blob: c9f37bd4afd082051978a9aa1f73d6206f0dbd1c [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000153
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesman006039c2013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000504By default, LLVM optimizes global initializers by assuming that global
505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
509``@llvm.used``.
510
Sean Silvab084af42012-12-07 10:36:55 +0000511An explicit alignment may be specified for a global, which must be a
512power of 2. If not present, or if the alignment is set to zero, the
513alignment of the global is set by the target to whatever it feels
514convenient. If an explicit alignment is specified, the global is forced
515to have exactly that alignment. Targets and optimizers are not allowed
516to over-align the global if the global has an assigned section. In this
517case, the extra alignment could be observable: for example, code could
518assume that the globals are densely packed in their section and try to
519iterate over them as an array, alignment padding would break this
520iteration.
521
522For example, the following defines a global in a numbered address space
523with an initializer, section, and alignment:
524
525.. code-block:: llvm
526
527 @G = addrspace(5) constant float 1.0, section "foo", align 4
528
529The following example defines a thread-local global with the
530``initialexec`` TLS model:
531
532.. code-block:: llvm
533
534 @G = thread_local(initialexec) global i32 0, align 4
535
536.. _functionstructure:
537
538Functions
539---------
540
541LLVM function definitions consist of the "``define``" keyword, an
542optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
543style <visibility>`, an optional :ref:`calling convention <callingconv>`,
544an optional ``unnamed_addr`` attribute, a return type, an optional
545:ref:`parameter attribute <paramattrs>` for the return type, a function
546name, a (possibly empty) argument list (each with optional :ref:`parameter
547attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
548an optional section, an optional alignment, an optional :ref:`garbage
549collector name <gc>`, an opening curly brace, a list of basic blocks,
550and a closing curly brace.
551
552LLVM function declarations consist of the "``declare``" keyword, an
553optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
554style <visibility>`, an optional :ref:`calling convention <callingconv>`,
555an optional ``unnamed_addr`` attribute, a return type, an optional
556:ref:`parameter attribute <paramattrs>` for the return type, a function
557name, a possibly empty list of arguments, an optional alignment, and an
558optional :ref:`garbage collector name <gc>`.
559
560A function definition contains a list of basic blocks, forming the CFG
561(Control Flow Graph) for the function. Each basic block may optionally
562start with a label (giving the basic block a symbol table entry),
563contains a list of instructions, and ends with a
564:ref:`terminator <terminators>` instruction (such as a branch or function
565return).
566
567The first basic block in a function is special in two ways: it is
568immediately executed on entrance to the function, and it is not allowed
569to have predecessor basic blocks (i.e. there can not be any branches to
570the entry block of a function). Because the block can have no
571predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
572
573LLVM allows an explicit section to be specified for functions. If the
574target supports it, it will emit functions to the section specified.
575
576An explicit alignment may be specified for a function. If not present,
577or if the alignment is set to zero, the alignment of the function is set
578by the target to whatever it feels convenient. If an explicit alignment
579is specified, the function is forced to have at least that much
580alignment. All alignments must be a power of 2.
581
582If the ``unnamed_addr`` attribute is given, the address is know to not
583be significant and two identical functions can be merged.
584
585Syntax::
586
587 define [linkage] [visibility]
588 [cconv] [ret attrs]
589 <ResultType> @<FunctionName> ([argument list])
590 [fn Attrs] [section "name"] [align N]
591 [gc] { ... }
592
593Aliases
594-------
595
596Aliases act as "second name" for the aliasee value (which can be either
597function, global variable, another alias or bitcast of global value).
598Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
599:ref:`visibility style <visibility>`.
600
601Syntax::
602
603 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
604
605.. _namedmetadatastructure:
606
607Named Metadata
608--------------
609
610Named metadata is a collection of metadata. :ref:`Metadata
611nodes <metadata>` (but not metadata strings) are the only valid
612operands for a named metadata.
613
614Syntax::
615
616 ; Some unnamed metadata nodes, which are referenced by the named metadata.
617 !0 = metadata !{metadata !"zero"}
618 !1 = metadata !{metadata !"one"}
619 !2 = metadata !{metadata !"two"}
620 ; A named metadata.
621 !name = !{!0, !1, !2}
622
623.. _paramattrs:
624
625Parameter Attributes
626--------------------
627
628The return type and each parameter of a function type may have a set of
629*parameter attributes* associated with them. Parameter attributes are
630used to communicate additional information about the result or
631parameters of a function. Parameter attributes are considered to be part
632of the function, not of the function type, so functions with different
633parameter attributes can have the same function type.
634
635Parameter attributes are simple keywords that follow the type specified.
636If multiple parameter attributes are needed, they are space separated.
637For example:
638
639.. code-block:: llvm
640
641 declare i32 @printf(i8* noalias nocapture, ...)
642 declare i32 @atoi(i8 zeroext)
643 declare signext i8 @returns_signed_char()
644
645Note that any attributes for the function result (``nounwind``,
646``readonly``) come immediately after the argument list.
647
648Currently, only the following parameter attributes are defined:
649
650``zeroext``
651 This indicates to the code generator that the parameter or return
652 value should be zero-extended to the extent required by the target's
653 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
654 the caller (for a parameter) or the callee (for a return value).
655``signext``
656 This indicates to the code generator that the parameter or return
657 value should be sign-extended to the extent required by the target's
658 ABI (which is usually 32-bits) by the caller (for a parameter) or
659 the callee (for a return value).
660``inreg``
661 This indicates that this parameter or return value should be treated
662 in a special target-dependent fashion during while emitting code for
663 a function call or return (usually, by putting it in a register as
664 opposed to memory, though some targets use it to distinguish between
665 two different kinds of registers). Use of this attribute is
666 target-specific.
667``byval``
668 This indicates that the pointer parameter should really be passed by
669 value to the function. The attribute implies that a hidden copy of
670 the pointee is made between the caller and the callee, so the callee
671 is unable to modify the value in the caller. This attribute is only
672 valid on LLVM pointer arguments. It is generally used to pass
673 structs and arrays by value, but is also valid on pointers to
674 scalars. The copy is considered to belong to the caller not the
675 callee (for example, ``readonly`` functions should not write to
676 ``byval`` parameters). This is not a valid attribute for return
677 values.
678
679 The byval attribute also supports specifying an alignment with the
680 align attribute. It indicates the alignment of the stack slot to
681 form and the known alignment of the pointer specified to the call
682 site. If the alignment is not specified, then the code generator
683 makes a target-specific assumption.
684
685``sret``
686 This indicates that the pointer parameter specifies the address of a
687 structure that is the return value of the function in the source
688 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000689 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000690 not to trap and to be properly aligned. This may only be applied to
691 the first parameter. This is not a valid attribute for return
692 values.
693``noalias``
694 This indicates that pointer values `*based* <pointeraliasing>` on
695 the argument or return value do not alias pointer values which are
696 not *based* on it, ignoring certain "irrelevant" dependencies. For a
697 call to the parent function, dependencies between memory references
698 from before or after the call and from those during the call are
699 "irrelevant" to the ``noalias`` keyword for the arguments and return
700 value used in that call. The caller shares the responsibility with
701 the callee for ensuring that these requirements are met. For further
702 details, please see the discussion of the NoAlias response in `alias
703 analysis <AliasAnalysis.html#MustMayNo>`_.
704
705 Note that this definition of ``noalias`` is intentionally similar
706 to the definition of ``restrict`` in C99 for function arguments,
707 though it is slightly weaker.
708
709 For function return values, C99's ``restrict`` is not meaningful,
710 while LLVM's ``noalias`` is.
711``nocapture``
712 This indicates that the callee does not make any copies of the
713 pointer that outlive the callee itself. This is not a valid
714 attribute for return values.
715
716.. _nest:
717
718``nest``
719 This indicates that the pointer parameter can be excised using the
720 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
721 attribute for return values.
722
723.. _gc:
724
725Garbage Collector Names
726-----------------------
727
728Each function may specify a garbage collector name, which is simply a
729string:
730
731.. code-block:: llvm
732
733 define void @f() gc "name" { ... }
734
735The compiler declares the supported values of *name*. Specifying a
736collector which will cause the compiler to alter its output in order to
737support the named garbage collection algorithm.
738
739.. _fnattrs:
740
741Function Attributes
742-------------------
743
744Function attributes are set to communicate additional information about
745a function. Function attributes are considered to be part of the
746function, not of the function type, so functions with different function
747attributes can have the same function type.
748
749Function attributes are simple keywords that follow the type specified.
750If multiple attributes are needed, they are space separated. For
751example:
752
753.. code-block:: llvm
754
755 define void @f() noinline { ... }
756 define void @f() alwaysinline { ... }
757 define void @f() alwaysinline optsize { ... }
758 define void @f() optsize { ... }
759
760``address_safety``
761 This attribute indicates that the address safety analysis is enabled
762 for this function.
763``alignstack(<n>)``
764 This attribute indicates that, when emitting the prologue and
765 epilogue, the backend should forcibly align the stack pointer.
766 Specify the desired alignment, which must be a power of two, in
767 parentheses.
768``alwaysinline``
769 This attribute indicates that the inliner should attempt to inline
770 this function into callers whenever possible, ignoring any active
771 inlining size threshold for this caller.
772``nonlazybind``
773 This attribute suppresses lazy symbol binding for the function. This
774 may make calls to the function faster, at the cost of extra program
775 startup time if the function is not called during program startup.
776``inlinehint``
777 This attribute indicates that the source code contained a hint that
778 inlining this function is desirable (such as the "inline" keyword in
779 C/C++). It is just a hint; it imposes no requirements on the
780 inliner.
781``naked``
782 This attribute disables prologue / epilogue emission for the
783 function. This can have very system-specific consequences.
784``noimplicitfloat``
785 This attributes disables implicit floating point instructions.
786``noinline``
787 This attribute indicates that the inliner should never inline this
788 function in any situation. This attribute may not be used together
789 with the ``alwaysinline`` attribute.
790``noredzone``
791 This attribute indicates that the code generator should not use a
792 red zone, even if the target-specific ABI normally permits it.
793``noreturn``
794 This function attribute indicates that the function never returns
795 normally. This produces undefined behavior at runtime if the
796 function ever does dynamically return.
797``nounwind``
798 This function attribute indicates that the function never returns
799 with an unwind or exceptional control flow. If the function does
800 unwind, its runtime behavior is undefined.
801``optsize``
802 This attribute suggests that optimization passes and code generator
803 passes make choices that keep the code size of this function low,
804 and otherwise do optimizations specifically to reduce code size.
805``readnone``
806 This attribute indicates that the function computes its result (or
807 decides to unwind an exception) based strictly on its arguments,
808 without dereferencing any pointer arguments or otherwise accessing
809 any mutable state (e.g. memory, control registers, etc) visible to
810 caller functions. It does not write through any pointer arguments
811 (including ``byval`` arguments) and never changes any state visible
812 to callers. This means that it cannot unwind exceptions by calling
813 the ``C++`` exception throwing methods.
814``readonly``
815 This attribute indicates that the function does not write through
816 any pointer arguments (including ``byval`` arguments) or otherwise
817 modify any state (e.g. memory, control registers, etc) visible to
818 caller functions. It may dereference pointer arguments and read
819 state that may be set in the caller. A readonly function always
820 returns the same value (or unwinds an exception identically) when
821 called with the same set of arguments and global state. It cannot
822 unwind an exception by calling the ``C++`` exception throwing
823 methods.
824``returns_twice``
825 This attribute indicates that this function can return twice. The C
826 ``setjmp`` is an example of such a function. The compiler disables
827 some optimizations (like tail calls) in the caller of these
828 functions.
829``ssp``
830 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000831 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000832 placed on the stack before the local variables that's checked upon
833 return from the function to see if it has been overwritten. A
834 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000835 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000836
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000837 - Character arrays larger than ``ssp-buffer-size`` (default 8).
838 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
839 - Calls to alloca() with variable sizes or constant sizes greater than
840 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +0000841
842 If a function that has an ``ssp`` attribute is inlined into a
843 function that doesn't have an ``ssp`` attribute, then the resulting
844 function will have an ``ssp`` attribute.
845``sspreq``
846 This attribute indicates that the function should *always* emit a
847 stack smashing protector. This overrides the ``ssp`` function
848 attribute.
849
850 If a function that has an ``sspreq`` attribute is inlined into a
851 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +0000852 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
853 an ``sspreq`` attribute.
854``sspstrong``
855 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000856 protector. This attribute causes a strong heuristic to be used when
857 determining if a function needs stack protectors. The strong heuristic
858 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000859
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000860 - Arrays of any size and type
861 - Aggregates containing an array of any size and type.
862 - Calls to alloca().
863 - Local variables that have had their address taken.
864
865 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +0000866
867 If a function that has an ``sspstrong`` attribute is inlined into a
868 function that doesn't have an ``sspstrong`` attribute, then the
869 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +0000870``uwtable``
871 This attribute indicates that the ABI being targeted requires that
872 an unwind table entry be produce for this function even if we can
873 show that no exceptions passes by it. This is normally the case for
874 the ELF x86-64 abi, but it can be disabled for some compilation
875 units.
James Molloy4f6fb952012-12-20 16:04:27 +0000876``noduplicate``
877 This attribute indicates that calls to the function cannot be
878 duplicated. A call to a ``noduplicate`` function may be moved
879 within its parent function, but may not be duplicated within
880 its parent function.
881
882 A function containing a ``noduplicate`` call may still
883 be an inlining candidate, provided that the call is not
884 duplicated by inlining. That implies that the function has
885 internal linkage and only has one call site, so the original
886 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000887
888.. _moduleasm:
889
890Module-Level Inline Assembly
891----------------------------
892
893Modules may contain "module-level inline asm" blocks, which corresponds
894to the GCC "file scope inline asm" blocks. These blocks are internally
895concatenated by LLVM and treated as a single unit, but may be separated
896in the ``.ll`` file if desired. The syntax is very simple:
897
898.. code-block:: llvm
899
900 module asm "inline asm code goes here"
901 module asm "more can go here"
902
903The strings can contain any character by escaping non-printable
904characters. The escape sequence used is simply "\\xx" where "xx" is the
905two digit hex code for the number.
906
907The inline asm code is simply printed to the machine code .s file when
908assembly code is generated.
909
910Data Layout
911-----------
912
913A module may specify a target specific data layout string that specifies
914how data is to be laid out in memory. The syntax for the data layout is
915simply:
916
917.. code-block:: llvm
918
919 target datalayout = "layout specification"
920
921The *layout specification* consists of a list of specifications
922separated by the minus sign character ('-'). Each specification starts
923with a letter and may include other information after the letter to
924define some aspect of the data layout. The specifications accepted are
925as follows:
926
927``E``
928 Specifies that the target lays out data in big-endian form. That is,
929 the bits with the most significance have the lowest address
930 location.
931``e``
932 Specifies that the target lays out data in little-endian form. That
933 is, the bits with the least significance have the lowest address
934 location.
935``S<size>``
936 Specifies the natural alignment of the stack in bits. Alignment
937 promotion of stack variables is limited to the natural stack
938 alignment to avoid dynamic stack realignment. The stack alignment
939 must be a multiple of 8-bits. If omitted, the natural stack
940 alignment defaults to "unspecified", which does not prevent any
941 alignment promotions.
942``p[n]:<size>:<abi>:<pref>``
943 This specifies the *size* of a pointer and its ``<abi>`` and
944 ``<pref>``\erred alignments for address space ``n``. All sizes are in
945 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
946 preceding ``:`` should be omitted too. The address space, ``n`` is
947 optional, and if not specified, denotes the default address space 0.
948 The value of ``n`` must be in the range [1,2^23).
949``i<size>:<abi>:<pref>``
950 This specifies the alignment for an integer type of a given bit
951 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
952``v<size>:<abi>:<pref>``
953 This specifies the alignment for a vector type of a given bit
954 ``<size>``.
955``f<size>:<abi>:<pref>``
956 This specifies the alignment for a floating point type of a given bit
957 ``<size>``. Only values of ``<size>`` that are supported by the target
958 will work. 32 (float) and 64 (double) are supported on all targets; 80
959 or 128 (different flavors of long double) are also supported on some
960 targets.
961``a<size>:<abi>:<pref>``
962 This specifies the alignment for an aggregate type of a given bit
963 ``<size>``.
964``s<size>:<abi>:<pref>``
965 This specifies the alignment for a stack object of a given bit
966 ``<size>``.
967``n<size1>:<size2>:<size3>...``
968 This specifies a set of native integer widths for the target CPU in
969 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
970 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
971 this set are considered to support most general arithmetic operations
972 efficiently.
973
974When constructing the data layout for a given target, LLVM starts with a
975default set of specifications which are then (possibly) overridden by
976the specifications in the ``datalayout`` keyword. The default
977specifications are given in this list:
978
979- ``E`` - big endian
980- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000981- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +0000982- ``i1:8:8`` - i1 is 8-bit (byte) aligned
983- ``i8:8:8`` - i8 is 8-bit (byte) aligned
984- ``i16:16:16`` - i16 is 16-bit aligned
985- ``i32:32:32`` - i32 is 32-bit aligned
986- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
987 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000988- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +0000989- ``f32:32:32`` - float is 32-bit aligned
990- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000991- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +0000992- ``v64:64:64`` - 64-bit vector is 64-bit aligned
993- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +0000994- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +0000995
996When LLVM is determining the alignment for a given type, it uses the
997following rules:
998
999#. If the type sought is an exact match for one of the specifications,
1000 that specification is used.
1001#. If no match is found, and the type sought is an integer type, then
1002 the smallest integer type that is larger than the bitwidth of the
1003 sought type is used. If none of the specifications are larger than
1004 the bitwidth then the largest integer type is used. For example,
1005 given the default specifications above, the i7 type will use the
1006 alignment of i8 (next largest) while both i65 and i256 will use the
1007 alignment of i64 (largest specified).
1008#. If no match is found, and the type sought is a vector type, then the
1009 largest vector type that is smaller than the sought vector type will
1010 be used as a fall back. This happens because <128 x double> can be
1011 implemented in terms of 64 <2 x double>, for example.
1012
1013The function of the data layout string may not be what you expect.
1014Notably, this is not a specification from the frontend of what alignment
1015the code generator should use.
1016
1017Instead, if specified, the target data layout is required to match what
1018the ultimate *code generator* expects. This string is used by the
1019mid-level optimizers to improve code, and this only works if it matches
1020what the ultimate code generator uses. If you would like to generate IR
1021that does not embed this target-specific detail into the IR, then you
1022don't have to specify the string. This will disable some optimizations
1023that require precise layout information, but this also prevents those
1024optimizations from introducing target specificity into the IR.
1025
1026.. _pointeraliasing:
1027
1028Pointer Aliasing Rules
1029----------------------
1030
1031Any memory access must be done through a pointer value associated with
1032an address range of the memory access, otherwise the behavior is
1033undefined. Pointer values are associated with address ranges according
1034to the following rules:
1035
1036- A pointer value is associated with the addresses associated with any
1037 value it is *based* on.
1038- An address of a global variable is associated with the address range
1039 of the variable's storage.
1040- The result value of an allocation instruction is associated with the
1041 address range of the allocated storage.
1042- A null pointer in the default address-space is associated with no
1043 address.
1044- An integer constant other than zero or a pointer value returned from
1045 a function not defined within LLVM may be associated with address
1046 ranges allocated through mechanisms other than those provided by
1047 LLVM. Such ranges shall not overlap with any ranges of addresses
1048 allocated by mechanisms provided by LLVM.
1049
1050A pointer value is *based* on another pointer value according to the
1051following rules:
1052
1053- A pointer value formed from a ``getelementptr`` operation is *based*
1054 on the first operand of the ``getelementptr``.
1055- The result value of a ``bitcast`` is *based* on the operand of the
1056 ``bitcast``.
1057- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1058 values that contribute (directly or indirectly) to the computation of
1059 the pointer's value.
1060- The "*based* on" relationship is transitive.
1061
1062Note that this definition of *"based"* is intentionally similar to the
1063definition of *"based"* in C99, though it is slightly weaker.
1064
1065LLVM IR does not associate types with memory. The result type of a
1066``load`` merely indicates the size and alignment of the memory from
1067which to load, as well as the interpretation of the value. The first
1068operand type of a ``store`` similarly only indicates the size and
1069alignment of the store.
1070
1071Consequently, type-based alias analysis, aka TBAA, aka
1072``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1073:ref:`Metadata <metadata>` may be used to encode additional information
1074which specialized optimization passes may use to implement type-based
1075alias analysis.
1076
1077.. _volatile:
1078
1079Volatile Memory Accesses
1080------------------------
1081
1082Certain memory accesses, such as :ref:`load <i_load>`'s,
1083:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1084marked ``volatile``. The optimizers must not change the number of
1085volatile operations or change their order of execution relative to other
1086volatile operations. The optimizers *may* change the order of volatile
1087operations relative to non-volatile operations. This is not Java's
1088"volatile" and has no cross-thread synchronization behavior.
1089
Andrew Trick89fc5a62013-01-30 21:19:35 +00001090IR-level volatile loads and stores cannot safely be optimized into
1091llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1092flagged volatile. Likewise, the backend should never split or merge
1093target-legal volatile load/store instructions.
1094
Andrew Trick7e6f9282013-01-31 00:49:39 +00001095.. admonition:: Rationale
1096
1097 Platforms may rely on volatile loads and stores of natively supported
1098 data width to be executed as single instruction. For example, in C
1099 this holds for an l-value of volatile primitive type with native
1100 hardware support, but not necessarily for aggregate types. The
1101 frontend upholds these expectations, which are intentionally
1102 unspecified in the IR. The rules above ensure that IR transformation
1103 do not violate the frontend's contract with the language.
1104
Sean Silvab084af42012-12-07 10:36:55 +00001105.. _memmodel:
1106
1107Memory Model for Concurrent Operations
1108--------------------------------------
1109
1110The LLVM IR does not define any way to start parallel threads of
1111execution or to register signal handlers. Nonetheless, there are
1112platform-specific ways to create them, and we define LLVM IR's behavior
1113in their presence. This model is inspired by the C++0x memory model.
1114
1115For a more informal introduction to this model, see the :doc:`Atomics`.
1116
1117We define a *happens-before* partial order as the least partial order
1118that
1119
1120- Is a superset of single-thread program order, and
1121- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1122 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1123 techniques, like pthread locks, thread creation, thread joining,
1124 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1125 Constraints <ordering>`).
1126
1127Note that program order does not introduce *happens-before* edges
1128between a thread and signals executing inside that thread.
1129
1130Every (defined) read operation (load instructions, memcpy, atomic
1131loads/read-modify-writes, etc.) R reads a series of bytes written by
1132(defined) write operations (store instructions, atomic
1133stores/read-modify-writes, memcpy, etc.). For the purposes of this
1134section, initialized globals are considered to have a write of the
1135initializer which is atomic and happens before any other read or write
1136of the memory in question. For each byte of a read R, R\ :sub:`byte`
1137may see any write to the same byte, except:
1138
1139- If write\ :sub:`1` happens before write\ :sub:`2`, and
1140 write\ :sub:`2` happens before R\ :sub:`byte`, then
1141 R\ :sub:`byte` does not see write\ :sub:`1`.
1142- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1143 R\ :sub:`byte` does not see write\ :sub:`3`.
1144
1145Given that definition, R\ :sub:`byte` is defined as follows:
1146
1147- If R is volatile, the result is target-dependent. (Volatile is
1148 supposed to give guarantees which can support ``sig_atomic_t`` in
1149 C/C++, and may be used for accesses to addresses which do not behave
1150 like normal memory. It does not generally provide cross-thread
1151 synchronization.)
1152- Otherwise, if there is no write to the same byte that happens before
1153 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1154- Otherwise, if R\ :sub:`byte` may see exactly one write,
1155 R\ :sub:`byte` returns the value written by that write.
1156- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1157 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1158 Memory Ordering Constraints <ordering>` section for additional
1159 constraints on how the choice is made.
1160- Otherwise R\ :sub:`byte` returns ``undef``.
1161
1162R returns the value composed of the series of bytes it read. This
1163implies that some bytes within the value may be ``undef`` **without**
1164the entire value being ``undef``. Note that this only defines the
1165semantics of the operation; it doesn't mean that targets will emit more
1166than one instruction to read the series of bytes.
1167
1168Note that in cases where none of the atomic intrinsics are used, this
1169model places only one restriction on IR transformations on top of what
1170is required for single-threaded execution: introducing a store to a byte
1171which might not otherwise be stored is not allowed in general.
1172(Specifically, in the case where another thread might write to and read
1173from an address, introducing a store can change a load that may see
1174exactly one write into a load that may see multiple writes.)
1175
1176.. _ordering:
1177
1178Atomic Memory Ordering Constraints
1179----------------------------------
1180
1181Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1182:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1183:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1184an ordering parameter that determines which other atomic instructions on
1185the same address they *synchronize with*. These semantics are borrowed
1186from Java and C++0x, but are somewhat more colloquial. If these
1187descriptions aren't precise enough, check those specs (see spec
1188references in the :doc:`atomics guide <Atomics>`).
1189:ref:`fence <i_fence>` instructions treat these orderings somewhat
1190differently since they don't take an address. See that instruction's
1191documentation for details.
1192
1193For a simpler introduction to the ordering constraints, see the
1194:doc:`Atomics`.
1195
1196``unordered``
1197 The set of values that can be read is governed by the happens-before
1198 partial order. A value cannot be read unless some operation wrote
1199 it. This is intended to provide a guarantee strong enough to model
1200 Java's non-volatile shared variables. This ordering cannot be
1201 specified for read-modify-write operations; it is not strong enough
1202 to make them atomic in any interesting way.
1203``monotonic``
1204 In addition to the guarantees of ``unordered``, there is a single
1205 total order for modifications by ``monotonic`` operations on each
1206 address. All modification orders must be compatible with the
1207 happens-before order. There is no guarantee that the modification
1208 orders can be combined to a global total order for the whole program
1209 (and this often will not be possible). The read in an atomic
1210 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1211 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1212 order immediately before the value it writes. If one atomic read
1213 happens before another atomic read of the same address, the later
1214 read must see the same value or a later value in the address's
1215 modification order. This disallows reordering of ``monotonic`` (or
1216 stronger) operations on the same address. If an address is written
1217 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1218 read that address repeatedly, the other threads must eventually see
1219 the write. This corresponds to the C++0x/C1x
1220 ``memory_order_relaxed``.
1221``acquire``
1222 In addition to the guarantees of ``monotonic``, a
1223 *synchronizes-with* edge may be formed with a ``release`` operation.
1224 This is intended to model C++'s ``memory_order_acquire``.
1225``release``
1226 In addition to the guarantees of ``monotonic``, if this operation
1227 writes a value which is subsequently read by an ``acquire``
1228 operation, it *synchronizes-with* that operation. (This isn't a
1229 complete description; see the C++0x definition of a release
1230 sequence.) This corresponds to the C++0x/C1x
1231 ``memory_order_release``.
1232``acq_rel`` (acquire+release)
1233 Acts as both an ``acquire`` and ``release`` operation on its
1234 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1235``seq_cst`` (sequentially consistent)
1236 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1237 operation which only reads, ``release`` for an operation which only
1238 writes), there is a global total order on all
1239 sequentially-consistent operations on all addresses, which is
1240 consistent with the *happens-before* partial order and with the
1241 modification orders of all the affected addresses. Each
1242 sequentially-consistent read sees the last preceding write to the
1243 same address in this global order. This corresponds to the C++0x/C1x
1244 ``memory_order_seq_cst`` and Java volatile.
1245
1246.. _singlethread:
1247
1248If an atomic operation is marked ``singlethread``, it only *synchronizes
1249with* or participates in modification and seq\_cst total orderings with
1250other operations running in the same thread (for example, in signal
1251handlers).
1252
1253.. _fastmath:
1254
1255Fast-Math Flags
1256---------------
1257
1258LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1259:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1260:ref:`frem <i_frem>`) have the following flags that can set to enable
1261otherwise unsafe floating point operations
1262
1263``nnan``
1264 No NaNs - Allow optimizations to assume the arguments and result are not
1265 NaN. Such optimizations are required to retain defined behavior over
1266 NaNs, but the value of the result is undefined.
1267
1268``ninf``
1269 No Infs - Allow optimizations to assume the arguments and result are not
1270 +/-Inf. Such optimizations are required to retain defined behavior over
1271 +/-Inf, but the value of the result is undefined.
1272
1273``nsz``
1274 No Signed Zeros - Allow optimizations to treat the sign of a zero
1275 argument or result as insignificant.
1276
1277``arcp``
1278 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1279 argument rather than perform division.
1280
1281``fast``
1282 Fast - Allow algebraically equivalent transformations that may
1283 dramatically change results in floating point (e.g. reassociate). This
1284 flag implies all the others.
1285
1286.. _typesystem:
1287
1288Type System
1289===========
1290
1291The LLVM type system is one of the most important features of the
1292intermediate representation. Being typed enables a number of
1293optimizations to be performed on the intermediate representation
1294directly, without having to do extra analyses on the side before the
1295transformation. A strong type system makes it easier to read the
1296generated code and enables novel analyses and transformations that are
1297not feasible to perform on normal three address code representations.
1298
1299Type Classifications
1300--------------------
1301
1302The types fall into a few useful classifications:
1303
1304
1305.. list-table::
1306 :header-rows: 1
1307
1308 * - Classification
1309 - Types
1310
1311 * - :ref:`integer <t_integer>`
1312 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1313 ``i64``, ...
1314
1315 * - :ref:`floating point <t_floating>`
1316 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1317 ``ppc_fp128``
1318
1319
1320 * - first class
1321
1322 .. _t_firstclass:
1323
1324 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1325 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1326 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1327 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1328
1329 * - :ref:`primitive <t_primitive>`
1330 - :ref:`label <t_label>`,
1331 :ref:`void <t_void>`,
1332 :ref:`integer <t_integer>`,
1333 :ref:`floating point <t_floating>`,
1334 :ref:`x86mmx <t_x86mmx>`,
1335 :ref:`metadata <t_metadata>`.
1336
1337 * - :ref:`derived <t_derived>`
1338 - :ref:`array <t_array>`,
1339 :ref:`function <t_function>`,
1340 :ref:`pointer <t_pointer>`,
1341 :ref:`structure <t_struct>`,
1342 :ref:`vector <t_vector>`,
1343 :ref:`opaque <t_opaque>`.
1344
1345The :ref:`first class <t_firstclass>` types are perhaps the most important.
1346Values of these types are the only ones which can be produced by
1347instructions.
1348
1349.. _t_primitive:
1350
1351Primitive Types
1352---------------
1353
1354The primitive types are the fundamental building blocks of the LLVM
1355system.
1356
1357.. _t_integer:
1358
1359Integer Type
1360^^^^^^^^^^^^
1361
1362Overview:
1363"""""""""
1364
1365The integer type is a very simple type that simply specifies an
1366arbitrary bit width for the integer type desired. Any bit width from 1
1367bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1368
1369Syntax:
1370"""""""
1371
1372::
1373
1374 iN
1375
1376The number of bits the integer will occupy is specified by the ``N``
1377value.
1378
1379Examples:
1380"""""""""
1381
1382+----------------+------------------------------------------------+
1383| ``i1`` | a single-bit integer. |
1384+----------------+------------------------------------------------+
1385| ``i32`` | a 32-bit integer. |
1386+----------------+------------------------------------------------+
1387| ``i1942652`` | a really big integer of over 1 million bits. |
1388+----------------+------------------------------------------------+
1389
1390.. _t_floating:
1391
1392Floating Point Types
1393^^^^^^^^^^^^^^^^^^^^
1394
1395.. list-table::
1396 :header-rows: 1
1397
1398 * - Type
1399 - Description
1400
1401 * - ``half``
1402 - 16-bit floating point value
1403
1404 * - ``float``
1405 - 32-bit floating point value
1406
1407 * - ``double``
1408 - 64-bit floating point value
1409
1410 * - ``fp128``
1411 - 128-bit floating point value (112-bit mantissa)
1412
1413 * - ``x86_fp80``
1414 - 80-bit floating point value (X87)
1415
1416 * - ``ppc_fp128``
1417 - 128-bit floating point value (two 64-bits)
1418
1419.. _t_x86mmx:
1420
1421X86mmx Type
1422^^^^^^^^^^^
1423
1424Overview:
1425"""""""""
1426
1427The x86mmx type represents a value held in an MMX register on an x86
1428machine. The operations allowed on it are quite limited: parameters and
1429return values, load and store, and bitcast. User-specified MMX
1430instructions are represented as intrinsic or asm calls with arguments
1431and/or results of this type. There are no arrays, vectors or constants
1432of this type.
1433
1434Syntax:
1435"""""""
1436
1437::
1438
1439 x86mmx
1440
1441.. _t_void:
1442
1443Void Type
1444^^^^^^^^^
1445
1446Overview:
1447"""""""""
1448
1449The void type does not represent any value and has no size.
1450
1451Syntax:
1452"""""""
1453
1454::
1455
1456 void
1457
1458.. _t_label:
1459
1460Label Type
1461^^^^^^^^^^
1462
1463Overview:
1464"""""""""
1465
1466The label type represents code labels.
1467
1468Syntax:
1469"""""""
1470
1471::
1472
1473 label
1474
1475.. _t_metadata:
1476
1477Metadata Type
1478^^^^^^^^^^^^^
1479
1480Overview:
1481"""""""""
1482
1483The metadata type represents embedded metadata. No derived types may be
1484created from metadata except for :ref:`function <t_function>` arguments.
1485
1486Syntax:
1487"""""""
1488
1489::
1490
1491 metadata
1492
1493.. _t_derived:
1494
1495Derived Types
1496-------------
1497
1498The real power in LLVM comes from the derived types in the system. This
1499is what allows a programmer to represent arrays, functions, pointers,
1500and other useful types. Each of these types contain one or more element
1501types which may be a primitive type, or another derived type. For
1502example, it is possible to have a two dimensional array, using an array
1503as the element type of another array.
1504
1505.. _t_aggregate:
1506
1507Aggregate Types
1508^^^^^^^^^^^^^^^
1509
1510Aggregate Types are a subset of derived types that can contain multiple
1511member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1512aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1513aggregate types.
1514
1515.. _t_array:
1516
1517Array Type
1518^^^^^^^^^^
1519
1520Overview:
1521"""""""""
1522
1523The array type is a very simple derived type that arranges elements
1524sequentially in memory. The array type requires a size (number of
1525elements) and an underlying data type.
1526
1527Syntax:
1528"""""""
1529
1530::
1531
1532 [<# elements> x <elementtype>]
1533
1534The number of elements is a constant integer value; ``elementtype`` may
1535be any type with a size.
1536
1537Examples:
1538"""""""""
1539
1540+------------------+--------------------------------------+
1541| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1542+------------------+--------------------------------------+
1543| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1544+------------------+--------------------------------------+
1545| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1546+------------------+--------------------------------------+
1547
1548Here are some examples of multidimensional arrays:
1549
1550+-----------------------------+----------------------------------------------------------+
1551| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1552+-----------------------------+----------------------------------------------------------+
1553| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1554+-----------------------------+----------------------------------------------------------+
1555| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1556+-----------------------------+----------------------------------------------------------+
1557
1558There is no restriction on indexing beyond the end of the array implied
1559by a static type (though there are restrictions on indexing beyond the
1560bounds of an allocated object in some cases). This means that
1561single-dimension 'variable sized array' addressing can be implemented in
1562LLVM with a zero length array type. An implementation of 'pascal style
1563arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1564example.
1565
1566.. _t_function:
1567
1568Function Type
1569^^^^^^^^^^^^^
1570
1571Overview:
1572"""""""""
1573
1574The function type can be thought of as a function signature. It consists
1575of a return type and a list of formal parameter types. The return type
1576of a function type is a first class type or a void type.
1577
1578Syntax:
1579"""""""
1580
1581::
1582
1583 <returntype> (<parameter list>)
1584
1585...where '``<parameter list>``' is a comma-separated list of type
1586specifiers. Optionally, the parameter list may include a type ``...``,
1587which indicates that the function takes a variable number of arguments.
1588Variable argument functions can access their arguments with the
1589:ref:`variable argument handling intrinsic <int_varargs>` functions.
1590'``<returntype>``' is any type except :ref:`label <t_label>`.
1591
1592Examples:
1593"""""""""
1594
1595+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1596| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1597+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001598| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvab084af42012-12-07 10:36:55 +00001599+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1600| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1601+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1602| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1603+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1604
1605.. _t_struct:
1606
1607Structure Type
1608^^^^^^^^^^^^^^
1609
1610Overview:
1611"""""""""
1612
1613The structure type is used to represent a collection of data members
1614together in memory. The elements of a structure may be any type that has
1615a size.
1616
1617Structures in memory are accessed using '``load``' and '``store``' by
1618getting a pointer to a field with the '``getelementptr``' instruction.
1619Structures in registers are accessed using the '``extractvalue``' and
1620'``insertvalue``' instructions.
1621
1622Structures may optionally be "packed" structures, which indicate that
1623the alignment of the struct is one byte, and that there is no padding
1624between the elements. In non-packed structs, padding between field types
1625is inserted as defined by the DataLayout string in the module, which is
1626required to match what the underlying code generator expects.
1627
1628Structures can either be "literal" or "identified". A literal structure
1629is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1630identified types are always defined at the top level with a name.
1631Literal types are uniqued by their contents and can never be recursive
1632or opaque since there is no way to write one. Identified types can be
1633recursive, can be opaqued, and are never uniqued.
1634
1635Syntax:
1636"""""""
1637
1638::
1639
1640 %T1 = type { <type list> } ; Identified normal struct type
1641 %T2 = type <{ <type list> }> ; Identified packed struct type
1642
1643Examples:
1644"""""""""
1645
1646+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1647| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1648+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001649| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001650+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1651| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1652+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1653
1654.. _t_opaque:
1655
1656Opaque Structure Types
1657^^^^^^^^^^^^^^^^^^^^^^
1658
1659Overview:
1660"""""""""
1661
1662Opaque structure types are used to represent named structure types that
1663do not have a body specified. This corresponds (for example) to the C
1664notion of a forward declared structure.
1665
1666Syntax:
1667"""""""
1668
1669::
1670
1671 %X = type opaque
1672 %52 = type opaque
1673
1674Examples:
1675"""""""""
1676
1677+--------------+-------------------+
1678| ``opaque`` | An opaque type. |
1679+--------------+-------------------+
1680
1681.. _t_pointer:
1682
1683Pointer Type
1684^^^^^^^^^^^^
1685
1686Overview:
1687"""""""""
1688
1689The pointer type is used to specify memory locations. Pointers are
1690commonly used to reference objects in memory.
1691
1692Pointer types may have an optional address space attribute defining the
1693numbered address space where the pointed-to object resides. The default
1694address space is number zero. The semantics of non-zero address spaces
1695are target-specific.
1696
1697Note that LLVM does not permit pointers to void (``void*``) nor does it
1698permit pointers to labels (``label*``). Use ``i8*`` instead.
1699
1700Syntax:
1701"""""""
1702
1703::
1704
1705 <type> *
1706
1707Examples:
1708"""""""""
1709
1710+-------------------------+--------------------------------------------------------------------------------------------------------------+
1711| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1712+-------------------------+--------------------------------------------------------------------------------------------------------------+
1713| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1714+-------------------------+--------------------------------------------------------------------------------------------------------------+
1715| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1716+-------------------------+--------------------------------------------------------------------------------------------------------------+
1717
1718.. _t_vector:
1719
1720Vector Type
1721^^^^^^^^^^^
1722
1723Overview:
1724"""""""""
1725
1726A vector type is a simple derived type that represents a vector of
1727elements. Vector types are used when multiple primitive data are
1728operated in parallel using a single instruction (SIMD). A vector type
1729requires a size (number of elements) and an underlying primitive data
1730type. Vector types are considered :ref:`first class <t_firstclass>`.
1731
1732Syntax:
1733"""""""
1734
1735::
1736
1737 < <# elements> x <elementtype> >
1738
1739The number of elements is a constant integer value larger than 0;
1740elementtype may be any integer or floating point type, or a pointer to
1741these types. Vectors of size zero are not allowed.
1742
1743Examples:
1744"""""""""
1745
1746+-------------------+--------------------------------------------------+
1747| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1748+-------------------+--------------------------------------------------+
1749| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1750+-------------------+--------------------------------------------------+
1751| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1752+-------------------+--------------------------------------------------+
1753| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1754+-------------------+--------------------------------------------------+
1755
1756Constants
1757=========
1758
1759LLVM has several different basic types of constants. This section
1760describes them all and their syntax.
1761
1762Simple Constants
1763----------------
1764
1765**Boolean constants**
1766 The two strings '``true``' and '``false``' are both valid constants
1767 of the ``i1`` type.
1768**Integer constants**
1769 Standard integers (such as '4') are constants of the
1770 :ref:`integer <t_integer>` type. Negative numbers may be used with
1771 integer types.
1772**Floating point constants**
1773 Floating point constants use standard decimal notation (e.g.
1774 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1775 hexadecimal notation (see below). The assembler requires the exact
1776 decimal value of a floating-point constant. For example, the
1777 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1778 decimal in binary. Floating point constants must have a :ref:`floating
1779 point <t_floating>` type.
1780**Null pointer constants**
1781 The identifier '``null``' is recognized as a null pointer constant
1782 and must be of :ref:`pointer type <t_pointer>`.
1783
1784The one non-intuitive notation for constants is the hexadecimal form of
1785floating point constants. For example, the form
1786'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1787than) '``double 4.5e+15``'. The only time hexadecimal floating point
1788constants are required (and the only time that they are generated by the
1789disassembler) is when a floating point constant must be emitted but it
1790cannot be represented as a decimal floating point number in a reasonable
1791number of digits. For example, NaN's, infinities, and other special
1792values are represented in their IEEE hexadecimal format so that assembly
1793and disassembly do not cause any bits to change in the constants.
1794
1795When using the hexadecimal form, constants of types half, float, and
1796double are represented using the 16-digit form shown above (which
1797matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001798must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001799precision, respectively. Hexadecimal format is always used for long
1800double, and there are three forms of long double. The 80-bit format used
1801by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1802128-bit format used by PowerPC (two adjacent doubles) is represented by
1803``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1804represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1805supported target uses this format. Long doubles will only work if they
1806match the long double format on your target. The IEEE 16-bit format
1807(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1808digits. All hexadecimal formats are big-endian (sign bit at the left).
1809
1810There are no constants of type x86mmx.
1811
1812Complex Constants
1813-----------------
1814
1815Complex constants are a (potentially recursive) combination of simple
1816constants and smaller complex constants.
1817
1818**Structure constants**
1819 Structure constants are represented with notation similar to
1820 structure type definitions (a comma separated list of elements,
1821 surrounded by braces (``{}``)). For example:
1822 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1823 "``@G = external global i32``". Structure constants must have
1824 :ref:`structure type <t_struct>`, and the number and types of elements
1825 must match those specified by the type.
1826**Array constants**
1827 Array constants are represented with notation similar to array type
1828 definitions (a comma separated list of elements, surrounded by
1829 square brackets (``[]``)). For example:
1830 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1831 :ref:`array type <t_array>`, and the number and types of elements must
1832 match those specified by the type.
1833**Vector constants**
1834 Vector constants are represented with notation similar to vector
1835 type definitions (a comma separated list of elements, surrounded by
1836 less-than/greater-than's (``<>``)). For example:
1837 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1838 must have :ref:`vector type <t_vector>`, and the number and types of
1839 elements must match those specified by the type.
1840**Zero initialization**
1841 The string '``zeroinitializer``' can be used to zero initialize a
1842 value to zero of *any* type, including scalar and
1843 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1844 having to print large zero initializers (e.g. for large arrays) and
1845 is always exactly equivalent to using explicit zero initializers.
1846**Metadata node**
1847 A metadata node is a structure-like constant with :ref:`metadata
1848 type <t_metadata>`. For example:
1849 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1850 constants that are meant to be interpreted as part of the
1851 instruction stream, metadata is a place to attach additional
1852 information such as debug info.
1853
1854Global Variable and Function Addresses
1855--------------------------------------
1856
1857The addresses of :ref:`global variables <globalvars>` and
1858:ref:`functions <functionstructure>` are always implicitly valid
1859(link-time) constants. These constants are explicitly referenced when
1860the :ref:`identifier for the global <identifiers>` is used and always have
1861:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1862file:
1863
1864.. code-block:: llvm
1865
1866 @X = global i32 17
1867 @Y = global i32 42
1868 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1869
1870.. _undefvalues:
1871
1872Undefined Values
1873----------------
1874
1875The string '``undef``' can be used anywhere a constant is expected, and
1876indicates that the user of the value may receive an unspecified
1877bit-pattern. Undefined values may be of any type (other than '``label``'
1878or '``void``') and be used anywhere a constant is permitted.
1879
1880Undefined values are useful because they indicate to the compiler that
1881the program is well defined no matter what value is used. This gives the
1882compiler more freedom to optimize. Here are some examples of
1883(potentially surprising) transformations that are valid (in pseudo IR):
1884
1885.. code-block:: llvm
1886
1887 %A = add %X, undef
1888 %B = sub %X, undef
1889 %C = xor %X, undef
1890 Safe:
1891 %A = undef
1892 %B = undef
1893 %C = undef
1894
1895This is safe because all of the output bits are affected by the undef
1896bits. Any output bit can have a zero or one depending on the input bits.
1897
1898.. code-block:: llvm
1899
1900 %A = or %X, undef
1901 %B = and %X, undef
1902 Safe:
1903 %A = -1
1904 %B = 0
1905 Unsafe:
1906 %A = undef
1907 %B = undef
1908
1909These logical operations have bits that are not always affected by the
1910input. For example, if ``%X`` has a zero bit, then the output of the
1911'``and``' operation will always be a zero for that bit, no matter what
1912the corresponding bit from the '``undef``' is. As such, it is unsafe to
1913optimize or assume that the result of the '``and``' is '``undef``'.
1914However, it is safe to assume that all bits of the '``undef``' could be
19150, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1916all the bits of the '``undef``' operand to the '``or``' could be set,
1917allowing the '``or``' to be folded to -1.
1918
1919.. code-block:: llvm
1920
1921 %A = select undef, %X, %Y
1922 %B = select undef, 42, %Y
1923 %C = select %X, %Y, undef
1924 Safe:
1925 %A = %X (or %Y)
1926 %B = 42 (or %Y)
1927 %C = %Y
1928 Unsafe:
1929 %A = undef
1930 %B = undef
1931 %C = undef
1932
1933This set of examples shows that undefined '``select``' (and conditional
1934branch) conditions can go *either way*, but they have to come from one
1935of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1936both known to have a clear low bit, then ``%A`` would have to have a
1937cleared low bit. However, in the ``%C`` example, the optimizer is
1938allowed to assume that the '``undef``' operand could be the same as
1939``%Y``, allowing the whole '``select``' to be eliminated.
1940
1941.. code-block:: llvm
1942
1943 %A = xor undef, undef
1944
1945 %B = undef
1946 %C = xor %B, %B
1947
1948 %D = undef
1949 %E = icmp lt %D, 4
1950 %F = icmp gte %D, 4
1951
1952 Safe:
1953 %A = undef
1954 %B = undef
1955 %C = undef
1956 %D = undef
1957 %E = undef
1958 %F = undef
1959
1960This example points out that two '``undef``' operands are not
1961necessarily the same. This can be surprising to people (and also matches
1962C semantics) where they assume that "``X^X``" is always zero, even if
1963``X`` is undefined. This isn't true for a number of reasons, but the
1964short answer is that an '``undef``' "variable" can arbitrarily change
1965its value over its "live range". This is true because the variable
1966doesn't actually *have a live range*. Instead, the value is logically
1967read from arbitrary registers that happen to be around when needed, so
1968the value is not necessarily consistent over time. In fact, ``%A`` and
1969``%C`` need to have the same semantics or the core LLVM "replace all
1970uses with" concept would not hold.
1971
1972.. code-block:: llvm
1973
1974 %A = fdiv undef, %X
1975 %B = fdiv %X, undef
1976 Safe:
1977 %A = undef
1978 b: unreachable
1979
1980These examples show the crucial difference between an *undefined value*
1981and *undefined behavior*. An undefined value (like '``undef``') is
1982allowed to have an arbitrary bit-pattern. This means that the ``%A``
1983operation can be constant folded to '``undef``', because the '``undef``'
1984could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1985However, in the second example, we can make a more aggressive
1986assumption: because the ``undef`` is allowed to be an arbitrary value,
1987we are allowed to assume that it could be zero. Since a divide by zero
1988has *undefined behavior*, we are allowed to assume that the operation
1989does not execute at all. This allows us to delete the divide and all
1990code after it. Because the undefined operation "can't happen", the
1991optimizer can assume that it occurs in dead code.
1992
1993.. code-block:: llvm
1994
1995 a: store undef -> %X
1996 b: store %X -> undef
1997 Safe:
1998 a: <deleted>
1999 b: unreachable
2000
2001These examples reiterate the ``fdiv`` example: a store *of* an undefined
2002value can be assumed to not have any effect; we can assume that the
2003value is overwritten with bits that happen to match what was already
2004there. However, a store *to* an undefined location could clobber
2005arbitrary memory, therefore, it has undefined behavior.
2006
2007.. _poisonvalues:
2008
2009Poison Values
2010-------------
2011
2012Poison values are similar to :ref:`undef values <undefvalues>`, however
2013they also represent the fact that an instruction or constant expression
2014which cannot evoke side effects has nevertheless detected a condition
2015which results in undefined behavior.
2016
2017There is currently no way of representing a poison value in the IR; they
2018only exist when produced by operations such as :ref:`add <i_add>` with
2019the ``nsw`` flag.
2020
2021Poison value behavior is defined in terms of value *dependence*:
2022
2023- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2024- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2025 their dynamic predecessor basic block.
2026- Function arguments depend on the corresponding actual argument values
2027 in the dynamic callers of their functions.
2028- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2029 instructions that dynamically transfer control back to them.
2030- :ref:`Invoke <i_invoke>` instructions depend on the
2031 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2032 call instructions that dynamically transfer control back to them.
2033- Non-volatile loads and stores depend on the most recent stores to all
2034 of the referenced memory addresses, following the order in the IR
2035 (including loads and stores implied by intrinsics such as
2036 :ref:`@llvm.memcpy <int_memcpy>`.)
2037- An instruction with externally visible side effects depends on the
2038 most recent preceding instruction with externally visible side
2039 effects, following the order in the IR. (This includes :ref:`volatile
2040 operations <volatile>`.)
2041- An instruction *control-depends* on a :ref:`terminator
2042 instruction <terminators>` if the terminator instruction has
2043 multiple successors and the instruction is always executed when
2044 control transfers to one of the successors, and may not be executed
2045 when control is transferred to another.
2046- Additionally, an instruction also *control-depends* on a terminator
2047 instruction if the set of instructions it otherwise depends on would
2048 be different if the terminator had transferred control to a different
2049 successor.
2050- Dependence is transitive.
2051
2052Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2053with the additional affect that any instruction which has a *dependence*
2054on a poison value has undefined behavior.
2055
2056Here are some examples:
2057
2058.. code-block:: llvm
2059
2060 entry:
2061 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2062 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2063 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2064 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2065
2066 store i32 %poison, i32* @g ; Poison value stored to memory.
2067 %poison2 = load i32* @g ; Poison value loaded back from memory.
2068
2069 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2070
2071 %narrowaddr = bitcast i32* @g to i16*
2072 %wideaddr = bitcast i32* @g to i64*
2073 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2074 %poison4 = load i64* %wideaddr ; Returns a poison value.
2075
2076 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2077 br i1 %cmp, label %true, label %end ; Branch to either destination.
2078
2079 true:
2080 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2081 ; it has undefined behavior.
2082 br label %end
2083
2084 end:
2085 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2086 ; Both edges into this PHI are
2087 ; control-dependent on %cmp, so this
2088 ; always results in a poison value.
2089
2090 store volatile i32 0, i32* @g ; This would depend on the store in %true
2091 ; if %cmp is true, or the store in %entry
2092 ; otherwise, so this is undefined behavior.
2093
2094 br i1 %cmp, label %second_true, label %second_end
2095 ; The same branch again, but this time the
2096 ; true block doesn't have side effects.
2097
2098 second_true:
2099 ; No side effects!
2100 ret void
2101
2102 second_end:
2103 store volatile i32 0, i32* @g ; This time, the instruction always depends
2104 ; on the store in %end. Also, it is
2105 ; control-equivalent to %end, so this is
2106 ; well-defined (ignoring earlier undefined
2107 ; behavior in this example).
2108
2109.. _blockaddress:
2110
2111Addresses of Basic Blocks
2112-------------------------
2113
2114``blockaddress(@function, %block)``
2115
2116The '``blockaddress``' constant computes the address of the specified
2117basic block in the specified function, and always has an ``i8*`` type.
2118Taking the address of the entry block is illegal.
2119
2120This value only has defined behavior when used as an operand to the
2121':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2122against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002123undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002124no label is equal to the null pointer. This may be passed around as an
2125opaque pointer sized value as long as the bits are not inspected. This
2126allows ``ptrtoint`` and arithmetic to be performed on these values so
2127long as the original value is reconstituted before the ``indirectbr``
2128instruction.
2129
2130Finally, some targets may provide defined semantics when using the value
2131as the operand to an inline assembly, but that is target specific.
2132
2133Constant Expressions
2134--------------------
2135
2136Constant expressions are used to allow expressions involving other
2137constants to be used as constants. Constant expressions may be of any
2138:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2139that does not have side effects (e.g. load and call are not supported).
2140The following is the syntax for constant expressions:
2141
2142``trunc (CST to TYPE)``
2143 Truncate a constant to another type. The bit size of CST must be
2144 larger than the bit size of TYPE. Both types must be integers.
2145``zext (CST to TYPE)``
2146 Zero extend a constant to another type. The bit size of CST must be
2147 smaller than the bit size of TYPE. Both types must be integers.
2148``sext (CST to TYPE)``
2149 Sign extend a constant to another type. The bit size of CST must be
2150 smaller than the bit size of TYPE. Both types must be integers.
2151``fptrunc (CST to TYPE)``
2152 Truncate a floating point constant to another floating point type.
2153 The size of CST must be larger than the size of TYPE. Both types
2154 must be floating point.
2155``fpext (CST to TYPE)``
2156 Floating point extend a constant to another type. The size of CST
2157 must be smaller or equal to the size of TYPE. Both types must be
2158 floating point.
2159``fptoui (CST to TYPE)``
2160 Convert a floating point constant to the corresponding unsigned
2161 integer constant. TYPE must be a scalar or vector integer type. CST
2162 must be of scalar or vector floating point type. Both CST and TYPE
2163 must be scalars, or vectors of the same number of elements. If the
2164 value won't fit in the integer type, the results are undefined.
2165``fptosi (CST to TYPE)``
2166 Convert a floating point constant to the corresponding signed
2167 integer constant. TYPE must be a scalar or vector integer type. CST
2168 must be of scalar or vector floating point type. Both CST and TYPE
2169 must be scalars, or vectors of the same number of elements. If the
2170 value won't fit in the integer type, the results are undefined.
2171``uitofp (CST to TYPE)``
2172 Convert an unsigned integer constant to the corresponding floating
2173 point constant. TYPE must be a scalar or vector floating point type.
2174 CST must be of scalar or vector integer type. Both CST and TYPE must
2175 be scalars, or vectors of the same number of elements. If the value
2176 won't fit in the floating point type, the results are undefined.
2177``sitofp (CST to TYPE)``
2178 Convert a signed integer constant to the corresponding floating
2179 point constant. TYPE must be a scalar or vector floating point type.
2180 CST must be of scalar or vector integer type. Both CST and TYPE must
2181 be scalars, or vectors of the same number of elements. If the value
2182 won't fit in the floating point type, the results are undefined.
2183``ptrtoint (CST to TYPE)``
2184 Convert a pointer typed constant to the corresponding integer
2185 constant ``TYPE`` must be an integer type. ``CST`` must be of
2186 pointer type. The ``CST`` value is zero extended, truncated, or
2187 unchanged to make it fit in ``TYPE``.
2188``inttoptr (CST to TYPE)``
2189 Convert an integer constant to a pointer constant. TYPE must be a
2190 pointer type. CST must be of integer type. The CST value is zero
2191 extended, truncated, or unchanged to make it fit in a pointer size.
2192 This one is *really* dangerous!
2193``bitcast (CST to TYPE)``
2194 Convert a constant, CST, to another TYPE. The constraints of the
2195 operands are the same as those for the :ref:`bitcast
2196 instruction <i_bitcast>`.
2197``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2198 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2199 constants. As with the :ref:`getelementptr <i_getelementptr>`
2200 instruction, the index list may have zero or more indexes, which are
2201 required to make sense for the type of "CSTPTR".
2202``select (COND, VAL1, VAL2)``
2203 Perform the :ref:`select operation <i_select>` on constants.
2204``icmp COND (VAL1, VAL2)``
2205 Performs the :ref:`icmp operation <i_icmp>` on constants.
2206``fcmp COND (VAL1, VAL2)``
2207 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2208``extractelement (VAL, IDX)``
2209 Perform the :ref:`extractelement operation <i_extractelement>` on
2210 constants.
2211``insertelement (VAL, ELT, IDX)``
2212 Perform the :ref:`insertelement operation <i_insertelement>` on
2213 constants.
2214``shufflevector (VEC1, VEC2, IDXMASK)``
2215 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2216 constants.
2217``extractvalue (VAL, IDX0, IDX1, ...)``
2218 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2219 constants. The index list is interpreted in a similar manner as
2220 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2221 least one index value must be specified.
2222``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2223 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2224 The index list is interpreted in a similar manner as indices in a
2225 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2226 value must be specified.
2227``OPCODE (LHS, RHS)``
2228 Perform the specified operation of the LHS and RHS constants. OPCODE
2229 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2230 binary <bitwiseops>` operations. The constraints on operands are
2231 the same as those for the corresponding instruction (e.g. no bitwise
2232 operations on floating point values are allowed).
2233
2234Other Values
2235============
2236
2237Inline Assembler Expressions
2238----------------------------
2239
2240LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2241Inline Assembly <moduleasm>`) through the use of a special value. This
2242value represents the inline assembler as a string (containing the
2243instructions to emit), a list of operand constraints (stored as a
2244string), a flag that indicates whether or not the inline asm expression
2245has side effects, and a flag indicating whether the function containing
2246the asm needs to align its stack conservatively. An example inline
2247assembler expression is:
2248
2249.. code-block:: llvm
2250
2251 i32 (i32) asm "bswap $0", "=r,r"
2252
2253Inline assembler expressions may **only** be used as the callee operand
2254of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2255Thus, typically we have:
2256
2257.. code-block:: llvm
2258
2259 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2260
2261Inline asms with side effects not visible in the constraint list must be
2262marked as having side effects. This is done through the use of the
2263'``sideeffect``' keyword, like so:
2264
2265.. code-block:: llvm
2266
2267 call void asm sideeffect "eieio", ""()
2268
2269In some cases inline asms will contain code that will not work unless
2270the stack is aligned in some way, such as calls or SSE instructions on
2271x86, yet will not contain code that does that alignment within the asm.
2272The compiler should make conservative assumptions about what the asm
2273might contain and should generate its usual stack alignment code in the
2274prologue if the '``alignstack``' keyword is present:
2275
2276.. code-block:: llvm
2277
2278 call void asm alignstack "eieio", ""()
2279
2280Inline asms also support using non-standard assembly dialects. The
2281assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2282the inline asm is using the Intel dialect. Currently, ATT and Intel are
2283the only supported dialects. An example is:
2284
2285.. code-block:: llvm
2286
2287 call void asm inteldialect "eieio", ""()
2288
2289If multiple keywords appear the '``sideeffect``' keyword must come
2290first, the '``alignstack``' keyword second and the '``inteldialect``'
2291keyword last.
2292
2293Inline Asm Metadata
2294^^^^^^^^^^^^^^^^^^^
2295
2296The call instructions that wrap inline asm nodes may have a
2297"``!srcloc``" MDNode attached to it that contains a list of constant
2298integers. If present, the code generator will use the integer as the
2299location cookie value when report errors through the ``LLVMContext``
2300error reporting mechanisms. This allows a front-end to correlate backend
2301errors that occur with inline asm back to the source code that produced
2302it. For example:
2303
2304.. code-block:: llvm
2305
2306 call void asm sideeffect "something bad", ""(), !srcloc !42
2307 ...
2308 !42 = !{ i32 1234567 }
2309
2310It is up to the front-end to make sense of the magic numbers it places
2311in the IR. If the MDNode contains multiple constants, the code generator
2312will use the one that corresponds to the line of the asm that the error
2313occurs on.
2314
2315.. _metadata:
2316
2317Metadata Nodes and Metadata Strings
2318-----------------------------------
2319
2320LLVM IR allows metadata to be attached to instructions in the program
2321that can convey extra information about the code to the optimizers and
2322code generator. One example application of metadata is source-level
2323debug information. There are two metadata primitives: strings and nodes.
2324All metadata has the ``metadata`` type and is identified in syntax by a
2325preceding exclamation point ('``!``').
2326
2327A metadata string is a string surrounded by double quotes. It can
2328contain any character by escaping non-printable characters with
2329"``\xx``" where "``xx``" is the two digit hex code. For example:
2330"``!"test\00"``".
2331
2332Metadata nodes are represented with notation similar to structure
2333constants (a comma separated list of elements, surrounded by braces and
2334preceded by an exclamation point). Metadata nodes can have any values as
2335their operand. For example:
2336
2337.. code-block:: llvm
2338
2339 !{ metadata !"test\00", i32 10}
2340
2341A :ref:`named metadata <namedmetadatastructure>` is a collection of
2342metadata nodes, which can be looked up in the module symbol table. For
2343example:
2344
2345.. code-block:: llvm
2346
2347 !foo = metadata !{!4, !3}
2348
2349Metadata can be used as function arguments. Here ``llvm.dbg.value``
2350function is using two metadata arguments:
2351
2352.. code-block:: llvm
2353
2354 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2355
2356Metadata can be attached with an instruction. Here metadata ``!21`` is
2357attached to the ``add`` instruction using the ``!dbg`` identifier:
2358
2359.. code-block:: llvm
2360
2361 %indvar.next = add i64 %indvar, 1, !dbg !21
2362
2363More information about specific metadata nodes recognized by the
2364optimizers and code generator is found below.
2365
2366'``tbaa``' Metadata
2367^^^^^^^^^^^^^^^^^^^
2368
2369In LLVM IR, memory does not have types, so LLVM's own type system is not
2370suitable for doing TBAA. Instead, metadata is added to the IR to
2371describe a type system of a higher level language. This can be used to
2372implement typical C/C++ TBAA, but it can also be used to implement
2373custom alias analysis behavior for other languages.
2374
2375The current metadata format is very simple. TBAA metadata nodes have up
2376to three fields, e.g.:
2377
2378.. code-block:: llvm
2379
2380 !0 = metadata !{ metadata !"an example type tree" }
2381 !1 = metadata !{ metadata !"int", metadata !0 }
2382 !2 = metadata !{ metadata !"float", metadata !0 }
2383 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2384
2385The first field is an identity field. It can be any value, usually a
2386metadata string, which uniquely identifies the type. The most important
2387name in the tree is the name of the root node. Two trees with different
2388root node names are entirely disjoint, even if they have leaves with
2389common names.
2390
2391The second field identifies the type's parent node in the tree, or is
2392null or omitted for a root node. A type is considered to alias all of
2393its descendants and all of its ancestors in the tree. Also, a type is
2394considered to alias all types in other trees, so that bitcode produced
2395from multiple front-ends is handled conservatively.
2396
2397If the third field is present, it's an integer which if equal to 1
2398indicates that the type is "constant" (meaning
2399``pointsToConstantMemory`` should return true; see `other useful
2400AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2401
2402'``tbaa.struct``' Metadata
2403^^^^^^^^^^^^^^^^^^^^^^^^^^
2404
2405The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2406aggregate assignment operations in C and similar languages, however it
2407is defined to copy a contiguous region of memory, which is more than
2408strictly necessary for aggregate types which contain holes due to
2409padding. Also, it doesn't contain any TBAA information about the fields
2410of the aggregate.
2411
2412``!tbaa.struct`` metadata can describe which memory subregions in a
2413memcpy are padding and what the TBAA tags of the struct are.
2414
2415The current metadata format is very simple. ``!tbaa.struct`` metadata
2416nodes are a list of operands which are in conceptual groups of three.
2417For each group of three, the first operand gives the byte offset of a
2418field in bytes, the second gives its size in bytes, and the third gives
2419its tbaa tag. e.g.:
2420
2421.. code-block:: llvm
2422
2423 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2424
2425This describes a struct with two fields. The first is at offset 0 bytes
2426with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2427and has size 4 bytes and has tbaa tag !2.
2428
2429Note that the fields need not be contiguous. In this example, there is a
24304 byte gap between the two fields. This gap represents padding which
2431does not carry useful data and need not be preserved.
2432
2433'``fpmath``' Metadata
2434^^^^^^^^^^^^^^^^^^^^^
2435
2436``fpmath`` metadata may be attached to any instruction of floating point
2437type. It can be used to express the maximum acceptable error in the
2438result of that instruction, in ULPs, thus potentially allowing the
2439compiler to use a more efficient but less accurate method of computing
2440it. ULP is defined as follows:
2441
2442 If ``x`` is a real number that lies between two finite consecutive
2443 floating-point numbers ``a`` and ``b``, without being equal to one
2444 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2445 distance between the two non-equal finite floating-point numbers
2446 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2447
2448The metadata node shall consist of a single positive floating point
2449number representing the maximum relative error, for example:
2450
2451.. code-block:: llvm
2452
2453 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2454
2455'``range``' Metadata
2456^^^^^^^^^^^^^^^^^^^^
2457
2458``range`` metadata may be attached only to loads of integer types. It
2459expresses the possible ranges the loaded value is in. The ranges are
2460represented with a flattened list of integers. The loaded value is known
2461to be in the union of the ranges defined by each consecutive pair. Each
2462pair has the following properties:
2463
2464- The type must match the type loaded by the instruction.
2465- The pair ``a,b`` represents the range ``[a,b)``.
2466- Both ``a`` and ``b`` are constants.
2467- The range is allowed to wrap.
2468- The range should not represent the full or empty set. That is,
2469 ``a!=b``.
2470
2471In addition, the pairs must be in signed order of the lower bound and
2472they must be non-contiguous.
2473
2474Examples:
2475
2476.. code-block:: llvm
2477
2478 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2479 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2480 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2481 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2482 ...
2483 !0 = metadata !{ i8 0, i8 2 }
2484 !1 = metadata !{ i8 255, i8 2 }
2485 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2486 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2487
2488Module Flags Metadata
2489=====================
2490
2491Information about the module as a whole is difficult to convey to LLVM's
2492subsystems. The LLVM IR isn't sufficient to transmit this information.
2493The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002494this. These flags are in the form of key / value pairs --- much like a
2495dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002496look it up.
2497
2498The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2499Each triplet has the following form:
2500
2501- The first element is a *behavior* flag, which specifies the behavior
2502 when two (or more) modules are merged together, and it encounters two
2503 (or more) metadata with the same ID. The supported behaviors are
2504 described below.
2505- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002506 metadata. Each module may only have one flag entry for each unique ID (not
2507 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002508- The third element is the value of the flag.
2509
2510When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002511``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2512each unique metadata ID string, there will be exactly one entry in the merged
2513modules ``llvm.module.flags`` metadata table, and the value for that entry will
2514be determined by the merge behavior flag, as described below. The only exception
2515is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002516
2517The following behaviors are supported:
2518
2519.. list-table::
2520 :header-rows: 1
2521 :widths: 10 90
2522
2523 * - Value
2524 - Behavior
2525
2526 * - 1
2527 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002528 Emits an error if two values disagree, otherwise the resulting value
2529 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002530
2531 * - 2
2532 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002533 Emits a warning if two values disagree. The result value will be the
2534 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002535
2536 * - 3
2537 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002538 Adds a requirement that another module flag be present and have a
2539 specified value after linking is performed. The value must be a
2540 metadata pair, where the first element of the pair is the ID of the
2541 module flag to be restricted, and the second element of the pair is
2542 the value the module flag should be restricted to. This behavior can
2543 be used to restrict the allowable results (via triggering of an
2544 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002545
2546 * - 4
2547 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002548 Uses the specified value, regardless of the behavior or value of the
2549 other module. If both modules specify **Override**, but the values
2550 differ, an error will be emitted.
2551
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002552 * - 5
2553 - **Append**
2554 Appends the two values, which are required to be metadata nodes.
2555
2556 * - 6
2557 - **AppendUnique**
2558 Appends the two values, which are required to be metadata
2559 nodes. However, duplicate entries in the second list are dropped
2560 during the append operation.
2561
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002562It is an error for a particular unique flag ID to have multiple behaviors,
2563except in the case of **Require** (which adds restrictions on another metadata
2564value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566An example of module flags:
2567
2568.. code-block:: llvm
2569
2570 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2571 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2572 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2573 !3 = metadata !{ i32 3, metadata !"qux",
2574 metadata !{
2575 metadata !"foo", i32 1
2576 }
2577 }
2578 !llvm.module.flags = !{ !0, !1, !2, !3 }
2579
2580- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2581 if two or more ``!"foo"`` flags are seen is to emit an error if their
2582 values are not equal.
2583
2584- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2585 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002586 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002587
2588- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2589 behavior if two or more ``!"qux"`` flags are seen is to emit a
2590 warning if their values are not equal.
2591
2592- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2593
2594 ::
2595
2596 metadata !{ metadata !"foo", i32 1 }
2597
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002598 The behavior is to emit an error if the ``llvm.module.flags`` does not
2599 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2600 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602Objective-C Garbage Collection Module Flags Metadata
2603----------------------------------------------------
2604
2605On the Mach-O platform, Objective-C stores metadata about garbage
2606collection in a special section called "image info". The metadata
2607consists of a version number and a bitmask specifying what types of
2608garbage collection are supported (if any) by the file. If two or more
2609modules are linked together their garbage collection metadata needs to
2610be merged rather than appended together.
2611
2612The Objective-C garbage collection module flags metadata consists of the
2613following key-value pairs:
2614
2615.. list-table::
2616 :header-rows: 1
2617 :widths: 30 70
2618
2619 * - Key
2620 - Value
2621
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002622 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002623 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002624
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002625 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002626 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002627 always 0.
2628
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002629 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002630 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002631 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2632 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2633 Objective-C ABI version 2.
2634
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002635 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002636 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002637 not. Valid values are 0, for no garbage collection, and 2, for garbage
2638 collection supported.
2639
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002640 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002641 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002642 If present, its value must be 6. This flag requires that the
2643 ``Objective-C Garbage Collection`` flag have the value 2.
2644
2645Some important flag interactions:
2646
2647- If a module with ``Objective-C Garbage Collection`` set to 0 is
2648 merged with a module with ``Objective-C Garbage Collection`` set to
2649 2, then the resulting module has the
2650 ``Objective-C Garbage Collection`` flag set to 0.
2651- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2652 merged with a module with ``Objective-C GC Only`` set to 6.
2653
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002654Automatic Linker Flags Module Flags Metadata
2655--------------------------------------------
2656
2657Some targets support embedding flags to the linker inside individual object
2658files. Typically this is used in conjunction with language extensions which
2659allow source files to explicitly declare the libraries they depend on, and have
2660these automatically be transmitted to the linker via object files.
2661
2662These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002663using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002664to be ``AppendUnique``, and the value for the key is expected to be a metadata
2665node which should be a list of other metadata nodes, each of which should be a
2666list of metadata strings defining linker options.
2667
2668For example, the following metadata section specifies two separate sets of
2669linker options, presumably to link against ``libz`` and the ``Cocoa``
2670framework::
2671
Daniel Dunbar95856122013-01-18 19:37:00 +00002672 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002673 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002674 metadata !{ metadata !"-lz" },
2675 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002676 !llvm.module.flags = !{ !0 }
2677
2678The metadata encoding as lists of lists of options, as opposed to a collapsed
2679list of options, is chosen so that the IR encoding can use multiple option
2680strings to specify e.g., a single library, while still having that specifier be
2681preserved as an atomic element that can be recognized by a target specific
2682assembly writer or object file emitter.
2683
2684Each individual option is required to be either a valid option for the target's
2685linker, or an option that is reserved by the target specific assembly writer or
2686object file emitter. No other aspect of these options is defined by the IR.
2687
Sean Silvab084af42012-12-07 10:36:55 +00002688Intrinsic Global Variables
2689==========================
2690
2691LLVM has a number of "magic" global variables that contain data that
2692affect code generation or other IR semantics. These are documented here.
2693All globals of this sort should have a section specified as
2694"``llvm.metadata``". This section and all globals that start with
2695"``llvm.``" are reserved for use by LLVM.
2696
2697The '``llvm.used``' Global Variable
2698-----------------------------------
2699
2700The ``@llvm.used`` global is an array with i8\* element type which has
2701:ref:`appending linkage <linkage_appending>`. This array contains a list of
2702pointers to global variables and functions which may optionally have a
2703pointer cast formed of bitcast or getelementptr. For example, a legal
2704use of it is:
2705
2706.. code-block:: llvm
2707
2708 @X = global i8 4
2709 @Y = global i32 123
2710
2711 @llvm.used = appending global [2 x i8*] [
2712 i8* @X,
2713 i8* bitcast (i32* @Y to i8*)
2714 ], section "llvm.metadata"
2715
2716If a global variable appears in the ``@llvm.used`` list, then the
2717compiler, assembler, and linker are required to treat the symbol as if
2718there is a reference to the global that it cannot see. For example, if a
2719variable has internal linkage and no references other than that from the
2720``@llvm.used`` list, it cannot be deleted. This is commonly used to
2721represent references from inline asms and other things the compiler
2722cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2723
2724On some targets, the code generator must emit a directive to the
2725assembler or object file to prevent the assembler and linker from
2726molesting the symbol.
2727
2728The '``llvm.compiler.used``' Global Variable
2729--------------------------------------------
2730
2731The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2732directive, except that it only prevents the compiler from touching the
2733symbol. On targets that support it, this allows an intelligent linker to
2734optimize references to the symbol without being impeded as it would be
2735by ``@llvm.used``.
2736
2737This is a rare construct that should only be used in rare circumstances,
2738and should not be exposed to source languages.
2739
2740The '``llvm.global_ctors``' Global Variable
2741-------------------------------------------
2742
2743.. code-block:: llvm
2744
2745 %0 = type { i32, void ()* }
2746 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2747
2748The ``@llvm.global_ctors`` array contains a list of constructor
2749functions and associated priorities. The functions referenced by this
2750array will be called in ascending order of priority (i.e. lowest first)
2751when the module is loaded. The order of functions with the same priority
2752is not defined.
2753
2754The '``llvm.global_dtors``' Global Variable
2755-------------------------------------------
2756
2757.. code-block:: llvm
2758
2759 %0 = type { i32, void ()* }
2760 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2761
2762The ``@llvm.global_dtors`` array contains a list of destructor functions
2763and associated priorities. The functions referenced by this array will
2764be called in descending order of priority (i.e. highest first) when the
2765module is loaded. The order of functions with the same priority is not
2766defined.
2767
2768Instruction Reference
2769=====================
2770
2771The LLVM instruction set consists of several different classifications
2772of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2773instructions <binaryops>`, :ref:`bitwise binary
2774instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2775:ref:`other instructions <otherops>`.
2776
2777.. _terminators:
2778
2779Terminator Instructions
2780-----------------------
2781
2782As mentioned :ref:`previously <functionstructure>`, every basic block in a
2783program ends with a "Terminator" instruction, which indicates which
2784block should be executed after the current block is finished. These
2785terminator instructions typically yield a '``void``' value: they produce
2786control flow, not values (the one exception being the
2787':ref:`invoke <i_invoke>`' instruction).
2788
2789The terminator instructions are: ':ref:`ret <i_ret>`',
2790':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2791':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2792':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2793
2794.. _i_ret:
2795
2796'``ret``' Instruction
2797^^^^^^^^^^^^^^^^^^^^^
2798
2799Syntax:
2800"""""""
2801
2802::
2803
2804 ret <type> <value> ; Return a value from a non-void function
2805 ret void ; Return from void function
2806
2807Overview:
2808"""""""""
2809
2810The '``ret``' instruction is used to return control flow (and optionally
2811a value) from a function back to the caller.
2812
2813There are two forms of the '``ret``' instruction: one that returns a
2814value and then causes control flow, and one that just causes control
2815flow to occur.
2816
2817Arguments:
2818""""""""""
2819
2820The '``ret``' instruction optionally accepts a single argument, the
2821return value. The type of the return value must be a ':ref:`first
2822class <t_firstclass>`' type.
2823
2824A function is not :ref:`well formed <wellformed>` if it it has a non-void
2825return type and contains a '``ret``' instruction with no return value or
2826a return value with a type that does not match its type, or if it has a
2827void return type and contains a '``ret``' instruction with a return
2828value.
2829
2830Semantics:
2831""""""""""
2832
2833When the '``ret``' instruction is executed, control flow returns back to
2834the calling function's context. If the caller is a
2835":ref:`call <i_call>`" instruction, execution continues at the
2836instruction after the call. If the caller was an
2837":ref:`invoke <i_invoke>`" instruction, execution continues at the
2838beginning of the "normal" destination block. If the instruction returns
2839a value, that value shall set the call or invoke instruction's return
2840value.
2841
2842Example:
2843""""""""
2844
2845.. code-block:: llvm
2846
2847 ret i32 5 ; Return an integer value of 5
2848 ret void ; Return from a void function
2849 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2850
2851.. _i_br:
2852
2853'``br``' Instruction
2854^^^^^^^^^^^^^^^^^^^^
2855
2856Syntax:
2857"""""""
2858
2859::
2860
2861 br i1 <cond>, label <iftrue>, label <iffalse>
2862 br label <dest> ; Unconditional branch
2863
2864Overview:
2865"""""""""
2866
2867The '``br``' instruction is used to cause control flow to transfer to a
2868different basic block in the current function. There are two forms of
2869this instruction, corresponding to a conditional branch and an
2870unconditional branch.
2871
2872Arguments:
2873""""""""""
2874
2875The conditional branch form of the '``br``' instruction takes a single
2876'``i1``' value and two '``label``' values. The unconditional form of the
2877'``br``' instruction takes a single '``label``' value as a target.
2878
2879Semantics:
2880""""""""""
2881
2882Upon execution of a conditional '``br``' instruction, the '``i1``'
2883argument is evaluated. If the value is ``true``, control flows to the
2884'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2885to the '``iffalse``' ``label`` argument.
2886
2887Example:
2888""""""""
2889
2890.. code-block:: llvm
2891
2892 Test:
2893 %cond = icmp eq i32 %a, %b
2894 br i1 %cond, label %IfEqual, label %IfUnequal
2895 IfEqual:
2896 ret i32 1
2897 IfUnequal:
2898 ret i32 0
2899
2900.. _i_switch:
2901
2902'``switch``' Instruction
2903^^^^^^^^^^^^^^^^^^^^^^^^
2904
2905Syntax:
2906"""""""
2907
2908::
2909
2910 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2911
2912Overview:
2913"""""""""
2914
2915The '``switch``' instruction is used to transfer control flow to one of
2916several different places. It is a generalization of the '``br``'
2917instruction, allowing a branch to occur to one of many possible
2918destinations.
2919
2920Arguments:
2921""""""""""
2922
2923The '``switch``' instruction uses three parameters: an integer
2924comparison value '``value``', a default '``label``' destination, and an
2925array of pairs of comparison value constants and '``label``'s. The table
2926is not allowed to contain duplicate constant entries.
2927
2928Semantics:
2929""""""""""
2930
2931The ``switch`` instruction specifies a table of values and destinations.
2932When the '``switch``' instruction is executed, this table is searched
2933for the given value. If the value is found, control flow is transferred
2934to the corresponding destination; otherwise, control flow is transferred
2935to the default destination.
2936
2937Implementation:
2938"""""""""""""""
2939
2940Depending on properties of the target machine and the particular
2941``switch`` instruction, this instruction may be code generated in
2942different ways. For example, it could be generated as a series of
2943chained conditional branches or with a lookup table.
2944
2945Example:
2946""""""""
2947
2948.. code-block:: llvm
2949
2950 ; Emulate a conditional br instruction
2951 %Val = zext i1 %value to i32
2952 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2953
2954 ; Emulate an unconditional br instruction
2955 switch i32 0, label %dest [ ]
2956
2957 ; Implement a jump table:
2958 switch i32 %val, label %otherwise [ i32 0, label %onzero
2959 i32 1, label %onone
2960 i32 2, label %ontwo ]
2961
2962.. _i_indirectbr:
2963
2964'``indirectbr``' Instruction
2965^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2966
2967Syntax:
2968"""""""
2969
2970::
2971
2972 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2973
2974Overview:
2975"""""""""
2976
2977The '``indirectbr``' instruction implements an indirect branch to a
2978label within the current function, whose address is specified by
2979"``address``". Address must be derived from a
2980:ref:`blockaddress <blockaddress>` constant.
2981
2982Arguments:
2983""""""""""
2984
2985The '``address``' argument is the address of the label to jump to. The
2986rest of the arguments indicate the full set of possible destinations
2987that the address may point to. Blocks are allowed to occur multiple
2988times in the destination list, though this isn't particularly useful.
2989
2990This destination list is required so that dataflow analysis has an
2991accurate understanding of the CFG.
2992
2993Semantics:
2994""""""""""
2995
2996Control transfers to the block specified in the address argument. All
2997possible destination blocks must be listed in the label list, otherwise
2998this instruction has undefined behavior. This implies that jumps to
2999labels defined in other functions have undefined behavior as well.
3000
3001Implementation:
3002"""""""""""""""
3003
3004This is typically implemented with a jump through a register.
3005
3006Example:
3007""""""""
3008
3009.. code-block:: llvm
3010
3011 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3012
3013.. _i_invoke:
3014
3015'``invoke``' Instruction
3016^^^^^^^^^^^^^^^^^^^^^^^^
3017
3018Syntax:
3019"""""""
3020
3021::
3022
3023 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3024 to label <normal label> unwind label <exception label>
3025
3026Overview:
3027"""""""""
3028
3029The '``invoke``' instruction causes control to transfer to a specified
3030function, with the possibility of control flow transfer to either the
3031'``normal``' label or the '``exception``' label. If the callee function
3032returns with the "``ret``" instruction, control flow will return to the
3033"normal" label. If the callee (or any indirect callees) returns via the
3034":ref:`resume <i_resume>`" instruction or other exception handling
3035mechanism, control is interrupted and continued at the dynamically
3036nearest "exception" label.
3037
3038The '``exception``' label is a `landing
3039pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3040'``exception``' label is required to have the
3041":ref:`landingpad <i_landingpad>`" instruction, which contains the
3042information about the behavior of the program after unwinding happens,
3043as its first non-PHI instruction. The restrictions on the
3044"``landingpad``" instruction's tightly couples it to the "``invoke``"
3045instruction, so that the important information contained within the
3046"``landingpad``" instruction can't be lost through normal code motion.
3047
3048Arguments:
3049""""""""""
3050
3051This instruction requires several arguments:
3052
3053#. The optional "cconv" marker indicates which :ref:`calling
3054 convention <callingconv>` the call should use. If none is
3055 specified, the call defaults to using C calling conventions.
3056#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3057 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3058 are valid here.
3059#. '``ptr to function ty``': shall be the signature of the pointer to
3060 function value being invoked. In most cases, this is a direct
3061 function invocation, but indirect ``invoke``'s are just as possible,
3062 branching off an arbitrary pointer to function value.
3063#. '``function ptr val``': An LLVM value containing a pointer to a
3064 function to be invoked.
3065#. '``function args``': argument list whose types match the function
3066 signature argument types and parameter attributes. All arguments must
3067 be of :ref:`first class <t_firstclass>` type. If the function signature
3068 indicates the function accepts a variable number of arguments, the
3069 extra arguments can be specified.
3070#. '``normal label``': the label reached when the called function
3071 executes a '``ret``' instruction.
3072#. '``exception label``': the label reached when a callee returns via
3073 the :ref:`resume <i_resume>` instruction or other exception handling
3074 mechanism.
3075#. The optional :ref:`function attributes <fnattrs>` list. Only
3076 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3077 attributes are valid here.
3078
3079Semantics:
3080""""""""""
3081
3082This instruction is designed to operate as a standard '``call``'
3083instruction in most regards. The primary difference is that it
3084establishes an association with a label, which is used by the runtime
3085library to unwind the stack.
3086
3087This instruction is used in languages with destructors to ensure that
3088proper cleanup is performed in the case of either a ``longjmp`` or a
3089thrown exception. Additionally, this is important for implementation of
3090'``catch``' clauses in high-level languages that support them.
3091
3092For the purposes of the SSA form, the definition of the value returned
3093by the '``invoke``' instruction is deemed to occur on the edge from the
3094current block to the "normal" label. If the callee unwinds then no
3095return value is available.
3096
3097Example:
3098""""""""
3099
3100.. code-block:: llvm
3101
3102 %retval = invoke i32 @Test(i32 15) to label %Continue
3103 unwind label %TestCleanup ; {i32}:retval set
3104 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3105 unwind label %TestCleanup ; {i32}:retval set
3106
3107.. _i_resume:
3108
3109'``resume``' Instruction
3110^^^^^^^^^^^^^^^^^^^^^^^^
3111
3112Syntax:
3113"""""""
3114
3115::
3116
3117 resume <type> <value>
3118
3119Overview:
3120"""""""""
3121
3122The '``resume``' instruction is a terminator instruction that has no
3123successors.
3124
3125Arguments:
3126""""""""""
3127
3128The '``resume``' instruction requires one argument, which must have the
3129same type as the result of any '``landingpad``' instruction in the same
3130function.
3131
3132Semantics:
3133""""""""""
3134
3135The '``resume``' instruction resumes propagation of an existing
3136(in-flight) exception whose unwinding was interrupted with a
3137:ref:`landingpad <i_landingpad>` instruction.
3138
3139Example:
3140""""""""
3141
3142.. code-block:: llvm
3143
3144 resume { i8*, i32 } %exn
3145
3146.. _i_unreachable:
3147
3148'``unreachable``' Instruction
3149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3150
3151Syntax:
3152"""""""
3153
3154::
3155
3156 unreachable
3157
3158Overview:
3159"""""""""
3160
3161The '``unreachable``' instruction has no defined semantics. This
3162instruction is used to inform the optimizer that a particular portion of
3163the code is not reachable. This can be used to indicate that the code
3164after a no-return function cannot be reached, and other facts.
3165
3166Semantics:
3167""""""""""
3168
3169The '``unreachable``' instruction has no defined semantics.
3170
3171.. _binaryops:
3172
3173Binary Operations
3174-----------------
3175
3176Binary operators are used to do most of the computation in a program.
3177They require two operands of the same type, execute an operation on
3178them, and produce a single value. The operands might represent multiple
3179data, as is the case with the :ref:`vector <t_vector>` data type. The
3180result value has the same type as its operands.
3181
3182There are several different binary operators:
3183
3184.. _i_add:
3185
3186'``add``' Instruction
3187^^^^^^^^^^^^^^^^^^^^^
3188
3189Syntax:
3190"""""""
3191
3192::
3193
3194 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3195 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3196 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3197 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3198
3199Overview:
3200"""""""""
3201
3202The '``add``' instruction returns the sum of its two operands.
3203
3204Arguments:
3205""""""""""
3206
3207The two arguments to the '``add``' instruction must be
3208:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3209arguments must have identical types.
3210
3211Semantics:
3212""""""""""
3213
3214The value produced is the integer sum of the two operands.
3215
3216If the sum has unsigned overflow, the result returned is the
3217mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3218the result.
3219
3220Because LLVM integers use a two's complement representation, this
3221instruction is appropriate for both signed and unsigned integers.
3222
3223``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3224respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3225result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3226unsigned and/or signed overflow, respectively, occurs.
3227
3228Example:
3229""""""""
3230
3231.. code-block:: llvm
3232
3233 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3234
3235.. _i_fadd:
3236
3237'``fadd``' Instruction
3238^^^^^^^^^^^^^^^^^^^^^^
3239
3240Syntax:
3241"""""""
3242
3243::
3244
3245 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3246
3247Overview:
3248"""""""""
3249
3250The '``fadd``' instruction returns the sum of its two operands.
3251
3252Arguments:
3253""""""""""
3254
3255The two arguments to the '``fadd``' instruction must be :ref:`floating
3256point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3257Both arguments must have identical types.
3258
3259Semantics:
3260""""""""""
3261
3262The value produced is the floating point sum of the two operands. This
3263instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3264which are optimization hints to enable otherwise unsafe floating point
3265optimizations:
3266
3267Example:
3268""""""""
3269
3270.. code-block:: llvm
3271
3272 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3273
3274'``sub``' Instruction
3275^^^^^^^^^^^^^^^^^^^^^
3276
3277Syntax:
3278"""""""
3279
3280::
3281
3282 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3283 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3284 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3285 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3286
3287Overview:
3288"""""""""
3289
3290The '``sub``' instruction returns the difference of its two operands.
3291
3292Note that the '``sub``' instruction is used to represent the '``neg``'
3293instruction present in most other intermediate representations.
3294
3295Arguments:
3296""""""""""
3297
3298The two arguments to the '``sub``' instruction must be
3299:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3300arguments must have identical types.
3301
3302Semantics:
3303""""""""""
3304
3305The value produced is the integer difference of the two operands.
3306
3307If the difference has unsigned overflow, the result returned is the
3308mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3309the result.
3310
3311Because LLVM integers use a two's complement representation, this
3312instruction is appropriate for both signed and unsigned integers.
3313
3314``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3315respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3316result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3317unsigned and/or signed overflow, respectively, occurs.
3318
3319Example:
3320""""""""
3321
3322.. code-block:: llvm
3323
3324 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3325 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3326
3327.. _i_fsub:
3328
3329'``fsub``' Instruction
3330^^^^^^^^^^^^^^^^^^^^^^
3331
3332Syntax:
3333"""""""
3334
3335::
3336
3337 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3338
3339Overview:
3340"""""""""
3341
3342The '``fsub``' instruction returns the difference of its two operands.
3343
3344Note that the '``fsub``' instruction is used to represent the '``fneg``'
3345instruction present in most other intermediate representations.
3346
3347Arguments:
3348""""""""""
3349
3350The two arguments to the '``fsub``' instruction must be :ref:`floating
3351point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3352Both arguments must have identical types.
3353
3354Semantics:
3355""""""""""
3356
3357The value produced is the floating point difference of the two operands.
3358This instruction can also take any number of :ref:`fast-math
3359flags <fastmath>`, which are optimization hints to enable otherwise
3360unsafe floating point optimizations:
3361
3362Example:
3363""""""""
3364
3365.. code-block:: llvm
3366
3367 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3368 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3369
3370'``mul``' Instruction
3371^^^^^^^^^^^^^^^^^^^^^
3372
3373Syntax:
3374"""""""
3375
3376::
3377
3378 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3379 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3380 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3381 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3382
3383Overview:
3384"""""""""
3385
3386The '``mul``' instruction returns the product of its two operands.
3387
3388Arguments:
3389""""""""""
3390
3391The two arguments to the '``mul``' instruction must be
3392:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3393arguments must have identical types.
3394
3395Semantics:
3396""""""""""
3397
3398The value produced is the integer product of the two operands.
3399
3400If the result of the multiplication has unsigned overflow, the result
3401returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3402bit width of the result.
3403
3404Because LLVM integers use a two's complement representation, and the
3405result is the same width as the operands, this instruction returns the
3406correct result for both signed and unsigned integers. If a full product
3407(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3408sign-extended or zero-extended as appropriate to the width of the full
3409product.
3410
3411``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3412respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3413result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3414unsigned and/or signed overflow, respectively, occurs.
3415
3416Example:
3417""""""""
3418
3419.. code-block:: llvm
3420
3421 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3422
3423.. _i_fmul:
3424
3425'``fmul``' Instruction
3426^^^^^^^^^^^^^^^^^^^^^^
3427
3428Syntax:
3429"""""""
3430
3431::
3432
3433 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3434
3435Overview:
3436"""""""""
3437
3438The '``fmul``' instruction returns the product of its two operands.
3439
3440Arguments:
3441""""""""""
3442
3443The two arguments to the '``fmul``' instruction must be :ref:`floating
3444point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3445Both arguments must have identical types.
3446
3447Semantics:
3448""""""""""
3449
3450The value produced is the floating point product of the two operands.
3451This instruction can also take any number of :ref:`fast-math
3452flags <fastmath>`, which are optimization hints to enable otherwise
3453unsafe floating point optimizations:
3454
3455Example:
3456""""""""
3457
3458.. code-block:: llvm
3459
3460 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3461
3462'``udiv``' Instruction
3463^^^^^^^^^^^^^^^^^^^^^^
3464
3465Syntax:
3466"""""""
3467
3468::
3469
3470 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3471 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3472
3473Overview:
3474"""""""""
3475
3476The '``udiv``' instruction returns the quotient of its two operands.
3477
3478Arguments:
3479""""""""""
3480
3481The two arguments to the '``udiv``' instruction must be
3482:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3483arguments must have identical types.
3484
3485Semantics:
3486""""""""""
3487
3488The value produced is the unsigned integer quotient of the two operands.
3489
3490Note that unsigned integer division and signed integer division are
3491distinct operations; for signed integer division, use '``sdiv``'.
3492
3493Division by zero leads to undefined behavior.
3494
3495If the ``exact`` keyword is present, the result value of the ``udiv`` is
3496a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3497such, "((a udiv exact b) mul b) == a").
3498
3499Example:
3500""""""""
3501
3502.. code-block:: llvm
3503
3504 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3505
3506'``sdiv``' Instruction
3507^^^^^^^^^^^^^^^^^^^^^^
3508
3509Syntax:
3510"""""""
3511
3512::
3513
3514 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3515 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3516
3517Overview:
3518"""""""""
3519
3520The '``sdiv``' instruction returns the quotient of its two operands.
3521
3522Arguments:
3523""""""""""
3524
3525The two arguments to the '``sdiv``' instruction must be
3526:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3527arguments must have identical types.
3528
3529Semantics:
3530""""""""""
3531
3532The value produced is the signed integer quotient of the two operands
3533rounded towards zero.
3534
3535Note that signed integer division and unsigned integer division are
3536distinct operations; for unsigned integer division, use '``udiv``'.
3537
3538Division by zero leads to undefined behavior. Overflow also leads to
3539undefined behavior; this is a rare case, but can occur, for example, by
3540doing a 32-bit division of -2147483648 by -1.
3541
3542If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3543a :ref:`poison value <poisonvalues>` if the result would be rounded.
3544
3545Example:
3546""""""""
3547
3548.. code-block:: llvm
3549
3550 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3551
3552.. _i_fdiv:
3553
3554'``fdiv``' Instruction
3555^^^^^^^^^^^^^^^^^^^^^^
3556
3557Syntax:
3558"""""""
3559
3560::
3561
3562 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3563
3564Overview:
3565"""""""""
3566
3567The '``fdiv``' instruction returns the quotient of its two operands.
3568
3569Arguments:
3570""""""""""
3571
3572The two arguments to the '``fdiv``' instruction must be :ref:`floating
3573point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3574Both arguments must have identical types.
3575
3576Semantics:
3577""""""""""
3578
3579The value produced is the floating point quotient of the two operands.
3580This instruction can also take any number of :ref:`fast-math
3581flags <fastmath>`, which are optimization hints to enable otherwise
3582unsafe floating point optimizations:
3583
3584Example:
3585""""""""
3586
3587.. code-block:: llvm
3588
3589 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3590
3591'``urem``' Instruction
3592^^^^^^^^^^^^^^^^^^^^^^
3593
3594Syntax:
3595"""""""
3596
3597::
3598
3599 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3600
3601Overview:
3602"""""""""
3603
3604The '``urem``' instruction returns the remainder from the unsigned
3605division of its two arguments.
3606
3607Arguments:
3608""""""""""
3609
3610The two arguments to the '``urem``' instruction must be
3611:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3612arguments must have identical types.
3613
3614Semantics:
3615""""""""""
3616
3617This instruction returns the unsigned integer *remainder* of a division.
3618This instruction always performs an unsigned division to get the
3619remainder.
3620
3621Note that unsigned integer remainder and signed integer remainder are
3622distinct operations; for signed integer remainder, use '``srem``'.
3623
3624Taking the remainder of a division by zero leads to undefined behavior.
3625
3626Example:
3627""""""""
3628
3629.. code-block:: llvm
3630
3631 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3632
3633'``srem``' Instruction
3634^^^^^^^^^^^^^^^^^^^^^^
3635
3636Syntax:
3637"""""""
3638
3639::
3640
3641 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3642
3643Overview:
3644"""""""""
3645
3646The '``srem``' instruction returns the remainder from the signed
3647division of its two operands. This instruction can also take
3648:ref:`vector <t_vector>` versions of the values in which case the elements
3649must be integers.
3650
3651Arguments:
3652""""""""""
3653
3654The two arguments to the '``srem``' instruction must be
3655:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3656arguments must have identical types.
3657
3658Semantics:
3659""""""""""
3660
3661This instruction returns the *remainder* of a division (where the result
3662is either zero or has the same sign as the dividend, ``op1``), not the
3663*modulo* operator (where the result is either zero or has the same sign
3664as the divisor, ``op2``) of a value. For more information about the
3665difference, see `The Math
3666Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3667table of how this is implemented in various languages, please see
3668`Wikipedia: modulo
3669operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3670
3671Note that signed integer remainder and unsigned integer remainder are
3672distinct operations; for unsigned integer remainder, use '``urem``'.
3673
3674Taking the remainder of a division by zero leads to undefined behavior.
3675Overflow also leads to undefined behavior; this is a rare case, but can
3676occur, for example, by taking the remainder of a 32-bit division of
3677-2147483648 by -1. (The remainder doesn't actually overflow, but this
3678rule lets srem be implemented using instructions that return both the
3679result of the division and the remainder.)
3680
3681Example:
3682""""""""
3683
3684.. code-block:: llvm
3685
3686 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3687
3688.. _i_frem:
3689
3690'``frem``' Instruction
3691^^^^^^^^^^^^^^^^^^^^^^
3692
3693Syntax:
3694"""""""
3695
3696::
3697
3698 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3699
3700Overview:
3701"""""""""
3702
3703The '``frem``' instruction returns the remainder from the division of
3704its two operands.
3705
3706Arguments:
3707""""""""""
3708
3709The two arguments to the '``frem``' instruction must be :ref:`floating
3710point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3711Both arguments must have identical types.
3712
3713Semantics:
3714""""""""""
3715
3716This instruction returns the *remainder* of a division. The remainder
3717has the same sign as the dividend. This instruction can also take any
3718number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3719to enable otherwise unsafe floating point optimizations:
3720
3721Example:
3722""""""""
3723
3724.. code-block:: llvm
3725
3726 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3727
3728.. _bitwiseops:
3729
3730Bitwise Binary Operations
3731-------------------------
3732
3733Bitwise binary operators are used to do various forms of bit-twiddling
3734in a program. They are generally very efficient instructions and can
3735commonly be strength reduced from other instructions. They require two
3736operands of the same type, execute an operation on them, and produce a
3737single value. The resulting value is the same type as its operands.
3738
3739'``shl``' Instruction
3740^^^^^^^^^^^^^^^^^^^^^
3741
3742Syntax:
3743"""""""
3744
3745::
3746
3747 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3748 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3749 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3750 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3751
3752Overview:
3753"""""""""
3754
3755The '``shl``' instruction returns the first operand shifted to the left
3756a specified number of bits.
3757
3758Arguments:
3759""""""""""
3760
3761Both arguments to the '``shl``' instruction must be the same
3762:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3763'``op2``' is treated as an unsigned value.
3764
3765Semantics:
3766""""""""""
3767
3768The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3769where ``n`` is the width of the result. If ``op2`` is (statically or
3770dynamically) negative or equal to or larger than the number of bits in
3771``op1``, the result is undefined. If the arguments are vectors, each
3772vector element of ``op1`` is shifted by the corresponding shift amount
3773in ``op2``.
3774
3775If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3776value <poisonvalues>` if it shifts out any non-zero bits. If the
3777``nsw`` keyword is present, then the shift produces a :ref:`poison
3778value <poisonvalues>` if it shifts out any bits that disagree with the
3779resultant sign bit. As such, NUW/NSW have the same semantics as they
3780would if the shift were expressed as a mul instruction with the same
3781nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3782
3783Example:
3784""""""""
3785
3786.. code-block:: llvm
3787
3788 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3789 <result> = shl i32 4, 2 ; yields {i32}: 16
3790 <result> = shl i32 1, 10 ; yields {i32}: 1024
3791 <result> = shl i32 1, 32 ; undefined
3792 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3793
3794'``lshr``' Instruction
3795^^^^^^^^^^^^^^^^^^^^^^
3796
3797Syntax:
3798"""""""
3799
3800::
3801
3802 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3803 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3804
3805Overview:
3806"""""""""
3807
3808The '``lshr``' instruction (logical shift right) returns the first
3809operand shifted to the right a specified number of bits with zero fill.
3810
3811Arguments:
3812""""""""""
3813
3814Both arguments to the '``lshr``' instruction must be the same
3815:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3816'``op2``' is treated as an unsigned value.
3817
3818Semantics:
3819""""""""""
3820
3821This instruction always performs a logical shift right operation. The
3822most significant bits of the result will be filled with zero bits after
3823the shift. If ``op2`` is (statically or dynamically) equal to or larger
3824than the number of bits in ``op1``, the result is undefined. If the
3825arguments are vectors, each vector element of ``op1`` is shifted by the
3826corresponding shift amount in ``op2``.
3827
3828If the ``exact`` keyword is present, the result value of the ``lshr`` is
3829a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3830non-zero.
3831
3832Example:
3833""""""""
3834
3835.. code-block:: llvm
3836
3837 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3838 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3839 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3840 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3841 <result> = lshr i32 1, 32 ; undefined
3842 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3843
3844'``ashr``' Instruction
3845^^^^^^^^^^^^^^^^^^^^^^
3846
3847Syntax:
3848"""""""
3849
3850::
3851
3852 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3853 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3854
3855Overview:
3856"""""""""
3857
3858The '``ashr``' instruction (arithmetic shift right) returns the first
3859operand shifted to the right a specified number of bits with sign
3860extension.
3861
3862Arguments:
3863""""""""""
3864
3865Both arguments to the '``ashr``' instruction must be the same
3866:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3867'``op2``' is treated as an unsigned value.
3868
3869Semantics:
3870""""""""""
3871
3872This instruction always performs an arithmetic shift right operation,
3873The most significant bits of the result will be filled with the sign bit
3874of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3875than the number of bits in ``op1``, the result is undefined. If the
3876arguments are vectors, each vector element of ``op1`` is shifted by the
3877corresponding shift amount in ``op2``.
3878
3879If the ``exact`` keyword is present, the result value of the ``ashr`` is
3880a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3881non-zero.
3882
3883Example:
3884""""""""
3885
3886.. code-block:: llvm
3887
3888 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3889 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3890 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3891 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3892 <result> = ashr i32 1, 32 ; undefined
3893 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3894
3895'``and``' Instruction
3896^^^^^^^^^^^^^^^^^^^^^
3897
3898Syntax:
3899"""""""
3900
3901::
3902
3903 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3904
3905Overview:
3906"""""""""
3907
3908The '``and``' instruction returns the bitwise logical and of its two
3909operands.
3910
3911Arguments:
3912""""""""""
3913
3914The two arguments to the '``and``' instruction must be
3915:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3916arguments must have identical types.
3917
3918Semantics:
3919""""""""""
3920
3921The truth table used for the '``and``' instruction is:
3922
3923+-----+-----+-----+
3924| In0 | In1 | Out |
3925+-----+-----+-----+
3926| 0 | 0 | 0 |
3927+-----+-----+-----+
3928| 0 | 1 | 0 |
3929+-----+-----+-----+
3930| 1 | 0 | 0 |
3931+-----+-----+-----+
3932| 1 | 1 | 1 |
3933+-----+-----+-----+
3934
3935Example:
3936""""""""
3937
3938.. code-block:: llvm
3939
3940 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3941 <result> = and i32 15, 40 ; yields {i32}:result = 8
3942 <result> = and i32 4, 8 ; yields {i32}:result = 0
3943
3944'``or``' Instruction
3945^^^^^^^^^^^^^^^^^^^^
3946
3947Syntax:
3948"""""""
3949
3950::
3951
3952 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3953
3954Overview:
3955"""""""""
3956
3957The '``or``' instruction returns the bitwise logical inclusive or of its
3958two operands.
3959
3960Arguments:
3961""""""""""
3962
3963The two arguments to the '``or``' instruction must be
3964:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3965arguments must have identical types.
3966
3967Semantics:
3968""""""""""
3969
3970The truth table used for the '``or``' instruction is:
3971
3972+-----+-----+-----+
3973| In0 | In1 | Out |
3974+-----+-----+-----+
3975| 0 | 0 | 0 |
3976+-----+-----+-----+
3977| 0 | 1 | 1 |
3978+-----+-----+-----+
3979| 1 | 0 | 1 |
3980+-----+-----+-----+
3981| 1 | 1 | 1 |
3982+-----+-----+-----+
3983
3984Example:
3985""""""""
3986
3987::
3988
3989 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3990 <result> = or i32 15, 40 ; yields {i32}:result = 47
3991 <result> = or i32 4, 8 ; yields {i32}:result = 12
3992
3993'``xor``' Instruction
3994^^^^^^^^^^^^^^^^^^^^^
3995
3996Syntax:
3997"""""""
3998
3999::
4000
4001 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4002
4003Overview:
4004"""""""""
4005
4006The '``xor``' instruction returns the bitwise logical exclusive or of
4007its two operands. The ``xor`` is used to implement the "one's
4008complement" operation, which is the "~" operator in C.
4009
4010Arguments:
4011""""""""""
4012
4013The two arguments to the '``xor``' instruction must be
4014:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4015arguments must have identical types.
4016
4017Semantics:
4018""""""""""
4019
4020The truth table used for the '``xor``' instruction is:
4021
4022+-----+-----+-----+
4023| In0 | In1 | Out |
4024+-----+-----+-----+
4025| 0 | 0 | 0 |
4026+-----+-----+-----+
4027| 0 | 1 | 1 |
4028+-----+-----+-----+
4029| 1 | 0 | 1 |
4030+-----+-----+-----+
4031| 1 | 1 | 0 |
4032+-----+-----+-----+
4033
4034Example:
4035""""""""
4036
4037.. code-block:: llvm
4038
4039 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4040 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4041 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4042 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4043
4044Vector Operations
4045-----------------
4046
4047LLVM supports several instructions to represent vector operations in a
4048target-independent manner. These instructions cover the element-access
4049and vector-specific operations needed to process vectors effectively.
4050While LLVM does directly support these vector operations, many
4051sophisticated algorithms will want to use target-specific intrinsics to
4052take full advantage of a specific target.
4053
4054.. _i_extractelement:
4055
4056'``extractelement``' Instruction
4057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4058
4059Syntax:
4060"""""""
4061
4062::
4063
4064 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4065
4066Overview:
4067"""""""""
4068
4069The '``extractelement``' instruction extracts a single scalar element
4070from a vector at a specified index.
4071
4072Arguments:
4073""""""""""
4074
4075The first operand of an '``extractelement``' instruction is a value of
4076:ref:`vector <t_vector>` type. The second operand is an index indicating
4077the position from which to extract the element. The index may be a
4078variable.
4079
4080Semantics:
4081""""""""""
4082
4083The result is a scalar of the same type as the element type of ``val``.
4084Its value is the value at position ``idx`` of ``val``. If ``idx``
4085exceeds the length of ``val``, the results are undefined.
4086
4087Example:
4088""""""""
4089
4090.. code-block:: llvm
4091
4092 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4093
4094.. _i_insertelement:
4095
4096'``insertelement``' Instruction
4097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4098
4099Syntax:
4100"""""""
4101
4102::
4103
4104 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4105
4106Overview:
4107"""""""""
4108
4109The '``insertelement``' instruction inserts a scalar element into a
4110vector at a specified index.
4111
4112Arguments:
4113""""""""""
4114
4115The first operand of an '``insertelement``' instruction is a value of
4116:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4117type must equal the element type of the first operand. The third operand
4118is an index indicating the position at which to insert the value. The
4119index may be a variable.
4120
4121Semantics:
4122""""""""""
4123
4124The result is a vector of the same type as ``val``. Its element values
4125are those of ``val`` except at position ``idx``, where it gets the value
4126``elt``. If ``idx`` exceeds the length of ``val``, the results are
4127undefined.
4128
4129Example:
4130""""""""
4131
4132.. code-block:: llvm
4133
4134 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4135
4136.. _i_shufflevector:
4137
4138'``shufflevector``' Instruction
4139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4140
4141Syntax:
4142"""""""
4143
4144::
4145
4146 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4147
4148Overview:
4149"""""""""
4150
4151The '``shufflevector``' instruction constructs a permutation of elements
4152from two input vectors, returning a vector with the same element type as
4153the input and length that is the same as the shuffle mask.
4154
4155Arguments:
4156""""""""""
4157
4158The first two operands of a '``shufflevector``' instruction are vectors
4159with the same type. The third argument is a shuffle mask whose element
4160type is always 'i32'. The result of the instruction is a vector whose
4161length is the same as the shuffle mask and whose element type is the
4162same as the element type of the first two operands.
4163
4164The shuffle mask operand is required to be a constant vector with either
4165constant integer or undef values.
4166
4167Semantics:
4168""""""""""
4169
4170The elements of the two input vectors are numbered from left to right
4171across both of the vectors. The shuffle mask operand specifies, for each
4172element of the result vector, which element of the two input vectors the
4173result element gets. The element selector may be undef (meaning "don't
4174care") and the second operand may be undef if performing a shuffle from
4175only one vector.
4176
4177Example:
4178""""""""
4179
4180.. code-block:: llvm
4181
4182 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4183 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4184 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4185 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4186 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4187 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4188 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4189 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4190
4191Aggregate Operations
4192--------------------
4193
4194LLVM supports several instructions for working with
4195:ref:`aggregate <t_aggregate>` values.
4196
4197.. _i_extractvalue:
4198
4199'``extractvalue``' Instruction
4200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4201
4202Syntax:
4203"""""""
4204
4205::
4206
4207 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4208
4209Overview:
4210"""""""""
4211
4212The '``extractvalue``' instruction extracts the value of a member field
4213from an :ref:`aggregate <t_aggregate>` value.
4214
4215Arguments:
4216""""""""""
4217
4218The first operand of an '``extractvalue``' instruction is a value of
4219:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4220constant indices to specify which value to extract in a similar manner
4221as indices in a '``getelementptr``' instruction.
4222
4223The major differences to ``getelementptr`` indexing are:
4224
4225- Since the value being indexed is not a pointer, the first index is
4226 omitted and assumed to be zero.
4227- At least one index must be specified.
4228- Not only struct indices but also array indices must be in bounds.
4229
4230Semantics:
4231""""""""""
4232
4233The result is the value at the position in the aggregate specified by
4234the index operands.
4235
4236Example:
4237""""""""
4238
4239.. code-block:: llvm
4240
4241 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4242
4243.. _i_insertvalue:
4244
4245'``insertvalue``' Instruction
4246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4247
4248Syntax:
4249"""""""
4250
4251::
4252
4253 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4254
4255Overview:
4256"""""""""
4257
4258The '``insertvalue``' instruction inserts a value into a member field in
4259an :ref:`aggregate <t_aggregate>` value.
4260
4261Arguments:
4262""""""""""
4263
4264The first operand of an '``insertvalue``' instruction is a value of
4265:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4266a first-class value to insert. The following operands are constant
4267indices indicating the position at which to insert the value in a
4268similar manner as indices in a '``extractvalue``' instruction. The value
4269to insert must have the same type as the value identified by the
4270indices.
4271
4272Semantics:
4273""""""""""
4274
4275The result is an aggregate of the same type as ``val``. Its value is
4276that of ``val`` except that the value at the position specified by the
4277indices is that of ``elt``.
4278
4279Example:
4280""""""""
4281
4282.. code-block:: llvm
4283
4284 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4285 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4286 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4287
4288.. _memoryops:
4289
4290Memory Access and Addressing Operations
4291---------------------------------------
4292
4293A key design point of an SSA-based representation is how it represents
4294memory. In LLVM, no memory locations are in SSA form, which makes things
4295very simple. This section describes how to read, write, and allocate
4296memory in LLVM.
4297
4298.. _i_alloca:
4299
4300'``alloca``' Instruction
4301^^^^^^^^^^^^^^^^^^^^^^^^
4302
4303Syntax:
4304"""""""
4305
4306::
4307
4308 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4309
4310Overview:
4311"""""""""
4312
4313The '``alloca``' instruction allocates memory on the stack frame of the
4314currently executing function, to be automatically released when this
4315function returns to its caller. The object is always allocated in the
4316generic address space (address space zero).
4317
4318Arguments:
4319""""""""""
4320
4321The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4322bytes of memory on the runtime stack, returning a pointer of the
4323appropriate type to the program. If "NumElements" is specified, it is
4324the number of elements allocated, otherwise "NumElements" is defaulted
4325to be one. If a constant alignment is specified, the value result of the
4326allocation is guaranteed to be aligned to at least that boundary. If not
4327specified, or if zero, the target can choose to align the allocation on
4328any convenient boundary compatible with the type.
4329
4330'``type``' may be any sized type.
4331
4332Semantics:
4333""""""""""
4334
4335Memory is allocated; a pointer is returned. The operation is undefined
4336if there is insufficient stack space for the allocation. '``alloca``'d
4337memory is automatically released when the function returns. The
4338'``alloca``' instruction is commonly used to represent automatic
4339variables that must have an address available. When the function returns
4340(either with the ``ret`` or ``resume`` instructions), the memory is
4341reclaimed. Allocating zero bytes is legal, but the result is undefined.
4342The order in which memory is allocated (ie., which way the stack grows)
4343is not specified.
4344
4345Example:
4346""""""""
4347
4348.. code-block:: llvm
4349
4350 %ptr = alloca i32 ; yields {i32*}:ptr
4351 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4352 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4353 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4354
4355.. _i_load:
4356
4357'``load``' Instruction
4358^^^^^^^^^^^^^^^^^^^^^^
4359
4360Syntax:
4361"""""""
4362
4363::
4364
4365 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4366 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4367 !<index> = !{ i32 1 }
4368
4369Overview:
4370"""""""""
4371
4372The '``load``' instruction is used to read from memory.
4373
4374Arguments:
4375""""""""""
4376
4377The argument to the '``load``' instruction specifies the memory address
4378from which to load. The pointer must point to a :ref:`first
4379class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4380then the optimizer is not allowed to modify the number or order of
4381execution of this ``load`` with other :ref:`volatile
4382operations <volatile>`.
4383
4384If the ``load`` is marked as ``atomic``, it takes an extra
4385:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4386``release`` and ``acq_rel`` orderings are not valid on ``load``
4387instructions. Atomic loads produce :ref:`defined <memmodel>` results
4388when they may see multiple atomic stores. The type of the pointee must
4389be an integer type whose bit width is a power of two greater than or
4390equal to eight and less than or equal to a target-specific size limit.
4391``align`` must be explicitly specified on atomic loads, and the load has
4392undefined behavior if the alignment is not set to a value which is at
4393least the size in bytes of the pointee. ``!nontemporal`` does not have
4394any defined semantics for atomic loads.
4395
4396The optional constant ``align`` argument specifies the alignment of the
4397operation (that is, the alignment of the memory address). A value of 0
4398or an omitted ``align`` argument means that the operation has the abi
4399alignment for the target. It is the responsibility of the code emitter
4400to ensure that the alignment information is correct. Overestimating the
4401alignment results in undefined behavior. Underestimating the alignment
4402may produce less efficient code. An alignment of 1 is always safe.
4403
4404The optional ``!nontemporal`` metadata must reference a single
4405metatadata name <index> corresponding to a metadata node with one
4406``i32`` entry of value 1. The existence of the ``!nontemporal``
4407metatadata on the instruction tells the optimizer and code generator
4408that this load is not expected to be reused in the cache. The code
4409generator may select special instructions to save cache bandwidth, such
4410as the ``MOVNT`` instruction on x86.
4411
4412The optional ``!invariant.load`` metadata must reference a single
4413metatadata name <index> corresponding to a metadata node with no
4414entries. The existence of the ``!invariant.load`` metatadata on the
4415instruction tells the optimizer and code generator that this load
4416address points to memory which does not change value during program
4417execution. The optimizer may then move this load around, for example, by
4418hoisting it out of loops using loop invariant code motion.
4419
4420Semantics:
4421""""""""""
4422
4423The location of memory pointed to is loaded. If the value being loaded
4424is of scalar type then the number of bytes read does not exceed the
4425minimum number of bytes needed to hold all bits of the type. For
4426example, loading an ``i24`` reads at most three bytes. When loading a
4427value of a type like ``i20`` with a size that is not an integral number
4428of bytes, the result is undefined if the value was not originally
4429written using a store of the same type.
4430
4431Examples:
4432"""""""""
4433
4434.. code-block:: llvm
4435
4436 %ptr = alloca i32 ; yields {i32*}:ptr
4437 store i32 3, i32* %ptr ; yields {void}
4438 %val = load i32* %ptr ; yields {i32}:val = i32 3
4439
4440.. _i_store:
4441
4442'``store``' Instruction
4443^^^^^^^^^^^^^^^^^^^^^^^
4444
4445Syntax:
4446"""""""
4447
4448::
4449
4450 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4451 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4452
4453Overview:
4454"""""""""
4455
4456The '``store``' instruction is used to write to memory.
4457
4458Arguments:
4459""""""""""
4460
4461There are two arguments to the '``store``' instruction: a value to store
4462and an address at which to store it. The type of the '``<pointer>``'
4463operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4464the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4465then the optimizer is not allowed to modify the number or order of
4466execution of this ``store`` with other :ref:`volatile
4467operations <volatile>`.
4468
4469If the ``store`` is marked as ``atomic``, it takes an extra
4470:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4471``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4472instructions. Atomic loads produce :ref:`defined <memmodel>` results
4473when they may see multiple atomic stores. The type of the pointee must
4474be an integer type whose bit width is a power of two greater than or
4475equal to eight and less than or equal to a target-specific size limit.
4476``align`` must be explicitly specified on atomic stores, and the store
4477has undefined behavior if the alignment is not set to a value which is
4478at least the size in bytes of the pointee. ``!nontemporal`` does not
4479have any defined semantics for atomic stores.
4480
4481The optional constant "align" argument specifies the alignment of the
4482operation (that is, the alignment of the memory address). A value of 0
4483or an omitted "align" argument means that the operation has the abi
4484alignment for the target. It is the responsibility of the code emitter
4485to ensure that the alignment information is correct. Overestimating the
4486alignment results in an undefined behavior. Underestimating the
4487alignment may produce less efficient code. An alignment of 1 is always
4488safe.
4489
4490The optional !nontemporal metadata must reference a single metatadata
4491name <index> corresponding to a metadata node with one i32 entry of
4492value 1. The existence of the !nontemporal metatadata on the instruction
4493tells the optimizer and code generator that this load is not expected to
4494be reused in the cache. The code generator may select special
4495instructions to save cache bandwidth, such as the MOVNT instruction on
4496x86.
4497
4498Semantics:
4499""""""""""
4500
4501The contents of memory are updated to contain '``<value>``' at the
4502location specified by the '``<pointer>``' operand. If '``<value>``' is
4503of scalar type then the number of bytes written does not exceed the
4504minimum number of bytes needed to hold all bits of the type. For
4505example, storing an ``i24`` writes at most three bytes. When writing a
4506value of a type like ``i20`` with a size that is not an integral number
4507of bytes, it is unspecified what happens to the extra bits that do not
4508belong to the type, but they will typically be overwritten.
4509
4510Example:
4511""""""""
4512
4513.. code-block:: llvm
4514
4515 %ptr = alloca i32 ; yields {i32*}:ptr
4516 store i32 3, i32* %ptr ; yields {void}
4517 %val = load i32* %ptr ; yields {i32}:val = i32 3
4518
4519.. _i_fence:
4520
4521'``fence``' Instruction
4522^^^^^^^^^^^^^^^^^^^^^^^
4523
4524Syntax:
4525"""""""
4526
4527::
4528
4529 fence [singlethread] <ordering> ; yields {void}
4530
4531Overview:
4532"""""""""
4533
4534The '``fence``' instruction is used to introduce happens-before edges
4535between operations.
4536
4537Arguments:
4538""""""""""
4539
4540'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4541defines what *synchronizes-with* edges they add. They can only be given
4542``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4543
4544Semantics:
4545""""""""""
4546
4547A fence A which has (at least) ``release`` ordering semantics
4548*synchronizes with* a fence B with (at least) ``acquire`` ordering
4549semantics if and only if there exist atomic operations X and Y, both
4550operating on some atomic object M, such that A is sequenced before X, X
4551modifies M (either directly or through some side effect of a sequence
4552headed by X), Y is sequenced before B, and Y observes M. This provides a
4553*happens-before* dependency between A and B. Rather than an explicit
4554``fence``, one (but not both) of the atomic operations X or Y might
4555provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4556still *synchronize-with* the explicit ``fence`` and establish the
4557*happens-before* edge.
4558
4559A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4560``acquire`` and ``release`` semantics specified above, participates in
4561the global program order of other ``seq_cst`` operations and/or fences.
4562
4563The optional ":ref:`singlethread <singlethread>`" argument specifies
4564that the fence only synchronizes with other fences in the same thread.
4565(This is useful for interacting with signal handlers.)
4566
4567Example:
4568""""""""
4569
4570.. code-block:: llvm
4571
4572 fence acquire ; yields {void}
4573 fence singlethread seq_cst ; yields {void}
4574
4575.. _i_cmpxchg:
4576
4577'``cmpxchg``' Instruction
4578^^^^^^^^^^^^^^^^^^^^^^^^^
4579
4580Syntax:
4581"""""""
4582
4583::
4584
4585 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4586
4587Overview:
4588"""""""""
4589
4590The '``cmpxchg``' instruction is used to atomically modify memory. It
4591loads a value in memory and compares it to a given value. If they are
4592equal, it stores a new value into the memory.
4593
4594Arguments:
4595""""""""""
4596
4597There are three arguments to the '``cmpxchg``' instruction: an address
4598to operate on, a value to compare to the value currently be at that
4599address, and a new value to place at that address if the compared values
4600are equal. The type of '<cmp>' must be an integer type whose bit width
4601is a power of two greater than or equal to eight and less than or equal
4602to a target-specific size limit. '<cmp>' and '<new>' must have the same
4603type, and the type of '<pointer>' must be a pointer to that type. If the
4604``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4605to modify the number or order of execution of this ``cmpxchg`` with
4606other :ref:`volatile operations <volatile>`.
4607
4608The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4609synchronizes with other atomic operations.
4610
4611The optional "``singlethread``" argument declares that the ``cmpxchg``
4612is only atomic with respect to code (usually signal handlers) running in
4613the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4614respect to all other code in the system.
4615
4616The pointer passed into cmpxchg must have alignment greater than or
4617equal to the size in memory of the operand.
4618
4619Semantics:
4620""""""""""
4621
4622The contents of memory at the location specified by the '``<pointer>``'
4623operand is read and compared to '``<cmp>``'; if the read value is the
4624equal, '``<new>``' is written. The original value at the location is
4625returned.
4626
4627A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4628of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4629atomic load with an ordering parameter determined by dropping any
4630``release`` part of the ``cmpxchg``'s ordering.
4631
4632Example:
4633""""""""
4634
4635.. code-block:: llvm
4636
4637 entry:
4638 %orig = atomic load i32* %ptr unordered ; yields {i32}
4639 br label %loop
4640
4641 loop:
4642 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4643 %squared = mul i32 %cmp, %cmp
4644 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4645 %success = icmp eq i32 %cmp, %old
4646 br i1 %success, label %done, label %loop
4647
4648 done:
4649 ...
4650
4651.. _i_atomicrmw:
4652
4653'``atomicrmw``' Instruction
4654^^^^^^^^^^^^^^^^^^^^^^^^^^^
4655
4656Syntax:
4657"""""""
4658
4659::
4660
4661 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4662
4663Overview:
4664"""""""""
4665
4666The '``atomicrmw``' instruction is used to atomically modify memory.
4667
4668Arguments:
4669""""""""""
4670
4671There are three arguments to the '``atomicrmw``' instruction: an
4672operation to apply, an address whose value to modify, an argument to the
4673operation. The operation must be one of the following keywords:
4674
4675- xchg
4676- add
4677- sub
4678- and
4679- nand
4680- or
4681- xor
4682- max
4683- min
4684- umax
4685- umin
4686
4687The type of '<value>' must be an integer type whose bit width is a power
4688of two greater than or equal to eight and less than or equal to a
4689target-specific size limit. The type of the '``<pointer>``' operand must
4690be a pointer to that type. If the ``atomicrmw`` is marked as
4691``volatile``, then the optimizer is not allowed to modify the number or
4692order of execution of this ``atomicrmw`` with other :ref:`volatile
4693operations <volatile>`.
4694
4695Semantics:
4696""""""""""
4697
4698The contents of memory at the location specified by the '``<pointer>``'
4699operand are atomically read, modified, and written back. The original
4700value at the location is returned. The modification is specified by the
4701operation argument:
4702
4703- xchg: ``*ptr = val``
4704- add: ``*ptr = *ptr + val``
4705- sub: ``*ptr = *ptr - val``
4706- and: ``*ptr = *ptr & val``
4707- nand: ``*ptr = ~(*ptr & val)``
4708- or: ``*ptr = *ptr | val``
4709- xor: ``*ptr = *ptr ^ val``
4710- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4711- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4712- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4713 comparison)
4714- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4715 comparison)
4716
4717Example:
4718""""""""
4719
4720.. code-block:: llvm
4721
4722 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4723
4724.. _i_getelementptr:
4725
4726'``getelementptr``' Instruction
4727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4728
4729Syntax:
4730"""""""
4731
4732::
4733
4734 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4735 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4736 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4737
4738Overview:
4739"""""""""
4740
4741The '``getelementptr``' instruction is used to get the address of a
4742subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4743address calculation only and does not access memory.
4744
4745Arguments:
4746""""""""""
4747
4748The first argument is always a pointer or a vector of pointers, and
4749forms the basis of the calculation. The remaining arguments are indices
4750that indicate which of the elements of the aggregate object are indexed.
4751The interpretation of each index is dependent on the type being indexed
4752into. The first index always indexes the pointer value given as the
4753first argument, the second index indexes a value of the type pointed to
4754(not necessarily the value directly pointed to, since the first index
4755can be non-zero), etc. The first type indexed into must be a pointer
4756value, subsequent types can be arrays, vectors, and structs. Note that
4757subsequent types being indexed into can never be pointers, since that
4758would require loading the pointer before continuing calculation.
4759
4760The type of each index argument depends on the type it is indexing into.
4761When indexing into a (optionally packed) structure, only ``i32`` integer
4762**constants** are allowed (when using a vector of indices they must all
4763be the **same** ``i32`` integer constant). When indexing into an array,
4764pointer or vector, integers of any width are allowed, and they are not
4765required to be constant. These integers are treated as signed values
4766where relevant.
4767
4768For example, let's consider a C code fragment and how it gets compiled
4769to LLVM:
4770
4771.. code-block:: c
4772
4773 struct RT {
4774 char A;
4775 int B[10][20];
4776 char C;
4777 };
4778 struct ST {
4779 int X;
4780 double Y;
4781 struct RT Z;
4782 };
4783
4784 int *foo(struct ST *s) {
4785 return &s[1].Z.B[5][13];
4786 }
4787
4788The LLVM code generated by Clang is:
4789
4790.. code-block:: llvm
4791
4792 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4793 %struct.ST = type { i32, double, %struct.RT }
4794
4795 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4796 entry:
4797 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4798 ret i32* %arrayidx
4799 }
4800
4801Semantics:
4802""""""""""
4803
4804In the example above, the first index is indexing into the
4805'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4806= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4807indexes into the third element of the structure, yielding a
4808'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4809structure. The third index indexes into the second element of the
4810structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4811dimensions of the array are subscripted into, yielding an '``i32``'
4812type. The '``getelementptr``' instruction returns a pointer to this
4813element, thus computing a value of '``i32*``' type.
4814
4815Note that it is perfectly legal to index partially through a structure,
4816returning a pointer to an inner element. Because of this, the LLVM code
4817for the given testcase is equivalent to:
4818
4819.. code-block:: llvm
4820
4821 define i32* @foo(%struct.ST* %s) {
4822 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4823 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4824 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4825 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4826 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4827 ret i32* %t5
4828 }
4829
4830If the ``inbounds`` keyword is present, the result value of the
4831``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4832pointer is not an *in bounds* address of an allocated object, or if any
4833of the addresses that would be formed by successive addition of the
4834offsets implied by the indices to the base address with infinitely
4835precise signed arithmetic are not an *in bounds* address of that
4836allocated object. The *in bounds* addresses for an allocated object are
4837all the addresses that point into the object, plus the address one byte
4838past the end. In cases where the base is a vector of pointers the
4839``inbounds`` keyword applies to each of the computations element-wise.
4840
4841If the ``inbounds`` keyword is not present, the offsets are added to the
4842base address with silently-wrapping two's complement arithmetic. If the
4843offsets have a different width from the pointer, they are sign-extended
4844or truncated to the width of the pointer. The result value of the
4845``getelementptr`` may be outside the object pointed to by the base
4846pointer. The result value may not necessarily be used to access memory
4847though, even if it happens to point into allocated storage. See the
4848:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4849information.
4850
4851The getelementptr instruction is often confusing. For some more insight
4852into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4853
4854Example:
4855""""""""
4856
4857.. code-block:: llvm
4858
4859 ; yields [12 x i8]*:aptr
4860 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4861 ; yields i8*:vptr
4862 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4863 ; yields i8*:eptr
4864 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4865 ; yields i32*:iptr
4866 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4867
4868In cases where the pointer argument is a vector of pointers, each index
4869must be a vector with the same number of elements. For example:
4870
4871.. code-block:: llvm
4872
4873 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4874
4875Conversion Operations
4876---------------------
4877
4878The instructions in this category are the conversion instructions
4879(casting) which all take a single operand and a type. They perform
4880various bit conversions on the operand.
4881
4882'``trunc .. to``' Instruction
4883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4884
4885Syntax:
4886"""""""
4887
4888::
4889
4890 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4891
4892Overview:
4893"""""""""
4894
4895The '``trunc``' instruction truncates its operand to the type ``ty2``.
4896
4897Arguments:
4898""""""""""
4899
4900The '``trunc``' instruction takes a value to trunc, and a type to trunc
4901it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4902of the same number of integers. The bit size of the ``value`` must be
4903larger than the bit size of the destination type, ``ty2``. Equal sized
4904types are not allowed.
4905
4906Semantics:
4907""""""""""
4908
4909The '``trunc``' instruction truncates the high order bits in ``value``
4910and converts the remaining bits to ``ty2``. Since the source size must
4911be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4912It will always truncate bits.
4913
4914Example:
4915""""""""
4916
4917.. code-block:: llvm
4918
4919 %X = trunc i32 257 to i8 ; yields i8:1
4920 %Y = trunc i32 123 to i1 ; yields i1:true
4921 %Z = trunc i32 122 to i1 ; yields i1:false
4922 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4923
4924'``zext .. to``' Instruction
4925^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4926
4927Syntax:
4928"""""""
4929
4930::
4931
4932 <result> = zext <ty> <value> to <ty2> ; yields ty2
4933
4934Overview:
4935"""""""""
4936
4937The '``zext``' instruction zero extends its operand to type ``ty2``.
4938
4939Arguments:
4940""""""""""
4941
4942The '``zext``' instruction takes a value to cast, and a type to cast it
4943to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4944the same number of integers. The bit size of the ``value`` must be
4945smaller than the bit size of the destination type, ``ty2``.
4946
4947Semantics:
4948""""""""""
4949
4950The ``zext`` fills the high order bits of the ``value`` with zero bits
4951until it reaches the size of the destination type, ``ty2``.
4952
4953When zero extending from i1, the result will always be either 0 or 1.
4954
4955Example:
4956""""""""
4957
4958.. code-block:: llvm
4959
4960 %X = zext i32 257 to i64 ; yields i64:257
4961 %Y = zext i1 true to i32 ; yields i32:1
4962 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4963
4964'``sext .. to``' Instruction
4965^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4966
4967Syntax:
4968"""""""
4969
4970::
4971
4972 <result> = sext <ty> <value> to <ty2> ; yields ty2
4973
4974Overview:
4975"""""""""
4976
4977The '``sext``' sign extends ``value`` to the type ``ty2``.
4978
4979Arguments:
4980""""""""""
4981
4982The '``sext``' instruction takes a value to cast, and a type to cast it
4983to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4984the same number of integers. The bit size of the ``value`` must be
4985smaller than the bit size of the destination type, ``ty2``.
4986
4987Semantics:
4988""""""""""
4989
4990The '``sext``' instruction performs a sign extension by copying the sign
4991bit (highest order bit) of the ``value`` until it reaches the bit size
4992of the type ``ty2``.
4993
4994When sign extending from i1, the extension always results in -1 or 0.
4995
4996Example:
4997""""""""
4998
4999.. code-block:: llvm
5000
5001 %X = sext i8 -1 to i16 ; yields i16 :65535
5002 %Y = sext i1 true to i32 ; yields i32:-1
5003 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5004
5005'``fptrunc .. to``' Instruction
5006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5007
5008Syntax:
5009"""""""
5010
5011::
5012
5013 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5014
5015Overview:
5016"""""""""
5017
5018The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5019
5020Arguments:
5021""""""""""
5022
5023The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5024value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5025The size of ``value`` must be larger than the size of ``ty2``. This
5026implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5027
5028Semantics:
5029""""""""""
5030
5031The '``fptrunc``' instruction truncates a ``value`` from a larger
5032:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5033point <t_floating>` type. If the value cannot fit within the
5034destination type, ``ty2``, then the results are undefined.
5035
5036Example:
5037""""""""
5038
5039.. code-block:: llvm
5040
5041 %X = fptrunc double 123.0 to float ; yields float:123.0
5042 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5043
5044'``fpext .. to``' Instruction
5045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5046
5047Syntax:
5048"""""""
5049
5050::
5051
5052 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5053
5054Overview:
5055"""""""""
5056
5057The '``fpext``' extends a floating point ``value`` to a larger floating
5058point value.
5059
5060Arguments:
5061""""""""""
5062
5063The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5064``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5065to. The source type must be smaller than the destination type.
5066
5067Semantics:
5068""""""""""
5069
5070The '``fpext``' instruction extends the ``value`` from a smaller
5071:ref:`floating point <t_floating>` type to a larger :ref:`floating
5072point <t_floating>` type. The ``fpext`` cannot be used to make a
5073*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5074*no-op cast* for a floating point cast.
5075
5076Example:
5077""""""""
5078
5079.. code-block:: llvm
5080
5081 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5082 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5083
5084'``fptoui .. to``' Instruction
5085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5086
5087Syntax:
5088"""""""
5089
5090::
5091
5092 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5093
5094Overview:
5095"""""""""
5096
5097The '``fptoui``' converts a floating point ``value`` to its unsigned
5098integer equivalent of type ``ty2``.
5099
5100Arguments:
5101""""""""""
5102
5103The '``fptoui``' instruction takes a value to cast, which must be a
5104scalar or vector :ref:`floating point <t_floating>` value, and a type to
5105cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5106``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5107type with the same number of elements as ``ty``
5108
5109Semantics:
5110""""""""""
5111
5112The '``fptoui``' instruction converts its :ref:`floating
5113point <t_floating>` operand into the nearest (rounding towards zero)
5114unsigned integer value. If the value cannot fit in ``ty2``, the results
5115are undefined.
5116
5117Example:
5118""""""""
5119
5120.. code-block:: llvm
5121
5122 %X = fptoui double 123.0 to i32 ; yields i32:123
5123 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5124 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5125
5126'``fptosi .. to``' Instruction
5127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5128
5129Syntax:
5130"""""""
5131
5132::
5133
5134 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5135
5136Overview:
5137"""""""""
5138
5139The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5140``value`` to type ``ty2``.
5141
5142Arguments:
5143""""""""""
5144
5145The '``fptosi``' instruction takes a value to cast, which must be a
5146scalar or vector :ref:`floating point <t_floating>` value, and a type to
5147cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5148``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5149type with the same number of elements as ``ty``
5150
5151Semantics:
5152""""""""""
5153
5154The '``fptosi``' instruction converts its :ref:`floating
5155point <t_floating>` operand into the nearest (rounding towards zero)
5156signed integer value. If the value cannot fit in ``ty2``, the results
5157are undefined.
5158
5159Example:
5160""""""""
5161
5162.. code-block:: llvm
5163
5164 %X = fptosi double -123.0 to i32 ; yields i32:-123
5165 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5166 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5167
5168'``uitofp .. to``' Instruction
5169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5170
5171Syntax:
5172"""""""
5173
5174::
5175
5176 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5177
5178Overview:
5179"""""""""
5180
5181The '``uitofp``' instruction regards ``value`` as an unsigned integer
5182and converts that value to the ``ty2`` type.
5183
5184Arguments:
5185""""""""""
5186
5187The '``uitofp``' instruction takes a value to cast, which must be a
5188scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5189``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5190``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5191type with the same number of elements as ``ty``
5192
5193Semantics:
5194""""""""""
5195
5196The '``uitofp``' instruction interprets its operand as an unsigned
5197integer quantity and converts it to the corresponding floating point
5198value. If the value cannot fit in the floating point value, the results
5199are undefined.
5200
5201Example:
5202""""""""
5203
5204.. code-block:: llvm
5205
5206 %X = uitofp i32 257 to float ; yields float:257.0
5207 %Y = uitofp i8 -1 to double ; yields double:255.0
5208
5209'``sitofp .. to``' Instruction
5210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5211
5212Syntax:
5213"""""""
5214
5215::
5216
5217 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5218
5219Overview:
5220"""""""""
5221
5222The '``sitofp``' instruction regards ``value`` as a signed integer and
5223converts that value to the ``ty2`` type.
5224
5225Arguments:
5226""""""""""
5227
5228The '``sitofp``' instruction takes a value to cast, which must be a
5229scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5230``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5231``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5232type with the same number of elements as ``ty``
5233
5234Semantics:
5235""""""""""
5236
5237The '``sitofp``' instruction interprets its operand as a signed integer
5238quantity and converts it to the corresponding floating point value. If
5239the value cannot fit in the floating point value, the results are
5240undefined.
5241
5242Example:
5243""""""""
5244
5245.. code-block:: llvm
5246
5247 %X = sitofp i32 257 to float ; yields float:257.0
5248 %Y = sitofp i8 -1 to double ; yields double:-1.0
5249
5250.. _i_ptrtoint:
5251
5252'``ptrtoint .. to``' Instruction
5253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5254
5255Syntax:
5256"""""""
5257
5258::
5259
5260 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5261
5262Overview:
5263"""""""""
5264
5265The '``ptrtoint``' instruction converts the pointer or a vector of
5266pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5267
5268Arguments:
5269""""""""""
5270
5271The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5272a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5273type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5274a vector of integers type.
5275
5276Semantics:
5277""""""""""
5278
5279The '``ptrtoint``' instruction converts ``value`` to integer type
5280``ty2`` by interpreting the pointer value as an integer and either
5281truncating or zero extending that value to the size of the integer type.
5282If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5283``value`` is larger than ``ty2`` then a truncation is done. If they are
5284the same size, then nothing is done (*no-op cast*) other than a type
5285change.
5286
5287Example:
5288""""""""
5289
5290.. code-block:: llvm
5291
5292 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5293 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5294 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5295
5296.. _i_inttoptr:
5297
5298'``inttoptr .. to``' Instruction
5299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5300
5301Syntax:
5302"""""""
5303
5304::
5305
5306 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5307
5308Overview:
5309"""""""""
5310
5311The '``inttoptr``' instruction converts an integer ``value`` to a
5312pointer type, ``ty2``.
5313
5314Arguments:
5315""""""""""
5316
5317The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5318cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5319type.
5320
5321Semantics:
5322""""""""""
5323
5324The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5325applying either a zero extension or a truncation depending on the size
5326of the integer ``value``. If ``value`` is larger than the size of a
5327pointer then a truncation is done. If ``value`` is smaller than the size
5328of a pointer then a zero extension is done. If they are the same size,
5329nothing is done (*no-op cast*).
5330
5331Example:
5332""""""""
5333
5334.. code-block:: llvm
5335
5336 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5337 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5338 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5339 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5340
5341.. _i_bitcast:
5342
5343'``bitcast .. to``' Instruction
5344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5345
5346Syntax:
5347"""""""
5348
5349::
5350
5351 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5352
5353Overview:
5354"""""""""
5355
5356The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5357changing any bits.
5358
5359Arguments:
5360""""""""""
5361
5362The '``bitcast``' instruction takes a value to cast, which must be a
5363non-aggregate first class value, and a type to cast it to, which must
5364also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5365sizes of ``value`` and the destination type, ``ty2``, must be identical.
5366If the source type is a pointer, the destination type must also be a
5367pointer. This instruction supports bitwise conversion of vectors to
5368integers and to vectors of other types (as long as they have the same
5369size).
5370
5371Semantics:
5372""""""""""
5373
5374The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5375always a *no-op cast* because no bits change with this conversion. The
5376conversion is done as if the ``value`` had been stored to memory and
5377read back as type ``ty2``. Pointer (or vector of pointers) types may
5378only be converted to other pointer (or vector of pointers) types with
5379this instruction. To convert pointers to other types, use the
5380:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5381first.
5382
5383Example:
5384""""""""
5385
5386.. code-block:: llvm
5387
5388 %X = bitcast i8 255 to i8 ; yields i8 :-1
5389 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5390 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5391 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5392
5393.. _otherops:
5394
5395Other Operations
5396----------------
5397
5398The instructions in this category are the "miscellaneous" instructions,
5399which defy better classification.
5400
5401.. _i_icmp:
5402
5403'``icmp``' Instruction
5404^^^^^^^^^^^^^^^^^^^^^^
5405
5406Syntax:
5407"""""""
5408
5409::
5410
5411 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5412
5413Overview:
5414"""""""""
5415
5416The '``icmp``' instruction returns a boolean value or a vector of
5417boolean values based on comparison of its two integer, integer vector,
5418pointer, or pointer vector operands.
5419
5420Arguments:
5421""""""""""
5422
5423The '``icmp``' instruction takes three operands. The first operand is
5424the condition code indicating the kind of comparison to perform. It is
5425not a value, just a keyword. The possible condition code are:
5426
5427#. ``eq``: equal
5428#. ``ne``: not equal
5429#. ``ugt``: unsigned greater than
5430#. ``uge``: unsigned greater or equal
5431#. ``ult``: unsigned less than
5432#. ``ule``: unsigned less or equal
5433#. ``sgt``: signed greater than
5434#. ``sge``: signed greater or equal
5435#. ``slt``: signed less than
5436#. ``sle``: signed less or equal
5437
5438The remaining two arguments must be :ref:`integer <t_integer>` or
5439:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5440must also be identical types.
5441
5442Semantics:
5443""""""""""
5444
5445The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5446code given as ``cond``. The comparison performed always yields either an
5447:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5448
5449#. ``eq``: yields ``true`` if the operands are equal, ``false``
5450 otherwise. No sign interpretation is necessary or performed.
5451#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5452 otherwise. No sign interpretation is necessary or performed.
5453#. ``ugt``: interprets the operands as unsigned values and yields
5454 ``true`` if ``op1`` is greater than ``op2``.
5455#. ``uge``: interprets the operands as unsigned values and yields
5456 ``true`` if ``op1`` is greater than or equal to ``op2``.
5457#. ``ult``: interprets the operands as unsigned values and yields
5458 ``true`` if ``op1`` is less than ``op2``.
5459#. ``ule``: interprets the operands as unsigned values and yields
5460 ``true`` if ``op1`` is less than or equal to ``op2``.
5461#. ``sgt``: interprets the operands as signed values and yields ``true``
5462 if ``op1`` is greater than ``op2``.
5463#. ``sge``: interprets the operands as signed values and yields ``true``
5464 if ``op1`` is greater than or equal to ``op2``.
5465#. ``slt``: interprets the operands as signed values and yields ``true``
5466 if ``op1`` is less than ``op2``.
5467#. ``sle``: interprets the operands as signed values and yields ``true``
5468 if ``op1`` is less than or equal to ``op2``.
5469
5470If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5471are compared as if they were integers.
5472
5473If the operands are integer vectors, then they are compared element by
5474element. The result is an ``i1`` vector with the same number of elements
5475as the values being compared. Otherwise, the result is an ``i1``.
5476
5477Example:
5478""""""""
5479
5480.. code-block:: llvm
5481
5482 <result> = icmp eq i32 4, 5 ; yields: result=false
5483 <result> = icmp ne float* %X, %X ; yields: result=false
5484 <result> = icmp ult i16 4, 5 ; yields: result=true
5485 <result> = icmp sgt i16 4, 5 ; yields: result=false
5486 <result> = icmp ule i16 -4, 5 ; yields: result=false
5487 <result> = icmp sge i16 4, 5 ; yields: result=false
5488
5489Note that the code generator does not yet support vector types with the
5490``icmp`` instruction.
5491
5492.. _i_fcmp:
5493
5494'``fcmp``' Instruction
5495^^^^^^^^^^^^^^^^^^^^^^
5496
5497Syntax:
5498"""""""
5499
5500::
5501
5502 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5503
5504Overview:
5505"""""""""
5506
5507The '``fcmp``' instruction returns a boolean value or vector of boolean
5508values based on comparison of its operands.
5509
5510If the operands are floating point scalars, then the result type is a
5511boolean (:ref:`i1 <t_integer>`).
5512
5513If the operands are floating point vectors, then the result type is a
5514vector of boolean with the same number of elements as the operands being
5515compared.
5516
5517Arguments:
5518""""""""""
5519
5520The '``fcmp``' instruction takes three operands. The first operand is
5521the condition code indicating the kind of comparison to perform. It is
5522not a value, just a keyword. The possible condition code are:
5523
5524#. ``false``: no comparison, always returns false
5525#. ``oeq``: ordered and equal
5526#. ``ogt``: ordered and greater than
5527#. ``oge``: ordered and greater than or equal
5528#. ``olt``: ordered and less than
5529#. ``ole``: ordered and less than or equal
5530#. ``one``: ordered and not equal
5531#. ``ord``: ordered (no nans)
5532#. ``ueq``: unordered or equal
5533#. ``ugt``: unordered or greater than
5534#. ``uge``: unordered or greater than or equal
5535#. ``ult``: unordered or less than
5536#. ``ule``: unordered or less than or equal
5537#. ``une``: unordered or not equal
5538#. ``uno``: unordered (either nans)
5539#. ``true``: no comparison, always returns true
5540
5541*Ordered* means that neither operand is a QNAN while *unordered* means
5542that either operand may be a QNAN.
5543
5544Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5545point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5546type. They must have identical types.
5547
5548Semantics:
5549""""""""""
5550
5551The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5552condition code given as ``cond``. If the operands are vectors, then the
5553vectors are compared element by element. Each comparison performed
5554always yields an :ref:`i1 <t_integer>` result, as follows:
5555
5556#. ``false``: always yields ``false``, regardless of operands.
5557#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5558 is equal to ``op2``.
5559#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5560 is greater than ``op2``.
5561#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5562 is greater than or equal to ``op2``.
5563#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5564 is less than ``op2``.
5565#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5566 is less than or equal to ``op2``.
5567#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5568 is not equal to ``op2``.
5569#. ``ord``: yields ``true`` if both operands are not a QNAN.
5570#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5571 equal to ``op2``.
5572#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5573 greater than ``op2``.
5574#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5575 greater than or equal to ``op2``.
5576#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5577 less than ``op2``.
5578#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5579 less than or equal to ``op2``.
5580#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5581 not equal to ``op2``.
5582#. ``uno``: yields ``true`` if either operand is a QNAN.
5583#. ``true``: always yields ``true``, regardless of operands.
5584
5585Example:
5586""""""""
5587
5588.. code-block:: llvm
5589
5590 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5591 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5592 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5593 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5594
5595Note that the code generator does not yet support vector types with the
5596``fcmp`` instruction.
5597
5598.. _i_phi:
5599
5600'``phi``' Instruction
5601^^^^^^^^^^^^^^^^^^^^^
5602
5603Syntax:
5604"""""""
5605
5606::
5607
5608 <result> = phi <ty> [ <val0>, <label0>], ...
5609
5610Overview:
5611"""""""""
5612
5613The '``phi``' instruction is used to implement the φ node in the SSA
5614graph representing the function.
5615
5616Arguments:
5617""""""""""
5618
5619The type of the incoming values is specified with the first type field.
5620After this, the '``phi``' instruction takes a list of pairs as
5621arguments, with one pair for each predecessor basic block of the current
5622block. Only values of :ref:`first class <t_firstclass>` type may be used as
5623the value arguments to the PHI node. Only labels may be used as the
5624label arguments.
5625
5626There must be no non-phi instructions between the start of a basic block
5627and the PHI instructions: i.e. PHI instructions must be first in a basic
5628block.
5629
5630For the purposes of the SSA form, the use of each incoming value is
5631deemed to occur on the edge from the corresponding predecessor block to
5632the current block (but after any definition of an '``invoke``'
5633instruction's return value on the same edge).
5634
5635Semantics:
5636""""""""""
5637
5638At runtime, the '``phi``' instruction logically takes on the value
5639specified by the pair corresponding to the predecessor basic block that
5640executed just prior to the current block.
5641
5642Example:
5643""""""""
5644
5645.. code-block:: llvm
5646
5647 Loop: ; Infinite loop that counts from 0 on up...
5648 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5649 %nextindvar = add i32 %indvar, 1
5650 br label %Loop
5651
5652.. _i_select:
5653
5654'``select``' Instruction
5655^^^^^^^^^^^^^^^^^^^^^^^^
5656
5657Syntax:
5658"""""""
5659
5660::
5661
5662 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5663
5664 selty is either i1 or {<N x i1>}
5665
5666Overview:
5667"""""""""
5668
5669The '``select``' instruction is used to choose one value based on a
5670condition, without branching.
5671
5672Arguments:
5673""""""""""
5674
5675The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5676values indicating the condition, and two values of the same :ref:`first
5677class <t_firstclass>` type. If the val1/val2 are vectors and the
5678condition is a scalar, then entire vectors are selected, not individual
5679elements.
5680
5681Semantics:
5682""""""""""
5683
5684If the condition is an i1 and it evaluates to 1, the instruction returns
5685the first value argument; otherwise, it returns the second value
5686argument.
5687
5688If the condition is a vector of i1, then the value arguments must be
5689vectors of the same size, and the selection is done element by element.
5690
5691Example:
5692""""""""
5693
5694.. code-block:: llvm
5695
5696 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5697
5698.. _i_call:
5699
5700'``call``' Instruction
5701^^^^^^^^^^^^^^^^^^^^^^
5702
5703Syntax:
5704"""""""
5705
5706::
5707
5708 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5709
5710Overview:
5711"""""""""
5712
5713The '``call``' instruction represents a simple function call.
5714
5715Arguments:
5716""""""""""
5717
5718This instruction requires several arguments:
5719
5720#. The optional "tail" marker indicates that the callee function does
5721 not access any allocas or varargs in the caller. Note that calls may
5722 be marked "tail" even if they do not occur before a
5723 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5724 function call is eligible for tail call optimization, but `might not
5725 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5726 The code generator may optimize calls marked "tail" with either 1)
5727 automatic `sibling call
5728 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5729 callee have matching signatures, or 2) forced tail call optimization
5730 when the following extra requirements are met:
5731
5732 - Caller and callee both have the calling convention ``fastcc``.
5733 - The call is in tail position (ret immediately follows call and ret
5734 uses value of call or is void).
5735 - Option ``-tailcallopt`` is enabled, or
5736 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5737 - `Platform specific constraints are
5738 met. <CodeGenerator.html#tailcallopt>`_
5739
5740#. The optional "cconv" marker indicates which :ref:`calling
5741 convention <callingconv>` the call should use. If none is
5742 specified, the call defaults to using C calling conventions. The
5743 calling convention of the call must match the calling convention of
5744 the target function, or else the behavior is undefined.
5745#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5746 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5747 are valid here.
5748#. '``ty``': the type of the call instruction itself which is also the
5749 type of the return value. Functions that return no value are marked
5750 ``void``.
5751#. '``fnty``': shall be the signature of the pointer to function value
5752 being invoked. The argument types must match the types implied by
5753 this signature. This type can be omitted if the function is not
5754 varargs and if the function type does not return a pointer to a
5755 function.
5756#. '``fnptrval``': An LLVM value containing a pointer to a function to
5757 be invoked. In most cases, this is a direct function invocation, but
5758 indirect ``call``'s are just as possible, calling an arbitrary pointer
5759 to function value.
5760#. '``function args``': argument list whose types match the function
5761 signature argument types and parameter attributes. All arguments must
5762 be of :ref:`first class <t_firstclass>` type. If the function signature
5763 indicates the function accepts a variable number of arguments, the
5764 extra arguments can be specified.
5765#. The optional :ref:`function attributes <fnattrs>` list. Only
5766 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5767 attributes are valid here.
5768
5769Semantics:
5770""""""""""
5771
5772The '``call``' instruction is used to cause control flow to transfer to
5773a specified function, with its incoming arguments bound to the specified
5774values. Upon a '``ret``' instruction in the called function, control
5775flow continues with the instruction after the function call, and the
5776return value of the function is bound to the result argument.
5777
5778Example:
5779""""""""
5780
5781.. code-block:: llvm
5782
5783 %retval = call i32 @test(i32 %argc)
5784 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5785 %X = tail call i32 @foo() ; yields i32
5786 %Y = tail call fastcc i32 @foo() ; yields i32
5787 call void %foo(i8 97 signext)
5788
5789 %struct.A = type { i32, i8 }
5790 %r = call %struct.A @foo() ; yields { 32, i8 }
5791 %gr = extractvalue %struct.A %r, 0 ; yields i32
5792 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5793 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5794 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5795
5796llvm treats calls to some functions with names and arguments that match
5797the standard C99 library as being the C99 library functions, and may
5798perform optimizations or generate code for them under that assumption.
5799This is something we'd like to change in the future to provide better
5800support for freestanding environments and non-C-based languages.
5801
5802.. _i_va_arg:
5803
5804'``va_arg``' Instruction
5805^^^^^^^^^^^^^^^^^^^^^^^^
5806
5807Syntax:
5808"""""""
5809
5810::
5811
5812 <resultval> = va_arg <va_list*> <arglist>, <argty>
5813
5814Overview:
5815"""""""""
5816
5817The '``va_arg``' instruction is used to access arguments passed through
5818the "variable argument" area of a function call. It is used to implement
5819the ``va_arg`` macro in C.
5820
5821Arguments:
5822""""""""""
5823
5824This instruction takes a ``va_list*`` value and the type of the
5825argument. It returns a value of the specified argument type and
5826increments the ``va_list`` to point to the next argument. The actual
5827type of ``va_list`` is target specific.
5828
5829Semantics:
5830""""""""""
5831
5832The '``va_arg``' instruction loads an argument of the specified type
5833from the specified ``va_list`` and causes the ``va_list`` to point to
5834the next argument. For more information, see the variable argument
5835handling :ref:`Intrinsic Functions <int_varargs>`.
5836
5837It is legal for this instruction to be called in a function which does
5838not take a variable number of arguments, for example, the ``vfprintf``
5839function.
5840
5841``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5842function <intrinsics>` because it takes a type as an argument.
5843
5844Example:
5845""""""""
5846
5847See the :ref:`variable argument processing <int_varargs>` section.
5848
5849Note that the code generator does not yet fully support va\_arg on many
5850targets. Also, it does not currently support va\_arg with aggregate
5851types on any target.
5852
5853.. _i_landingpad:
5854
5855'``landingpad``' Instruction
5856^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5857
5858Syntax:
5859"""""""
5860
5861::
5862
5863 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5864 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5865
5866 <clause> := catch <type> <value>
5867 <clause> := filter <array constant type> <array constant>
5868
5869Overview:
5870"""""""""
5871
5872The '``landingpad``' instruction is used by `LLVM's exception handling
5873system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005874is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00005875code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5876defines values supplied by the personality function (``pers_fn``) upon
5877re-entry to the function. The ``resultval`` has the type ``resultty``.
5878
5879Arguments:
5880""""""""""
5881
5882This instruction takes a ``pers_fn`` value. This is the personality
5883function associated with the unwinding mechanism. The optional
5884``cleanup`` flag indicates that the landing pad block is a cleanup.
5885
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005886A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00005887contains the global variable representing the "type" that may be caught
5888or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5889clause takes an array constant as its argument. Use
5890"``[0 x i8**] undef``" for a filter which cannot throw. The
5891'``landingpad``' instruction must contain *at least* one ``clause`` or
5892the ``cleanup`` flag.
5893
5894Semantics:
5895""""""""""
5896
5897The '``landingpad``' instruction defines the values which are set by the
5898personality function (``pers_fn``) upon re-entry to the function, and
5899therefore the "result type" of the ``landingpad`` instruction. As with
5900calling conventions, how the personality function results are
5901represented in LLVM IR is target specific.
5902
5903The clauses are applied in order from top to bottom. If two
5904``landingpad`` instructions are merged together through inlining, the
5905clauses from the calling function are appended to the list of clauses.
5906When the call stack is being unwound due to an exception being thrown,
5907the exception is compared against each ``clause`` in turn. If it doesn't
5908match any of the clauses, and the ``cleanup`` flag is not set, then
5909unwinding continues further up the call stack.
5910
5911The ``landingpad`` instruction has several restrictions:
5912
5913- A landing pad block is a basic block which is the unwind destination
5914 of an '``invoke``' instruction.
5915- A landing pad block must have a '``landingpad``' instruction as its
5916 first non-PHI instruction.
5917- There can be only one '``landingpad``' instruction within the landing
5918 pad block.
5919- A basic block that is not a landing pad block may not include a
5920 '``landingpad``' instruction.
5921- All '``landingpad``' instructions in a function must have the same
5922 personality function.
5923
5924Example:
5925""""""""
5926
5927.. code-block:: llvm
5928
5929 ;; A landing pad which can catch an integer.
5930 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5931 catch i8** @_ZTIi
5932 ;; A landing pad that is a cleanup.
5933 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5934 cleanup
5935 ;; A landing pad which can catch an integer and can only throw a double.
5936 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5937 catch i8** @_ZTIi
5938 filter [1 x i8**] [@_ZTId]
5939
5940.. _intrinsics:
5941
5942Intrinsic Functions
5943===================
5944
5945LLVM supports the notion of an "intrinsic function". These functions
5946have well known names and semantics and are required to follow certain
5947restrictions. Overall, these intrinsics represent an extension mechanism
5948for the LLVM language that does not require changing all of the
5949transformations in LLVM when adding to the language (or the bitcode
5950reader/writer, the parser, etc...).
5951
5952Intrinsic function names must all start with an "``llvm.``" prefix. This
5953prefix is reserved in LLVM for intrinsic names; thus, function names may
5954not begin with this prefix. Intrinsic functions must always be external
5955functions: you cannot define the body of intrinsic functions. Intrinsic
5956functions may only be used in call or invoke instructions: it is illegal
5957to take the address of an intrinsic function. Additionally, because
5958intrinsic functions are part of the LLVM language, it is required if any
5959are added that they be documented here.
5960
5961Some intrinsic functions can be overloaded, i.e., the intrinsic
5962represents a family of functions that perform the same operation but on
5963different data types. Because LLVM can represent over 8 million
5964different integer types, overloading is used commonly to allow an
5965intrinsic function to operate on any integer type. One or more of the
5966argument types or the result type can be overloaded to accept any
5967integer type. Argument types may also be defined as exactly matching a
5968previous argument's type or the result type. This allows an intrinsic
5969function which accepts multiple arguments, but needs all of them to be
5970of the same type, to only be overloaded with respect to a single
5971argument or the result.
5972
5973Overloaded intrinsics will have the names of its overloaded argument
5974types encoded into its function name, each preceded by a period. Only
5975those types which are overloaded result in a name suffix. Arguments
5976whose type is matched against another type do not. For example, the
5977``llvm.ctpop`` function can take an integer of any width and returns an
5978integer of exactly the same integer width. This leads to a family of
5979functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5980``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5981overloaded, and only one type suffix is required. Because the argument's
5982type is matched against the return type, it does not require its own
5983name suffix.
5984
5985To learn how to add an intrinsic function, please see the `Extending
5986LLVM Guide <ExtendingLLVM.html>`_.
5987
5988.. _int_varargs:
5989
5990Variable Argument Handling Intrinsics
5991-------------------------------------
5992
5993Variable argument support is defined in LLVM with the
5994:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5995functions. These functions are related to the similarly named macros
5996defined in the ``<stdarg.h>`` header file.
5997
5998All of these functions operate on arguments that use a target-specific
5999value type "``va_list``". The LLVM assembly language reference manual
6000does not define what this type is, so all transformations should be
6001prepared to handle these functions regardless of the type used.
6002
6003This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6004variable argument handling intrinsic functions are used.
6005
6006.. code-block:: llvm
6007
6008 define i32 @test(i32 %X, ...) {
6009 ; Initialize variable argument processing
6010 %ap = alloca i8*
6011 %ap2 = bitcast i8** %ap to i8*
6012 call void @llvm.va_start(i8* %ap2)
6013
6014 ; Read a single integer argument
6015 %tmp = va_arg i8** %ap, i32
6016
6017 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6018 %aq = alloca i8*
6019 %aq2 = bitcast i8** %aq to i8*
6020 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6021 call void @llvm.va_end(i8* %aq2)
6022
6023 ; Stop processing of arguments.
6024 call void @llvm.va_end(i8* %ap2)
6025 ret i32 %tmp
6026 }
6027
6028 declare void @llvm.va_start(i8*)
6029 declare void @llvm.va_copy(i8*, i8*)
6030 declare void @llvm.va_end(i8*)
6031
6032.. _int_va_start:
6033
6034'``llvm.va_start``' Intrinsic
6035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6036
6037Syntax:
6038"""""""
6039
6040::
6041
6042 declare void %llvm.va_start(i8* <arglist>)
6043
6044Overview:
6045"""""""""
6046
6047The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6048subsequent use by ``va_arg``.
6049
6050Arguments:
6051""""""""""
6052
6053The argument is a pointer to a ``va_list`` element to initialize.
6054
6055Semantics:
6056""""""""""
6057
6058The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6059available in C. In a target-dependent way, it initializes the
6060``va_list`` element to which the argument points, so that the next call
6061to ``va_arg`` will produce the first variable argument passed to the
6062function. Unlike the C ``va_start`` macro, this intrinsic does not need
6063to know the last argument of the function as the compiler can figure
6064that out.
6065
6066'``llvm.va_end``' Intrinsic
6067^^^^^^^^^^^^^^^^^^^^^^^^^^^
6068
6069Syntax:
6070"""""""
6071
6072::
6073
6074 declare void @llvm.va_end(i8* <arglist>)
6075
6076Overview:
6077"""""""""
6078
6079The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6080initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6081
6082Arguments:
6083""""""""""
6084
6085The argument is a pointer to a ``va_list`` to destroy.
6086
6087Semantics:
6088""""""""""
6089
6090The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6091available in C. In a target-dependent way, it destroys the ``va_list``
6092element to which the argument points. Calls to
6093:ref:`llvm.va_start <int_va_start>` and
6094:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6095``llvm.va_end``.
6096
6097.. _int_va_copy:
6098
6099'``llvm.va_copy``' Intrinsic
6100^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6101
6102Syntax:
6103"""""""
6104
6105::
6106
6107 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6108
6109Overview:
6110"""""""""
6111
6112The '``llvm.va_copy``' intrinsic copies the current argument position
6113from the source argument list to the destination argument list.
6114
6115Arguments:
6116""""""""""
6117
6118The first argument is a pointer to a ``va_list`` element to initialize.
6119The second argument is a pointer to a ``va_list`` element to copy from.
6120
6121Semantics:
6122""""""""""
6123
6124The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6125available in C. In a target-dependent way, it copies the source
6126``va_list`` element into the destination ``va_list`` element. This
6127intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6128arbitrarily complex and require, for example, memory allocation.
6129
6130Accurate Garbage Collection Intrinsics
6131--------------------------------------
6132
6133LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6134(GC) requires the implementation and generation of these intrinsics.
6135These intrinsics allow identification of :ref:`GC roots on the
6136stack <int_gcroot>`, as well as garbage collector implementations that
6137require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6138Front-ends for type-safe garbage collected languages should generate
6139these intrinsics to make use of the LLVM garbage collectors. For more
6140details, see `Accurate Garbage Collection with
6141LLVM <GarbageCollection.html>`_.
6142
6143The garbage collection intrinsics only operate on objects in the generic
6144address space (address space zero).
6145
6146.. _int_gcroot:
6147
6148'``llvm.gcroot``' Intrinsic
6149^^^^^^^^^^^^^^^^^^^^^^^^^^^
6150
6151Syntax:
6152"""""""
6153
6154::
6155
6156 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6157
6158Overview:
6159"""""""""
6160
6161The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6162the code generator, and allows some metadata to be associated with it.
6163
6164Arguments:
6165""""""""""
6166
6167The first argument specifies the address of a stack object that contains
6168the root pointer. The second pointer (which must be either a constant or
6169a global value address) contains the meta-data to be associated with the
6170root.
6171
6172Semantics:
6173""""""""""
6174
6175At runtime, a call to this intrinsic stores a null pointer into the
6176"ptrloc" location. At compile-time, the code generator generates
6177information to allow the runtime to find the pointer at GC safe points.
6178The '``llvm.gcroot``' intrinsic may only be used in a function which
6179:ref:`specifies a GC algorithm <gc>`.
6180
6181.. _int_gcread:
6182
6183'``llvm.gcread``' Intrinsic
6184^^^^^^^^^^^^^^^^^^^^^^^^^^^
6185
6186Syntax:
6187"""""""
6188
6189::
6190
6191 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6192
6193Overview:
6194"""""""""
6195
6196The '``llvm.gcread``' intrinsic identifies reads of references from heap
6197locations, allowing garbage collector implementations that require read
6198barriers.
6199
6200Arguments:
6201""""""""""
6202
6203The second argument is the address to read from, which should be an
6204address allocated from the garbage collector. The first object is a
6205pointer to the start of the referenced object, if needed by the language
6206runtime (otherwise null).
6207
6208Semantics:
6209""""""""""
6210
6211The '``llvm.gcread``' intrinsic has the same semantics as a load
6212instruction, but may be replaced with substantially more complex code by
6213the garbage collector runtime, as needed. The '``llvm.gcread``'
6214intrinsic may only be used in a function which :ref:`specifies a GC
6215algorithm <gc>`.
6216
6217.. _int_gcwrite:
6218
6219'``llvm.gcwrite``' Intrinsic
6220^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6221
6222Syntax:
6223"""""""
6224
6225::
6226
6227 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6228
6229Overview:
6230"""""""""
6231
6232The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6233locations, allowing garbage collector implementations that require write
6234barriers (such as generational or reference counting collectors).
6235
6236Arguments:
6237""""""""""
6238
6239The first argument is the reference to store, the second is the start of
6240the object to store it to, and the third is the address of the field of
6241Obj to store to. If the runtime does not require a pointer to the
6242object, Obj may be null.
6243
6244Semantics:
6245""""""""""
6246
6247The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6248instruction, but may be replaced with substantially more complex code by
6249the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6250intrinsic may only be used in a function which :ref:`specifies a GC
6251algorithm <gc>`.
6252
6253Code Generator Intrinsics
6254-------------------------
6255
6256These intrinsics are provided by LLVM to expose special features that
6257may only be implemented with code generator support.
6258
6259'``llvm.returnaddress``' Intrinsic
6260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6261
6262Syntax:
6263"""""""
6264
6265::
6266
6267 declare i8 *@llvm.returnaddress(i32 <level>)
6268
6269Overview:
6270"""""""""
6271
6272The '``llvm.returnaddress``' intrinsic attempts to compute a
6273target-specific value indicating the return address of the current
6274function or one of its callers.
6275
6276Arguments:
6277""""""""""
6278
6279The argument to this intrinsic indicates which function to return the
6280address for. Zero indicates the calling function, one indicates its
6281caller, etc. The argument is **required** to be a constant integer
6282value.
6283
6284Semantics:
6285""""""""""
6286
6287The '``llvm.returnaddress``' intrinsic either returns a pointer
6288indicating the return address of the specified call frame, or zero if it
6289cannot be identified. The value returned by this intrinsic is likely to
6290be incorrect or 0 for arguments other than zero, so it should only be
6291used for debugging purposes.
6292
6293Note that calling this intrinsic does not prevent function inlining or
6294other aggressive transformations, so the value returned may not be that
6295of the obvious source-language caller.
6296
6297'``llvm.frameaddress``' Intrinsic
6298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6299
6300Syntax:
6301"""""""
6302
6303::
6304
6305 declare i8* @llvm.frameaddress(i32 <level>)
6306
6307Overview:
6308"""""""""
6309
6310The '``llvm.frameaddress``' intrinsic attempts to return the
6311target-specific frame pointer value for the specified stack frame.
6312
6313Arguments:
6314""""""""""
6315
6316The argument to this intrinsic indicates which function to return the
6317frame pointer for. Zero indicates the calling function, one indicates
6318its caller, etc. The argument is **required** to be a constant integer
6319value.
6320
6321Semantics:
6322""""""""""
6323
6324The '``llvm.frameaddress``' intrinsic either returns a pointer
6325indicating the frame address of the specified call frame, or zero if it
6326cannot be identified. The value returned by this intrinsic is likely to
6327be incorrect or 0 for arguments other than zero, so it should only be
6328used for debugging purposes.
6329
6330Note that calling this intrinsic does not prevent function inlining or
6331other aggressive transformations, so the value returned may not be that
6332of the obvious source-language caller.
6333
6334.. _int_stacksave:
6335
6336'``llvm.stacksave``' Intrinsic
6337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6338
6339Syntax:
6340"""""""
6341
6342::
6343
6344 declare i8* @llvm.stacksave()
6345
6346Overview:
6347"""""""""
6348
6349The '``llvm.stacksave``' intrinsic is used to remember the current state
6350of the function stack, for use with
6351:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6352implementing language features like scoped automatic variable sized
6353arrays in C99.
6354
6355Semantics:
6356""""""""""
6357
6358This intrinsic returns a opaque pointer value that can be passed to
6359:ref:`llvm.stackrestore <int_stackrestore>`. When an
6360``llvm.stackrestore`` intrinsic is executed with a value saved from
6361``llvm.stacksave``, it effectively restores the state of the stack to
6362the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6363practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6364were allocated after the ``llvm.stacksave`` was executed.
6365
6366.. _int_stackrestore:
6367
6368'``llvm.stackrestore``' Intrinsic
6369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6370
6371Syntax:
6372"""""""
6373
6374::
6375
6376 declare void @llvm.stackrestore(i8* %ptr)
6377
6378Overview:
6379"""""""""
6380
6381The '``llvm.stackrestore``' intrinsic is used to restore the state of
6382the function stack to the state it was in when the corresponding
6383:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6384useful for implementing language features like scoped automatic variable
6385sized arrays in C99.
6386
6387Semantics:
6388""""""""""
6389
6390See the description for :ref:`llvm.stacksave <int_stacksave>`.
6391
6392'``llvm.prefetch``' Intrinsic
6393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6394
6395Syntax:
6396"""""""
6397
6398::
6399
6400 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6401
6402Overview:
6403"""""""""
6404
6405The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6406insert a prefetch instruction if supported; otherwise, it is a noop.
6407Prefetches have no effect on the behavior of the program but can change
6408its performance characteristics.
6409
6410Arguments:
6411""""""""""
6412
6413``address`` is the address to be prefetched, ``rw`` is the specifier
6414determining if the fetch should be for a read (0) or write (1), and
6415``locality`` is a temporal locality specifier ranging from (0) - no
6416locality, to (3) - extremely local keep in cache. The ``cache type``
6417specifies whether the prefetch is performed on the data (1) or
6418instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6419arguments must be constant integers.
6420
6421Semantics:
6422""""""""""
6423
6424This intrinsic does not modify the behavior of the program. In
6425particular, prefetches cannot trap and do not produce a value. On
6426targets that support this intrinsic, the prefetch can provide hints to
6427the processor cache for better performance.
6428
6429'``llvm.pcmarker``' Intrinsic
6430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6431
6432Syntax:
6433"""""""
6434
6435::
6436
6437 declare void @llvm.pcmarker(i32 <id>)
6438
6439Overview:
6440"""""""""
6441
6442The '``llvm.pcmarker``' intrinsic is a method to export a Program
6443Counter (PC) in a region of code to simulators and other tools. The
6444method is target specific, but it is expected that the marker will use
6445exported symbols to transmit the PC of the marker. The marker makes no
6446guarantees that it will remain with any specific instruction after
6447optimizations. It is possible that the presence of a marker will inhibit
6448optimizations. The intended use is to be inserted after optimizations to
6449allow correlations of simulation runs.
6450
6451Arguments:
6452""""""""""
6453
6454``id`` is a numerical id identifying the marker.
6455
6456Semantics:
6457""""""""""
6458
6459This intrinsic does not modify the behavior of the program. Backends
6460that do not support this intrinsic may ignore it.
6461
6462'``llvm.readcyclecounter``' Intrinsic
6463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6464
6465Syntax:
6466"""""""
6467
6468::
6469
6470 declare i64 @llvm.readcyclecounter()
6471
6472Overview:
6473"""""""""
6474
6475The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6476counter register (or similar low latency, high accuracy clocks) on those
6477targets that support it. On X86, it should map to RDTSC. On Alpha, it
6478should map to RPCC. As the backing counters overflow quickly (on the
6479order of 9 seconds on alpha), this should only be used for small
6480timings.
6481
6482Semantics:
6483""""""""""
6484
6485When directly supported, reading the cycle counter should not modify any
6486memory. Implementations are allowed to either return a application
6487specific value or a system wide value. On backends without support, this
6488is lowered to a constant 0.
6489
6490Standard C Library Intrinsics
6491-----------------------------
6492
6493LLVM provides intrinsics for a few important standard C library
6494functions. These intrinsics allow source-language front-ends to pass
6495information about the alignment of the pointer arguments to the code
6496generator, providing opportunity for more efficient code generation.
6497
6498.. _int_memcpy:
6499
6500'``llvm.memcpy``' Intrinsic
6501^^^^^^^^^^^^^^^^^^^^^^^^^^^
6502
6503Syntax:
6504"""""""
6505
6506This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6507integer bit width and for different address spaces. Not all targets
6508support all bit widths however.
6509
6510::
6511
6512 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6513 i32 <len>, i32 <align>, i1 <isvolatile>)
6514 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6515 i64 <len>, i32 <align>, i1 <isvolatile>)
6516
6517Overview:
6518"""""""""
6519
6520The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6521source location to the destination location.
6522
6523Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6524intrinsics do not return a value, takes extra alignment/isvolatile
6525arguments and the pointers can be in specified address spaces.
6526
6527Arguments:
6528""""""""""
6529
6530The first argument is a pointer to the destination, the second is a
6531pointer to the source. The third argument is an integer argument
6532specifying the number of bytes to copy, the fourth argument is the
6533alignment of the source and destination locations, and the fifth is a
6534boolean indicating a volatile access.
6535
6536If the call to this intrinsic has an alignment value that is not 0 or 1,
6537then the caller guarantees that both the source and destination pointers
6538are aligned to that boundary.
6539
6540If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6541a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6542very cleanly specified and it is unwise to depend on it.
6543
6544Semantics:
6545""""""""""
6546
6547The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6548source location to the destination location, which are not allowed to
6549overlap. It copies "len" bytes of memory over. If the argument is known
6550to be aligned to some boundary, this can be specified as the fourth
6551argument, otherwise it should be set to 0 or 1.
6552
6553'``llvm.memmove``' Intrinsic
6554^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559This is an overloaded intrinsic. You can use llvm.memmove on any integer
6560bit width and for different address space. Not all targets support all
6561bit widths however.
6562
6563::
6564
6565 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6566 i32 <len>, i32 <align>, i1 <isvolatile>)
6567 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6568 i64 <len>, i32 <align>, i1 <isvolatile>)
6569
6570Overview:
6571"""""""""
6572
6573The '``llvm.memmove.*``' intrinsics move a block of memory from the
6574source location to the destination location. It is similar to the
6575'``llvm.memcpy``' intrinsic but allows the two memory locations to
6576overlap.
6577
6578Note that, unlike the standard libc function, the ``llvm.memmove.*``
6579intrinsics do not return a value, takes extra alignment/isvolatile
6580arguments and the pointers can be in specified address spaces.
6581
6582Arguments:
6583""""""""""
6584
6585The first argument is a pointer to the destination, the second is a
6586pointer to the source. The third argument is an integer argument
6587specifying the number of bytes to copy, the fourth argument is the
6588alignment of the source and destination locations, and the fifth is a
6589boolean indicating a volatile access.
6590
6591If the call to this intrinsic has an alignment value that is not 0 or 1,
6592then the caller guarantees that the source and destination pointers are
6593aligned to that boundary.
6594
6595If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6596is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6597not very cleanly specified and it is unwise to depend on it.
6598
6599Semantics:
6600""""""""""
6601
6602The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6603source location to the destination location, which may overlap. It
6604copies "len" bytes of memory over. If the argument is known to be
6605aligned to some boundary, this can be specified as the fourth argument,
6606otherwise it should be set to 0 or 1.
6607
6608'``llvm.memset.*``' Intrinsics
6609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6610
6611Syntax:
6612"""""""
6613
6614This is an overloaded intrinsic. You can use llvm.memset on any integer
6615bit width and for different address spaces. However, not all targets
6616support all bit widths.
6617
6618::
6619
6620 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6621 i32 <len>, i32 <align>, i1 <isvolatile>)
6622 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6623 i64 <len>, i32 <align>, i1 <isvolatile>)
6624
6625Overview:
6626"""""""""
6627
6628The '``llvm.memset.*``' intrinsics fill a block of memory with a
6629particular byte value.
6630
6631Note that, unlike the standard libc function, the ``llvm.memset``
6632intrinsic does not return a value and takes extra alignment/volatile
6633arguments. Also, the destination can be in an arbitrary address space.
6634
6635Arguments:
6636""""""""""
6637
6638The first argument is a pointer to the destination to fill, the second
6639is the byte value with which to fill it, the third argument is an
6640integer argument specifying the number of bytes to fill, and the fourth
6641argument is the known alignment of the destination location.
6642
6643If the call to this intrinsic has an alignment value that is not 0 or 1,
6644then the caller guarantees that the destination pointer is aligned to
6645that boundary.
6646
6647If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6648a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6649very cleanly specified and it is unwise to depend on it.
6650
6651Semantics:
6652""""""""""
6653
6654The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6655at the destination location. If the argument is known to be aligned to
6656some boundary, this can be specified as the fourth argument, otherwise
6657it should be set to 0 or 1.
6658
6659'``llvm.sqrt.*``' Intrinsic
6660^^^^^^^^^^^^^^^^^^^^^^^^^^^
6661
6662Syntax:
6663"""""""
6664
6665This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6666floating point or vector of floating point type. Not all targets support
6667all types however.
6668
6669::
6670
6671 declare float @llvm.sqrt.f32(float %Val)
6672 declare double @llvm.sqrt.f64(double %Val)
6673 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6674 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6675 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6676
6677Overview:
6678"""""""""
6679
6680The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6681returning the same value as the libm '``sqrt``' functions would. Unlike
6682``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6683negative numbers other than -0.0 (which allows for better optimization,
6684because there is no need to worry about errno being set).
6685``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6686
6687Arguments:
6688""""""""""
6689
6690The argument and return value are floating point numbers of the same
6691type.
6692
6693Semantics:
6694""""""""""
6695
6696This function returns the sqrt of the specified operand if it is a
6697nonnegative floating point number.
6698
6699'``llvm.powi.*``' Intrinsic
6700^^^^^^^^^^^^^^^^^^^^^^^^^^^
6701
6702Syntax:
6703"""""""
6704
6705This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6706floating point or vector of floating point type. Not all targets support
6707all types however.
6708
6709::
6710
6711 declare float @llvm.powi.f32(float %Val, i32 %power)
6712 declare double @llvm.powi.f64(double %Val, i32 %power)
6713 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6714 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6715 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6716
6717Overview:
6718"""""""""
6719
6720The '``llvm.powi.*``' intrinsics return the first operand raised to the
6721specified (positive or negative) power. The order of evaluation of
6722multiplications is not defined. When a vector of floating point type is
6723used, the second argument remains a scalar integer value.
6724
6725Arguments:
6726""""""""""
6727
6728The second argument is an integer power, and the first is a value to
6729raise to that power.
6730
6731Semantics:
6732""""""""""
6733
6734This function returns the first value raised to the second power with an
6735unspecified sequence of rounding operations.
6736
6737'``llvm.sin.*``' Intrinsic
6738^^^^^^^^^^^^^^^^^^^^^^^^^^
6739
6740Syntax:
6741"""""""
6742
6743This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6744floating point or vector of floating point type. Not all targets support
6745all types however.
6746
6747::
6748
6749 declare float @llvm.sin.f32(float %Val)
6750 declare double @llvm.sin.f64(double %Val)
6751 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6752 declare fp128 @llvm.sin.f128(fp128 %Val)
6753 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6754
6755Overview:
6756"""""""""
6757
6758The '``llvm.sin.*``' intrinsics return the sine of the operand.
6759
6760Arguments:
6761""""""""""
6762
6763The argument and return value are floating point numbers of the same
6764type.
6765
6766Semantics:
6767""""""""""
6768
6769This function returns the sine of the specified operand, returning the
6770same values as the libm ``sin`` functions would, and handles error
6771conditions in the same way.
6772
6773'``llvm.cos.*``' Intrinsic
6774^^^^^^^^^^^^^^^^^^^^^^^^^^
6775
6776Syntax:
6777"""""""
6778
6779This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6780floating point or vector of floating point type. Not all targets support
6781all types however.
6782
6783::
6784
6785 declare float @llvm.cos.f32(float %Val)
6786 declare double @llvm.cos.f64(double %Val)
6787 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6788 declare fp128 @llvm.cos.f128(fp128 %Val)
6789 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6790
6791Overview:
6792"""""""""
6793
6794The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6795
6796Arguments:
6797""""""""""
6798
6799The argument and return value are floating point numbers of the same
6800type.
6801
6802Semantics:
6803""""""""""
6804
6805This function returns the cosine of the specified operand, returning the
6806same values as the libm ``cos`` functions would, and handles error
6807conditions in the same way.
6808
6809'``llvm.pow.*``' Intrinsic
6810^^^^^^^^^^^^^^^^^^^^^^^^^^
6811
6812Syntax:
6813"""""""
6814
6815This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6816floating point or vector of floating point type. Not all targets support
6817all types however.
6818
6819::
6820
6821 declare float @llvm.pow.f32(float %Val, float %Power)
6822 declare double @llvm.pow.f64(double %Val, double %Power)
6823 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6824 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6825 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6826
6827Overview:
6828"""""""""
6829
6830The '``llvm.pow.*``' intrinsics return the first operand raised to the
6831specified (positive or negative) power.
6832
6833Arguments:
6834""""""""""
6835
6836The second argument is a floating point power, and the first is a value
6837to raise to that power.
6838
6839Semantics:
6840""""""""""
6841
6842This function returns the first value raised to the second power,
6843returning the same values as the libm ``pow`` functions would, and
6844handles error conditions in the same way.
6845
6846'``llvm.exp.*``' Intrinsic
6847^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6853floating point or vector of floating point type. Not all targets support
6854all types however.
6855
6856::
6857
6858 declare float @llvm.exp.f32(float %Val)
6859 declare double @llvm.exp.f64(double %Val)
6860 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6861 declare fp128 @llvm.exp.f128(fp128 %Val)
6862 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6863
6864Overview:
6865"""""""""
6866
6867The '``llvm.exp.*``' intrinsics perform the exp function.
6868
6869Arguments:
6870""""""""""
6871
6872The argument and return value are floating point numbers of the same
6873type.
6874
6875Semantics:
6876""""""""""
6877
6878This function returns the same values as the libm ``exp`` functions
6879would, and handles error conditions in the same way.
6880
6881'``llvm.exp2.*``' Intrinsic
6882^^^^^^^^^^^^^^^^^^^^^^^^^^^
6883
6884Syntax:
6885"""""""
6886
6887This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6888floating point or vector of floating point type. Not all targets support
6889all types however.
6890
6891::
6892
6893 declare float @llvm.exp2.f32(float %Val)
6894 declare double @llvm.exp2.f64(double %Val)
6895 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6896 declare fp128 @llvm.exp2.f128(fp128 %Val)
6897 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6898
6899Overview:
6900"""""""""
6901
6902The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6903
6904Arguments:
6905""""""""""
6906
6907The argument and return value are floating point numbers of the same
6908type.
6909
6910Semantics:
6911""""""""""
6912
6913This function returns the same values as the libm ``exp2`` functions
6914would, and handles error conditions in the same way.
6915
6916'``llvm.log.*``' Intrinsic
6917^^^^^^^^^^^^^^^^^^^^^^^^^^
6918
6919Syntax:
6920"""""""
6921
6922This is an overloaded intrinsic. You can use ``llvm.log`` on any
6923floating point or vector of floating point type. Not all targets support
6924all types however.
6925
6926::
6927
6928 declare float @llvm.log.f32(float %Val)
6929 declare double @llvm.log.f64(double %Val)
6930 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6931 declare fp128 @llvm.log.f128(fp128 %Val)
6932 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6933
6934Overview:
6935"""""""""
6936
6937The '``llvm.log.*``' intrinsics perform the log function.
6938
6939Arguments:
6940""""""""""
6941
6942The argument and return value are floating point numbers of the same
6943type.
6944
6945Semantics:
6946""""""""""
6947
6948This function returns the same values as the libm ``log`` functions
6949would, and handles error conditions in the same way.
6950
6951'``llvm.log10.*``' Intrinsic
6952^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6953
6954Syntax:
6955"""""""
6956
6957This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6958floating point or vector of floating point type. Not all targets support
6959all types however.
6960
6961::
6962
6963 declare float @llvm.log10.f32(float %Val)
6964 declare double @llvm.log10.f64(double %Val)
6965 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6966 declare fp128 @llvm.log10.f128(fp128 %Val)
6967 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6968
6969Overview:
6970"""""""""
6971
6972The '``llvm.log10.*``' intrinsics perform the log10 function.
6973
6974Arguments:
6975""""""""""
6976
6977The argument and return value are floating point numbers of the same
6978type.
6979
6980Semantics:
6981""""""""""
6982
6983This function returns the same values as the libm ``log10`` functions
6984would, and handles error conditions in the same way.
6985
6986'``llvm.log2.*``' Intrinsic
6987^^^^^^^^^^^^^^^^^^^^^^^^^^^
6988
6989Syntax:
6990"""""""
6991
6992This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6993floating point or vector of floating point type. Not all targets support
6994all types however.
6995
6996::
6997
6998 declare float @llvm.log2.f32(float %Val)
6999 declare double @llvm.log2.f64(double %Val)
7000 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7001 declare fp128 @llvm.log2.f128(fp128 %Val)
7002 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7003
7004Overview:
7005"""""""""
7006
7007The '``llvm.log2.*``' intrinsics perform the log2 function.
7008
7009Arguments:
7010""""""""""
7011
7012The argument and return value are floating point numbers of the same
7013type.
7014
7015Semantics:
7016""""""""""
7017
7018This function returns the same values as the libm ``log2`` functions
7019would, and handles error conditions in the same way.
7020
7021'``llvm.fma.*``' Intrinsic
7022^^^^^^^^^^^^^^^^^^^^^^^^^^
7023
7024Syntax:
7025"""""""
7026
7027This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7028floating point or vector of floating point type. Not all targets support
7029all types however.
7030
7031::
7032
7033 declare float @llvm.fma.f32(float %a, float %b, float %c)
7034 declare double @llvm.fma.f64(double %a, double %b, double %c)
7035 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7036 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7037 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7038
7039Overview:
7040"""""""""
7041
7042The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7043operation.
7044
7045Arguments:
7046""""""""""
7047
7048The argument and return value are floating point numbers of the same
7049type.
7050
7051Semantics:
7052""""""""""
7053
7054This function returns the same values as the libm ``fma`` functions
7055would.
7056
7057'``llvm.fabs.*``' Intrinsic
7058^^^^^^^^^^^^^^^^^^^^^^^^^^^
7059
7060Syntax:
7061"""""""
7062
7063This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7064floating point or vector of floating point type. Not all targets support
7065all types however.
7066
7067::
7068
7069 declare float @llvm.fabs.f32(float %Val)
7070 declare double @llvm.fabs.f64(double %Val)
7071 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7072 declare fp128 @llvm.fabs.f128(fp128 %Val)
7073 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7074
7075Overview:
7076"""""""""
7077
7078The '``llvm.fabs.*``' intrinsics return the absolute value of the
7079operand.
7080
7081Arguments:
7082""""""""""
7083
7084The argument and return value are floating point numbers of the same
7085type.
7086
7087Semantics:
7088""""""""""
7089
7090This function returns the same values as the libm ``fabs`` functions
7091would, and handles error conditions in the same way.
7092
7093'``llvm.floor.*``' Intrinsic
7094^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7095
7096Syntax:
7097"""""""
7098
7099This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7100floating point or vector of floating point type. Not all targets support
7101all types however.
7102
7103::
7104
7105 declare float @llvm.floor.f32(float %Val)
7106 declare double @llvm.floor.f64(double %Val)
7107 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7108 declare fp128 @llvm.floor.f128(fp128 %Val)
7109 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7110
7111Overview:
7112"""""""""
7113
7114The '``llvm.floor.*``' intrinsics return the floor of the operand.
7115
7116Arguments:
7117""""""""""
7118
7119The argument and return value are floating point numbers of the same
7120type.
7121
7122Semantics:
7123""""""""""
7124
7125This function returns the same values as the libm ``floor`` functions
7126would, and handles error conditions in the same way.
7127
7128'``llvm.ceil.*``' Intrinsic
7129^^^^^^^^^^^^^^^^^^^^^^^^^^^
7130
7131Syntax:
7132"""""""
7133
7134This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7135floating point or vector of floating point type. Not all targets support
7136all types however.
7137
7138::
7139
7140 declare float @llvm.ceil.f32(float %Val)
7141 declare double @llvm.ceil.f64(double %Val)
7142 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7143 declare fp128 @llvm.ceil.f128(fp128 %Val)
7144 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7145
7146Overview:
7147"""""""""
7148
7149The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7150
7151Arguments:
7152""""""""""
7153
7154The argument and return value are floating point numbers of the same
7155type.
7156
7157Semantics:
7158""""""""""
7159
7160This function returns the same values as the libm ``ceil`` functions
7161would, and handles error conditions in the same way.
7162
7163'``llvm.trunc.*``' Intrinsic
7164^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7165
7166Syntax:
7167"""""""
7168
7169This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7170floating point or vector of floating point type. Not all targets support
7171all types however.
7172
7173::
7174
7175 declare float @llvm.trunc.f32(float %Val)
7176 declare double @llvm.trunc.f64(double %Val)
7177 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7178 declare fp128 @llvm.trunc.f128(fp128 %Val)
7179 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7180
7181Overview:
7182"""""""""
7183
7184The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7185nearest integer not larger in magnitude than the operand.
7186
7187Arguments:
7188""""""""""
7189
7190The argument and return value are floating point numbers of the same
7191type.
7192
7193Semantics:
7194""""""""""
7195
7196This function returns the same values as the libm ``trunc`` functions
7197would, and handles error conditions in the same way.
7198
7199'``llvm.rint.*``' Intrinsic
7200^^^^^^^^^^^^^^^^^^^^^^^^^^^
7201
7202Syntax:
7203"""""""
7204
7205This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7206floating point or vector of floating point type. Not all targets support
7207all types however.
7208
7209::
7210
7211 declare float @llvm.rint.f32(float %Val)
7212 declare double @llvm.rint.f64(double %Val)
7213 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7214 declare fp128 @llvm.rint.f128(fp128 %Val)
7215 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7216
7217Overview:
7218"""""""""
7219
7220The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7221nearest integer. It may raise an inexact floating-point exception if the
7222operand isn't an integer.
7223
7224Arguments:
7225""""""""""
7226
7227The argument and return value are floating point numbers of the same
7228type.
7229
7230Semantics:
7231""""""""""
7232
7233This function returns the same values as the libm ``rint`` functions
7234would, and handles error conditions in the same way.
7235
7236'``llvm.nearbyint.*``' Intrinsic
7237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7238
7239Syntax:
7240"""""""
7241
7242This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7243floating point or vector of floating point type. Not all targets support
7244all types however.
7245
7246::
7247
7248 declare float @llvm.nearbyint.f32(float %Val)
7249 declare double @llvm.nearbyint.f64(double %Val)
7250 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7251 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7252 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7253
7254Overview:
7255"""""""""
7256
7257The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7258nearest integer.
7259
7260Arguments:
7261""""""""""
7262
7263The argument and return value are floating point numbers of the same
7264type.
7265
7266Semantics:
7267""""""""""
7268
7269This function returns the same values as the libm ``nearbyint``
7270functions would, and handles error conditions in the same way.
7271
7272Bit Manipulation Intrinsics
7273---------------------------
7274
7275LLVM provides intrinsics for a few important bit manipulation
7276operations. These allow efficient code generation for some algorithms.
7277
7278'``llvm.bswap.*``' Intrinsics
7279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7280
7281Syntax:
7282"""""""
7283
7284This is an overloaded intrinsic function. You can use bswap on any
7285integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7286
7287::
7288
7289 declare i16 @llvm.bswap.i16(i16 <id>)
7290 declare i32 @llvm.bswap.i32(i32 <id>)
7291 declare i64 @llvm.bswap.i64(i64 <id>)
7292
7293Overview:
7294"""""""""
7295
7296The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7297values with an even number of bytes (positive multiple of 16 bits).
7298These are useful for performing operations on data that is not in the
7299target's native byte order.
7300
7301Semantics:
7302""""""""""
7303
7304The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7305and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7306intrinsic returns an i32 value that has the four bytes of the input i32
7307swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7308returned i32 will have its bytes in 3, 2, 1, 0 order. The
7309``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7310concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7311respectively).
7312
7313'``llvm.ctpop.*``' Intrinsic
7314^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7315
7316Syntax:
7317"""""""
7318
7319This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7320bit width, or on any vector with integer elements. Not all targets
7321support all bit widths or vector types, however.
7322
7323::
7324
7325 declare i8 @llvm.ctpop.i8(i8 <src>)
7326 declare i16 @llvm.ctpop.i16(i16 <src>)
7327 declare i32 @llvm.ctpop.i32(i32 <src>)
7328 declare i64 @llvm.ctpop.i64(i64 <src>)
7329 declare i256 @llvm.ctpop.i256(i256 <src>)
7330 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7331
7332Overview:
7333"""""""""
7334
7335The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7336in a value.
7337
7338Arguments:
7339""""""""""
7340
7341The only argument is the value to be counted. The argument may be of any
7342integer type, or a vector with integer elements. The return type must
7343match the argument type.
7344
7345Semantics:
7346""""""""""
7347
7348The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7349each element of a vector.
7350
7351'``llvm.ctlz.*``' Intrinsic
7352^^^^^^^^^^^^^^^^^^^^^^^^^^^
7353
7354Syntax:
7355"""""""
7356
7357This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7358integer bit width, or any vector whose elements are integers. Not all
7359targets support all bit widths or vector types, however.
7360
7361::
7362
7363 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7364 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7365 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7366 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7367 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7368 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7369
7370Overview:
7371"""""""""
7372
7373The '``llvm.ctlz``' family of intrinsic functions counts the number of
7374leading zeros in a variable.
7375
7376Arguments:
7377""""""""""
7378
7379The first argument is the value to be counted. This argument may be of
7380any integer type, or a vectory with integer element type. The return
7381type must match the first argument type.
7382
7383The second argument must be a constant and is a flag to indicate whether
7384the intrinsic should ensure that a zero as the first argument produces a
7385defined result. Historically some architectures did not provide a
7386defined result for zero values as efficiently, and many algorithms are
7387now predicated on avoiding zero-value inputs.
7388
7389Semantics:
7390""""""""""
7391
7392The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7393zeros in a variable, or within each element of the vector. If
7394``src == 0`` then the result is the size in bits of the type of ``src``
7395if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7396``llvm.ctlz(i32 2) = 30``.
7397
7398'``llvm.cttz.*``' Intrinsic
7399^^^^^^^^^^^^^^^^^^^^^^^^^^^
7400
7401Syntax:
7402"""""""
7403
7404This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7405integer bit width, or any vector of integer elements. Not all targets
7406support all bit widths or vector types, however.
7407
7408::
7409
7410 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7411 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7412 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7413 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7414 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7415 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7416
7417Overview:
7418"""""""""
7419
7420The '``llvm.cttz``' family of intrinsic functions counts the number of
7421trailing zeros.
7422
7423Arguments:
7424""""""""""
7425
7426The first argument is the value to be counted. This argument may be of
7427any integer type, or a vectory with integer element type. The return
7428type must match the first argument type.
7429
7430The second argument must be a constant and is a flag to indicate whether
7431the intrinsic should ensure that a zero as the first argument produces a
7432defined result. Historically some architectures did not provide a
7433defined result for zero values as efficiently, and many algorithms are
7434now predicated on avoiding zero-value inputs.
7435
7436Semantics:
7437""""""""""
7438
7439The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7440zeros in a variable, or within each element of a vector. If ``src == 0``
7441then the result is the size in bits of the type of ``src`` if
7442``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7443``llvm.cttz(2) = 1``.
7444
7445Arithmetic with Overflow Intrinsics
7446-----------------------------------
7447
7448LLVM provides intrinsics for some arithmetic with overflow operations.
7449
7450'``llvm.sadd.with.overflow.*``' Intrinsics
7451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7452
7453Syntax:
7454"""""""
7455
7456This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7457on any integer bit width.
7458
7459::
7460
7461 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7462 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7463 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7464
7465Overview:
7466"""""""""
7467
7468The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7469a signed addition of the two arguments, and indicate whether an overflow
7470occurred during the signed summation.
7471
7472Arguments:
7473""""""""""
7474
7475The arguments (%a and %b) and the first element of the result structure
7476may be of integer types of any bit width, but they must have the same
7477bit width. The second element of the result structure must be of type
7478``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7479addition.
7480
7481Semantics:
7482""""""""""
7483
7484The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007485a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007486first element of which is the signed summation, and the second element
7487of which is a bit specifying if the signed summation resulted in an
7488overflow.
7489
7490Examples:
7491"""""""""
7492
7493.. code-block:: llvm
7494
7495 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7496 %sum = extractvalue {i32, i1} %res, 0
7497 %obit = extractvalue {i32, i1} %res, 1
7498 br i1 %obit, label %overflow, label %normal
7499
7500'``llvm.uadd.with.overflow.*``' Intrinsics
7501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7507on any integer bit width.
7508
7509::
7510
7511 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7512 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7513 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7514
7515Overview:
7516"""""""""
7517
7518The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7519an unsigned addition of the two arguments, and indicate whether a carry
7520occurred during the unsigned summation.
7521
7522Arguments:
7523""""""""""
7524
7525The arguments (%a and %b) and the first element of the result structure
7526may be of integer types of any bit width, but they must have the same
7527bit width. The second element of the result structure must be of type
7528``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7529addition.
7530
7531Semantics:
7532""""""""""
7533
7534The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007535an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007536first element of which is the sum, and the second element of which is a
7537bit specifying if the unsigned summation resulted in a carry.
7538
7539Examples:
7540"""""""""
7541
7542.. code-block:: llvm
7543
7544 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7545 %sum = extractvalue {i32, i1} %res, 0
7546 %obit = extractvalue {i32, i1} %res, 1
7547 br i1 %obit, label %carry, label %normal
7548
7549'``llvm.ssub.with.overflow.*``' Intrinsics
7550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7551
7552Syntax:
7553"""""""
7554
7555This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7556on any integer bit width.
7557
7558::
7559
7560 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7561 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7562 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7563
7564Overview:
7565"""""""""
7566
7567The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7568a signed subtraction of the two arguments, and indicate whether an
7569overflow occurred during the signed subtraction.
7570
7571Arguments:
7572""""""""""
7573
7574The arguments (%a and %b) and the first element of the result structure
7575may be of integer types of any bit width, but they must have the same
7576bit width. The second element of the result structure must be of type
7577``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7578subtraction.
7579
7580Semantics:
7581""""""""""
7582
7583The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007584a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007585first element of which is the subtraction, and the second element of
7586which is a bit specifying if the signed subtraction resulted in an
7587overflow.
7588
7589Examples:
7590"""""""""
7591
7592.. code-block:: llvm
7593
7594 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7595 %sum = extractvalue {i32, i1} %res, 0
7596 %obit = extractvalue {i32, i1} %res, 1
7597 br i1 %obit, label %overflow, label %normal
7598
7599'``llvm.usub.with.overflow.*``' Intrinsics
7600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7601
7602Syntax:
7603"""""""
7604
7605This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7606on any integer bit width.
7607
7608::
7609
7610 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7611 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7612 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7613
7614Overview:
7615"""""""""
7616
7617The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7618an unsigned subtraction of the two arguments, and indicate whether an
7619overflow occurred during the unsigned subtraction.
7620
7621Arguments:
7622""""""""""
7623
7624The arguments (%a and %b) and the first element of the result structure
7625may be of integer types of any bit width, but they must have the same
7626bit width. The second element of the result structure must be of type
7627``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7628subtraction.
7629
7630Semantics:
7631""""""""""
7632
7633The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007634an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007635the first element of which is the subtraction, and the second element of
7636which is a bit specifying if the unsigned subtraction resulted in an
7637overflow.
7638
7639Examples:
7640"""""""""
7641
7642.. code-block:: llvm
7643
7644 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7645 %sum = extractvalue {i32, i1} %res, 0
7646 %obit = extractvalue {i32, i1} %res, 1
7647 br i1 %obit, label %overflow, label %normal
7648
7649'``llvm.smul.with.overflow.*``' Intrinsics
7650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7651
7652Syntax:
7653"""""""
7654
7655This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7656on any integer bit width.
7657
7658::
7659
7660 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7661 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7662 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7663
7664Overview:
7665"""""""""
7666
7667The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7668a signed multiplication of the two arguments, and indicate whether an
7669overflow occurred during the signed multiplication.
7670
7671Arguments:
7672""""""""""
7673
7674The arguments (%a and %b) and the first element of the result structure
7675may be of integer types of any bit width, but they must have the same
7676bit width. The second element of the result structure must be of type
7677``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7678multiplication.
7679
7680Semantics:
7681""""""""""
7682
7683The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007684a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00007685the first element of which is the multiplication, and the second element
7686of which is a bit specifying if the signed multiplication resulted in an
7687overflow.
7688
7689Examples:
7690"""""""""
7691
7692.. code-block:: llvm
7693
7694 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7695 %sum = extractvalue {i32, i1} %res, 0
7696 %obit = extractvalue {i32, i1} %res, 1
7697 br i1 %obit, label %overflow, label %normal
7698
7699'``llvm.umul.with.overflow.*``' Intrinsics
7700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7701
7702Syntax:
7703"""""""
7704
7705This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7706on any integer bit width.
7707
7708::
7709
7710 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7711 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7712 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7713
7714Overview:
7715"""""""""
7716
7717The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7718a unsigned multiplication of the two arguments, and indicate whether an
7719overflow occurred during the unsigned multiplication.
7720
7721Arguments:
7722""""""""""
7723
7724The arguments (%a and %b) and the first element of the result structure
7725may be of integer types of any bit width, but they must have the same
7726bit width. The second element of the result structure must be of type
7727``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7728multiplication.
7729
7730Semantics:
7731""""""""""
7732
7733The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007734an unsigned multiplication of the two arguments. They return a structure ---
7735the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00007736element of which is a bit specifying if the unsigned multiplication
7737resulted in an overflow.
7738
7739Examples:
7740"""""""""
7741
7742.. code-block:: llvm
7743
7744 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7745 %sum = extractvalue {i32, i1} %res, 0
7746 %obit = extractvalue {i32, i1} %res, 1
7747 br i1 %obit, label %overflow, label %normal
7748
7749Specialised Arithmetic Intrinsics
7750---------------------------------
7751
7752'``llvm.fmuladd.*``' Intrinsic
7753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7754
7755Syntax:
7756"""""""
7757
7758::
7759
7760 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7761 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7762
7763Overview:
7764"""""""""
7765
7766The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00007767expressions that can be fused if the code generator determines that (a) the
7768target instruction set has support for a fused operation, and (b) that the
7769fused operation is more efficient than the equivalent, separate pair of mul
7770and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00007771
7772Arguments:
7773""""""""""
7774
7775The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7776multiplicands, a and b, and an addend c.
7777
7778Semantics:
7779""""""""""
7780
7781The expression:
7782
7783::
7784
7785 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7786
7787is equivalent to the expression a \* b + c, except that rounding will
7788not be performed between the multiplication and addition steps if the
7789code generator fuses the operations. Fusion is not guaranteed, even if
7790the target platform supports it. If a fused multiply-add is required the
7791corresponding llvm.fma.\* intrinsic function should be used instead.
7792
7793Examples:
7794"""""""""
7795
7796.. code-block:: llvm
7797
7798 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7799
7800Half Precision Floating Point Intrinsics
7801----------------------------------------
7802
7803For most target platforms, half precision floating point is a
7804storage-only format. This means that it is a dense encoding (in memory)
7805but does not support computation in the format.
7806
7807This means that code must first load the half-precision floating point
7808value as an i16, then convert it to float with
7809:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7810then be performed on the float value (including extending to double
7811etc). To store the value back to memory, it is first converted to float
7812if needed, then converted to i16 with
7813:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7814i16 value.
7815
7816.. _int_convert_to_fp16:
7817
7818'``llvm.convert.to.fp16``' Intrinsic
7819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7820
7821Syntax:
7822"""""""
7823
7824::
7825
7826 declare i16 @llvm.convert.to.fp16(f32 %a)
7827
7828Overview:
7829"""""""""
7830
7831The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7832from single precision floating point format to half precision floating
7833point format.
7834
7835Arguments:
7836""""""""""
7837
7838The intrinsic function contains single argument - the value to be
7839converted.
7840
7841Semantics:
7842""""""""""
7843
7844The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7845from single precision floating point format to half precision floating
7846point format. The return value is an ``i16`` which contains the
7847converted number.
7848
7849Examples:
7850"""""""""
7851
7852.. code-block:: llvm
7853
7854 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7855 store i16 %res, i16* @x, align 2
7856
7857.. _int_convert_from_fp16:
7858
7859'``llvm.convert.from.fp16``' Intrinsic
7860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7861
7862Syntax:
7863"""""""
7864
7865::
7866
7867 declare f32 @llvm.convert.from.fp16(i16 %a)
7868
7869Overview:
7870"""""""""
7871
7872The '``llvm.convert.from.fp16``' intrinsic function performs a
7873conversion from half precision floating point format to single precision
7874floating point format.
7875
7876Arguments:
7877""""""""""
7878
7879The intrinsic function contains single argument - the value to be
7880converted.
7881
7882Semantics:
7883""""""""""
7884
7885The '``llvm.convert.from.fp16``' intrinsic function performs a
7886conversion from half single precision floating point format to single
7887precision floating point format. The input half-float value is
7888represented by an ``i16`` value.
7889
7890Examples:
7891"""""""""
7892
7893.. code-block:: llvm
7894
7895 %a = load i16* @x, align 2
7896 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7897
7898Debugger Intrinsics
7899-------------------
7900
7901The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7902prefix), are described in the `LLVM Source Level
7903Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7904document.
7905
7906Exception Handling Intrinsics
7907-----------------------------
7908
7909The LLVM exception handling intrinsics (which all start with
7910``llvm.eh.`` prefix), are described in the `LLVM Exception
7911Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7912
7913.. _int_trampoline:
7914
7915Trampoline Intrinsics
7916---------------------
7917
7918These intrinsics make it possible to excise one parameter, marked with
7919the :ref:`nest <nest>` attribute, from a function. The result is a
7920callable function pointer lacking the nest parameter - the caller does
7921not need to provide a value for it. Instead, the value to use is stored
7922in advance in a "trampoline", a block of memory usually allocated on the
7923stack, which also contains code to splice the nest value into the
7924argument list. This is used to implement the GCC nested function address
7925extension.
7926
7927For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7928then the resulting function pointer has signature ``i32 (i32, i32)*``.
7929It can be created as follows:
7930
7931.. code-block:: llvm
7932
7933 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7934 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7935 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7936 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7937 %fp = bitcast i8* %p to i32 (i32, i32)*
7938
7939The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7940``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7941
7942.. _int_it:
7943
7944'``llvm.init.trampoline``' Intrinsic
7945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7946
7947Syntax:
7948"""""""
7949
7950::
7951
7952 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7953
7954Overview:
7955"""""""""
7956
7957This fills the memory pointed to by ``tramp`` with executable code,
7958turning it into a trampoline.
7959
7960Arguments:
7961""""""""""
7962
7963The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7964pointers. The ``tramp`` argument must point to a sufficiently large and
7965sufficiently aligned block of memory; this memory is written to by the
7966intrinsic. Note that the size and the alignment are target-specific -
7967LLVM currently provides no portable way of determining them, so a
7968front-end that generates this intrinsic needs to have some
7969target-specific knowledge. The ``func`` argument must hold a function
7970bitcast to an ``i8*``.
7971
7972Semantics:
7973""""""""""
7974
7975The block of memory pointed to by ``tramp`` is filled with target
7976dependent code, turning it into a function. Then ``tramp`` needs to be
7977passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7978be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7979function's signature is the same as that of ``func`` with any arguments
7980marked with the ``nest`` attribute removed. At most one such ``nest``
7981argument is allowed, and it must be of pointer type. Calling the new
7982function is equivalent to calling ``func`` with the same argument list,
7983but with ``nval`` used for the missing ``nest`` argument. If, after
7984calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7985modified, then the effect of any later call to the returned function
7986pointer is undefined.
7987
7988.. _int_at:
7989
7990'``llvm.adjust.trampoline``' Intrinsic
7991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7992
7993Syntax:
7994"""""""
7995
7996::
7997
7998 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7999
8000Overview:
8001"""""""""
8002
8003This performs any required machine-specific adjustment to the address of
8004a trampoline (passed as ``tramp``).
8005
8006Arguments:
8007""""""""""
8008
8009``tramp`` must point to a block of memory which already has trampoline
8010code filled in by a previous call to
8011:ref:`llvm.init.trampoline <int_it>`.
8012
8013Semantics:
8014""""""""""
8015
8016On some architectures the address of the code to be executed needs to be
8017different to the address where the trampoline is actually stored. This
8018intrinsic returns the executable address corresponding to ``tramp``
8019after performing the required machine specific adjustments. The pointer
8020returned can then be :ref:`bitcast and executed <int_trampoline>`.
8021
8022Memory Use Markers
8023------------------
8024
8025This class of intrinsics exists to information about the lifetime of
8026memory objects and ranges where variables are immutable.
8027
8028'``llvm.lifetime.start``' Intrinsic
8029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8030
8031Syntax:
8032"""""""
8033
8034::
8035
8036 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8037
8038Overview:
8039"""""""""
8040
8041The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8042object's lifetime.
8043
8044Arguments:
8045""""""""""
8046
8047The first argument is a constant integer representing the size of the
8048object, or -1 if it is variable sized. The second argument is a pointer
8049to the object.
8050
8051Semantics:
8052""""""""""
8053
8054This intrinsic indicates that before this point in the code, the value
8055of the memory pointed to by ``ptr`` is dead. This means that it is known
8056to never be used and has an undefined value. A load from the pointer
8057that precedes this intrinsic can be replaced with ``'undef'``.
8058
8059'``llvm.lifetime.end``' Intrinsic
8060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065::
8066
8067 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8068
8069Overview:
8070"""""""""
8071
8072The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8073object's lifetime.
8074
8075Arguments:
8076""""""""""
8077
8078The first argument is a constant integer representing the size of the
8079object, or -1 if it is variable sized. The second argument is a pointer
8080to the object.
8081
8082Semantics:
8083""""""""""
8084
8085This intrinsic indicates that after this point in the code, the value of
8086the memory pointed to by ``ptr`` is dead. This means that it is known to
8087never be used and has an undefined value. Any stores into the memory
8088object following this intrinsic may be removed as dead.
8089
8090'``llvm.invariant.start``' Intrinsic
8091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8092
8093Syntax:
8094"""""""
8095
8096::
8097
8098 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8099
8100Overview:
8101"""""""""
8102
8103The '``llvm.invariant.start``' intrinsic specifies that the contents of
8104a memory object will not change.
8105
8106Arguments:
8107""""""""""
8108
8109The first argument is a constant integer representing the size of the
8110object, or -1 if it is variable sized. The second argument is a pointer
8111to the object.
8112
8113Semantics:
8114""""""""""
8115
8116This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8117the return value, the referenced memory location is constant and
8118unchanging.
8119
8120'``llvm.invariant.end``' Intrinsic
8121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8122
8123Syntax:
8124"""""""
8125
8126::
8127
8128 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8129
8130Overview:
8131"""""""""
8132
8133The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8134memory object are mutable.
8135
8136Arguments:
8137""""""""""
8138
8139The first argument is the matching ``llvm.invariant.start`` intrinsic.
8140The second argument is a constant integer representing the size of the
8141object, or -1 if it is variable sized and the third argument is a
8142pointer to the object.
8143
8144Semantics:
8145""""""""""
8146
8147This intrinsic indicates that the memory is mutable again.
8148
8149General Intrinsics
8150------------------
8151
8152This class of intrinsics is designed to be generic and has no specific
8153purpose.
8154
8155'``llvm.var.annotation``' Intrinsic
8156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8157
8158Syntax:
8159"""""""
8160
8161::
8162
8163 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8164
8165Overview:
8166"""""""""
8167
8168The '``llvm.var.annotation``' intrinsic.
8169
8170Arguments:
8171""""""""""
8172
8173The first argument is a pointer to a value, the second is a pointer to a
8174global string, the third is a pointer to a global string which is the
8175source file name, and the last argument is the line number.
8176
8177Semantics:
8178""""""""""
8179
8180This intrinsic allows annotation of local variables with arbitrary
8181strings. This can be useful for special purpose optimizations that want
8182to look for these annotations. These have no other defined use; they are
8183ignored by code generation and optimization.
8184
8185'``llvm.annotation.*``' Intrinsic
8186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8187
8188Syntax:
8189"""""""
8190
8191This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8192any integer bit width.
8193
8194::
8195
8196 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8197 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8198 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8199 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8200 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8201
8202Overview:
8203"""""""""
8204
8205The '``llvm.annotation``' intrinsic.
8206
8207Arguments:
8208""""""""""
8209
8210The first argument is an integer value (result of some expression), the
8211second is a pointer to a global string, the third is a pointer to a
8212global string which is the source file name, and the last argument is
8213the line number. It returns the value of the first argument.
8214
8215Semantics:
8216""""""""""
8217
8218This intrinsic allows annotations to be put on arbitrary expressions
8219with arbitrary strings. This can be useful for special purpose
8220optimizations that want to look for these annotations. These have no
8221other defined use; they are ignored by code generation and optimization.
8222
8223'``llvm.trap``' Intrinsic
8224^^^^^^^^^^^^^^^^^^^^^^^^^
8225
8226Syntax:
8227"""""""
8228
8229::
8230
8231 declare void @llvm.trap() noreturn nounwind
8232
8233Overview:
8234"""""""""
8235
8236The '``llvm.trap``' intrinsic.
8237
8238Arguments:
8239""""""""""
8240
8241None.
8242
8243Semantics:
8244""""""""""
8245
8246This intrinsic is lowered to the target dependent trap instruction. If
8247the target does not have a trap instruction, this intrinsic will be
8248lowered to a call of the ``abort()`` function.
8249
8250'``llvm.debugtrap``' Intrinsic
8251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8252
8253Syntax:
8254"""""""
8255
8256::
8257
8258 declare void @llvm.debugtrap() nounwind
8259
8260Overview:
8261"""""""""
8262
8263The '``llvm.debugtrap``' intrinsic.
8264
8265Arguments:
8266""""""""""
8267
8268None.
8269
8270Semantics:
8271""""""""""
8272
8273This intrinsic is lowered to code which is intended to cause an
8274execution trap with the intention of requesting the attention of a
8275debugger.
8276
8277'``llvm.stackprotector``' Intrinsic
8278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8279
8280Syntax:
8281"""""""
8282
8283::
8284
8285 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8286
8287Overview:
8288"""""""""
8289
8290The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8291onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8292is placed on the stack before local variables.
8293
8294Arguments:
8295""""""""""
8296
8297The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8298The first argument is the value loaded from the stack guard
8299``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8300enough space to hold the value of the guard.
8301
8302Semantics:
8303""""""""""
8304
8305This intrinsic causes the prologue/epilogue inserter to force the
8306position of the ``AllocaInst`` stack slot to be before local variables
8307on the stack. This is to ensure that if a local variable on the stack is
8308overwritten, it will destroy the value of the guard. When the function
8309exits, the guard on the stack is checked against the original guard. If
8310they are different, then the program aborts by calling the
8311``__stack_chk_fail()`` function.
8312
8313'``llvm.objectsize``' Intrinsic
8314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8315
8316Syntax:
8317"""""""
8318
8319::
8320
8321 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8322 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8323
8324Overview:
8325"""""""""
8326
8327The ``llvm.objectsize`` intrinsic is designed to provide information to
8328the optimizers to determine at compile time whether a) an operation
8329(like memcpy) will overflow a buffer that corresponds to an object, or
8330b) that a runtime check for overflow isn't necessary. An object in this
8331context means an allocation of a specific class, structure, array, or
8332other object.
8333
8334Arguments:
8335""""""""""
8336
8337The ``llvm.objectsize`` intrinsic takes two arguments. The first
8338argument is a pointer to or into the ``object``. The second argument is
8339a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8340or -1 (if false) when the object size is unknown. The second argument
8341only accepts constants.
8342
8343Semantics:
8344""""""""""
8345
8346The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8347the size of the object concerned. If the size cannot be determined at
8348compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8349on the ``min`` argument).
8350
8351'``llvm.expect``' Intrinsic
8352^^^^^^^^^^^^^^^^^^^^^^^^^^^
8353
8354Syntax:
8355"""""""
8356
8357::
8358
8359 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8360 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8361
8362Overview:
8363"""""""""
8364
8365The ``llvm.expect`` intrinsic provides information about expected (the
8366most probable) value of ``val``, which can be used by optimizers.
8367
8368Arguments:
8369""""""""""
8370
8371The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8372a value. The second argument is an expected value, this needs to be a
8373constant value, variables are not allowed.
8374
8375Semantics:
8376""""""""""
8377
8378This intrinsic is lowered to the ``val``.
8379
8380'``llvm.donothing``' Intrinsic
8381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8382
8383Syntax:
8384"""""""
8385
8386::
8387
8388 declare void @llvm.donothing() nounwind readnone
8389
8390Overview:
8391"""""""""
8392
8393The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8394only intrinsic that can be called with an invoke instruction.
8395
8396Arguments:
8397""""""""""
8398
8399None.
8400
8401Semantics:
8402""""""""""
8403
8404This intrinsic does nothing, and it's removed by optimizers and ignored
8405by codegen.