blob: f28f8bd6bce2cc806772e7a0fafe5ad46c30dc37 [file] [log] [blame]
Daniel Berlinae6b8b62017-01-28 01:35:02 +00001//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------===//
9//
10// This file implements the MemorySSAUpdater class.
11//
12//===----------------------------------------------------------------===//
Daniel Berlin554dcd82017-04-11 20:06:36 +000013#include "llvm/Analysis/MemorySSAUpdater.h"
Daniel Berlinae6b8b62017-01-28 01:35:02 +000014#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallSet.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000017#include "llvm/Analysis/MemorySSA.h"
Daniel Berlinae6b8b62017-01-28 01:35:02 +000018#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/Dominators.h"
20#include "llvm/IR/GlobalVariable.h"
21#include "llvm/IR/IRBuilder.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Metadata.h"
25#include "llvm/IR/Module.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/FormattedStream.h"
Daniel Berlinae6b8b62017-01-28 01:35:02 +000028#include <algorithm>
29
30#define DEBUG_TYPE "memoryssa"
31using namespace llvm;
George Burgess IV56169ed2017-04-21 04:54:52 +000032
Daniel Berlinae6b8b62017-01-28 01:35:02 +000033// This is the marker algorithm from "Simple and Efficient Construction of
34// Static Single Assignment Form"
35// The simple, non-marker algorithm places phi nodes at any join
36// Here, we place markers, and only place phi nodes if they end up necessary.
37// They are only necessary if they break a cycle (IE we recursively visit
38// ourselves again), or we discover, while getting the value of the operands,
39// that there are two or more definitions needing to be merged.
40// This still will leave non-minimal form in the case of irreducible control
41// flow, where phi nodes may be in cycles with themselves, but unnecessary.
42MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
43 // Single predecessor case, just recurse, we can only have one definition.
44 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
45 return getPreviousDefFromEnd(Pred);
46 } else if (VisitedBlocks.count(BB)) {
47 // We hit our node again, meaning we had a cycle, we must insert a phi
48 // node to break it so we have an operand. The only case this will
49 // insert useless phis is if we have irreducible control flow.
50 return MSSA->createMemoryPhi(BB);
51 } else if (VisitedBlocks.insert(BB).second) {
52 // Mark us visited so we can detect a cycle
53 SmallVector<MemoryAccess *, 8> PhiOps;
54
55 // Recurse to get the values in our predecessors for placement of a
56 // potential phi node. This will insert phi nodes if we cycle in order to
57 // break the cycle and have an operand.
58 for (auto *Pred : predecessors(BB))
59 PhiOps.push_back(getPreviousDefFromEnd(Pred));
60
61 // Now try to simplify the ops to avoid placing a phi.
62 // This may return null if we never created a phi yet, that's okay
63 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
64 bool PHIExistsButNeedsUpdate = false;
65 // See if the existing phi operands match what we need.
66 // Unlike normal SSA, we only allow one phi node per block, so we can't just
67 // create a new one.
68 if (Phi && Phi->getNumOperands() != 0)
69 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
70 PHIExistsButNeedsUpdate = true;
71 }
72
73 // See if we can avoid the phi by simplifying it.
74 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
75 // If we couldn't simplify, we may have to create a phi
76 if (Result == Phi) {
77 if (!Phi)
78 Phi = MSSA->createMemoryPhi(BB);
79
80 // These will have been filled in by the recursive read we did above.
81 if (PHIExistsButNeedsUpdate) {
82 std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
83 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
84 } else {
85 unsigned i = 0;
86 for (auto *Pred : predecessors(BB))
87 Phi->addIncoming(PhiOps[i++], Pred);
Daniel Berlin97f34e82017-09-27 05:35:19 +000088 InsertedPHIs.push_back(Phi);
Daniel Berlinae6b8b62017-01-28 01:35:02 +000089 }
Daniel Berlinae6b8b62017-01-28 01:35:02 +000090 Result = Phi;
91 }
Daniel Berlin97f34e82017-09-27 05:35:19 +000092
Daniel Berlinae6b8b62017-01-28 01:35:02 +000093 // Set ourselves up for the next variable by resetting visited state.
94 VisitedBlocks.erase(BB);
95 return Result;
96 }
97 llvm_unreachable("Should have hit one of the three cases above");
98}
99
100// This starts at the memory access, and goes backwards in the block to find the
101// previous definition. If a definition is not found the block of the access,
102// it continues globally, creating phi nodes to ensure we have a single
103// definition.
104MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
105 auto *LocalResult = getPreviousDefInBlock(MA);
106
107 return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
108}
109
110// This starts at the memory access, and goes backwards in the block to the find
111// the previous definition. If the definition is not found in the block of the
112// access, it returns nullptr.
113MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
114 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
115
116 // It's possible there are no defs, or we got handed the first def to start.
117 if (Defs) {
118 // If this is a def, we can just use the def iterators.
119 if (!isa<MemoryUse>(MA)) {
120 auto Iter = MA->getReverseDefsIterator();
121 ++Iter;
122 if (Iter != Defs->rend())
123 return &*Iter;
124 } else {
125 // Otherwise, have to walk the all access iterator.
Alina Sbirlea33e58722017-06-07 16:46:53 +0000126 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
127 for (auto &U : make_range(++MA->getReverseIterator(), End))
128 if (!isa<MemoryUse>(U))
129 return cast<MemoryAccess>(&U);
130 // Note that if MA comes before Defs->begin(), we won't hit a def.
131 return nullptr;
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000132 }
133 }
134 return nullptr;
135}
136
137// This starts at the end of block
138MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
139 auto *Defs = MSSA->getWritableBlockDefs(BB);
140
141 if (Defs)
142 return &*Defs->rbegin();
143
144 return getPreviousDefRecursive(BB);
145}
146// Recurse over a set of phi uses to eliminate the trivial ones
147MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
148 if (!Phi)
149 return nullptr;
150 TrackingVH<MemoryAccess> Res(Phi);
151 SmallVector<TrackingVH<Value>, 8> Uses;
152 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
153 for (auto &U : Uses) {
154 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
155 auto OperRange = UsePhi->operands();
156 tryRemoveTrivialPhi(UsePhi, OperRange);
157 }
158 }
159 return Res;
160}
161
162// Eliminate trivial phis
163// Phis are trivial if they are defined either by themselves, or all the same
164// argument.
165// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
166// We recursively try to remove them.
167template <class RangeType>
168MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
169 RangeType &Operands) {
170 // Detect equal or self arguments
171 MemoryAccess *Same = nullptr;
172 for (auto &Op : Operands) {
173 // If the same or self, good so far
174 if (Op == Phi || Op == Same)
175 continue;
176 // not the same, return the phi since it's not eliminatable by us
177 if (Same)
178 return Phi;
179 Same = cast<MemoryAccess>(Op);
180 }
181 // Never found a non-self reference, the phi is undef
182 if (Same == nullptr)
183 return MSSA->getLiveOnEntryDef();
184 if (Phi) {
185 Phi->replaceAllUsesWith(Same);
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000186 removeMemoryAccess(Phi);
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000187 }
188
189 // We should only end up recursing in case we replaced something, in which
190 // case, we may have made other Phis trivial.
191 return recursePhi(Same);
192}
193
194void MemorySSAUpdater::insertUse(MemoryUse *MU) {
195 InsertedPHIs.clear();
196 MU->setDefiningAccess(getPreviousDef(MU));
197 // Unlike for defs, there is no extra work to do. Because uses do not create
198 // new may-defs, there are only two cases:
199 //
200 // 1. There was a def already below us, and therefore, we should not have
201 // created a phi node because it was already needed for the def.
202 //
203 // 2. There is no def below us, and therefore, there is no extra renaming work
204 // to do.
205}
206
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000207// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
George Burgess IV56169ed2017-04-21 04:54:52 +0000208static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
209 MemoryAccess *NewDef) {
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000210 // Replace any operand with us an incoming block with the new defining
211 // access.
212 int i = MP->getBasicBlockIndex(BB);
213 assert(i != -1 && "Should have found the basic block in the phi");
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000214 // We can't just compare i against getNumOperands since one is signed and the
215 // other not. So use it to index into the block iterator.
216 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
217 ++BBIter) {
218 if (*BBIter != BB)
219 break;
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000220 MP->setIncomingValue(i, NewDef);
221 ++i;
222 }
223}
224
225// A brief description of the algorithm:
226// First, we compute what should define the new def, using the SSA
227// construction algorithm.
228// Then, we update the defs below us (and any new phi nodes) in the graph to
229// point to the correct new defs, to ensure we only have one variable, and no
230// disconnected stores.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000231void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000232 InsertedPHIs.clear();
233
234 // See if we had a local def, and if not, go hunting.
235 MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
236 bool DefBeforeSameBlock = DefBefore != nullptr;
237 if (!DefBefore)
238 DefBefore = getPreviousDefRecursive(MD->getBlock());
239
240 // There is a def before us, which means we can replace any store/phi uses
241 // of that thing with us, since we are in the way of whatever was there
242 // before.
243 // We now define that def's memorydefs and memoryphis
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000244 if (DefBeforeSameBlock) {
245 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
246 UI != UE;) {
247 Use &U = *UI++;
248 // Leave the uses alone
249 if (isa<MemoryUse>(U.getUser()))
250 continue;
251 U.set(MD);
252 }
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000253 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000254
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000255 // and that def is now our defining access.
256 // We change them in this order otherwise we will appear in the use list
257 // above and reset ourselves.
258 MD->setDefiningAccess(DefBefore);
259
260 SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
261 InsertedPHIs.end());
262 if (!DefBeforeSameBlock) {
263 // If there was a local def before us, we must have the same effect it
264 // did. Because every may-def is the same, any phis/etc we would create, it
265 // would also have created. If there was no local def before us, we
266 // performed a global update, and have to search all successors and make
267 // sure we update the first def in each of them (following all paths until
268 // we hit the first def along each path). This may also insert phi nodes.
269 // TODO: There are other cases we can skip this work, such as when we have a
270 // single successor, and only used a straight line of single pred blocks
271 // backwards to find the def. To make that work, we'd have to track whether
272 // getDefRecursive only ever used the single predecessor case. These types
273 // of paths also only exist in between CFG simplifications.
274 FixupList.push_back(MD);
275 }
276
277 while (!FixupList.empty()) {
278 unsigned StartingPHISize = InsertedPHIs.size();
279 fixupDefs(FixupList);
280 FixupList.clear();
281 // Put any new phis on the fixup list, and process them
282 FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
283 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000284 // Now that all fixups are done, rename all uses if we are asked.
285 if (RenameUses) {
286 SmallPtrSet<BasicBlock *, 16> Visited;
287 BasicBlock *StartBlock = MD->getBlock();
288 // We are guaranteed there is a def in the block, because we just got it
289 // handed to us in this function.
290 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
291 // Convert to incoming value if it's a memorydef. A phi *is* already an
292 // incoming value.
293 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
294 FirstDef = MD->getDefiningAccess();
295
296 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
297 // We just inserted a phi into this block, so the incoming value will become
298 // the phi anyway, so it does not matter what we pass.
299 for (auto *MP : InsertedPHIs)
300 MSSA->renamePass(MP->getBlock(), nullptr, Visited);
301 }
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000302}
303
304void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
305 SmallPtrSet<const BasicBlock *, 8> Seen;
306 SmallVector<const BasicBlock *, 16> Worklist;
307 for (auto *NewDef : Vars) {
308 // First, see if there is a local def after the operand.
309 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
310 auto DefIter = NewDef->getDefsIterator();
311
312 // If there is a local def after us, we only have to rename that.
313 if (++DefIter != Defs->end()) {
314 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
315 continue;
316 }
317
318 // Otherwise, we need to search down through the CFG.
319 // For each of our successors, handle it directly if their is a phi, or
320 // place on the fixup worklist.
321 for (const auto *S : successors(NewDef->getBlock())) {
322 if (auto *MP = MSSA->getMemoryAccess(S))
323 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
324 else
325 Worklist.push_back(S);
326 }
327
328 while (!Worklist.empty()) {
329 const BasicBlock *FixupBlock = Worklist.back();
330 Worklist.pop_back();
331
332 // Get the first def in the block that isn't a phi node.
333 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
334 auto *FirstDef = &*Defs->begin();
335 // The loop above and below should have taken care of phi nodes
336 assert(!isa<MemoryPhi>(FirstDef) &&
337 "Should have already handled phi nodes!");
338 // We are now this def's defining access, make sure we actually dominate
339 // it
340 assert(MSSA->dominates(NewDef, FirstDef) &&
341 "Should have dominated the new access");
342
343 // This may insert new phi nodes, because we are not guaranteed the
344 // block we are processing has a single pred, and depending where the
345 // store was inserted, it may require phi nodes below it.
346 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
347 return;
348 }
349 // We didn't find a def, so we must continue.
350 for (const auto *S : successors(FixupBlock)) {
351 // If there is a phi node, handle it.
352 // Otherwise, put the block on the worklist
353 if (auto *MP = MSSA->getMemoryAccess(S))
354 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
355 else {
356 // If we cycle, we should have ended up at a phi node that we already
357 // processed. FIXME: Double check this
358 if (!Seen.insert(S).second)
359 continue;
360 Worklist.push_back(S);
361 }
362 }
363 }
364 }
365}
366
367// Move What before Where in the MemorySSA IR.
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000368template <class WhereType>
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000369void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000370 WhereType Where) {
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000371 // Replace all our users with our defining access.
372 What->replaceAllUsesWith(What->getDefiningAccess());
373
374 // Let MemorySSA take care of moving it around in the lists.
375 MSSA->moveTo(What, BB, Where);
376
377 // Now reinsert it into the IR and do whatever fixups needed.
378 if (auto *MD = dyn_cast<MemoryDef>(What))
379 insertDef(MD);
380 else
381 insertUse(cast<MemoryUse>(What));
382}
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000383
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000384// Move What before Where in the MemorySSA IR.
385void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
386 moveTo(What, Where->getBlock(), Where->getIterator());
387}
388
389// Move What after Where in the MemorySSA IR.
390void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
391 moveTo(What, Where->getBlock(), ++Where->getIterator());
392}
393
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000394void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
395 MemorySSA::InsertionPlace Where) {
396 return moveTo(What, BB, Where);
397}
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000398
399/// \brief If all arguments of a MemoryPHI are defined by the same incoming
400/// argument, return that argument.
401static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
402 MemoryAccess *MA = nullptr;
403
404 for (auto &Arg : MP->operands()) {
405 if (!MA)
406 MA = cast<MemoryAccess>(Arg);
407 else if (MA != Arg)
408 return nullptr;
409 }
410 return MA;
411}
George Burgess IV56169ed2017-04-21 04:54:52 +0000412
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000413void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
414 assert(!MSSA->isLiveOnEntryDef(MA) &&
415 "Trying to remove the live on entry def");
416 // We can only delete phi nodes if they have no uses, or we can replace all
417 // uses with a single definition.
418 MemoryAccess *NewDefTarget = nullptr;
419 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
420 // Note that it is sufficient to know that all edges of the phi node have
421 // the same argument. If they do, by the definition of dominance frontiers
422 // (which we used to place this phi), that argument must dominate this phi,
423 // and thus, must dominate the phi's uses, and so we will not hit the assert
424 // below.
425 NewDefTarget = onlySingleValue(MP);
426 assert((NewDefTarget || MP->use_empty()) &&
427 "We can't delete this memory phi");
428 } else {
429 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
430 }
431
432 // Re-point the uses at our defining access
433 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
434 // Reset optimized on users of this store, and reset the uses.
435 // A few notes:
436 // 1. This is a slightly modified version of RAUW to avoid walking the
437 // uses twice here.
438 // 2. If we wanted to be complete, we would have to reset the optimized
439 // flags on users of phi nodes if doing the below makes a phi node have all
440 // the same arguments. Instead, we prefer users to removeMemoryAccess those
441 // phi nodes, because doing it here would be N^3.
442 if (MA->hasValueHandle())
443 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
444 // Note: We assume MemorySSA is not used in metadata since it's not really
445 // part of the IR.
446
447 while (!MA->use_empty()) {
448 Use &U = *MA->use_begin();
Daniel Berline33bc312017-04-04 23:43:10 +0000449 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
450 MUD->resetOptimized();
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000451 U.set(NewDefTarget);
452 }
453 }
454
455 // The call below to erase will destroy MA, so we can't change the order we
456 // are doing things here
457 MSSA->removeFromLookups(MA);
458 MSSA->removeFromLists(MA);
459}
460
461MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
462 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
463 MemorySSA::InsertionPlace Point) {
464 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
465 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
466 return NewAccess;
467}
468
469MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
470 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
471 assert(I->getParent() == InsertPt->getBlock() &&
472 "New and old access must be in the same block");
473 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
474 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
475 InsertPt->getIterator());
476 return NewAccess;
477}
478
479MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
480 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
481 assert(I->getParent() == InsertPt->getBlock() &&
482 "New and old access must be in the same block");
483 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
484 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
485 ++InsertPt->getIterator());
486 return NewAccess;
487}