blob: a3a688d7c8d26e39b7c44cfe5a933efca2c06b13 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000069//===----------------------------------------------------------------------===//
70
71#define DEBUG_TYPE "msan"
72
Chandler Carruthed0881b2012-12-03 16:50:05 +000073#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000074#include "llvm/ADT/DepthFirstIterator.h"
75#include "llvm/ADT/SmallString.h"
76#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +000077#include "llvm/ADT/Triple.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000078#include "llvm/ADT/ValueMap.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/DataLayout.h"
80#include "llvm/IR/Function.h"
81#include "llvm/IR/IRBuilder.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/IntrinsicInst.h"
84#include "llvm/IR/LLVMContext.h"
85#include "llvm/IR/MDBuilder.h"
86#include "llvm/IR/Module.h"
87#include "llvm/IR/Type.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000088#include "llvm/InstVisitor.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000089#include "llvm/Support/CommandLine.h"
90#include "llvm/Support/Compiler.h"
91#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000092#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000093#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chandler Carruth1fe21fc2013-01-19 08:03:47 +000094#include "llvm/Transforms/Utils/BlackList.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +000095#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000096#include "llvm/Transforms/Utils/ModuleUtils.h"
97
98using namespace llvm;
99
100static const uint64_t kShadowMask32 = 1ULL << 31;
101static const uint64_t kShadowMask64 = 1ULL << 46;
102static const uint64_t kOriginOffset32 = 1ULL << 30;
103static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000104static const unsigned kMinOriginAlignment = 4;
105static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000106
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000107/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000108///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000109/// Adds a section to MemorySanitizer report that points to the allocation
110/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000111static cl::opt<bool> ClTrackOrigins("msan-track-origins",
112 cl::desc("Track origins (allocation sites) of poisoned memory"),
113 cl::Hidden, cl::init(false));
114static cl::opt<bool> ClKeepGoing("msan-keep-going",
115 cl::desc("keep going after reporting a UMR"),
116 cl::Hidden, cl::init(false));
117static cl::opt<bool> ClPoisonStack("msan-poison-stack",
118 cl::desc("poison uninitialized stack variables"),
119 cl::Hidden, cl::init(true));
120static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
121 cl::desc("poison uninitialized stack variables with a call"),
122 cl::Hidden, cl::init(false));
123static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
124 cl::desc("poison uninitialized stack variables with the given patter"),
125 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000126static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
127 cl::desc("poison undef temps"),
128 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000129
130static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
131 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
132 cl::Hidden, cl::init(true));
133
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000134static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
135 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000136 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000137
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000138static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
139 cl::desc("store origin for clean (fully initialized) values"),
140 cl::Hidden, cl::init(false));
141
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000142// This flag controls whether we check the shadow of the address
143// operand of load or store. Such bugs are very rare, since load from
144// a garbage address typically results in SEGV, but still happen
145// (e.g. only lower bits of address are garbage, or the access happens
146// early at program startup where malloc-ed memory is more likely to
147// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
148static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
149 cl::desc("report accesses through a pointer which has poisoned shadow"),
150 cl::Hidden, cl::init(true));
151
152static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
153 cl::desc("print out instructions with default strict semantics"),
154 cl::Hidden, cl::init(false));
155
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000156static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000157 cl::desc("File containing the list of functions where MemorySanitizer "
158 "should not report bugs"), cl::Hidden);
159
160namespace {
161
162/// \brief An instrumentation pass implementing detection of uninitialized
163/// reads.
164///
165/// MemorySanitizer: instrument the code in module to find
166/// uninitialized reads.
167class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000168 public:
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000169 MemorySanitizer(bool TrackOrigins = false,
170 StringRef BlacklistFile = StringRef())
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000171 : FunctionPass(ID),
172 TrackOrigins(TrackOrigins || ClTrackOrigins),
173 TD(0),
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000174 WarningFn(0),
175 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
176 : BlacklistFile) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000177 const char *getPassName() const { return "MemorySanitizer"; }
178 bool runOnFunction(Function &F);
179 bool doInitialization(Module &M);
180 static char ID; // Pass identification, replacement for typeid.
181
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000182 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000183 void initializeCallbacks(Module &M);
184
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000185 /// \brief Track origins (allocation points) of uninitialized values.
186 bool TrackOrigins;
187
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000188 DataLayout *TD;
189 LLVMContext *C;
190 Type *IntptrTy;
191 Type *OriginTy;
192 /// \brief Thread-local shadow storage for function parameters.
193 GlobalVariable *ParamTLS;
194 /// \brief Thread-local origin storage for function parameters.
195 GlobalVariable *ParamOriginTLS;
196 /// \brief Thread-local shadow storage for function return value.
197 GlobalVariable *RetvalTLS;
198 /// \brief Thread-local origin storage for function return value.
199 GlobalVariable *RetvalOriginTLS;
200 /// \brief Thread-local shadow storage for in-register va_arg function
201 /// parameters (x86_64-specific).
202 GlobalVariable *VAArgTLS;
203 /// \brief Thread-local shadow storage for va_arg overflow area
204 /// (x86_64-specific).
205 GlobalVariable *VAArgOverflowSizeTLS;
206 /// \brief Thread-local space used to pass origin value to the UMR reporting
207 /// function.
208 GlobalVariable *OriginTLS;
209
210 /// \brief The run-time callback to print a warning.
211 Value *WarningFn;
212 /// \brief Run-time helper that copies origin info for a memory range.
213 Value *MsanCopyOriginFn;
214 /// \brief Run-time helper that generates a new origin value for a stack
215 /// allocation.
216 Value *MsanSetAllocaOriginFn;
217 /// \brief Run-time helper that poisons stack on function entry.
218 Value *MsanPoisonStackFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000219 /// \brief MSan runtime replacements for memmove, memcpy and memset.
220 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000221
222 /// \brief Address mask used in application-to-shadow address calculation.
223 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
224 uint64_t ShadowMask;
225 /// \brief Offset of the origin shadow from the "normal" shadow.
226 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
227 uint64_t OriginOffset;
228 /// \brief Branch weights for error reporting.
229 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000230 /// \brief Branch weights for origin store.
231 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000232 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000233 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000234 /// \brief The blacklist.
235 OwningPtr<BlackList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000236 /// \brief An empty volatile inline asm that prevents callback merge.
237 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000238
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000239 friend struct MemorySanitizerVisitor;
240 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000241};
242} // namespace
243
244char MemorySanitizer::ID = 0;
245INITIALIZE_PASS(MemorySanitizer, "msan",
246 "MemorySanitizer: detects uninitialized reads.",
247 false, false)
248
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000249FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
250 StringRef BlacklistFile) {
251 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000252}
253
254/// \brief Create a non-const global initialized with the given string.
255///
256/// Creates a writable global for Str so that we can pass it to the
257/// run-time lib. Runtime uses first 4 bytes of the string to store the
258/// frame ID, so the string needs to be mutable.
259static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
260 StringRef Str) {
261 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
262 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
263 GlobalValue::PrivateLinkage, StrConst, "");
264}
265
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000266
267/// \brief Insert extern declaration of runtime-provided functions and globals.
268void MemorySanitizer::initializeCallbacks(Module &M) {
269 // Only do this once.
270 if (WarningFn)
271 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000272
273 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000274 // Create the callback.
275 // FIXME: this function should have "Cold" calling conv,
276 // which is not yet implemented.
277 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
278 : "__msan_warning_noreturn";
279 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
280
281 MsanCopyOriginFn = M.getOrInsertFunction(
282 "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
283 IRB.getInt8PtrTy(), IntptrTy, NULL);
284 MsanSetAllocaOriginFn = M.getOrInsertFunction(
285 "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
286 IRB.getInt8PtrTy(), NULL);
287 MsanPoisonStackFn = M.getOrInsertFunction(
288 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
289 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000290 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
291 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000292 MemcpyFn = M.getOrInsertFunction(
293 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
294 IntptrTy, NULL);
295 MemsetFn = M.getOrInsertFunction(
296 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000297 IntptrTy, NULL);
298
299 // Create globals.
300 RetvalTLS = new GlobalVariable(
301 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
302 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000303 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000304 RetvalOriginTLS = new GlobalVariable(
305 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000306 "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000307
308 ParamTLS = new GlobalVariable(
309 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
310 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000311 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000312 ParamOriginTLS = new GlobalVariable(
313 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000314 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000315
316 VAArgTLS = new GlobalVariable(
317 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
318 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000319 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000320 VAArgOverflowSizeTLS = new GlobalVariable(
321 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
322 "__msan_va_arg_overflow_size_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000323 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000324 OriginTLS = new GlobalVariable(
325 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000326 "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000327
328 // We insert an empty inline asm after __msan_report* to avoid callback merge.
329 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
330 StringRef(""), StringRef(""),
331 /*hasSideEffects=*/true);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000332}
333
334/// \brief Module-level initialization.
335///
336/// inserts a call to __msan_init to the module's constructor list.
337bool MemorySanitizer::doInitialization(Module &M) {
338 TD = getAnalysisIfAvailable<DataLayout>();
339 if (!TD)
340 return false;
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000341 BL.reset(new BlackList(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000342 C = &(M.getContext());
343 unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
344 switch (PtrSize) {
345 case 64:
346 ShadowMask = kShadowMask64;
347 OriginOffset = kOriginOffset64;
348 break;
349 case 32:
350 ShadowMask = kShadowMask32;
351 OriginOffset = kOriginOffset32;
352 break;
353 default:
354 report_fatal_error("unsupported pointer size");
355 break;
356 }
357
358 IRBuilder<> IRB(*C);
359 IntptrTy = IRB.getIntPtrTy(TD);
360 OriginTy = IRB.getInt32Ty();
361
362 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000363 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000364
365 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
366 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
367 "__msan_init", IRB.getVoidTy(), NULL)), 0);
368
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000369 if (TrackOrigins)
370 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
371 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000372
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000373 if (ClKeepGoing)
374 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
375 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000376
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000377 return true;
378}
379
380namespace {
381
382/// \brief A helper class that handles instrumentation of VarArg
383/// functions on a particular platform.
384///
385/// Implementations are expected to insert the instrumentation
386/// necessary to propagate argument shadow through VarArg function
387/// calls. Visit* methods are called during an InstVisitor pass over
388/// the function, and should avoid creating new basic blocks. A new
389/// instance of this class is created for each instrumented function.
390struct VarArgHelper {
391 /// \brief Visit a CallSite.
392 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
393
394 /// \brief Visit a va_start call.
395 virtual void visitVAStartInst(VAStartInst &I) = 0;
396
397 /// \brief Visit a va_copy call.
398 virtual void visitVACopyInst(VACopyInst &I) = 0;
399
400 /// \brief Finalize function instrumentation.
401 ///
402 /// This method is called after visiting all interesting (see above)
403 /// instructions in a function.
404 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000405
406 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000407};
408
409struct MemorySanitizerVisitor;
410
411VarArgHelper*
412CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
413 MemorySanitizerVisitor &Visitor);
414
415/// This class does all the work for a given function. Store and Load
416/// instructions store and load corresponding shadow and origin
417/// values. Most instructions propagate shadow from arguments to their
418/// return values. Certain instructions (most importantly, BranchInst)
419/// test their argument shadow and print reports (with a runtime call) if it's
420/// non-zero.
421struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
422 Function &F;
423 MemorySanitizer &MS;
424 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
425 ValueMap<Value*, Value*> ShadowMap, OriginMap;
426 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000427 bool LoadShadow;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000428 OwningPtr<VarArgHelper> VAHelper;
429
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000430 struct ShadowOriginAndInsertPoint {
431 Instruction *Shadow;
432 Instruction *Origin;
433 Instruction *OrigIns;
434 ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
435 : Shadow(S), Origin(O), OrigIns(I) { }
436 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
437 };
438 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000439 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000440
441 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000442 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
443 LoadShadow = InsertChecks =
444 !MS.BL->isIn(F) &&
445 F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
446 Attribute::SanitizeMemory);
447
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000448 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000449 dbgs() << "MemorySanitizer is not inserting checks into '"
450 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000451 }
452
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000453 void materializeStores() {
454 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
455 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
456
457 IRBuilder<> IRB(&I);
458 Value *Val = I.getValueOperand();
459 Value *Addr = I.getPointerOperand();
460 Value *Shadow = getShadow(Val);
461 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
462
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000463 StoreInst *NewSI =
464 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000465 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000466 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000467
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000468 if (ClCheckAccessAddress)
469 insertCheck(Addr, &I);
470
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000471 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000472 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000473 if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000474 IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
475 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000476 } else {
477 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
478
479 Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
480 // TODO(eugenis): handle non-zero constant shadow by inserting an
481 // unconditional check (can not simply fail compilation as this could
482 // be in the dead code).
483 if (Cst)
484 continue;
485
486 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
487 getCleanShadow(ConvertedShadow), "_mscmp");
488 Instruction *CheckTerm =
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000489 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
490 MS.OriginStoreWeights);
491 IRBuilder<> IRBNew(CheckTerm);
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000492 IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
493 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000494 }
495 }
496 }
497 }
498
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000499 void materializeChecks() {
500 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
501 Instruction *Shadow = InstrumentationList[i].Shadow;
502 Instruction *OrigIns = InstrumentationList[i].OrigIns;
503 IRBuilder<> IRB(OrigIns);
504 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
505 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
506 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
507 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
508 getCleanShadow(ConvertedShadow), "_mscmp");
509 Instruction *CheckTerm =
510 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
511 /* Unreachable */ !ClKeepGoing,
512 MS.ColdCallWeights);
513
514 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000515 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000516 Instruction *Origin = InstrumentationList[i].Origin;
517 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
518 MS.OriginTLS);
519 }
520 CallInst *Call = IRB.CreateCall(MS.WarningFn);
521 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000522 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000523 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
524 }
525 DEBUG(dbgs() << "DONE:\n" << F);
526 }
527
528 /// \brief Add MemorySanitizer instrumentation to a function.
529 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000530 MS.initializeCallbacks(*F.getParent());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000531 if (!MS.TD) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000532
533 // In the presence of unreachable blocks, we may see Phi nodes with
534 // incoming nodes from such blocks. Since InstVisitor skips unreachable
535 // blocks, such nodes will not have any shadow value associated with them.
536 // It's easier to remove unreachable blocks than deal with missing shadow.
537 removeUnreachableBlocks(F);
538
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000539 // Iterate all BBs in depth-first order and create shadow instructions
540 // for all instructions (where applicable).
541 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
542 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
543 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
544 BasicBlock *BB = *DI;
545 visit(*BB);
546 }
547
548 // Finalize PHI nodes.
549 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
550 PHINode *PN = ShadowPHINodes[i];
551 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000552 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000553 size_t NumValues = PN->getNumIncomingValues();
554 for (size_t v = 0; v < NumValues; v++) {
555 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
556 if (PNO)
557 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
558 }
559 }
560
561 VAHelper->finalizeInstrumentation();
562
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000563 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000564 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000565 materializeStores();
566
567 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000568 materializeChecks();
569
570 return true;
571 }
572
573 /// \brief Compute the shadow type that corresponds to a given Value.
574 Type *getShadowTy(Value *V) {
575 return getShadowTy(V->getType());
576 }
577
578 /// \brief Compute the shadow type that corresponds to a given Type.
579 Type *getShadowTy(Type *OrigTy) {
580 if (!OrigTy->isSized()) {
581 return 0;
582 }
583 // For integer type, shadow is the same as the original type.
584 // This may return weird-sized types like i1.
585 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
586 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000587 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +0000588 uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000589 return VectorType::get(IntegerType::get(*MS.C, EltSize),
590 VT->getNumElements());
591 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000592 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
593 SmallVector<Type*, 4> Elements;
594 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
595 Elements.push_back(getShadowTy(ST->getElementType(i)));
596 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
597 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
598 return Res;
599 }
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +0000600 uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000601 return IntegerType::get(*MS.C, TypeSize);
602 }
603
604 /// \brief Flatten a vector type.
605 Type *getShadowTyNoVec(Type *ty) {
606 if (VectorType *vt = dyn_cast<VectorType>(ty))
607 return IntegerType::get(*MS.C, vt->getBitWidth());
608 return ty;
609 }
610
611 /// \brief Convert a shadow value to it's flattened variant.
612 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
613 Type *Ty = V->getType();
614 Type *NoVecTy = getShadowTyNoVec(Ty);
615 if (Ty == NoVecTy) return V;
616 return IRB.CreateBitCast(V, NoVecTy);
617 }
618
619 /// \brief Compute the shadow address that corresponds to a given application
620 /// address.
621 ///
622 /// Shadow = Addr & ~ShadowMask.
623 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
624 IRBuilder<> &IRB) {
625 Value *ShadowLong =
626 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
627 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
628 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
629 }
630
631 /// \brief Compute the origin address that corresponds to a given application
632 /// address.
633 ///
634 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000635 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
636 Value *ShadowLong =
637 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000638 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000639 Value *Add =
640 IRB.CreateAdd(ShadowLong,
641 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000642 Value *SecondAnd =
643 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
644 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000645 }
646
647 /// \brief Compute the shadow address for a given function argument.
648 ///
649 /// Shadow = ParamTLS+ArgOffset.
650 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
651 int ArgOffset) {
652 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
653 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
654 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
655 "_msarg");
656 }
657
658 /// \brief Compute the origin address for a given function argument.
659 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
660 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000661 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000662 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
663 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
664 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
665 "_msarg_o");
666 }
667
668 /// \brief Compute the shadow address for a retval.
669 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
670 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
671 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
672 "_msret");
673 }
674
675 /// \brief Compute the origin address for a retval.
676 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
677 // We keep a single origin for the entire retval. Might be too optimistic.
678 return MS.RetvalOriginTLS;
679 }
680
681 /// \brief Set SV to be the shadow value for V.
682 void setShadow(Value *V, Value *SV) {
683 assert(!ShadowMap.count(V) && "Values may only have one shadow");
684 ShadowMap[V] = SV;
685 }
686
687 /// \brief Set Origin to be the origin value for V.
688 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000689 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000690 assert(!OriginMap.count(V) && "Values may only have one origin");
691 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
692 OriginMap[V] = Origin;
693 }
694
695 /// \brief Create a clean shadow value for a given value.
696 ///
697 /// Clean shadow (all zeroes) means all bits of the value are defined
698 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000699 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000700 Type *ShadowTy = getShadowTy(V);
701 if (!ShadowTy)
702 return 0;
703 return Constant::getNullValue(ShadowTy);
704 }
705
706 /// \brief Create a dirty shadow of a given shadow type.
707 Constant *getPoisonedShadow(Type *ShadowTy) {
708 assert(ShadowTy);
709 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
710 return Constant::getAllOnesValue(ShadowTy);
711 StructType *ST = cast<StructType>(ShadowTy);
712 SmallVector<Constant *, 4> Vals;
713 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
714 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
715 return ConstantStruct::get(ST, Vals);
716 }
717
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000718 /// \brief Create a dirty shadow for a given value.
719 Constant *getPoisonedShadow(Value *V) {
720 Type *ShadowTy = getShadowTy(V);
721 if (!ShadowTy)
722 return 0;
723 return getPoisonedShadow(ShadowTy);
724 }
725
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000726 /// \brief Create a clean (zero) origin.
727 Value *getCleanOrigin() {
728 return Constant::getNullValue(MS.OriginTy);
729 }
730
731 /// \brief Get the shadow value for a given Value.
732 ///
733 /// This function either returns the value set earlier with setShadow,
734 /// or extracts if from ParamTLS (for function arguments).
735 Value *getShadow(Value *V) {
736 if (Instruction *I = dyn_cast<Instruction>(V)) {
737 // For instructions the shadow is already stored in the map.
738 Value *Shadow = ShadowMap[V];
739 if (!Shadow) {
740 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000741 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000742 assert(Shadow && "No shadow for a value");
743 }
744 return Shadow;
745 }
746 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000747 Value *AllOnes = ClPoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000748 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000749 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000750 return AllOnes;
751 }
752 if (Argument *A = dyn_cast<Argument>(V)) {
753 // For arguments we compute the shadow on demand and store it in the map.
754 Value **ShadowPtr = &ShadowMap[V];
755 if (*ShadowPtr)
756 return *ShadowPtr;
757 Function *F = A->getParent();
758 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
759 unsigned ArgOffset = 0;
760 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
761 AI != AE; ++AI) {
762 if (!AI->getType()->isSized()) {
763 DEBUG(dbgs() << "Arg is not sized\n");
764 continue;
765 }
766 unsigned Size = AI->hasByValAttr()
767 ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
768 : MS.TD->getTypeAllocSize(AI->getType());
769 if (A == AI) {
770 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
771 if (AI->hasByValAttr()) {
772 // ByVal pointer itself has clean shadow. We copy the actual
773 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000774 // Figure out maximal valid memcpy alignment.
775 unsigned ArgAlign = AI->getParamAlignment();
776 if (ArgAlign == 0) {
777 Type *EltType = A->getType()->getPointerElementType();
778 ArgAlign = MS.TD->getABITypeAlignment(EltType);
779 }
780 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000781 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000782 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
783 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000784 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000785 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000786 *ShadowPtr = getCleanShadow(V);
787 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000788 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000789 }
790 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
791 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000792 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000793 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
794 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
795 }
796 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000797 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000798 }
799 assert(*ShadowPtr && "Could not find shadow for an argument");
800 return *ShadowPtr;
801 }
802 // For everything else the shadow is zero.
803 return getCleanShadow(V);
804 }
805
806 /// \brief Get the shadow for i-th argument of the instruction I.
807 Value *getShadow(Instruction *I, int i) {
808 return getShadow(I->getOperand(i));
809 }
810
811 /// \brief Get the origin for a value.
812 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000813 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000814 if (isa<Instruction>(V) || isa<Argument>(V)) {
815 Value *Origin = OriginMap[V];
816 if (!Origin) {
817 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
818 Origin = getCleanOrigin();
819 }
820 return Origin;
821 }
822 return getCleanOrigin();
823 }
824
825 /// \brief Get the origin for i-th argument of the instruction I.
826 Value *getOrigin(Instruction *I, int i) {
827 return getOrigin(I->getOperand(i));
828 }
829
830 /// \brief Remember the place where a shadow check should be inserted.
831 ///
832 /// This location will be later instrumented with a check that will print a
833 /// UMR warning in runtime if the value is not fully defined.
834 void insertCheck(Value *Val, Instruction *OrigIns) {
835 assert(Val);
836 if (!InsertChecks) return;
837 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
838 if (!Shadow) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000839#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000840 Type *ShadowTy = Shadow->getType();
841 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
842 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000843#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000844 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
845 InstrumentationList.push_back(
846 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
847 }
848
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000849 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000850
851 /// \brief Instrument LoadInst
852 ///
853 /// Loads the corresponding shadow and (optionally) origin.
854 /// Optionally, checks that the load address is fully defined.
855 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000856 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000857 IRBuilder<> IRB(&I);
858 Type *ShadowTy = getShadowTy(&I);
859 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000860 if (LoadShadow) {
861 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
862 setShadow(&I,
863 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
864 } else {
865 setShadow(&I, getCleanShadow(&I));
866 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000867
868 if (ClCheckAccessAddress)
869 insertCheck(I.getPointerOperand(), &I);
870
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000871 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000872 if (LoadShadow) {
873 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
874 setOrigin(&I,
875 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
876 } else {
877 setOrigin(&I, getCleanOrigin());
878 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000879 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000880 }
881
882 /// \brief Instrument StoreInst
883 ///
884 /// Stores the corresponding shadow and (optionally) origin.
885 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000886 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000887 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000888 }
889
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +0000890 // Vector manipulation.
891 void visitExtractElementInst(ExtractElementInst &I) {
892 insertCheck(I.getOperand(1), &I);
893 IRBuilder<> IRB(&I);
894 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
895 "_msprop"));
896 setOrigin(&I, getOrigin(&I, 0));
897 }
898
899 void visitInsertElementInst(InsertElementInst &I) {
900 insertCheck(I.getOperand(2), &I);
901 IRBuilder<> IRB(&I);
902 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
903 I.getOperand(2), "_msprop"));
904 setOriginForNaryOp(I);
905 }
906
907 void visitShuffleVectorInst(ShuffleVectorInst &I) {
908 insertCheck(I.getOperand(2), &I);
909 IRBuilder<> IRB(&I);
910 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
911 I.getOperand(2), "_msprop"));
912 setOriginForNaryOp(I);
913 }
914
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000915 // Casts.
916 void visitSExtInst(SExtInst &I) {
917 IRBuilder<> IRB(&I);
918 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
919 setOrigin(&I, getOrigin(&I, 0));
920 }
921
922 void visitZExtInst(ZExtInst &I) {
923 IRBuilder<> IRB(&I);
924 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
925 setOrigin(&I, getOrigin(&I, 0));
926 }
927
928 void visitTruncInst(TruncInst &I) {
929 IRBuilder<> IRB(&I);
930 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
931 setOrigin(&I, getOrigin(&I, 0));
932 }
933
934 void visitBitCastInst(BitCastInst &I) {
935 IRBuilder<> IRB(&I);
936 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
937 setOrigin(&I, getOrigin(&I, 0));
938 }
939
940 void visitPtrToIntInst(PtrToIntInst &I) {
941 IRBuilder<> IRB(&I);
942 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
943 "_msprop_ptrtoint"));
944 setOrigin(&I, getOrigin(&I, 0));
945 }
946
947 void visitIntToPtrInst(IntToPtrInst &I) {
948 IRBuilder<> IRB(&I);
949 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
950 "_msprop_inttoptr"));
951 setOrigin(&I, getOrigin(&I, 0));
952 }
953
954 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
955 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
956 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
957 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
958 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
959 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
960
961 /// \brief Propagate shadow for bitwise AND.
962 ///
963 /// This code is exact, i.e. if, for example, a bit in the left argument
964 /// is defined and 0, then neither the value not definedness of the
965 /// corresponding bit in B don't affect the resulting shadow.
966 void visitAnd(BinaryOperator &I) {
967 IRBuilder<> IRB(&I);
968 // "And" of 0 and a poisoned value results in unpoisoned value.
969 // 1&1 => 1; 0&1 => 0; p&1 => p;
970 // 1&0 => 0; 0&0 => 0; p&0 => 0;
971 // 1&p => p; 0&p => 0; p&p => p;
972 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
973 Value *S1 = getShadow(&I, 0);
974 Value *S2 = getShadow(&I, 1);
975 Value *V1 = I.getOperand(0);
976 Value *V2 = I.getOperand(1);
977 if (V1->getType() != S1->getType()) {
978 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
979 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
980 }
981 Value *S1S2 = IRB.CreateAnd(S1, S2);
982 Value *V1S2 = IRB.CreateAnd(V1, S2);
983 Value *S1V2 = IRB.CreateAnd(S1, V2);
984 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
985 setOriginForNaryOp(I);
986 }
987
988 void visitOr(BinaryOperator &I) {
989 IRBuilder<> IRB(&I);
990 // "Or" of 1 and a poisoned value results in unpoisoned value.
991 // 1|1 => 1; 0|1 => 1; p|1 => 1;
992 // 1|0 => 1; 0|0 => 0; p|0 => p;
993 // 1|p => 1; 0|p => p; p|p => p;
994 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
995 Value *S1 = getShadow(&I, 0);
996 Value *S2 = getShadow(&I, 1);
997 Value *V1 = IRB.CreateNot(I.getOperand(0));
998 Value *V2 = IRB.CreateNot(I.getOperand(1));
999 if (V1->getType() != S1->getType()) {
1000 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1001 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1002 }
1003 Value *S1S2 = IRB.CreateAnd(S1, S2);
1004 Value *V1S2 = IRB.CreateAnd(V1, S2);
1005 Value *S1V2 = IRB.CreateAnd(S1, V2);
1006 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1007 setOriginForNaryOp(I);
1008 }
1009
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001010 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001011 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001012 /// This class implements the general case of shadow propagation, used in all
1013 /// cases where we don't know and/or don't care about what the operation
1014 /// actually does. It converts all input shadow values to a common type
1015 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001016 ///
1017 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1018 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001019 ///
1020 /// This class also implements the general case of origin propagation. For a
1021 /// Nary operation, result origin is set to the origin of an argument that is
1022 /// not entirely initialized. If there is more than one such arguments, the
1023 /// rightmost of them is picked. It does not matter which one is picked if all
1024 /// arguments are initialized.
1025 template <bool CombineShadow>
1026 class Combiner {
1027 Value *Shadow;
1028 Value *Origin;
1029 IRBuilder<> &IRB;
1030 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001031
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001032 public:
1033 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1034 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1035
1036 /// \brief Add a pair of shadow and origin values to the mix.
1037 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1038 if (CombineShadow) {
1039 assert(OpShadow);
1040 if (!Shadow)
1041 Shadow = OpShadow;
1042 else {
1043 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1044 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1045 }
1046 }
1047
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001048 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001049 assert(OpOrigin);
1050 if (!Origin) {
1051 Origin = OpOrigin;
1052 } else {
1053 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1054 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1055 MSV->getCleanShadow(FlatShadow));
1056 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1057 }
1058 }
1059 return *this;
1060 }
1061
1062 /// \brief Add an application value to the mix.
1063 Combiner &Add(Value *V) {
1064 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001065 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001066 return Add(OpShadow, OpOrigin);
1067 }
1068
1069 /// \brief Set the current combined values as the given instruction's shadow
1070 /// and origin.
1071 void Done(Instruction *I) {
1072 if (CombineShadow) {
1073 assert(Shadow);
1074 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1075 MSV->setShadow(I, Shadow);
1076 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001077 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001078 assert(Origin);
1079 MSV->setOrigin(I, Origin);
1080 }
1081 }
1082 };
1083
1084 typedef Combiner<true> ShadowAndOriginCombiner;
1085 typedef Combiner<false> OriginCombiner;
1086
1087 /// \brief Propagate origin for arbitrary operation.
1088 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001089 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001090 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001091 OriginCombiner OC(this, IRB);
1092 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1093 OC.Add(OI->get());
1094 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001095 }
1096
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001097 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001098 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1099 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001100 return Ty->isVectorTy() ?
1101 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1102 Ty->getPrimitiveSizeInBits();
1103 }
1104
1105 /// \brief Cast between two shadow types, extending or truncating as
1106 /// necessary.
1107 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
1108 Type *srcTy = V->getType();
1109 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1110 return IRB.CreateIntCast(V, dstTy, false);
1111 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1112 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1113 return IRB.CreateIntCast(V, dstTy, false);
1114 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1115 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1116 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1117 Value *V2 =
1118 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
1119 return IRB.CreateBitCast(V2, dstTy);
1120 // TODO: handle struct types.
1121 }
1122
1123 /// \brief Propagate shadow for arbitrary operation.
1124 void handleShadowOr(Instruction &I) {
1125 IRBuilder<> IRB(&I);
1126 ShadowAndOriginCombiner SC(this, IRB);
1127 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1128 SC.Add(OI->get());
1129 SC.Done(&I);
1130 }
1131
1132 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1133 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1134 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1135 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1136 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1137 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1138 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001139
1140 void handleDiv(Instruction &I) {
1141 IRBuilder<> IRB(&I);
1142 // Strict on the second argument.
1143 insertCheck(I.getOperand(1), &I);
1144 setShadow(&I, getShadow(&I, 0));
1145 setOrigin(&I, getOrigin(&I, 0));
1146 }
1147
1148 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1149 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1150 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1151 void visitURem(BinaryOperator &I) { handleDiv(I); }
1152 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1153 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1154
1155 /// \brief Instrument == and != comparisons.
1156 ///
1157 /// Sometimes the comparison result is known even if some of the bits of the
1158 /// arguments are not.
1159 void handleEqualityComparison(ICmpInst &I) {
1160 IRBuilder<> IRB(&I);
1161 Value *A = I.getOperand(0);
1162 Value *B = I.getOperand(1);
1163 Value *Sa = getShadow(A);
1164 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001165
1166 // Get rid of pointers and vectors of pointers.
1167 // For ints (and vectors of ints), types of A and Sa match,
1168 // and this is a no-op.
1169 A = IRB.CreatePointerCast(A, Sa->getType());
1170 B = IRB.CreatePointerCast(B, Sb->getType());
1171
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001172 // A == B <==> (C = A^B) == 0
1173 // A != B <==> (C = A^B) != 0
1174 // Sc = Sa | Sb
1175 Value *C = IRB.CreateXor(A, B);
1176 Value *Sc = IRB.CreateOr(Sa, Sb);
1177 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1178 // Result is defined if one of the following is true
1179 // * there is a defined 1 bit in C
1180 // * C is fully defined
1181 // Si = !(C & ~Sc) && Sc
1182 Value *Zero = Constant::getNullValue(Sc->getType());
1183 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1184 Value *Si =
1185 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1186 IRB.CreateICmpEQ(
1187 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1188 Si->setName("_msprop_icmp");
1189 setShadow(&I, Si);
1190 setOriginForNaryOp(I);
1191 }
1192
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001193 /// \brief Build the lowest possible value of V, taking into account V's
1194 /// uninitialized bits.
1195 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1196 bool isSigned) {
1197 if (isSigned) {
1198 // Split shadow into sign bit and other bits.
1199 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1200 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1201 // Maximise the undefined shadow bit, minimize other undefined bits.
1202 return
1203 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1204 } else {
1205 // Minimize undefined bits.
1206 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1207 }
1208 }
1209
1210 /// \brief Build the highest possible value of V, taking into account V's
1211 /// uninitialized bits.
1212 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1213 bool isSigned) {
1214 if (isSigned) {
1215 // Split shadow into sign bit and other bits.
1216 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1217 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1218 // Minimise the undefined shadow bit, maximise other undefined bits.
1219 return
1220 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1221 } else {
1222 // Maximize undefined bits.
1223 return IRB.CreateOr(A, Sa);
1224 }
1225 }
1226
1227 /// \brief Instrument relational comparisons.
1228 ///
1229 /// This function does exact shadow propagation for all relational
1230 /// comparisons of integers, pointers and vectors of those.
1231 /// FIXME: output seems suboptimal when one of the operands is a constant
1232 void handleRelationalComparisonExact(ICmpInst &I) {
1233 IRBuilder<> IRB(&I);
1234 Value *A = I.getOperand(0);
1235 Value *B = I.getOperand(1);
1236 Value *Sa = getShadow(A);
1237 Value *Sb = getShadow(B);
1238
1239 // Get rid of pointers and vectors of pointers.
1240 // For ints (and vectors of ints), types of A and Sa match,
1241 // and this is a no-op.
1242 A = IRB.CreatePointerCast(A, Sa->getType());
1243 B = IRB.CreatePointerCast(B, Sb->getType());
1244
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001245 // Let [a0, a1] be the interval of possible values of A, taking into account
1246 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1247 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001248 bool IsSigned = I.isSigned();
1249 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1250 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1251 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1252 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1253 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1254 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1255 Value *Si = IRB.CreateXor(S1, S2);
1256 setShadow(&I, Si);
1257 setOriginForNaryOp(I);
1258 }
1259
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001260 /// \brief Instrument signed relational comparisons.
1261 ///
1262 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1263 /// propagating the highest bit of the shadow. Everything else is delegated
1264 /// to handleShadowOr().
1265 void handleSignedRelationalComparison(ICmpInst &I) {
1266 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1267 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1268 Value* op = NULL;
1269 CmpInst::Predicate pre = I.getPredicate();
1270 if (constOp0 && constOp0->isNullValue() &&
1271 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1272 op = I.getOperand(1);
1273 } else if (constOp1 && constOp1->isNullValue() &&
1274 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1275 op = I.getOperand(0);
1276 }
1277 if (op) {
1278 IRBuilder<> IRB(&I);
1279 Value* Shadow =
1280 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1281 setShadow(&I, Shadow);
1282 setOrigin(&I, getOrigin(op));
1283 } else {
1284 handleShadowOr(I);
1285 }
1286 }
1287
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001288 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001289 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001290 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001291 return;
1292 }
1293 if (I.isEquality()) {
1294 handleEqualityComparison(I);
1295 return;
1296 }
1297
1298 assert(I.isRelational());
1299 if (ClHandleICmpExact) {
1300 handleRelationalComparisonExact(I);
1301 return;
1302 }
1303 if (I.isSigned()) {
1304 handleSignedRelationalComparison(I);
1305 return;
1306 }
1307
1308 assert(I.isUnsigned());
1309 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1310 handleRelationalComparisonExact(I);
1311 return;
1312 }
1313
1314 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001315 }
1316
1317 void visitFCmpInst(FCmpInst &I) {
1318 handleShadowOr(I);
1319 }
1320
1321 void handleShift(BinaryOperator &I) {
1322 IRBuilder<> IRB(&I);
1323 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1324 // Otherwise perform the same shift on S1.
1325 Value *S1 = getShadow(&I, 0);
1326 Value *S2 = getShadow(&I, 1);
1327 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1328 S2->getType());
1329 Value *V2 = I.getOperand(1);
1330 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1331 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1332 setOriginForNaryOp(I);
1333 }
1334
1335 void visitShl(BinaryOperator &I) { handleShift(I); }
1336 void visitAShr(BinaryOperator &I) { handleShift(I); }
1337 void visitLShr(BinaryOperator &I) { handleShift(I); }
1338
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001339 /// \brief Instrument llvm.memmove
1340 ///
1341 /// At this point we don't know if llvm.memmove will be inlined or not.
1342 /// If we don't instrument it and it gets inlined,
1343 /// our interceptor will not kick in and we will lose the memmove.
1344 /// If we instrument the call here, but it does not get inlined,
1345 /// we will memove the shadow twice: which is bad in case
1346 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1347 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001348 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001349 void visitMemMoveInst(MemMoveInst &I) {
1350 IRBuilder<> IRB(&I);
1351 IRB.CreateCall3(
1352 MS.MemmoveFn,
1353 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1354 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1355 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1356 I.eraseFromParent();
1357 }
1358
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001359 // Similar to memmove: avoid copying shadow twice.
1360 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1361 // FIXME: consider doing manual inline for small constant sizes and proper
1362 // alignment.
1363 void visitMemCpyInst(MemCpyInst &I) {
1364 IRBuilder<> IRB(&I);
1365 IRB.CreateCall3(
1366 MS.MemcpyFn,
1367 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1368 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1369 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1370 I.eraseFromParent();
1371 }
1372
1373 // Same as memcpy.
1374 void visitMemSetInst(MemSetInst &I) {
1375 IRBuilder<> IRB(&I);
1376 IRB.CreateCall3(
1377 MS.MemsetFn,
1378 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1379 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1380 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1381 I.eraseFromParent();
1382 }
1383
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001384 void visitVAStartInst(VAStartInst &I) {
1385 VAHelper->visitVAStartInst(I);
1386 }
1387
1388 void visitVACopyInst(VACopyInst &I) {
1389 VAHelper->visitVACopyInst(I);
1390 }
1391
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001392 enum IntrinsicKind {
1393 IK_DoesNotAccessMemory,
1394 IK_OnlyReadsMemory,
1395 IK_WritesMemory
1396 };
1397
1398 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1399 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1400 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1401 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1402 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1403 const int UnknownModRefBehavior = IK_WritesMemory;
1404#define GET_INTRINSIC_MODREF_BEHAVIOR
1405#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001406#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001407#undef ModRefBehavior
1408#undef GET_INTRINSIC_MODREF_BEHAVIOR
1409 }
1410
1411 /// \brief Handle vector store-like intrinsics.
1412 ///
1413 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1414 /// has 1 pointer argument and 1 vector argument, returns void.
1415 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1416 IRBuilder<> IRB(&I);
1417 Value* Addr = I.getArgOperand(0);
1418 Value *Shadow = getShadow(&I, 1);
1419 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1420
1421 // We don't know the pointer alignment (could be unaligned SSE store!).
1422 // Have to assume to worst case.
1423 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1424
1425 if (ClCheckAccessAddress)
1426 insertCheck(Addr, &I);
1427
1428 // FIXME: use ClStoreCleanOrigin
1429 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001430 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001431 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1432 return true;
1433 }
1434
1435 /// \brief Handle vector load-like intrinsics.
1436 ///
1437 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1438 /// has 1 pointer argument, returns a vector.
1439 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1440 IRBuilder<> IRB(&I);
1441 Value *Addr = I.getArgOperand(0);
1442
1443 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001444 if (LoadShadow) {
1445 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1446 // We don't know the pointer alignment (could be unaligned SSE load!).
1447 // Have to assume to worst case.
1448 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1449 } else {
1450 setShadow(&I, getCleanShadow(&I));
1451 }
1452
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001453
1454 if (ClCheckAccessAddress)
1455 insertCheck(Addr, &I);
1456
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001457 if (MS.TrackOrigins) {
1458 if (LoadShadow)
1459 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1460 else
1461 setOrigin(&I, getCleanOrigin());
1462 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001463 return true;
1464 }
1465
1466 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1467 ///
1468 /// Instrument intrinsics with any number of arguments of the same type,
1469 /// equal to the return type. The type should be simple (no aggregates or
1470 /// pointers; vectors are fine).
1471 /// Caller guarantees that this intrinsic does not access memory.
1472 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1473 Type *RetTy = I.getType();
1474 if (!(RetTy->isIntOrIntVectorTy() ||
1475 RetTy->isFPOrFPVectorTy() ||
1476 RetTy->isX86_MMXTy()))
1477 return false;
1478
1479 unsigned NumArgOperands = I.getNumArgOperands();
1480
1481 for (unsigned i = 0; i < NumArgOperands; ++i) {
1482 Type *Ty = I.getArgOperand(i)->getType();
1483 if (Ty != RetTy)
1484 return false;
1485 }
1486
1487 IRBuilder<> IRB(&I);
1488 ShadowAndOriginCombiner SC(this, IRB);
1489 for (unsigned i = 0; i < NumArgOperands; ++i)
1490 SC.Add(I.getArgOperand(i));
1491 SC.Done(&I);
1492
1493 return true;
1494 }
1495
1496 /// \brief Heuristically instrument unknown intrinsics.
1497 ///
1498 /// The main purpose of this code is to do something reasonable with all
1499 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1500 /// We recognize several classes of intrinsics by their argument types and
1501 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1502 /// sure that we know what the intrinsic does.
1503 ///
1504 /// We special-case intrinsics where this approach fails. See llvm.bswap
1505 /// handling as an example of that.
1506 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1507 unsigned NumArgOperands = I.getNumArgOperands();
1508 if (NumArgOperands == 0)
1509 return false;
1510
1511 Intrinsic::ID iid = I.getIntrinsicID();
1512 IntrinsicKind IK = getIntrinsicKind(iid);
1513 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1514 bool WritesMemory = IK == IK_WritesMemory;
1515 assert(!(OnlyReadsMemory && WritesMemory));
1516
1517 if (NumArgOperands == 2 &&
1518 I.getArgOperand(0)->getType()->isPointerTy() &&
1519 I.getArgOperand(1)->getType()->isVectorTy() &&
1520 I.getType()->isVoidTy() &&
1521 WritesMemory) {
1522 // This looks like a vector store.
1523 return handleVectorStoreIntrinsic(I);
1524 }
1525
1526 if (NumArgOperands == 1 &&
1527 I.getArgOperand(0)->getType()->isPointerTy() &&
1528 I.getType()->isVectorTy() &&
1529 OnlyReadsMemory) {
1530 // This looks like a vector load.
1531 return handleVectorLoadIntrinsic(I);
1532 }
1533
1534 if (!OnlyReadsMemory && !WritesMemory)
1535 if (maybeHandleSimpleNomemIntrinsic(I))
1536 return true;
1537
1538 // FIXME: detect and handle SSE maskstore/maskload
1539 return false;
1540 }
1541
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001542 void handleBswap(IntrinsicInst &I) {
1543 IRBuilder<> IRB(&I);
1544 Value *Op = I.getArgOperand(0);
1545 Type *OpType = Op->getType();
1546 Function *BswapFunc = Intrinsic::getDeclaration(
1547 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1548 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1549 setOrigin(&I, getOrigin(Op));
1550 }
1551
1552 void visitIntrinsicInst(IntrinsicInst &I) {
1553 switch (I.getIntrinsicID()) {
1554 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001555 handleBswap(I);
1556 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001557 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001558 if (!handleUnknownIntrinsic(I))
1559 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00001560 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001561 }
1562 }
1563
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001564 void visitCallSite(CallSite CS) {
1565 Instruction &I = *CS.getInstruction();
1566 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1567 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00001568 CallInst *Call = cast<CallInst>(&I);
1569
1570 // For inline asm, do the usual thing: check argument shadow and mark all
1571 // outputs as clean. Note that any side effects of the inline asm that are
1572 // not immediately visible in its constraints are not handled.
1573 if (Call->isInlineAsm()) {
1574 visitInstruction(I);
1575 return;
1576 }
1577
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001578 // Allow only tail calls with the same types, otherwise
1579 // we may have a false positive: shadow for a non-void RetVal
1580 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001581 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
1582 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001583
1584 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001585
1586 // We are going to insert code that relies on the fact that the callee
1587 // will become a non-readonly function after it is instrumented by us. To
1588 // prevent this code from being optimized out, mark that function
1589 // non-readonly in advance.
1590 if (Function *Func = Call->getCalledFunction()) {
1591 // Clear out readonly/readnone attributes.
1592 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001593 B.addAttribute(Attribute::ReadOnly)
1594 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00001595 Func->removeAttributes(AttributeSet::FunctionIndex,
1596 AttributeSet::get(Func->getContext(),
1597 AttributeSet::FunctionIndex,
1598 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001599 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001600 }
1601 IRBuilder<> IRB(&I);
1602 unsigned ArgOffset = 0;
1603 DEBUG(dbgs() << " CallSite: " << I << "\n");
1604 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1605 ArgIt != End; ++ArgIt) {
1606 Value *A = *ArgIt;
1607 unsigned i = ArgIt - CS.arg_begin();
1608 if (!A->getType()->isSized()) {
1609 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
1610 continue;
1611 }
1612 unsigned Size = 0;
1613 Value *Store = 0;
1614 // Compute the Shadow for arg even if it is ByVal, because
1615 // in that case getShadow() will copy the actual arg shadow to
1616 // __msan_param_tls.
1617 Value *ArgShadow = getShadow(A);
1618 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
1619 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
1620 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001621 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001622 assert(A->getType()->isPointerTy() &&
1623 "ByVal argument is not a pointer!");
1624 Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
1625 unsigned Alignment = CS.getParamAlignment(i + 1);
1626 Store = IRB.CreateMemCpy(ArgShadowBase,
1627 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
1628 Size, Alignment);
1629 } else {
1630 Size = MS.TD->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001631 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
1632 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001633 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001634 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00001635 IRB.CreateStore(getOrigin(A),
1636 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00001637 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001638 assert(Size != 0 && Store != 0);
1639 DEBUG(dbgs() << " Param:" << *Store << "\n");
1640 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
1641 }
1642 DEBUG(dbgs() << " done with call args\n");
1643
1644 FunctionType *FT =
1645 cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
1646 if (FT->isVarArg()) {
1647 VAHelper->visitCallSite(CS, IRB);
1648 }
1649
1650 // Now, get the shadow for the RetVal.
1651 if (!I.getType()->isSized()) return;
1652 IRBuilder<> IRBBefore(&I);
1653 // Untill we have full dynamic coverage, make sure the retval shadow is 0.
1654 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001655 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001656 Instruction *NextInsn = 0;
1657 if (CS.isCall()) {
1658 NextInsn = I.getNextNode();
1659 } else {
1660 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
1661 if (!NormalDest->getSinglePredecessor()) {
1662 // FIXME: this case is tricky, so we are just conservative here.
1663 // Perhaps we need to split the edge between this BB and NormalDest,
1664 // but a naive attempt to use SplitEdge leads to a crash.
1665 setShadow(&I, getCleanShadow(&I));
1666 setOrigin(&I, getCleanOrigin());
1667 return;
1668 }
1669 NextInsn = NormalDest->getFirstInsertionPt();
1670 assert(NextInsn &&
1671 "Could not find insertion point for retval shadow load");
1672 }
1673 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001674 Value *RetvalShadow =
1675 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
1676 kShadowTLSAlignment, "_msret");
1677 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001678 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001679 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
1680 }
1681
1682 void visitReturnInst(ReturnInst &I) {
1683 IRBuilder<> IRB(&I);
1684 if (Value *RetVal = I.getReturnValue()) {
1685 // Set the shadow for the RetVal.
1686 Value *Shadow = getShadow(RetVal);
1687 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
1688 DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001689 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001690 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001691 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
1692 }
1693 }
1694
1695 void visitPHINode(PHINode &I) {
1696 IRBuilder<> IRB(&I);
1697 ShadowPHINodes.push_back(&I);
1698 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
1699 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001700 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001701 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
1702 "_msphi_o"));
1703 }
1704
1705 void visitAllocaInst(AllocaInst &I) {
1706 setShadow(&I, getCleanShadow(&I));
1707 if (!ClPoisonStack) return;
1708 IRBuilder<> IRB(I.getNextNode());
1709 uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
1710 if (ClPoisonStackWithCall) {
1711 IRB.CreateCall2(MS.MsanPoisonStackFn,
1712 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1713 ConstantInt::get(MS.IntptrTy, Size));
1714 } else {
1715 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
1716 IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
1717 Size, I.getAlignment());
1718 }
1719
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001720 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001721 setOrigin(&I, getCleanOrigin());
1722 SmallString<2048> StackDescriptionStorage;
1723 raw_svector_ostream StackDescription(StackDescriptionStorage);
1724 // We create a string with a description of the stack allocation and
1725 // pass it into __msan_set_alloca_origin.
1726 // It will be printed by the run-time if stack-originated UMR is found.
1727 // The first 4 bytes of the string are set to '----' and will be replaced
1728 // by __msan_va_arg_overflow_size_tls at the first call.
1729 StackDescription << "----" << I.getName() << "@" << F.getName();
1730 Value *Descr =
1731 createPrivateNonConstGlobalForString(*F.getParent(),
1732 StackDescription.str());
1733 IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
1734 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1735 ConstantInt::get(MS.IntptrTy, Size),
1736 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
1737 }
1738 }
1739
1740 void visitSelectInst(SelectInst& I) {
1741 IRBuilder<> IRB(&I);
1742 setShadow(&I, IRB.CreateSelect(I.getCondition(),
1743 getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
1744 "_msprop"));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00001745 if (MS.TrackOrigins) {
1746 // Origins are always i32, so any vector conditions must be flattened.
1747 // FIXME: consider tracking vector origins for app vectors?
1748 Value *Cond = I.getCondition();
1749 if (Cond->getType()->isVectorTy()) {
1750 Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
1751 Cond = IRB.CreateICmpNE(ConvertedShadow,
1752 getCleanShadow(ConvertedShadow), "_mso_select");
1753 }
1754 setOrigin(&I, IRB.CreateSelect(Cond,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001755 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00001756 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001757 }
1758
1759 void visitLandingPadInst(LandingPadInst &I) {
1760 // Do nothing.
1761 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
1762 setShadow(&I, getCleanShadow(&I));
1763 setOrigin(&I, getCleanOrigin());
1764 }
1765
1766 void visitGetElementPtrInst(GetElementPtrInst &I) {
1767 handleShadowOr(I);
1768 }
1769
1770 void visitExtractValueInst(ExtractValueInst &I) {
1771 IRBuilder<> IRB(&I);
1772 Value *Agg = I.getAggregateOperand();
1773 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
1774 Value *AggShadow = getShadow(Agg);
1775 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1776 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
1777 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
1778 setShadow(&I, ResShadow);
1779 setOrigin(&I, getCleanOrigin());
1780 }
1781
1782 void visitInsertValueInst(InsertValueInst &I) {
1783 IRBuilder<> IRB(&I);
1784 DEBUG(dbgs() << "InsertValue: " << I << "\n");
1785 Value *AggShadow = getShadow(I.getAggregateOperand());
1786 Value *InsShadow = getShadow(I.getInsertedValueOperand());
1787 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1788 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
1789 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
1790 DEBUG(dbgs() << " Res: " << *Res << "\n");
1791 setShadow(&I, Res);
1792 setOrigin(&I, getCleanOrigin());
1793 }
1794
1795 void dumpInst(Instruction &I) {
1796 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1797 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
1798 } else {
1799 errs() << "ZZZ " << I.getOpcodeName() << "\n";
1800 }
1801 errs() << "QQQ " << I << "\n";
1802 }
1803
1804 void visitResumeInst(ResumeInst &I) {
1805 DEBUG(dbgs() << "Resume: " << I << "\n");
1806 // Nothing to do here.
1807 }
1808
1809 void visitInstruction(Instruction &I) {
1810 // Everything else: stop propagating and check for poisoned shadow.
1811 if (ClDumpStrictInstructions)
1812 dumpInst(I);
1813 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
1814 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
1815 insertCheck(I.getOperand(i), &I);
1816 setShadow(&I, getCleanShadow(&I));
1817 setOrigin(&I, getCleanOrigin());
1818 }
1819};
1820
1821/// \brief AMD64-specific implementation of VarArgHelper.
1822struct VarArgAMD64Helper : public VarArgHelper {
1823 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
1824 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001825 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001826 static const unsigned AMD64FpEndOffset = 176;
1827
1828 Function &F;
1829 MemorySanitizer &MS;
1830 MemorySanitizerVisitor &MSV;
1831 Value *VAArgTLSCopy;
1832 Value *VAArgOverflowSize;
1833
1834 SmallVector<CallInst*, 16> VAStartInstrumentationList;
1835
1836 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
1837 MemorySanitizerVisitor &MSV)
1838 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
1839
1840 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
1841
1842 ArgKind classifyArgument(Value* arg) {
1843 // A very rough approximation of X86_64 argument classification rules.
1844 Type *T = arg->getType();
1845 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
1846 return AK_FloatingPoint;
1847 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
1848 return AK_GeneralPurpose;
1849 if (T->isPointerTy())
1850 return AK_GeneralPurpose;
1851 return AK_Memory;
1852 }
1853
1854 // For VarArg functions, store the argument shadow in an ABI-specific format
1855 // that corresponds to va_list layout.
1856 // We do this because Clang lowers va_arg in the frontend, and this pass
1857 // only sees the low level code that deals with va_list internals.
1858 // A much easier alternative (provided that Clang emits va_arg instructions)
1859 // would have been to associate each live instance of va_list with a copy of
1860 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
1861 // order.
1862 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
1863 unsigned GpOffset = 0;
1864 unsigned FpOffset = AMD64GpEndOffset;
1865 unsigned OverflowOffset = AMD64FpEndOffset;
1866 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1867 ArgIt != End; ++ArgIt) {
1868 Value *A = *ArgIt;
1869 ArgKind AK = classifyArgument(A);
1870 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
1871 AK = AK_Memory;
1872 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
1873 AK = AK_Memory;
1874 Value *Base;
1875 switch (AK) {
1876 case AK_GeneralPurpose:
1877 Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
1878 GpOffset += 8;
1879 break;
1880 case AK_FloatingPoint:
1881 Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
1882 FpOffset += 16;
1883 break;
1884 case AK_Memory:
1885 uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
1886 Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
1887 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
1888 }
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001889 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001890 }
1891 Constant *OverflowSize =
1892 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
1893 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
1894 }
1895
1896 /// \brief Compute the shadow address for a given va_arg.
1897 Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
1898 int ArgOffset) {
1899 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
1900 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1901 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
1902 "_msarg");
1903 }
1904
1905 void visitVAStartInst(VAStartInst &I) {
1906 IRBuilder<> IRB(&I);
1907 VAStartInstrumentationList.push_back(&I);
1908 Value *VAListTag = I.getArgOperand(0);
1909 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1910
1911 // Unpoison the whole __va_list_tag.
1912 // FIXME: magic ABI constants.
1913 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00001914 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001915 }
1916
1917 void visitVACopyInst(VACopyInst &I) {
1918 IRBuilder<> IRB(&I);
1919 Value *VAListTag = I.getArgOperand(0);
1920 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1921
1922 // Unpoison the whole __va_list_tag.
1923 // FIXME: magic ABI constants.
1924 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00001925 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001926 }
1927
1928 void finalizeInstrumentation() {
1929 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
1930 "finalizeInstrumentation called twice");
1931 if (!VAStartInstrumentationList.empty()) {
1932 // If there is a va_start in this function, make a backup copy of
1933 // va_arg_tls somewhere in the function entry block.
1934 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1935 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
1936 Value *CopySize =
1937 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
1938 VAArgOverflowSize);
1939 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
1940 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
1941 }
1942
1943 // Instrument va_start.
1944 // Copy va_list shadow from the backup copy of the TLS contents.
1945 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
1946 CallInst *OrigInst = VAStartInstrumentationList[i];
1947 IRBuilder<> IRB(OrigInst->getNextNode());
1948 Value *VAListTag = OrigInst->getArgOperand(0);
1949
1950 Value *RegSaveAreaPtrPtr =
1951 IRB.CreateIntToPtr(
1952 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1953 ConstantInt::get(MS.IntptrTy, 16)),
1954 Type::getInt64PtrTy(*MS.C));
1955 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
1956 Value *RegSaveAreaShadowPtr =
1957 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
1958 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
1959 AMD64FpEndOffset, 16);
1960
1961 Value *OverflowArgAreaPtrPtr =
1962 IRB.CreateIntToPtr(
1963 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1964 ConstantInt::get(MS.IntptrTy, 8)),
1965 Type::getInt64PtrTy(*MS.C));
1966 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
1967 Value *OverflowArgAreaShadowPtr =
1968 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
1969 Value *SrcPtr =
1970 getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
1971 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
1972 }
1973 }
1974};
1975
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00001976/// \brief A no-op implementation of VarArgHelper.
1977struct VarArgNoOpHelper : public VarArgHelper {
1978 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
1979 MemorySanitizerVisitor &MSV) {}
1980
1981 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {}
1982
1983 void visitVAStartInst(VAStartInst &I) {}
1984
1985 void visitVACopyInst(VACopyInst &I) {}
1986
1987 void finalizeInstrumentation() {}
1988};
1989
1990VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001991 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00001992 // VarArg handling is only implemented on AMD64. False positives are possible
1993 // on other platforms.
1994 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
1995 if (TargetTriple.getArch() == llvm::Triple::x86_64)
1996 return new VarArgAMD64Helper(Func, Msan, Visitor);
1997 else
1998 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001999}
2000
2001} // namespace
2002
2003bool MemorySanitizer::runOnFunction(Function &F) {
2004 MemorySanitizerVisitor Visitor(F, *this);
2005
2006 // Clear out readonly/readnone attributes.
2007 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002008 B.addAttribute(Attribute::ReadOnly)
2009 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002010 F.removeAttributes(AttributeSet::FunctionIndex,
2011 AttributeSet::get(F.getContext(),
2012 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002013
2014 return Visitor.runOnFunction();
2015}