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1107/// processes dependences for PHIs. This function adds true dependences
1108/// from a PHI to a use, and a loop carried dependence from the use to the
1109/// PHI. The loop carried dependence is represented as an anti dependence
1110/// edge. This function also removes chain dependences between unrelated
1111/// PHIs.
1112void SwingSchedulerDAG::updatePhiDependences() {
1113 SmallVector<SDep, 4> RemoveDeps;
1114 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1115
1116 // Iterate over each DAG node.
1117 for (SUnit &I : SUnits) {
1118 RemoveDeps.clear();
1119 // Set to true if the instruction has an operand defined by a Phi.
1120 unsigned HasPhiUse = 0;
1121 unsigned HasPhiDef = 0;
1122 MachineInstr *MI = I.getInstr();
1123 // Iterate over each operand, and we process the definitions.
1124 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1125 MOE = MI->operands_end();
1126 MOI != MOE; ++MOI) {
1127 if (!MOI->isReg())
1128 continue;
1129 unsigned Reg = MOI->getReg();
1130 if (MOI->isDef()) {
1131 // If the register is used by a Phi, then create an anti dependence.
1132 for (MachineRegisterInfo::use_instr_iterator
1133 UI = MRI.use_instr_begin(Reg),
1134 UE = MRI.use_instr_end();
1135 UI != UE; ++UI) {
1136 MachineInstr *UseMI = &*UI;
1137 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001138 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001139 if (!MI->isPHI()) {
1140 SDep Dep(SU, SDep::Anti, Reg);
1141 I.addPred(Dep);
1142 } else {
1143 HasPhiDef = Reg;
1144 // Add a chain edge to a dependent Phi that isn't an existing
1145 // predecessor.
1146 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1147 I.addPred(SDep(SU, SDep::Barrier));
1148 }
1149 }
1150 }
1151 } else if (MOI->isUse()) {
1152 // If the register is defined by a Phi, then create a true dependence.
1153 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001154 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001155 continue;
1156 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001157 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001158 if (!MI->isPHI()) {
1159 SDep Dep(SU, SDep::Data, Reg);
1160 Dep.setLatency(0);
1161 ST.adjustSchedDependency(SU, &I, Dep);
1162 I.addPred(Dep);
1163 } else {
1164 HasPhiUse = Reg;
1165 // Add a chain edge to a dependent Phi that isn't an existing
1166 // predecessor.
1167 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1168 I.addPred(SDep(SU, SDep::Barrier));
1169 }
1170 }
1171 }
1172 }
1173 // Remove order dependences from an unrelated Phi.
1174 if (!SwpPruneDeps)
1175 continue;
1176 for (auto &PI : I.Preds) {
1177 MachineInstr *PMI = PI.getSUnit()->getInstr();
1178 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1179 if (I.getInstr()->isPHI()) {
1180 if (PMI->getOperand(0).getReg() == HasPhiUse)
1181 continue;
1182 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1183 continue;
1184 }
1185 RemoveDeps.push_back(PI);
1186 }
1187 }
1188 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1189 I.removePred(RemoveDeps[i]);
1190 }
1191}
1192
1193/// Iterate over each DAG node and see if we can change any dependences
1194/// in order to reduce the recurrence MII.
1195void SwingSchedulerDAG::changeDependences() {
1196 // See if an instruction can use a value from the previous iteration.
1197 // If so, we update the base and offset of the instruction and change
1198 // the dependences.
1199 for (SUnit &I : SUnits) {
1200 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1201 int64_t NewOffset = 0;
1202 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1203 NewOffset))
1204 continue;
1205
1206 // Get the MI and SUnit for the instruction that defines the original base.
1207 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1208 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1209 if (!DefMI)
1210 continue;
1211 SUnit *DefSU = getSUnit(DefMI);
1212 if (!DefSU)
1213 continue;
1214 // Get the MI and SUnit for the instruction that defins the new base.
1215 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1216 if (!LastMI)
1217 continue;
1218 SUnit *LastSU = getSUnit(LastMI);
1219 if (!LastSU)
1220 continue;
1221
1222 if (Topo.IsReachable(&I, LastSU))
1223 continue;
1224
1225 // Remove the dependence. The value now depends on a prior iteration.
1226 SmallVector<SDep, 4> Deps;
1227 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1228 ++P)
1229 if (P->getSUnit() == DefSU)
1230 Deps.push_back(*P);
1231 for (int i = 0, e = Deps.size(); i != e; i++) {
1232 Topo.RemovePred(&I, Deps[i].getSUnit());
1233 I.removePred(Deps[i]);
1234 }
1235 // Remove the chain dependence between the instructions.
1236 Deps.clear();
1237 for (auto &P : LastSU->Preds)
1238 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1239 Deps.push_back(P);
1240 for (int i = 0, e = Deps.size(); i != e; i++) {
1241 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1242 LastSU->removePred(Deps[i]);
1243 }
1244
1245 // Add a dependence between the new instruction and the instruction
1246 // that defines the new base.
1247 SDep Dep(&I, SDep::Anti, NewBase);
1248 LastSU->addPred(Dep);
1249
1250 // Remember the base and offset information so that we can update the
1251 // instruction during code generation.
1252 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1253 }
1254}
1255
1256namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001257
Brendon Cahoon254f8892016-07-29 16:44:44 +00001258// FuncUnitSorter - Comparison operator used to sort instructions by
1259// the number of functional unit choices.
1260struct FuncUnitSorter {
1261 const InstrItineraryData *InstrItins;
1262 DenseMap<unsigned, unsigned> Resources;
1263
1264 // Compute the number of functional unit alternatives needed
1265 // at each stage, and take the minimum value. We prioritize the
1266 // instructions by the least number of choices first.
1267 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1268 unsigned schedClass = Inst->getDesc().getSchedClass();
1269 unsigned min = UINT_MAX;
1270 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1271 *IE = InstrItins->endStage(schedClass);
1272 IS != IE; ++IS) {
1273 unsigned funcUnits = IS->getUnits();
1274 unsigned numAlternatives = countPopulation(funcUnits);
1275 if (numAlternatives < min) {
1276 min = numAlternatives;
1277 F = funcUnits;
1278 }
1279 }
1280 return min;
1281 }
1282
1283 // Compute the critical resources needed by the instruction. This
1284 // function records the functional units needed by instructions that
1285 // must use only one functional unit. We use this as a tie breaker
1286 // for computing the resource MII. The instrutions that require
1287 // the same, highly used, functional unit have high priority.
1288 void calcCriticalResources(MachineInstr &MI) {
1289 unsigned SchedClass = MI.getDesc().getSchedClass();
1290 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1291 *IE = InstrItins->endStage(SchedClass);
1292 IS != IE; ++IS) {
1293 unsigned FuncUnits = IS->getUnits();
1294 if (countPopulation(FuncUnits) == 1)
1295 Resources[FuncUnits]++;
1296 }
1297 }
1298
1299 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1300 /// Return true if IS1 has less priority than IS2.
1301 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1302 unsigned F1 = 0, F2 = 0;
1303 unsigned MFUs1 = minFuncUnits(IS1, F1);
1304 unsigned MFUs2 = minFuncUnits(IS2, F2);
1305 if (MFUs1 == 1 && MFUs2 == 1)
1306 return Resources.lookup(F1) < Resources.lookup(F2);
1307 return MFUs1 > MFUs2;
1308 }
1309};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001310
1311} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001312
1313/// Calculate the resource constrained minimum initiation interval for the
1314/// specified loop. We use the DFA to model the resources needed for
1315/// each instruction, and we ignore dependences. A different DFA is created
1316/// for each cycle that is required. When adding a new instruction, we attempt
1317/// to add it to each existing DFA, until a legal space is found. If the
1318/// instruction cannot be reserved in an existing DFA, we create a new one.
1319unsigned SwingSchedulerDAG::calculateResMII() {
1320 SmallVector<DFAPacketizer *, 8> Resources;
1321 MachineBasicBlock *MBB = Loop.getHeader();
1322 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1323
1324 // Sort the instructions by the number of available choices for scheduling,
1325 // least to most. Use the number of critical resources as the tie breaker.
1326 FuncUnitSorter FUS =
1327 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1328 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1329 E = MBB->getFirstTerminator();
1330 I != E; ++I)
1331 FUS.calcCriticalResources(*I);
1332 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1333 FuncUnitOrder(FUS);
1334
1335 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1336 E = MBB->getFirstTerminator();
1337 I != E; ++I)
1338 FuncUnitOrder.push(&*I);
1339
1340 while (!FuncUnitOrder.empty()) {
1341 MachineInstr *MI = FuncUnitOrder.top();
1342 FuncUnitOrder.pop();
1343 if (TII->isZeroCost(MI->getOpcode()))
1344 continue;
1345 // Attempt to reserve the instruction in an existing DFA. At least one
1346 // DFA is needed for each cycle.
1347 unsigned NumCycles = getSUnit(MI)->Latency;
1348 unsigned ReservedCycles = 0;
1349 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1350 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1351 for (unsigned C = 0; C < NumCycles; ++C)
1352 while (RI != RE) {
1353 if ((*RI++)->canReserveResources(*MI)) {
1354 ++ReservedCycles;
1355 break;
1356 }
1357 }
1358 // Start reserving resources using existing DFAs.
1359 for (unsigned C = 0; C < ReservedCycles; ++C) {
1360 --RI;
1361 (*RI)->reserveResources(*MI);
1362 }
1363 // Add new DFAs, if needed, to reserve resources.
1364 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1365 DFAPacketizer *NewResource =
1366 TII->CreateTargetScheduleState(MF.getSubtarget());
1367 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1368 NewResource->reserveResources(*MI);
1369 Resources.push_back(NewResource);
1370 }
1371 }
1372 int Resmii = Resources.size();
1373 // Delete the memory for each of the DFAs that were created earlier.
1374 for (DFAPacketizer *RI : Resources) {
1375 DFAPacketizer *D = RI;
1376 delete D;
1377 }
1378 Resources.clear();
1379 return Resmii;
1380}
1381
1382/// Calculate the recurrence-constrainted minimum initiation interval.
1383/// Iterate over each circuit. Compute the delay(c) and distance(c)
1384/// for each circuit. The II needs to satisfy the inequality
1385/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1386/// II that satistifies the inequality, and the RecMII is the maximum
1387/// of those values.
1388unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1389 unsigned RecMII = 0;
1390
1391 for (NodeSet &Nodes : NodeSets) {
1392 if (Nodes.size() == 0)
1393 continue;
1394
1395 unsigned Delay = Nodes.size() - 1;
1396 unsigned Distance = 1;
1397
1398 // ii = ceil(delay / distance)
1399 unsigned CurMII = (Delay + Distance - 1) / Distance;
1400 Nodes.setRecMII(CurMII);
1401 if (CurMII > RecMII)
1402 RecMII = CurMII;
1403 }
1404
1405 return RecMII;
1406}
1407
1408/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1409/// but we do this to find the circuits, and then change them back.
1410static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1411 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1412 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1413 SUnit *SU = &SUnits[i];
1414 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1415 IP != EP; ++IP) {
1416 if (IP->getKind() != SDep::Anti)
1417 continue;
1418 DepsAdded.push_back(std::make_pair(SU, *IP));
1419 }
1420 }
1421 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1422 E = DepsAdded.end();
1423 I != E; ++I) {
1424 // Remove this anti dependency and add one in the reverse direction.
1425 SUnit *SU = I->first;
1426 SDep &D = I->second;
1427 SUnit *TargetSU = D.getSUnit();
1428 unsigned Reg = D.getReg();
1429 unsigned Lat = D.getLatency();
1430 SU->removePred(D);
1431 SDep Dep(SU, SDep::Anti, Reg);
1432 Dep.setLatency(Lat);
1433 TargetSU->addPred(Dep);
1434 }
1435}
1436
1437/// Create the adjacency structure of the nodes in the graph.
1438void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1439 SwingSchedulerDAG *DAG) {
1440 BitVector Added(SUnits.size());
1441 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1442 Added.reset();
1443 // Add any successor to the adjacency matrix and exclude duplicates.
1444 for (auto &SI : SUnits[i].Succs) {
1445 // Do not process a boundary node and a back-edge is processed only
1446 // if it goes to a Phi.
1447 if (SI.getSUnit()->isBoundaryNode() ||
1448 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1449 continue;
1450 int N = SI.getSUnit()->NodeNum;
1451 if (!Added.test(N)) {
1452 AdjK[i].push_back(N);
1453 Added.set(N);
1454 }
1455 }
1456 // A chain edge between a store and a load is treated as a back-edge in the
1457 // adjacency matrix.
1458 for (auto &PI : SUnits[i].Preds) {
1459 if (!SUnits[i].getInstr()->mayStore() ||
1460 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
1461 continue;
1462 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1463 int N = PI.getSUnit()->NodeNum;
1464 if (!Added.test(N)) {
1465 AdjK[i].push_back(N);
1466 Added.set(N);
1467 }
1468 }
1469 }
1470 }
1471}
1472
1473/// Identify an elementary circuit in the dependence graph starting at the
1474/// specified node.
1475bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1476 bool HasBackedge) {
1477 SUnit *SV = &SUnits[V];
1478 bool F = false;
1479 Stack.insert(SV);
1480 Blocked.set(V);
1481
1482 for (auto W : AdjK[V]) {
1483 if (NumPaths > MaxPaths)
1484 break;
1485 if (W < S)
1486 continue;
1487 if (W == S) {
1488 if (!HasBackedge)
1489 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1490 F = true;
1491 ++NumPaths;
1492 break;
1493 } else if (!Blocked.test(W)) {
1494 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1495 F = true;
1496 }
1497 }
1498
1499 if (F)
1500 unblock(V);
1501 else {
1502 for (auto W : AdjK[V]) {
1503 if (W < S)
1504 continue;
1505 if (B[W].count(SV) == 0)
1506 B[W].insert(SV);
1507 }
1508 }
1509 Stack.pop_back();
1510 return F;
1511}
1512
1513/// Unblock a node in the circuit finding algorithm.
1514void SwingSchedulerDAG::Circuits::unblock(int U) {
1515 Blocked.reset(U);
1516 SmallPtrSet<SUnit *, 4> &BU = B[U];
1517 while (!BU.empty()) {
1518 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1519 assert(SI != BU.end() && "Invalid B set.");
1520 SUnit *W = *SI;
1521 BU.erase(W);
1522 if (Blocked.test(W->NodeNum))
1523 unblock(W->NodeNum);
1524 }
1525}
1526
1527/// Identify all the elementary circuits in the dependence graph using
1528/// Johnson's circuit algorithm.
1529void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1530 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1531 // but we do this to find the circuits, and then change them back.
1532 swapAntiDependences(SUnits);
1533
1534 Circuits Cir(SUnits);
1535 // Create the adjacency structure.
1536 Cir.createAdjacencyStructure(this);
1537 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1538 Cir.reset();
1539 Cir.circuit(i, i, NodeSets);
1540 }
1541
1542 // Change the dependences back so that we've created a DAG again.
1543 swapAntiDependences(SUnits);
1544}
1545
1546/// Return true for DAG nodes that we ignore when computing the cost functions.
1547/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1548/// in the calculation of the ASAP, ALAP, etc functions.
1549static bool ignoreDependence(const SDep &D, bool isPred) {
1550 if (D.isArtificial())
1551 return true;
1552 return D.getKind() == SDep::Anti && isPred;
1553}
1554
1555/// Compute several functions need to order the nodes for scheduling.
1556/// ASAP - Earliest time to schedule a node.
1557/// ALAP - Latest time to schedule a node.
1558/// MOV - Mobility function, difference between ALAP and ASAP.
1559/// D - Depth of each node.
1560/// H - Height of each node.
1561void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1562
1563 ScheduleInfo.resize(SUnits.size());
1564
1565 DEBUG({
1566 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1567 E = Topo.end();
1568 I != E; ++I) {
1569 SUnit *SU = &SUnits[*I];
1570 SU->dump(this);
1571 }
1572 });
1573
1574 int maxASAP = 0;
1575 // Compute ASAP.
1576 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1577 E = Topo.end();
1578 I != E; ++I) {
1579 int asap = 0;
1580 SUnit *SU = &SUnits[*I];
1581 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1582 EP = SU->Preds.end();
1583 IP != EP; ++IP) {
1584 if (ignoreDependence(*IP, true))
1585 continue;
1586 SUnit *pred = IP->getSUnit();
1587 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
1588 getDistance(pred, SU, *IP) * MII));
1589 }
1590 maxASAP = std::max(maxASAP, asap);
1591 ScheduleInfo[*I].ASAP = asap;
1592 }
1593
1594 // Compute ALAP and MOV.
1595 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1596 E = Topo.rend();
1597 I != E; ++I) {
1598 int alap = maxASAP;
1599 SUnit *SU = &SUnits[*I];
1600 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1601 ES = SU->Succs.end();
1602 IS != ES; ++IS) {
1603 if (ignoreDependence(*IS, true))
1604 continue;
1605 SUnit *succ = IS->getSUnit();
1606 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
1607 getDistance(SU, succ, *IS) * MII));
1608 }
1609
1610 ScheduleInfo[*I].ALAP = alap;
1611 }
1612
1613 // After computing the node functions, compute the summary for each node set.
1614 for (NodeSet &I : NodeSets)
1615 I.computeNodeSetInfo(this);
1616
1617 DEBUG({
1618 for (unsigned i = 0; i < SUnits.size(); i++) {
1619 dbgs() << "\tNode " << i << ":\n";
1620 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1621 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1622 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1623 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1624 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1625 }
1626 });
1627}
1628
1629/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1630/// as the predecessors of the elements of NodeOrder that are not also in
1631/// NodeOrder.
1632static bool pred_L(SetVector<SUnit *> &NodeOrder,
1633 SmallSetVector<SUnit *, 8> &Preds,
1634 const NodeSet *S = nullptr) {
1635 Preds.clear();
1636 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1637 I != E; ++I) {
1638 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1639 PI != PE; ++PI) {
1640 if (S && S->count(PI->getSUnit()) == 0)
1641 continue;
1642 if (ignoreDependence(*PI, true))
1643 continue;
1644 if (NodeOrder.count(PI->getSUnit()) == 0)
1645 Preds.insert(PI->getSUnit());
1646 }
1647 // Back-edges are predecessors with an anti-dependence.
1648 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1649 ES = (*I)->Succs.end();
1650 IS != ES; ++IS) {
1651 if (IS->getKind() != SDep::Anti)
1652 continue;
1653 if (S && S->count(IS->getSUnit()) == 0)
1654 continue;
1655 if (NodeOrder.count(IS->getSUnit()) == 0)
1656 Preds.insert(IS->getSUnit());
1657 }
1658 }
1659 return Preds.size() > 0;
1660}
1661
1662/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1663/// as the successors of the elements of NodeOrder that are not also in
1664/// NodeOrder.
1665static bool succ_L(SetVector<SUnit *> &NodeOrder,
1666 SmallSetVector<SUnit *, 8> &Succs,
1667 const NodeSet *S = nullptr) {
1668 Succs.clear();
1669 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1670 I != E; ++I) {
1671 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1672 SI != SE; ++SI) {
1673 if (S && S->count(SI->getSUnit()) == 0)
1674 continue;
1675 if (ignoreDependence(*SI, false))
1676 continue;
1677 if (NodeOrder.count(SI->getSUnit()) == 0)
1678 Succs.insert(SI->getSUnit());
1679 }
1680 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1681 PE = (*I)->Preds.end();
1682 PI != PE; ++PI) {
1683 if (PI->getKind() != SDep::Anti)
1684 continue;
1685 if (S && S->count(PI->getSUnit()) == 0)
1686 continue;
1687 if (NodeOrder.count(PI->getSUnit()) == 0)
1688 Succs.insert(PI->getSUnit());
1689 }
1690 }
1691 return Succs.size() > 0;
1692}
1693
1694/// Return true if there is a path from the specified node to any of the nodes
1695/// in DestNodes. Keep track and return the nodes in any path.
1696static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1697 SetVector<SUnit *> &DestNodes,
1698 SetVector<SUnit *> &Exclude,
1699 SmallPtrSet<SUnit *, 8> &Visited) {
1700 if (Cur->isBoundaryNode())
1701 return false;
1702 if (Exclude.count(Cur) != 0)
1703 return false;
1704 if (DestNodes.count(Cur) != 0)
1705 return true;
1706 if (!Visited.insert(Cur).second)
1707 return Path.count(Cur) != 0;
1708 bool FoundPath = false;
1709 for (auto &SI : Cur->Succs)
1710 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1711 for (auto &PI : Cur->Preds)
1712 if (PI.getKind() == SDep::Anti)
1713 FoundPath |=
1714 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1715 if (FoundPath)
1716 Path.insert(Cur);
1717 return FoundPath;
1718}
1719
1720/// Return true if Set1 is a subset of Set2.
1721template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1722 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1723 if (Set2.count(*I) == 0)
1724 return false;
1725 return true;
1726}
1727
1728/// Compute the live-out registers for the instructions in a node-set.
1729/// The live-out registers are those that are defined in the node-set,
1730/// but not used. Except for use operands of Phis.
1731static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1732 NodeSet &NS) {
1733 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1734 MachineRegisterInfo &MRI = MF.getRegInfo();
1735 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1736 SmallSet<unsigned, 4> Uses;
1737 for (SUnit *SU : NS) {
1738 const MachineInstr *MI = SU->getInstr();
1739 if (MI->isPHI())
1740 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001741 for (const MachineOperand &MO : MI->operands())
1742 if (MO.isReg() && MO.isUse()) {
1743 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001744 if (TargetRegisterInfo::isVirtualRegister(Reg))
1745 Uses.insert(Reg);
1746 else if (MRI.isAllocatable(Reg))
1747 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1748 Uses.insert(*Units);
1749 }
1750 }
1751 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001752 for (const MachineOperand &MO : SU->getInstr()->operands())
1753 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1754 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001755 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1756 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001757 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1758 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001759 } else if (MRI.isAllocatable(Reg)) {
1760 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1761 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001762 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1763 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001764 }
1765 }
1766 RPTracker.addLiveRegs(LiveOutRegs);
1767}
1768
1769/// A heuristic to filter nodes in recurrent node-sets if the register
1770/// pressure of a set is too high.
1771void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1772 for (auto &NS : NodeSets) {
1773 // Skip small node-sets since they won't cause register pressure problems.
1774 if (NS.size() <= 2)
1775 continue;
1776 IntervalPressure RecRegPressure;
1777 RegPressureTracker RecRPTracker(RecRegPressure);
1778 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1779 computeLiveOuts(MF, RecRPTracker, NS);
1780 RecRPTracker.closeBottom();
1781
1782 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1783 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1784 return A->NodeNum > B->NodeNum;
1785 });
1786
1787 for (auto &SU : SUnits) {
1788 // Since we're computing the register pressure for a subset of the
1789 // instructions in a block, we need to set the tracker for each
1790 // instruction in the node-set. The tracker is set to the instruction
1791 // just after the one we're interested in.
1792 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1793 RecRPTracker.setPos(std::next(CurInstI));
1794
1795 RegPressureDelta RPDelta;
1796 ArrayRef<PressureChange> CriticalPSets;
1797 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1798 CriticalPSets,
1799 RecRegPressure.MaxSetPressure);
1800 if (RPDelta.Excess.isValid()) {
1801 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1802 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1803 << ":" << RPDelta.Excess.getUnitInc());
1804 NS.setExceedPressure(SU);
1805 break;
1806 }
1807 RecRPTracker.recede();
1808 }
1809 }
1810}
1811
1812/// A heuristic to colocate node sets that have the same set of
1813/// successors.
1814void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1815 unsigned Colocate = 0;
1816 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1817 NodeSet &N1 = NodeSets[i];
1818 SmallSetVector<SUnit *, 8> S1;
1819 if (N1.empty() || !succ_L(N1, S1))
1820 continue;
1821 for (int j = i + 1; j < e; ++j) {
1822 NodeSet &N2 = NodeSets[j];
1823 if (N1.compareRecMII(N2) != 0)
1824 continue;
1825 SmallSetVector<SUnit *, 8> S2;
1826 if (N2.empty() || !succ_L(N2, S2))
1827 continue;
1828 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1829 N1.setColocate(++Colocate);
1830 N2.setColocate(Colocate);
1831 break;
1832 }
1833 }
1834 }
1835}
1836
1837/// Check if the existing node-sets are profitable. If not, then ignore the
1838/// recurrent node-sets, and attempt to schedule all nodes together. This is
1839/// a heuristic. If the MII is large and there is a non-recurrent node with
1840/// a large depth compared to the MII, then it's best to try and schedule
1841/// all instruction together instead of starting with the recurrent node-sets.
1842void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1843 // Look for loops with a large MII.
1844 if (MII <= 20)
1845 return;
1846 // Check if the node-set contains only a simple add recurrence.
1847 for (auto &NS : NodeSets)
1848 if (NS.size() > 2)
1849 return;
1850 // If the depth of any instruction is significantly larger than the MII, then
1851 // ignore the recurrent node-sets and treat all instructions equally.
1852 for (auto &SU : SUnits)
1853 if (SU.getDepth() > MII * 1.5) {
1854 NodeSets.clear();
1855 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1856 return;
1857 }
1858}
1859
1860/// Add the nodes that do not belong to a recurrence set into groups
1861/// based upon connected componenets.
1862void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1863 SetVector<SUnit *> NodesAdded;
1864 SmallPtrSet<SUnit *, 8> Visited;
1865 // Add the nodes that are on a path between the previous node sets and
1866 // the current node set.
1867 for (NodeSet &I : NodeSets) {
1868 SmallSetVector<SUnit *, 8> N;
1869 // Add the nodes from the current node set to the previous node set.
1870 if (succ_L(I, N)) {
1871 SetVector<SUnit *> Path;
1872 for (SUnit *NI : N) {
1873 Visited.clear();
1874 computePath(NI, Path, NodesAdded, I, Visited);
1875 }
1876 if (Path.size() > 0)
1877 I.insert(Path.begin(), Path.end());
1878 }
1879 // Add the nodes from the previous node set to the current node set.
1880 N.clear();
1881 if (succ_L(NodesAdded, N)) {
1882 SetVector<SUnit *> Path;
1883 for (SUnit *NI : N) {
1884 Visited.clear();
1885 computePath(NI, Path, I, NodesAdded, Visited);
1886 }
1887 if (Path.size() > 0)
1888 I.insert(Path.begin(), Path.end());
1889 }
1890 NodesAdded.insert(I.begin(), I.end());
1891 }
1892
1893 // Create a new node set with the connected nodes of any successor of a node
1894 // in a recurrent set.
1895 NodeSet NewSet;
1896 SmallSetVector<SUnit *, 8> N;
1897 if (succ_L(NodesAdded, N))
1898 for (SUnit *I : N)
1899 addConnectedNodes(I, NewSet, NodesAdded);
1900 if (NewSet.size() > 0)
1901 NodeSets.push_back(NewSet);
1902
1903 // Create a new node set with the connected nodes of any predecessor of a node
1904 // in a recurrent set.
1905 NewSet.clear();
1906 if (pred_L(NodesAdded, N))
1907 for (SUnit *I : N)
1908 addConnectedNodes(I, NewSet, NodesAdded);
1909 if (NewSet.size() > 0)
1910 NodeSets.push_back(NewSet);
1911
1912 // Create new nodes sets with the connected nodes any any remaining node that
1913 // has no predecessor.
1914 for (unsigned i = 0; i < SUnits.size(); ++i) {
1915 SUnit *SU = &SUnits[i];
1916 if (NodesAdded.count(SU) == 0) {
1917 NewSet.clear();
1918 addConnectedNodes(SU, NewSet, NodesAdded);
1919 if (NewSet.size() > 0)
1920 NodeSets.push_back(NewSet);
1921 }
1922 }
1923}
1924
1925/// Add the node to the set, and add all is its connected nodes to the set.
1926void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1927 SetVector<SUnit *> &NodesAdded) {
1928 NewSet.insert(SU);
1929 NodesAdded.insert(SU);
1930 for (auto &SI : SU->Succs) {
1931 SUnit *Successor = SI.getSUnit();
1932 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1933 addConnectedNodes(Successor, NewSet, NodesAdded);
1934 }
1935 for (auto &PI : SU->Preds) {
1936 SUnit *Predecessor = PI.getSUnit();
1937 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1938 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1939 }
1940}
1941
1942/// Return true if Set1 contains elements in Set2. The elements in common
1943/// are returned in a different container.
1944static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1945 SmallSetVector<SUnit *, 8> &Result) {
1946 Result.clear();
1947 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1948 SUnit *SU = Set1[i];
1949 if (Set2.count(SU) != 0)
1950 Result.insert(SU);
1951 }
1952 return !Result.empty();
1953}
1954
1955/// Merge the recurrence node sets that have the same initial node.
1956void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1957 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1958 ++I) {
1959 NodeSet &NI = *I;
1960 for (NodeSetType::iterator J = I + 1; J != E;) {
1961 NodeSet &NJ = *J;
1962 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1963 if (NJ.compareRecMII(NI) > 0)
1964 NI.setRecMII(NJ.getRecMII());
1965 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1966 ++NII)
1967 I->insert(*NII);
1968 NodeSets.erase(J);
1969 E = NodeSets.end();
1970 } else {
1971 ++J;
1972 }
1973 }
1974 }
1975}
1976
1977/// Remove nodes that have been scheduled in previous NodeSets.
1978void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1979 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1980 ++I)
1981 for (NodeSetType::iterator J = I + 1; J != E;) {
1982 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1983
1984 if (J->size() == 0) {
1985 NodeSets.erase(J);
1986 E = NodeSets.end();
1987 } else {
1988 ++J;
1989 }
1990 }
1991}
1992
1993/// Return true if Inst1 defines a value that is used in Inst2.
1994static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
1995 for (auto &SI : Inst1->Succs)
1996 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
1997 return true;
1998 return false;
1999}
2000
2001/// Compute an ordered list of the dependence graph nodes, which
2002/// indicates the order that the nodes will be scheduled. This is a
2003/// two-level algorithm. First, a partial order is created, which
2004/// consists of a list of sets ordered from highest to lowest priority.
2005void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2006 SmallSetVector<SUnit *, 8> R;
2007 NodeOrder.clear();
2008
2009 for (auto &Nodes : NodeSets) {
2010 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2011 OrderKind Order;
2012 SmallSetVector<SUnit *, 8> N;
2013 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2014 R.insert(N.begin(), N.end());
2015 Order = BottomUp;
2016 DEBUG(dbgs() << " Bottom up (preds) ");
2017 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2018 R.insert(N.begin(), N.end());
2019 Order = TopDown;
2020 DEBUG(dbgs() << " Top down (succs) ");
2021 } else if (isIntersect(N, Nodes, R)) {
2022 // If some of the successors are in the existing node-set, then use the
2023 // top-down ordering.
2024 Order = TopDown;
2025 DEBUG(dbgs() << " Top down (intersect) ");
2026 } else if (NodeSets.size() == 1) {
2027 for (auto &N : Nodes)
2028 if (N->Succs.size() == 0)
2029 R.insert(N);
2030 Order = BottomUp;
2031 DEBUG(dbgs() << " Bottom up (all) ");
2032 } else {
2033 // Find the node with the highest ASAP.
2034 SUnit *maxASAP = nullptr;
2035 for (SUnit *SU : Nodes) {
2036 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
2037 maxASAP = SU;
2038 }
2039 R.insert(maxASAP);
2040 Order = BottomUp;
2041 DEBUG(dbgs() << " Bottom up (default) ");
2042 }
2043
2044 while (!R.empty()) {
2045 if (Order == TopDown) {
2046 // Choose the node with the maximum height. If more than one, choose
2047 // the node with the lowest MOV. If still more than one, check if there
2048 // is a dependence between the instructions.
2049 while (!R.empty()) {
2050 SUnit *maxHeight = nullptr;
2051 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002052 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002053 maxHeight = I;
2054 else if (getHeight(I) == getHeight(maxHeight) &&
2055 getMOV(I) < getMOV(maxHeight) &&
2056 !hasDataDependence(maxHeight, I))
2057 maxHeight = I;
2058 else if (hasDataDependence(I, maxHeight))
2059 maxHeight = I;
2060 }
2061 NodeOrder.insert(maxHeight);
2062 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2063 R.remove(maxHeight);
2064 for (const auto &I : maxHeight->Succs) {
2065 if (Nodes.count(I.getSUnit()) == 0)
2066 continue;
2067 if (NodeOrder.count(I.getSUnit()) != 0)
2068 continue;
2069 if (ignoreDependence(I, false))
2070 continue;
2071 R.insert(I.getSUnit());
2072 }
2073 // Back-edges are predecessors with an anti-dependence.
2074 for (const auto &I : maxHeight->Preds) {
2075 if (I.getKind() != SDep::Anti)
2076 continue;
2077 if (Nodes.count(I.getSUnit()) == 0)
2078 continue;
2079 if (NodeOrder.count(I.getSUnit()) != 0)
2080 continue;
2081 R.insert(I.getSUnit());
2082 }
2083 }
2084 Order = BottomUp;
2085 DEBUG(dbgs() << "\n Switching order to bottom up ");
2086 SmallSetVector<SUnit *, 8> N;
2087 if (pred_L(NodeOrder, N, &Nodes))
2088 R.insert(N.begin(), N.end());
2089 } else {
2090 // Choose the node with the maximum depth. If more than one, choose
2091 // the node with the lowest MOV. If there is still more than one, check
2092 // for a dependence between the instructions.
2093 while (!R.empty()) {
2094 SUnit *maxDepth = nullptr;
2095 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002096 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002097 maxDepth = I;
2098 else if (getDepth(I) == getDepth(maxDepth) &&
2099 getMOV(I) < getMOV(maxDepth) &&
2100 !hasDataDependence(I, maxDepth))
2101 maxDepth = I;
2102 else if (hasDataDependence(maxDepth, I))
2103 maxDepth = I;
2104 }
2105 NodeOrder.insert(maxDepth);
2106 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2107 R.remove(maxDepth);
2108 if (Nodes.isExceedSU(maxDepth)) {
2109 Order = TopDown;
2110 R.clear();
2111 R.insert(Nodes.getNode(0));
2112 break;
2113 }
2114 for (const auto &I : maxDepth->Preds) {
2115 if (Nodes.count(I.getSUnit()) == 0)
2116 continue;
2117 if (NodeOrder.count(I.getSUnit()) != 0)
2118 continue;
2119 if (I.getKind() == SDep::Anti)
2120 continue;
2121 R.insert(I.getSUnit());
2122 }
2123 // Back-edges are predecessors with an anti-dependence.
2124 for (const auto &I : maxDepth->Succs) {
2125 if (I.getKind() != SDep::Anti)
2126 continue;
2127 if (Nodes.count(I.getSUnit()) == 0)
2128 continue;
2129 if (NodeOrder.count(I.getSUnit()) != 0)
2130 continue;
2131 R.insert(I.getSUnit());
2132 }
2133 }
2134 Order = TopDown;
2135 DEBUG(dbgs() << "\n Switching order to top down ");
2136 SmallSetVector<SUnit *, 8> N;
2137 if (succ_L(NodeOrder, N, &Nodes))
2138 R.insert(N.begin(), N.end());
2139 }
2140 }
2141 DEBUG(dbgs() << "\nDone with Nodeset\n");
2142 }
2143
2144 DEBUG({
2145 dbgs() << "Node order: ";
2146 for (SUnit *I : NodeOrder)
2147 dbgs() << " " << I->NodeNum << " ";
2148 dbgs() << "\n";
2149 });
2150}
2151
2152/// Process the nodes in the computed order and create the pipelined schedule
2153/// of the instructions, if possible. Return true if a schedule is found.
2154bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2155
2156 if (NodeOrder.size() == 0)
2157 return false;
2158
2159 bool scheduleFound = false;
2160 // Keep increasing II until a valid schedule is found.
2161 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2162 Schedule.reset();
2163 Schedule.setInitiationInterval(II);
2164 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2165
2166 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2167 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2168 do {
2169 SUnit *SU = *NI;
2170
2171 // Compute the schedule time for the instruction, which is based
2172 // upon the scheduled time for any predecessors/successors.
2173 int EarlyStart = INT_MIN;
2174 int LateStart = INT_MAX;
2175 // These values are set when the size of the schedule window is limited
2176 // due to chain dependences.
2177 int SchedEnd = INT_MAX;
2178 int SchedStart = INT_MIN;
2179 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2180 II, this);
2181 DEBUG({
2182 dbgs() << "Inst (" << SU->NodeNum << ") ";
2183 SU->getInstr()->dump();
2184 dbgs() << "\n";
2185 });
2186 DEBUG({
2187 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2188 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2189 });
2190
2191 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2192 SchedStart > LateStart)
2193 scheduleFound = false;
2194 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2195 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2196 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2197 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2198 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2199 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2200 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2201 SchedEnd =
2202 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2203 // When scheduling a Phi it is better to start at the late cycle and go
2204 // backwards. The default order may insert the Phi too far away from
2205 // its first dependence.
2206 if (SU->getInstr()->isPHI())
2207 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2208 else
2209 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2210 } else {
2211 int FirstCycle = Schedule.getFirstCycle();
2212 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2213 FirstCycle + getASAP(SU) + II - 1, II);
2214 }
2215 // Even if we find a schedule, make sure the schedule doesn't exceed the
2216 // allowable number of stages. We keep trying if this happens.
2217 if (scheduleFound)
2218 if (SwpMaxStages > -1 &&
2219 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2220 scheduleFound = false;
2221
2222 DEBUG({
2223 if (!scheduleFound)
2224 dbgs() << "\tCan't schedule\n";
2225 });
2226 } while (++NI != NE && scheduleFound);
2227
2228 // If a schedule is found, check if it is a valid schedule too.
2229 if (scheduleFound)
2230 scheduleFound = Schedule.isValidSchedule(this);
2231 }
2232
2233 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2234
2235 if (scheduleFound)
2236 Schedule.finalizeSchedule(this);
2237 else
2238 Schedule.reset();
2239
2240 return scheduleFound && Schedule.getMaxStageCount() > 0;
2241}
2242
2243/// Given a schedule for the loop, generate a new version of the loop,
2244/// and replace the old version. This function generates a prolog
2245/// that contains the initial iterations in the pipeline, and kernel
2246/// loop, and the epilogue that contains the code for the final
2247/// iterations.
2248void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2249 // Create a new basic block for the kernel and add it to the CFG.
2250 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2251
2252 unsigned MaxStageCount = Schedule.getMaxStageCount();
2253
2254 // Remember the registers that are used in different stages. The index is
2255 // the iteration, or stage, that the instruction is scheduled in. This is
2256 // a map between register names in the orignal block and the names created
2257 // in each stage of the pipelined loop.
2258 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2259 InstrMapTy InstrMap;
2260
2261 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2262 // Generate the prolog instructions that set up the pipeline.
2263 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2264 MF.insert(BB->getIterator(), KernelBB);
2265
2266 // Rearrange the instructions to generate the new, pipelined loop,
2267 // and update register names as needed.
2268 for (int Cycle = Schedule.getFirstCycle(),
2269 LastCycle = Schedule.getFinalCycle();
2270 Cycle <= LastCycle; ++Cycle) {
2271 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2272 // This inner loop schedules each instruction in the cycle.
2273 for (SUnit *CI : CycleInstrs) {
2274 if (CI->getInstr()->isPHI())
2275 continue;
2276 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2277 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2278 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2279 KernelBB->push_back(NewMI);
2280 InstrMap[NewMI] = CI->getInstr();
2281 }
2282 }
2283
2284 // Copy any terminator instructions to the new kernel, and update
2285 // names as needed.
2286 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2287 E = BB->instr_end();
2288 I != E; ++I) {
2289 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2290 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2291 KernelBB->push_back(NewMI);
2292 InstrMap[NewMI] = &*I;
2293 }
2294
2295 KernelBB->transferSuccessors(BB);
2296 KernelBB->replaceSuccessor(BB, KernelBB);
2297
2298 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2299 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2300 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2301 InstrMap, MaxStageCount, MaxStageCount, false);
2302
2303 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2304
2305 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2306 // Generate the epilog instructions to complete the pipeline.
2307 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2308 PrologBBs);
2309
2310 // We need this step because the register allocation doesn't handle some
2311 // situations well, so we insert copies to help out.
2312 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2313
2314 // Remove dead instructions due to loop induction variables.
2315 removeDeadInstructions(KernelBB, EpilogBBs);
2316
2317 // Add branches between prolog and epilog blocks.
2318 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2319
2320 // Remove the original loop since it's no longer referenced.
2321 BB->clear();
2322 BB->eraseFromParent();
2323
2324 delete[] VRMap;
2325}
2326
2327/// Generate the pipeline prolog code.
2328void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2329 MachineBasicBlock *KernelBB,
2330 ValueMapTy *VRMap,
2331 MBBVectorTy &PrologBBs) {
2332 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2333 assert(PreheaderBB != NULL &&
2334 "Need to add code to handle loops w/o preheader");
2335 MachineBasicBlock *PredBB = PreheaderBB;
2336 InstrMapTy InstrMap;
2337
2338 // Generate a basic block for each stage, not including the last stage,
2339 // which will be generated in the kernel. Each basic block may contain
2340 // instructions from multiple stages/iterations.
2341 for (unsigned i = 0; i < LastStage; ++i) {
2342 // Create and insert the prolog basic block prior to the original loop
2343 // basic block. The original loop is removed later.
2344 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2345 PrologBBs.push_back(NewBB);
2346 MF.insert(BB->getIterator(), NewBB);
2347 NewBB->transferSuccessors(PredBB);
2348 PredBB->addSuccessor(NewBB);
2349 PredBB = NewBB;
2350
2351 // Generate instructions for each appropriate stage. Process instructions
2352 // in original program order.
2353 for (int StageNum = i; StageNum >= 0; --StageNum) {
2354 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2355 BBE = BB->getFirstTerminator();
2356 BBI != BBE; ++BBI) {
2357 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2358 if (BBI->isPHI())
2359 continue;
2360 MachineInstr *NewMI =
2361 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2362 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2363 VRMap);
2364 NewBB->push_back(NewMI);
2365 InstrMap[NewMI] = &*BBI;
2366 }
2367 }
2368 }
2369 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2370 DEBUG({
2371 dbgs() << "prolog:\n";
2372 NewBB->dump();
2373 });
2374 }
2375
2376 PredBB->replaceSuccessor(BB, KernelBB);
2377
2378 // Check if we need to remove the branch from the preheader to the original
2379 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002380 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002381 if (numBranches) {
2382 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002383 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002384 }
2385}
2386
2387/// Generate the pipeline epilog code. The epilog code finishes the iterations
2388/// that were started in either the prolog or the kernel. We create a basic
2389/// block for each stage that needs to complete.
2390void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2391 MachineBasicBlock *KernelBB,
2392 ValueMapTy *VRMap,
2393 MBBVectorTy &EpilogBBs,
2394 MBBVectorTy &PrologBBs) {
2395 // We need to change the branch from the kernel to the first epilog block, so
2396 // this call to analyze branch uses the kernel rather than the original BB.
2397 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2398 SmallVector<MachineOperand, 4> Cond;
2399 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2400 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2401 if (checkBranch)
2402 return;
2403
2404 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2405 if (*LoopExitI == KernelBB)
2406 ++LoopExitI;
2407 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2408 MachineBasicBlock *LoopExitBB = *LoopExitI;
2409
2410 MachineBasicBlock *PredBB = KernelBB;
2411 MachineBasicBlock *EpilogStart = LoopExitBB;
2412 InstrMapTy InstrMap;
2413
2414 // Generate a basic block for each stage, not including the last stage,
2415 // which was generated for the kernel. Each basic block may contain
2416 // instructions from multiple stages/iterations.
2417 int EpilogStage = LastStage + 1;
2418 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2419 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2420 EpilogBBs.push_back(NewBB);
2421 MF.insert(BB->getIterator(), NewBB);
2422
2423 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2424 NewBB->addSuccessor(LoopExitBB);
2425
2426 if (EpilogStart == LoopExitBB)
2427 EpilogStart = NewBB;
2428
2429 // Add instructions to the epilog depending on the current block.
2430 // Process instructions in original program order.
2431 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2432 for (auto &BBI : *BB) {
2433 if (BBI.isPHI())
2434 continue;
2435 MachineInstr *In = &BBI;
2436 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2437 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
2438 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2439 NewBB->push_back(NewMI);
2440 InstrMap[NewMI] = In;
2441 }
2442 }
2443 }
2444 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2445 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2446 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2447 InstrMap, LastStage, EpilogStage, i == 1);
2448 PredBB = NewBB;
2449
2450 DEBUG({
2451 dbgs() << "epilog:\n";
2452 NewBB->dump();
2453 });
2454 }
2455
2456 // Fix any Phi nodes in the loop exit block.
2457 for (MachineInstr &MI : *LoopExitBB) {
2458 if (!MI.isPHI())
2459 break;
2460 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2461 MachineOperand &MO = MI.getOperand(i);
2462 if (MO.getMBB() == BB)
2463 MO.setMBB(PredBB);
2464 }
2465 }
2466
2467 // Create a branch to the new epilog from the kernel.
2468 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002469 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002470 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002471 // Add a branch to the loop exit.
2472 if (EpilogBBs.size() > 0) {
2473 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2474 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002475 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002476 }
2477}
2478
2479/// Replace all uses of FromReg that appear outside the specified
2480/// basic block with ToReg.
2481static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2482 MachineBasicBlock *MBB,
2483 MachineRegisterInfo &MRI,
2484 LiveIntervals &LIS) {
2485 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2486 E = MRI.use_end();
2487 I != E;) {
2488 MachineOperand &O = *I;
2489 ++I;
2490 if (O.getParent()->getParent() != MBB)
2491 O.setReg(ToReg);
2492 }
2493 if (!LIS.hasInterval(ToReg))
2494 LIS.createEmptyInterval(ToReg);
2495}
2496
2497/// Return true if the register has a use that occurs outside the
2498/// specified loop.
2499static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2500 MachineRegisterInfo &MRI) {
2501 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2502 E = MRI.use_end();
2503 I != E; ++I)
2504 if (I->getParent()->getParent() != BB)
2505 return true;
2506 return false;
2507}
2508
2509/// Generate Phis for the specific block in the generated pipelined code.
2510/// This function looks at the Phis from the original code to guide the
2511/// creation of new Phis.
2512void SwingSchedulerDAG::generateExistingPhis(
2513 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2514 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2515 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2516 bool IsLast) {
2517 // Compute the stage number for the inital value of the Phi, which
2518 // comes from the prolog. The prolog to use depends on to which kernel/
2519 // epilog that we're adding the Phi.
2520 unsigned PrologStage = 0;
2521 unsigned PrevStage = 0;
2522 bool InKernel = (LastStageNum == CurStageNum);
2523 if (InKernel) {
2524 PrologStage = LastStageNum - 1;
2525 PrevStage = CurStageNum;
2526 } else {
2527 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2528 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2529 }
2530
2531 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2532 BBE = BB->getFirstNonPHI();
2533 BBI != BBE; ++BBI) {
2534 unsigned Def = BBI->getOperand(0).getReg();
2535
2536 unsigned InitVal = 0;
2537 unsigned LoopVal = 0;
2538 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2539
2540 unsigned PhiOp1 = 0;
2541 // The Phi value from the loop body typically is defined in the loop, but
2542 // not always. So, we need to check if the value is defined in the loop.
2543 unsigned PhiOp2 = LoopVal;
2544 if (VRMap[LastStageNum].count(LoopVal))
2545 PhiOp2 = VRMap[LastStageNum][LoopVal];
2546
2547 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2548 int LoopValStage =
2549 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2550 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2551 if (NumStages == 0) {
2552 // We don't need to generate a Phi anymore, but we need to rename any uses
2553 // of the Phi value.
2554 unsigned NewReg = VRMap[PrevStage][LoopVal];
2555 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2556 Def, NewReg);
2557 if (VRMap[CurStageNum].count(LoopVal))
2558 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2559 }
2560 // Adjust the number of Phis needed depending on the number of prologs left,
2561 // and the distance from where the Phi is first scheduled.
2562 unsigned NumPhis = NumStages;
2563 if (!InKernel && (int)PrologStage < LoopValStage)
2564 // The NumPhis is the maximum number of new Phis needed during the steady
2565 // state. If the Phi has not been scheduled in current prolog, then we
2566 // need to generate less Phis.
2567 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2568 // The number of Phis cannot exceed the number of prolog stages. Each
2569 // stage can potentially define two values.
2570 NumPhis = std::min(NumPhis, PrologStage + 2);
2571
2572 unsigned NewReg = 0;
2573
2574 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2575 // In the epilog, we may need to look back one stage to get the correct
2576 // Phi name because the epilog and prolog blocks execute the same stage.
2577 // The correct name is from the previous block only when the Phi has
2578 // been completely scheduled prior to the epilog, and Phi value is not
2579 // needed in multiple stages.
2580 int StageDiff = 0;
2581 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2582 NumPhis == 1)
2583 StageDiff = 1;
2584 // Adjust the computations below when the phi and the loop definition
2585 // are scheduled in different stages.
2586 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2587 StageDiff = StageScheduled - LoopValStage;
2588 for (unsigned np = 0; np < NumPhis; ++np) {
2589 // If the Phi hasn't been scheduled, then use the initial Phi operand
2590 // value. Otherwise, use the scheduled version of the instruction. This
2591 // is a little complicated when a Phi references another Phi.
2592 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2593 PhiOp1 = InitVal;
2594 // Check if the Phi has already been scheduled in a prolog stage.
2595 else if (PrologStage >= AccessStage + StageDiff + np &&
2596 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2597 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2598 // Check if the Phi has already been scheduled, but the loop intruction
2599 // is either another Phi, or doesn't occur in the loop.
2600 else if (PrologStage >= AccessStage + StageDiff + np) {
2601 // If the Phi references another Phi, we need to examine the other
2602 // Phi to get the correct value.
2603 PhiOp1 = LoopVal;
2604 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2605 int Indirects = 1;
2606 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2607 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2608 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2609 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2610 else
2611 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2612 InstOp1 = MRI.getVRegDef(PhiOp1);
2613 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2614 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2615 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2616 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2617 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2618 break;
2619 }
2620 ++Indirects;
2621 }
2622 } else
2623 PhiOp1 = InitVal;
2624 // If this references a generated Phi in the kernel, get the Phi operand
2625 // from the incoming block.
2626 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2627 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2628 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2629
2630 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2631 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2632 // In the epilog, a map lookup is needed to get the value from the kernel,
2633 // or previous epilog block. How is does this depends on if the
2634 // instruction is scheduled in the previous block.
2635 if (!InKernel) {
2636 int StageDiffAdj = 0;
2637 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2638 StageDiffAdj = StageScheduled - LoopValStage;
2639 // Use the loop value defined in the kernel, unless the kernel
2640 // contains the last definition of the Phi.
2641 if (np == 0 && PrevStage == LastStageNum &&
2642 (StageScheduled != 0 || LoopValStage != 0) &&
2643 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2644 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2645 // Use the value defined by the Phi. We add one because we switch
2646 // from looking at the loop value to the Phi definition.
2647 else if (np > 0 && PrevStage == LastStageNum &&
2648 VRMap[PrevStage - np + 1].count(Def))
2649 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2650 // Use the loop value defined in the kernel.
2651 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2652 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2653 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2654 // Use the value defined by the Phi, unless we're generating the first
2655 // epilog and the Phi refers to a Phi in a different stage.
2656 else if (VRMap[PrevStage - np].count(Def) &&
2657 (!LoopDefIsPhi || PrevStage != LastStageNum))
2658 PhiOp2 = VRMap[PrevStage - np][Def];
2659 }
2660
2661 // Check if we can reuse an existing Phi. This occurs when a Phi
2662 // references another Phi, and the other Phi is scheduled in an
2663 // earlier stage. We can try to reuse an existing Phi up until the last
2664 // stage of the current Phi.
Brendon Cahoon65b6ebc2016-08-16 14:29:24 +00002665 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002666 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2667 int StageDiff = (StageScheduled - LoopValStage);
2668 LVNumStages -= StageDiff;
2669 if (LVNumStages > (int)np) {
2670 NewReg = PhiOp2;
2671 unsigned ReuseStage = CurStageNum;
2672 if (Schedule.isLoopCarried(this, *PhiInst))
2673 ReuseStage -= LVNumStages;
2674 // Check if the Phi to reuse has been generated yet. If not, then
2675 // there is nothing to reuse.
2676 if (VRMap[ReuseStage].count(LoopVal)) {
2677 NewReg = VRMap[ReuseStage][LoopVal];
2678
2679 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2680 &*BBI, Def, NewReg);
2681 // Update the map with the new Phi name.
2682 VRMap[CurStageNum - np][Def] = NewReg;
2683 PhiOp2 = NewReg;
2684 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2685 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2686
2687 if (IsLast && np == NumPhis - 1)
2688 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2689 continue;
2690 }
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002691 } else if (InKernel && StageDiff > 0 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002692 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2693 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2694 }
2695
2696 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2697 NewReg = MRI.createVirtualRegister(RC);
2698
2699 MachineInstrBuilder NewPhi =
2700 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2701 TII->get(TargetOpcode::PHI), NewReg);
2702 NewPhi.addReg(PhiOp1).addMBB(BB1);
2703 NewPhi.addReg(PhiOp2).addMBB(BB2);
2704 if (np == 0)
2705 InstrMap[NewPhi] = &*BBI;
2706
2707 // We define the Phis after creating the new pipelined code, so
2708 // we need to rename the Phi values in scheduled instructions.
2709
2710 unsigned PrevReg = 0;
2711 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2712 PrevReg = VRMap[PrevStage - np][LoopVal];
2713 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2714 Def, NewReg, PrevReg);
2715 // If the Phi has been scheduled, use the new name for rewriting.
2716 if (VRMap[CurStageNum - np].count(Def)) {
2717 unsigned R = VRMap[CurStageNum - np][Def];
2718 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2719 R, NewReg);
2720 }
2721
2722 // Check if we need to rename any uses that occurs after the loop. The
2723 // register to replace depends on whether the Phi is scheduled in the
2724 // epilog.
2725 if (IsLast && np == NumPhis - 1)
2726 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2727
2728 // In the kernel, a dependent Phi uses the value from this Phi.
2729 if (InKernel)
2730 PhiOp2 = NewReg;
2731
2732 // Update the map with the new Phi name.
2733 VRMap[CurStageNum - np][Def] = NewReg;
2734 }
2735
2736 while (NumPhis++ < NumStages) {
2737 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2738 &*BBI, Def, NewReg, 0);
2739 }
2740
2741 // Check if we need to rename a Phi that has been eliminated due to
2742 // scheduling.
2743 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2744 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2745 }
2746}
2747
2748/// Generate Phis for the specified block in the generated pipelined code.
2749/// These are new Phis needed because the definition is scheduled after the
2750/// use in the pipelened sequence.
2751void SwingSchedulerDAG::generatePhis(
2752 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2753 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2754 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2755 bool IsLast) {
2756 // Compute the stage number that contains the initial Phi value, and
2757 // the Phi from the previous stage.
2758 unsigned PrologStage = 0;
2759 unsigned PrevStage = 0;
2760 unsigned StageDiff = CurStageNum - LastStageNum;
2761 bool InKernel = (StageDiff == 0);
2762 if (InKernel) {
2763 PrologStage = LastStageNum - 1;
2764 PrevStage = CurStageNum;
2765 } else {
2766 PrologStage = LastStageNum - StageDiff;
2767 PrevStage = LastStageNum + StageDiff - 1;
2768 }
2769
2770 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2771 BBE = BB->instr_end();
2772 BBI != BBE; ++BBI) {
2773 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2774 MachineOperand &MO = BBI->getOperand(i);
2775 if (!MO.isReg() || !MO.isDef() ||
2776 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2777 continue;
2778
2779 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2780 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2781 unsigned Def = MO.getReg();
2782 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2783 // An instruction scheduled in stage 0 and is used after the loop
2784 // requires a phi in the epilog for the last definition from either
2785 // the kernel or prolog.
2786 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2787 hasUseAfterLoop(Def, BB, MRI))
2788 NumPhis = 1;
2789 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2790 continue;
2791
2792 unsigned PhiOp2 = VRMap[PrevStage][Def];
2793 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2794 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2795 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2796 // The number of Phis can't exceed the number of prolog stages. The
2797 // prolog stage number is zero based.
2798 if (NumPhis > PrologStage + 1 - StageScheduled)
2799 NumPhis = PrologStage + 1 - StageScheduled;
2800 for (unsigned np = 0; np < NumPhis; ++np) {
2801 unsigned PhiOp1 = VRMap[PrologStage][Def];
2802 if (np <= PrologStage)
2803 PhiOp1 = VRMap[PrologStage - np][Def];
2804 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2805 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2806 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2807 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2808 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2809 }
2810 if (!InKernel)
2811 PhiOp2 = VRMap[PrevStage - np][Def];
2812
2813 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2814 unsigned NewReg = MRI.createVirtualRegister(RC);
2815
2816 MachineInstrBuilder NewPhi =
2817 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2818 TII->get(TargetOpcode::PHI), NewReg);
2819 NewPhi.addReg(PhiOp1).addMBB(BB1);
2820 NewPhi.addReg(PhiOp2).addMBB(BB2);
2821 if (np == 0)
2822 InstrMap[NewPhi] = &*BBI;
2823
2824 // Rewrite uses and update the map. The actions depend upon whether
2825 // we generating code for the kernel or epilog blocks.
2826 if (InKernel) {
2827 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2828 &*BBI, PhiOp1, NewReg);
2829 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2830 &*BBI, PhiOp2, NewReg);
2831
2832 PhiOp2 = NewReg;
2833 VRMap[PrevStage - np - 1][Def] = NewReg;
2834 } else {
2835 VRMap[CurStageNum - np][Def] = NewReg;
2836 if (np == NumPhis - 1)
2837 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2838 &*BBI, Def, NewReg);
2839 }
2840 if (IsLast && np == NumPhis - 1)
2841 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2842 }
2843 }
2844 }
2845}
2846
2847/// Remove instructions that generate values with no uses.
2848/// Typically, these are induction variable operations that generate values
2849/// used in the loop itself. A dead instruction has a definition with
2850/// no uses, or uses that occur in the original loop only.
2851void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2852 MBBVectorTy &EpilogBBs) {
2853 // For each epilog block, check that the value defined by each instruction
2854 // is used. If not, delete it.
2855 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2856 MBE = EpilogBBs.rend();
2857 MBB != MBE; ++MBB)
2858 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2859 ME = (*MBB)->instr_rend();
2860 MI != ME;) {
2861 // From DeadMachineInstructionElem. Don't delete inline assembly.
2862 if (MI->isInlineAsm()) {
2863 ++MI;
2864 continue;
2865 }
2866 bool SawStore = false;
2867 // Check if it's safe to remove the instruction due to side effects.
2868 // We can, and want to, remove Phis here.
2869 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2870 ++MI;
2871 continue;
2872 }
2873 bool used = true;
2874 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2875 MOE = MI->operands_end();
2876 MOI != MOE; ++MOI) {
2877 if (!MOI->isReg() || !MOI->isDef())
2878 continue;
2879 unsigned reg = MOI->getReg();
2880 unsigned realUses = 0;
2881 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2882 EI = MRI.use_end();
2883 UI != EI; ++UI) {
2884 // Check if there are any uses that occur only in the original
2885 // loop. If so, that's not a real use.
2886 if (UI->getParent()->getParent() != BB) {
2887 realUses++;
2888 used = true;
2889 break;
2890 }
2891 }
2892 if (realUses > 0)
2893 break;
2894 used = false;
2895 }
2896 if (!used) {
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002897 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002898 continue;
2899 }
2900 ++MI;
2901 }
2902 // In the kernel block, check if we can remove a Phi that generates a value
2903 // used in an instruction removed in the epilog block.
2904 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2905 BBE = KernelBB->getFirstNonPHI();
2906 BBI != BBE;) {
2907 MachineInstr *MI = &*BBI;
2908 ++BBI;
2909 unsigned reg = MI->getOperand(0).getReg();
2910 if (MRI.use_begin(reg) == MRI.use_end()) {
2911 MI->eraseFromParent();
2912 }
2913 }
2914}
2915
2916/// For loop carried definitions, we split the lifetime of a virtual register
2917/// that has uses past the definition in the next iteration. A copy with a new
2918/// virtual register is inserted before the definition, which helps with
2919/// generating a better register assignment.
2920///
2921/// v1 = phi(a, v2) v1 = phi(a, v2)
2922/// v2 = phi(b, v3) v2 = phi(b, v3)
2923/// v3 = .. v4 = copy v1
2924/// .. = V1 v3 = ..
2925/// .. = v4
2926void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2927 MBBVectorTy &EpilogBBs,
2928 SMSchedule &Schedule) {
2929 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2930 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2931 BBF = KernelBB->getFirstNonPHI();
2932 BBI != BBF; ++BBI) {
2933 unsigned Def = BBI->getOperand(0).getReg();
2934 // Check for any Phi definition that used as an operand of another Phi
2935 // in the same block.
2936 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2937 E = MRI.use_instr_end();
2938 I != E; ++I) {
2939 if (I->isPHI() && I->getParent() == KernelBB) {
2940 // Get the loop carried definition.
2941 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
2942 if (!LCDef)
2943 continue;
2944 MachineInstr *MI = MRI.getVRegDef(LCDef);
2945 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2946 continue;
2947 // Search through the rest of the block looking for uses of the Phi
2948 // definition. If one occurs, then split the lifetime.
2949 unsigned SplitReg = 0;
2950 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2951 KernelBB->instr_end()))
2952 if (BBJ.readsRegister(Def)) {
2953 // We split the lifetime when we find the first use.
2954 if (SplitReg == 0) {
2955 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2956 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2957 TII->get(TargetOpcode::COPY), SplitReg)
2958 .addReg(Def);
2959 }
2960 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2961 }
2962 if (!SplitReg)
2963 continue;
2964 // Search through each of the epilog blocks for any uses to be renamed.
2965 for (auto &Epilog : EpilogBBs)
2966 for (auto &I : *Epilog)
2967 if (I.readsRegister(Def))
2968 I.substituteRegister(Def, SplitReg, 0, *TRI);
2969 break;
2970 }
2971 }
2972 }
2973}
2974
2975/// Remove the incoming block from the Phis in a basic block.
2976static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2977 for (MachineInstr &MI : *BB) {
2978 if (!MI.isPHI())
2979 break;
2980 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2981 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2982 MI.RemoveOperand(i + 1);
2983 MI.RemoveOperand(i);
2984 break;
2985 }
2986 }
2987}
2988
2989/// Create branches from each prolog basic block to the appropriate epilog
2990/// block. These edges are needed if the loop ends before reaching the
2991/// kernel.
2992void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2993 MachineBasicBlock *KernelBB,
2994 MBBVectorTy &EpilogBBs,
2995 SMSchedule &Schedule, ValueMapTy *VRMap) {
2996 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2997 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2998 MachineInstr *Cmp = Pass.LI.LoopCompare;
2999 MachineBasicBlock *LastPro = KernelBB;
3000 MachineBasicBlock *LastEpi = KernelBB;
3001
3002 // Start from the blocks connected to the kernel and work "out"
3003 // to the first prolog and the last epilog blocks.
3004 SmallVector<MachineInstr *, 4> PrevInsts;
3005 unsigned MaxIter = PrologBBs.size() - 1;
3006 unsigned LC = UINT_MAX;
3007 unsigned LCMin = UINT_MAX;
3008 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3009 // Add branches to the prolog that go to the corresponding
3010 // epilog, and the fall-thru prolog/kernel block.
3011 MachineBasicBlock *Prolog = PrologBBs[j];
3012 MachineBasicBlock *Epilog = EpilogBBs[i];
3013 // We've executed one iteration, so decrement the loop count and check for
3014 // the loop end.
3015 SmallVector<MachineOperand, 4> Cond;
3016 // Check if the LOOP0 has already been removed. If so, then there is no need
3017 // to reduce the trip count.
3018 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003019 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003020 MaxIter);
3021
3022 // Record the value of the first trip count, which is used to determine if
3023 // branches and blocks can be removed for constant trip counts.
3024 if (LCMin == UINT_MAX)
3025 LCMin = LC;
3026
3027 unsigned numAdded = 0;
3028 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3029 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003030 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003031 } else if (j >= LCMin) {
3032 Prolog->addSuccessor(Epilog);
3033 Prolog->removeSuccessor(LastPro);
3034 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003035 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003036 removePhis(Epilog, LastEpi);
3037 // Remove the blocks that are no longer referenced.
3038 if (LastPro != LastEpi) {
3039 LastEpi->clear();
3040 LastEpi->eraseFromParent();
3041 }
3042 LastPro->clear();
3043 LastPro->eraseFromParent();
3044 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003045 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003046 removePhis(Epilog, Prolog);
3047 }
3048 LastPro = Prolog;
3049 LastEpi = Epilog;
3050 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3051 E = Prolog->instr_rend();
3052 I != E && numAdded > 0; ++I, --numAdded)
3053 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3054 }
3055}
3056
3057/// Return true if we can compute the amount the instruction changes
3058/// during each iteration. Set Delta to the amount of the change.
3059bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3060 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3061 unsigned BaseReg;
3062 int64_t Offset;
3063 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3064 return false;
3065
3066 MachineRegisterInfo &MRI = MF.getRegInfo();
3067 // Check if there is a Phi. If so, get the definition in the loop.
3068 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3069 if (BaseDef && BaseDef->isPHI()) {
3070 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3071 BaseDef = MRI.getVRegDef(BaseReg);
3072 }
3073 if (!BaseDef)
3074 return false;
3075
3076 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003077 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003078 return false;
3079
3080 Delta = D;
3081 return true;
3082}
3083
3084/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003085/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003086/// different memory location.
3087void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3088 MachineInstr &OldMI, unsigned Num) {
3089 if (Num == 0)
3090 return;
3091 // If the instruction has memory operands, then adjust the offset
3092 // when the instruction appears in different stages.
3093 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3094 if (NumRefs == 0)
3095 return;
3096 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3097 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003098 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003099 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3100 (!MMO->getValue())) {
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003101 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003102 continue;
3103 }
3104 unsigned Delta;
3105 if (computeDelta(OldMI, Delta)) {
3106 int64_t AdjOffset = Delta * Num;
3107 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003108 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003109 } else
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003110 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003111 }
3112 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3113}
3114
3115/// Clone the instruction for the new pipelined loop and update the
3116/// memory operands, if needed.
3117MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3118 unsigned CurStageNum,
3119 unsigned InstStageNum) {
3120 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3121 // Check for tied operands in inline asm instructions. This should be handled
3122 // elsewhere, but I'm not sure of the best solution.
3123 if (OldMI->isInlineAsm())
3124 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3125 const auto &MO = OldMI->getOperand(i);
3126 if (MO.isReg() && MO.isUse())
3127 break;
3128 unsigned UseIdx;
3129 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3130 NewMI->tieOperands(i, UseIdx);
3131 }
3132 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3133 return NewMI;
3134}
3135
3136/// Clone the instruction for the new pipelined loop. If needed, this
3137/// function updates the instruction using the values saved in the
3138/// InstrChanges structure.
3139MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3140 unsigned CurStageNum,
3141 unsigned InstStageNum,
3142 SMSchedule &Schedule) {
3143 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3144 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3145 InstrChanges.find(getSUnit(OldMI));
3146 if (It != InstrChanges.end()) {
3147 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3148 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003149 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003150 return nullptr;
3151 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3152 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3153 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3154 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3155 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3156 }
3157 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3158 return NewMI;
3159}
3160
3161/// Update the machine instruction with new virtual registers. This
3162/// function may change the defintions and/or uses.
3163void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3164 unsigned CurStageNum,
3165 unsigned InstrStageNum,
3166 SMSchedule &Schedule,
3167 ValueMapTy *VRMap) {
3168 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3169 MachineOperand &MO = NewMI->getOperand(i);
3170 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3171 continue;
3172 unsigned reg = MO.getReg();
3173 if (MO.isDef()) {
3174 // Create a new virtual register for the definition.
3175 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3176 unsigned NewReg = MRI.createVirtualRegister(RC);
3177 MO.setReg(NewReg);
3178 VRMap[CurStageNum][reg] = NewReg;
3179 if (LastDef)
3180 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3181 } else if (MO.isUse()) {
3182 MachineInstr *Def = MRI.getVRegDef(reg);
3183 // Compute the stage that contains the last definition for instruction.
3184 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3185 unsigned StageNum = CurStageNum;
3186 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3187 // Compute the difference in stages between the defintion and the use.
3188 unsigned StageDiff = (InstrStageNum - DefStageNum);
3189 // Make an adjustment to get the last definition.
3190 StageNum -= StageDiff;
3191 }
3192 if (VRMap[StageNum].count(reg))
3193 MO.setReg(VRMap[StageNum][reg]);
3194 }
3195 }
3196}
3197
3198/// Return the instruction in the loop that defines the register.
3199/// If the definition is a Phi, then follow the Phi operand to
3200/// the instruction in the loop.
3201MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3202 SmallPtrSet<MachineInstr *, 8> Visited;
3203 MachineInstr *Def = MRI.getVRegDef(Reg);
3204 while (Def->isPHI()) {
3205 if (!Visited.insert(Def).second)
3206 break;
3207 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3208 if (Def->getOperand(i + 1).getMBB() == BB) {
3209 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3210 break;
3211 }
3212 }
3213 return Def;
3214}
3215
3216/// Return the new name for the value from the previous stage.
3217unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3218 unsigned LoopVal, unsigned LoopStage,
3219 ValueMapTy *VRMap,
3220 MachineBasicBlock *BB) {
3221 unsigned PrevVal = 0;
3222 if (StageNum > PhiStage) {
3223 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3224 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3225 // The name is defined in the previous stage.
3226 PrevVal = VRMap[StageNum - 1][LoopVal];
3227 else if (VRMap[StageNum].count(LoopVal))
3228 // The previous name is defined in the current stage when the instruction
3229 // order is swapped.
3230 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003231 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003232 // The loop value hasn't yet been scheduled.
3233 PrevVal = LoopVal;
3234 else if (StageNum == PhiStage + 1)
3235 // The loop value is another phi, which has not been scheduled.
3236 PrevVal = getInitPhiReg(*LoopInst, BB);
3237 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3238 // The loop value is another phi, which has been scheduled.
3239 PrevVal =
3240 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3241 LoopStage, VRMap, BB);
3242 }
3243 return PrevVal;
3244}
3245
3246/// Rewrite the Phi values in the specified block to use the mappings
3247/// from the initial operand. Once the Phi is scheduled, we switch
3248/// to using the loop value instead of the Phi value, so those names
3249/// do not need to be rewritten.
3250void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3251 unsigned StageNum,
3252 SMSchedule &Schedule,
3253 ValueMapTy *VRMap,
3254 InstrMapTy &InstrMap) {
3255 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
3256 BBE = BB->getFirstNonPHI();
3257 BBI != BBE; ++BBI) {
3258 unsigned InitVal = 0;
3259 unsigned LoopVal = 0;
3260 getPhiRegs(*BBI, BB, InitVal, LoopVal);
3261 unsigned PhiDef = BBI->getOperand(0).getReg();
3262
3263 unsigned PhiStage =
3264 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3265 unsigned LoopStage =
3266 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3267 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3268 if (NumPhis > StageNum)
3269 NumPhis = StageNum;
3270 for (unsigned np = 0; np <= NumPhis; ++np) {
3271 unsigned NewVal =
3272 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3273 if (!NewVal)
3274 NewVal = InitVal;
3275 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
3276 PhiDef, NewVal);
3277 }
3278 }
3279}
3280
3281/// Rewrite a previously scheduled instruction to use the register value
3282/// from the new instruction. Make sure the instruction occurs in the
3283/// basic block, and we don't change the uses in the new instruction.
3284void SwingSchedulerDAG::rewriteScheduledInstr(
3285 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3286 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3287 unsigned NewReg, unsigned PrevReg) {
3288 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3289 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3290 // Rewrite uses that have been scheduled already to use the new
3291 // Phi register.
3292 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3293 EI = MRI.use_end();
3294 UI != EI;) {
3295 MachineOperand &UseOp = *UI;
3296 MachineInstr *UseMI = UseOp.getParent();
3297 ++UI;
3298 if (UseMI->getParent() != BB)
3299 continue;
3300 if (UseMI->isPHI()) {
3301 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3302 continue;
3303 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3304 continue;
3305 }
3306 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3307 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3308 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3309 int StageSched = Schedule.stageScheduled(OrigMISU);
3310 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3311 unsigned ReplaceReg = 0;
3312 // This is the stage for the scheduled instruction.
3313 if (StagePhi == StageSched && Phi->isPHI()) {
3314 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3315 if (PrevReg && InProlog)
3316 ReplaceReg = PrevReg;
3317 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3318 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3319 ReplaceReg = PrevReg;
3320 else
3321 ReplaceReg = NewReg;
3322 }
3323 // The scheduled instruction occurs before the scheduled Phi, and the
3324 // Phi is not loop carried.
3325 if (!InProlog && StagePhi + 1 == StageSched &&
3326 !Schedule.isLoopCarried(this, *Phi))
3327 ReplaceReg = NewReg;
3328 if (StagePhi > StageSched && Phi->isPHI())
3329 ReplaceReg = NewReg;
3330 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3331 ReplaceReg = NewReg;
3332 if (ReplaceReg) {
3333 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3334 UseOp.setReg(ReplaceReg);
3335 }
3336 }
3337}
3338
3339/// Check if we can change the instruction to use an offset value from the
3340/// previous iteration. If so, return true and set the base and offset values
3341/// so that we can rewrite the load, if necessary.
3342/// v1 = Phi(v0, v3)
3343/// v2 = load v1, 0
3344/// v3 = post_store v1, 4, x
3345/// This function enables the load to be rewritten as v2 = load v3, 4.
3346bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3347 unsigned &BasePos,
3348 unsigned &OffsetPos,
3349 unsigned &NewBase,
3350 int64_t &Offset) {
3351 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003352 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003353 return false;
3354 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003355 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003356 return false;
3357 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3358
3359 // Look for the Phi instruction.
3360 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
3361 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3362 if (!Phi || !Phi->isPHI())
3363 return false;
3364 // Get the register defined in the loop block.
3365 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3366 if (!PrevReg)
3367 return false;
3368
3369 // Check for the post-increment load/store instruction.
3370 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3371 if (!PrevDef || PrevDef == MI)
3372 return false;
3373
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003374 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003375 return false;
3376
3377 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003378 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003379 return false;
3380
3381 // Make sure offset values are both positive or both negative.
3382 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3383 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3384 if ((LoadOffset >= 0) != (StoreOffset >= 0))
3385 return false;
3386
3387 // Set the return value once we determine that we return true.
3388 BasePos = BasePosLd;
3389 OffsetPos = OffsetPosLd;
3390 NewBase = PrevReg;
3391 Offset = StoreOffset;
3392 return true;
3393}
3394
3395/// Apply changes to the instruction if needed. The changes are need
3396/// to improve the scheduling and depend up on the final schedule.
3397MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3398 SMSchedule &Schedule,
3399 bool UpdateDAG) {
3400 SUnit *SU = getSUnit(MI);
3401 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3402 InstrChanges.find(SU);
3403 if (It != InstrChanges.end()) {
3404 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3405 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003406 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003407 return nullptr;
3408 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3409 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3410 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3411 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3412 int BaseStageNum = Schedule.stageScheduled(SU);
3413 int BaseCycleNum = Schedule.cycleScheduled(SU);
3414 if (BaseStageNum < DefStageNum) {
3415 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3416 int OffsetDiff = DefStageNum - BaseStageNum;
3417 if (DefCycleNum < BaseCycleNum) {
3418 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3419 if (OffsetDiff > 0)
3420 --OffsetDiff;
3421 }
3422 int64_t NewOffset =
3423 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3424 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3425 if (UpdateDAG) {
3426 SU->setInstr(NewMI);
3427 MISUnitMap[NewMI] = SU;
3428 }
3429 NewMIs.insert(NewMI);
3430 return NewMI;
3431 }
3432 }
3433 return nullptr;
3434}
3435
3436/// Return true for an order dependence that is loop carried potentially.
3437/// An order dependence is loop carried if the destination defines a value
3438/// that may be used by the source in a subsequent iteration.
3439bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
3440 bool isSucc) {
3441 if (!isOrder(Source, Dep) || Dep.isArtificial())
3442 return false;
3443
3444 if (!SwpPruneLoopCarried)
3445 return true;
3446
3447 MachineInstr *SI = Source->getInstr();
3448 MachineInstr *DI = Dep.getSUnit()->getInstr();
3449 if (!isSucc)
3450 std::swap(SI, DI);
3451 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3452
3453 // Assume ordered loads and stores may have a loop carried dependence.
3454 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3455 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3456 return true;
3457
3458 // Only chain dependences between a load and store can be loop carried.
3459 if (!DI->mayStore() || !SI->mayLoad())
3460 return false;
3461
3462 unsigned DeltaS, DeltaD;
3463 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3464 return true;
3465
3466 unsigned BaseRegS, BaseRegD;
3467 int64_t OffsetS, OffsetD;
3468 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3469 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3470 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3471 return true;
3472
3473 if (BaseRegS != BaseRegD)
3474 return true;
3475
3476 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3477 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3478
3479 // This is the main test, which checks the offset values and the loop
3480 // increment value to determine if the accesses may be loop carried.
3481 if (OffsetS >= OffsetD)
3482 return OffsetS + AccessSizeS > DeltaS;
3483 else if (OffsetS < OffsetD)
3484 return OffsetD + AccessSizeD > DeltaD;
3485
3486 return true;
3487}
3488
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003489void SwingSchedulerDAG::postprocessDAG() {
3490 for (auto &M : Mutations)
3491 M->apply(this);
3492}
3493
Brendon Cahoon254f8892016-07-29 16:44:44 +00003494/// Try to schedule the node at the specified StartCycle and continue
3495/// until the node is schedule or the EndCycle is reached. This function
3496/// returns true if the node is scheduled. This routine may search either
3497/// forward or backward for a place to insert the instruction based upon
3498/// the relative values of StartCycle and EndCycle.
3499bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3500 bool forward = true;
3501 if (StartCycle > EndCycle)
3502 forward = false;
3503
3504 // The terminating condition depends on the direction.
3505 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3506 for (int curCycle = StartCycle; curCycle != termCycle;
3507 forward ? ++curCycle : --curCycle) {
3508
3509 // Add the already scheduled instructions at the specified cycle to the DFA.
3510 Resources->clearResources();
3511 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3512 checkCycle <= LastCycle; checkCycle += II) {
3513 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3514
3515 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3516 E = cycleInstrs.end();
3517 I != E; ++I) {
3518 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3519 continue;
3520 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3521 "These instructions have already been scheduled.");
3522 Resources->reserveResources(*(*I)->getInstr());
3523 }
3524 }
3525 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3526 Resources->canReserveResources(*SU->getInstr())) {
3527 DEBUG({
3528 dbgs() << "\tinsert at cycle " << curCycle << " ";
3529 SU->getInstr()->dump();
3530 });
3531
3532 ScheduledInstrs[curCycle].push_back(SU);
3533 InstrToCycle.insert(std::make_pair(SU, curCycle));
3534 if (curCycle > LastCycle)
3535 LastCycle = curCycle;
3536 if (curCycle < FirstCycle)
3537 FirstCycle = curCycle;
3538 return true;
3539 }
3540 DEBUG({
3541 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3542 SU->getInstr()->dump();
3543 });
3544 }
3545 return false;
3546}
3547
3548// Return the cycle of the earliest scheduled instruction in the chain.
3549int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3550 SmallPtrSet<SUnit *, 8> Visited;
3551 SmallVector<SDep, 8> Worklist;
3552 Worklist.push_back(Dep);
3553 int EarlyCycle = INT_MAX;
3554 while (!Worklist.empty()) {
3555 const SDep &Cur = Worklist.pop_back_val();
3556 SUnit *PrevSU = Cur.getSUnit();
3557 if (Visited.count(PrevSU))
3558 continue;
3559 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3560 if (it == InstrToCycle.end())
3561 continue;
3562 EarlyCycle = std::min(EarlyCycle, it->second);
3563 for (const auto &PI : PrevSU->Preds)
3564 if (SwingSchedulerDAG::isOrder(PrevSU, PI))
3565 Worklist.push_back(PI);
3566 Visited.insert(PrevSU);
3567 }
3568 return EarlyCycle;
3569}
3570
3571// Return the cycle of the latest scheduled instruction in the chain.
3572int SMSchedule::latestCycleInChain(const SDep &Dep) {
3573 SmallPtrSet<SUnit *, 8> Visited;
3574 SmallVector<SDep, 8> Worklist;
3575 Worklist.push_back(Dep);
3576 int LateCycle = INT_MIN;
3577 while (!Worklist.empty()) {
3578 const SDep &Cur = Worklist.pop_back_val();
3579 SUnit *SuccSU = Cur.getSUnit();
3580 if (Visited.count(SuccSU))
3581 continue;
3582 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3583 if (it == InstrToCycle.end())
3584 continue;
3585 LateCycle = std::max(LateCycle, it->second);
3586 for (const auto &SI : SuccSU->Succs)
3587 if (SwingSchedulerDAG::isOrder(SuccSU, SI))
3588 Worklist.push_back(SI);
3589 Visited.insert(SuccSU);
3590 }
3591 return LateCycle;
3592}
3593
3594/// If an instruction has a use that spans multiple iterations, then
3595/// return true. These instructions are characterized by having a back-ege
3596/// to a Phi, which contains a reference to another Phi.
3597static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3598 for (auto &P : SU->Preds)
3599 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3600 for (auto &S : P.getSUnit()->Succs)
3601 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
3602 return P.getSUnit();
3603 return nullptr;
3604}
3605
3606/// Compute the scheduling start slot for the instruction. The start slot
3607/// depends on any predecessor or successor nodes scheduled already.
3608void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3609 int *MinEnd, int *MaxStart, int II,
3610 SwingSchedulerDAG *DAG) {
3611 // Iterate over each instruction that has been scheduled already. The start
3612 // slot computuation depends on whether the previously scheduled instruction
3613 // is a predecessor or successor of the specified instruction.
3614 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3615
3616 // Iterate over each instruction in the current cycle.
3617 for (SUnit *I : getInstructions(cycle)) {
3618 // Because we're processing a DAG for the dependences, we recognize
3619 // the back-edge in recurrences by anti dependences.
3620 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3621 const SDep &Dep = SU->Preds[i];
3622 if (Dep.getSUnit() == I) {
3623 if (!DAG->isBackedge(SU, Dep)) {
3624 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3625 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3626 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3627 if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
3628 int End = earliestCycleInChain(Dep) + (II - 1);
3629 *MinEnd = std::min(*MinEnd, End);
3630 }
3631 } else {
3632 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3633 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3634 *MinLateStart = std::min(*MinLateStart, LateStart);
3635 }
3636 }
3637 // For instruction that requires multiple iterations, make sure that
3638 // the dependent instruction is not scheduled past the definition.
3639 SUnit *BE = multipleIterations(I, DAG);
3640 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3641 !SU->isPred(I))
3642 *MinLateStart = std::min(*MinLateStart, cycle);
3643 }
3644 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3645 if (SU->Succs[i].getSUnit() == I) {
3646 const SDep &Dep = SU->Succs[i];
3647 if (!DAG->isBackedge(SU, Dep)) {
3648 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3649 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3650 *MinLateStart = std::min(*MinLateStart, LateStart);
3651 if (DAG->isLoopCarriedOrder(SU, Dep)) {
3652 int Start = latestCycleInChain(Dep) + 1 - II;
3653 *MaxStart = std::max(*MaxStart, Start);
3654 }
3655 } else {
3656 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3657 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3658 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3659 }
3660 }
3661 }
3662 }
3663}
3664
3665/// Order the instructions within a cycle so that the definitions occur
3666/// before the uses. Returns true if the instruction is added to the start
3667/// of the list, or false if added to the end.
3668bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3669 std::deque<SUnit *> &Insts) {
3670 MachineInstr *MI = SU->getInstr();
3671 bool OrderBeforeUse = false;
3672 bool OrderAfterDef = false;
3673 bool OrderBeforeDef = false;
3674 unsigned MoveDef = 0;
3675 unsigned MoveUse = 0;
3676 int StageInst1 = stageScheduled(SU);
3677
3678 unsigned Pos = 0;
3679 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3680 ++I, ++Pos) {
3681 // Relative order of Phis does not matter.
3682 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3683 continue;
3684 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3685 MachineOperand &MO = MI->getOperand(i);
3686 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3687 continue;
3688 unsigned Reg = MO.getReg();
3689 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003690 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003691 if (MI->getOperand(BasePos).getReg() == Reg)
3692 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3693 Reg = NewReg;
3694 bool Reads, Writes;
3695 std::tie(Reads, Writes) =
3696 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3697 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3698 OrderBeforeUse = true;
3699 MoveUse = Pos;
3700 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3701 // Add the instruction after the scheduled instruction.
3702 OrderAfterDef = true;
3703 MoveDef = Pos;
3704 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3705 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3706 OrderBeforeUse = true;
3707 MoveUse = Pos;
3708 } else {
3709 OrderAfterDef = true;
3710 MoveDef = Pos;
3711 }
3712 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3713 OrderBeforeUse = true;
3714 MoveUse = Pos;
3715 if (MoveUse != 0) {
3716 OrderAfterDef = true;
3717 MoveDef = Pos - 1;
3718 }
3719 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3720 // Add the instruction before the scheduled instruction.
3721 OrderBeforeUse = true;
3722 MoveUse = Pos;
3723 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3724 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3725 OrderBeforeDef = true;
3726 MoveUse = Pos;
3727 }
3728 }
3729 // Check for order dependences between instructions. Make sure the source
3730 // is ordered before the destination.
3731 for (auto &S : SU->Succs)
3732 if (S.getKind() == SDep::Order) {
3733 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3734 OrderBeforeUse = true;
3735 MoveUse = Pos;
3736 }
3737 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
3738 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
3739 if (S.isAssignedRegDep()) {
3740 OrderAfterDef = true;
3741 MoveDef = Pos;
3742 }
3743 } else {
3744 OrderBeforeUse = true;
3745 MoveUse = Pos;
3746 }
3747 }
3748 for (auto &P : SU->Preds)
3749 if (P.getKind() == SDep::Order) {
3750 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3751 OrderAfterDef = true;
3752 MoveDef = Pos;
3753 }
3754 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
3755 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
3756 if (P.isAssignedRegDep()) {
3757 OrderBeforeUse = true;
3758 MoveUse = Pos;
3759 }
3760 } else {
3761 OrderAfterDef = true;
3762 MoveDef = Pos;
3763 }
3764 }
3765 }
3766
3767 // A circular dependence.
3768 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3769 OrderBeforeUse = false;
3770
3771 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3772 // to a loop-carried dependence.
3773 if (OrderBeforeDef)
3774 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3775
3776 // The uncommon case when the instruction order needs to be updated because
3777 // there is both a use and def.
3778 if (OrderBeforeUse && OrderAfterDef) {
3779 SUnit *UseSU = Insts.at(MoveUse);
3780 SUnit *DefSU = Insts.at(MoveDef);
3781 if (MoveUse > MoveDef) {
3782 Insts.erase(Insts.begin() + MoveUse);
3783 Insts.erase(Insts.begin() + MoveDef);
3784 } else {
3785 Insts.erase(Insts.begin() + MoveDef);
3786 Insts.erase(Insts.begin() + MoveUse);
3787 }
3788 if (orderDependence(SSD, UseSU, Insts)) {
3789 Insts.push_front(SU);
3790 orderDependence(SSD, DefSU, Insts);
3791 return true;
3792 }
3793 Insts.pop_back();
3794 Insts.push_back(SU);
3795 Insts.push_back(UseSU);
3796 orderDependence(SSD, DefSU, Insts);
3797 return false;
3798 }
3799 // Put the new instruction first if there is a use in the list. Otherwise,
3800 // put it at the end of the list.
3801 if (OrderBeforeUse)
3802 Insts.push_front(SU);
3803 else
3804 Insts.push_back(SU);
3805 return OrderBeforeUse;
3806}
3807
3808/// Return true if the scheduled Phi has a loop carried operand.
3809bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3810 if (!Phi.isPHI())
3811 return false;
3812 assert(Phi.isPHI() && "Expecing a Phi.");
3813 SUnit *DefSU = SSD->getSUnit(&Phi);
3814 unsigned DefCycle = cycleScheduled(DefSU);
3815 int DefStage = stageScheduled(DefSU);
3816
3817 unsigned InitVal = 0;
3818 unsigned LoopVal = 0;
3819 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3820 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3821 if (!UseSU)
3822 return true;
3823 if (UseSU->getInstr()->isPHI())
3824 return true;
3825 unsigned LoopCycle = cycleScheduled(UseSU);
3826 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003827 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003828}
3829
3830/// Return true if the instruction is a definition that is loop carried
3831/// and defines the use on the next iteration.
3832/// v1 = phi(v2, v3)
3833/// (Def) v3 = op v1
3834/// (MO) = v1
3835/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3836/// register.
3837bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3838 MachineInstr *Def, MachineOperand &MO) {
3839 if (!MO.isReg())
3840 return false;
3841 if (Def->isPHI())
3842 return false;
3843 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3844 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3845 return false;
3846 if (!isLoopCarried(SSD, *Phi))
3847 return false;
3848 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3849 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3850 MachineOperand &DMO = Def->getOperand(i);
3851 if (!DMO.isReg() || !DMO.isDef())
3852 continue;
3853 if (DMO.getReg() == LoopReg)
3854 return true;
3855 }
3856 return false;
3857}
3858
3859// Check if the generated schedule is valid. This function checks if
3860// an instruction that uses a physical register is scheduled in a
3861// different stage than the definition. The pipeliner does not handle
3862// physical register values that may cross a basic block boundary.
3863bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003864 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3865 SUnit &SU = SSD->SUnits[i];
3866 if (!SU.hasPhysRegDefs)
3867 continue;
3868 int StageDef = stageScheduled(&SU);
3869 assert(StageDef != -1 && "Instruction should have been scheduled.");
3870 for (auto &SI : SU.Succs)
3871 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003872 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003873 if (stageScheduled(SI.getSUnit()) != StageDef)
3874 return false;
3875 }
3876 return true;
3877}
3878
3879/// After the schedule has been formed, call this function to combine
3880/// the instructions from the different stages/cycles. That is, this
3881/// function creates a schedule that represents a single iteration.
3882void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3883 // Move all instructions to the first stage from later stages.
3884 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3885 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3886 ++stage) {
3887 std::deque<SUnit *> &cycleInstrs =
3888 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3889 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3890 E = cycleInstrs.rend();
3891 I != E; ++I)
3892 ScheduledInstrs[cycle].push_front(*I);
3893 }
3894 }
3895 // Iterate over the definitions in each instruction, and compute the
3896 // stage difference for each use. Keep the maximum value.
3897 for (auto &I : InstrToCycle) {
3898 int DefStage = stageScheduled(I.first);
3899 MachineInstr *MI = I.first->getInstr();
3900 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3901 MachineOperand &Op = MI->getOperand(i);
3902 if (!Op.isReg() || !Op.isDef())
3903 continue;
3904
3905 unsigned Reg = Op.getReg();
3906 unsigned MaxDiff = 0;
3907 bool PhiIsSwapped = false;
3908 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3909 EI = MRI.use_end();
3910 UI != EI; ++UI) {
3911 MachineOperand &UseOp = *UI;
3912 MachineInstr *UseMI = UseOp.getParent();
3913 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3914 int UseStage = stageScheduled(SUnitUse);
3915 unsigned Diff = 0;
3916 if (UseStage != -1 && UseStage >= DefStage)
3917 Diff = UseStage - DefStage;
3918 if (MI->isPHI()) {
3919 if (isLoopCarried(SSD, *MI))
3920 ++Diff;
3921 else
3922 PhiIsSwapped = true;
3923 }
3924 MaxDiff = std::max(Diff, MaxDiff);
3925 }
3926 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3927 }
3928 }
3929
3930 // Erase all the elements in the later stages. Only one iteration should
3931 // remain in the scheduled list, and it contains all the instructions.
3932 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3933 ScheduledInstrs.erase(cycle);
3934
3935 // Change the registers in instruction as specified in the InstrChanges
3936 // map. We need to use the new registers to create the correct order.
3937 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3938 SUnit *SU = &SSD->SUnits[i];
3939 SSD->applyInstrChange(SU->getInstr(), *this, true);
3940 }
3941
3942 // Reorder the instructions in each cycle to fix and improve the
3943 // generated code.
3944 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3945 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3946 std::deque<SUnit *> newOrderZC;
3947 // Put the zero-cost, pseudo instructions at the start of the cycle.
3948 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3949 SUnit *SU = cycleInstrs[i];
3950 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3951 orderDependence(SSD, SU, newOrderZC);
3952 }
3953 std::deque<SUnit *> newOrderI;
3954 // Then, add the regular instructions back.
3955 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3956 SUnit *SU = cycleInstrs[i];
3957 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3958 orderDependence(SSD, SU, newOrderI);
3959 }
3960 // Replace the old order with the new order.
3961 cycleInstrs.swap(newOrderZC);
3962 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3963 }
3964
3965 DEBUG(dump(););
3966}
3967
3968/// Print the schedule information to the given output.
3969void SMSchedule::print(raw_ostream &os) const {
3970 // Iterate over each cycle.
3971 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3972 // Iterate over each instruction in the cycle.
3973 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3974 for (SUnit *CI : cycleInstrs->second) {
3975 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3976 os << "(" << CI->NodeNum << ") ";
3977 CI->getInstr()->print(os);
3978 os << "\n";
3979 }
3980 }
3981}
3982
3983/// Utility function used for debugging to print the schedule.
3984void SMSchedule::dump() const { print(dbgs()); }