blob: d16a05321b76503f2b06099fa670f0b9062100fd [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135//===----------------------------------------------------------------------===//
136// EH Pseudo Instructions
137//
138let SchedRW = [WriteSystem] in {
139let isTerminator = 1, isReturn = 1, isBarrier = 1,
140 hasCtrlDep = 1, isCodeGenOnly = 1 in {
141def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
142 "ret\t#eh_return, addr: $addr",
143 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
144
145}
146
147let isTerminator = 1, isReturn = 1, isBarrier = 1,
148 hasCtrlDep = 1, isCodeGenOnly = 1 in {
149def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
150 "ret\t#eh_return, addr: $addr",
151 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
152
153}
154
David Majnemerf828a0c2015-10-01 18:44:59 +0000155let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1, isReturn = 1 in {
156def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
157 "# CATCHRET",
158 [(catchret bb:$dst, bb:$from)]>;
Reid Kleckner5b8a46e2015-09-17 20:43:47 +0000159def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
Reid Kleckner0e288232015-08-27 23:27:47 +0000160}
161
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000162let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
163 usesCustomInserter = 1 in {
164 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
165 "#EH_SJLJ_SETJMP32",
166 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
167 Requires<[Not64BitMode]>;
168 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
169 "#EH_SJLJ_SETJMP64",
170 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
171 Requires<[In64BitMode]>;
172 let isTerminator = 1 in {
173 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
174 "#EH_SJLJ_LONGJMP32",
175 [(X86eh_sjlj_longjmp addr:$buf)]>,
176 Requires<[Not64BitMode]>;
177 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
178 "#EH_SJLJ_LONGJMP64",
179 [(X86eh_sjlj_longjmp addr:$buf)]>,
180 Requires<[In64BitMode]>;
181 }
182}
183} // SchedRW
184
185let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
186 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
187 "#EH_SjLj_Setup\t$dst", []>;
188}
189
190//===----------------------------------------------------------------------===//
191// Pseudo instructions used by unwind info.
192//
193let isPseudo = 1 in {
194 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
195 "#SEH_PushReg $reg", []>;
196 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
197 "#SEH_SaveReg $reg, $dst", []>;
198 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
199 "#SEH_SaveXMM $reg, $dst", []>;
200 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
201 "#SEH_StackAlloc $size", []>;
202 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
203 "#SEH_SetFrame $reg, $offset", []>;
204 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
205 "#SEH_PushFrame $mode", []>;
206 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
207 "#SEH_EndPrologue", []>;
208 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
209 "#SEH_Epilogue", []>;
210}
211
212//===----------------------------------------------------------------------===//
213// Pseudo instructions used by segmented stacks.
214//
215
216// This is lowered into a RET instruction by MCInstLower. We need
217// this so that we don't have to have a MachineBasicBlock which ends
218// with a RET and also has successors.
219let isPseudo = 1 in {
220def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
221 "", []>;
222
223// This instruction is lowered to a RET followed by a MOV. The two
224// instructions are not generated on a higher level since then the
225// verifier sees a MachineBasicBlock ending with a non-terminator.
226def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
227 "", []>;
228}
229
230//===----------------------------------------------------------------------===//
231// Alias Instructions
232//===----------------------------------------------------------------------===//
233
234// Alias instruction mapping movr0 to xor.
235// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
236let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
237 isPseudo = 1 in
238def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
239 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
240
241// Other widths can also make use of the 32-bit xor, which may have a smaller
242// encoding and avoid partial register updates.
243def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
244def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
245def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
246 let AddedComplexity = 20;
247}
248
249// Materialize i64 constant where top 32-bits are zero. This could theoretically
250// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
251// that would make it more difficult to rematerialize.
252let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
253 isCodeGenOnly = 1, hasSideEffects = 0 in
254def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
255 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
256
257// This 64-bit pseudo-move can be used for both a 64-bit constant that is
258// actually the zero-extension of a 32-bit constant, and for labels in the
259// x86-64 small code model.
260def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
261
262let AddedComplexity = 1 in
263def : Pat<(i64 mov64imm32:$src),
264 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
265
266// Use sbb to materialize carry bit.
267let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
268// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
269// However, Pat<> can't replicate the destination reg into the inputs of the
270// result.
271def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
272 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
273def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
274 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
275def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
276 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
277def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
278 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
279} // isCodeGenOnly
280
281
282def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
283 (SETB_C16r)>;
284def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
285 (SETB_C32r)>;
286def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
287 (SETB_C64r)>;
288
289def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
290 (SETB_C16r)>;
291def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
292 (SETB_C32r)>;
293def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
294 (SETB_C64r)>;
295
296// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
297// will be eliminated and that the sbb can be extended up to a wider type. When
298// this happens, it is great. However, if we are left with an 8-bit sbb and an
299// and, we might as well just match it as a setb.
300def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
301 (SETBr)>;
302
303// (add OP, SETB) -> (adc OP, 0)
304def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
305 (ADC8ri GR8:$op, 0)>;
306def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
307 (ADC32ri8 GR32:$op, 0)>;
308def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
309 (ADC64ri8 GR64:$op, 0)>;
310
311// (sub OP, SETB) -> (sbb OP, 0)
312def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
313 (SBB8ri GR8:$op, 0)>;
314def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
315 (SBB32ri8 GR32:$op, 0)>;
316def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
317 (SBB64ri8 GR64:$op, 0)>;
318
319// (sub OP, SETCC_CARRY) -> (adc OP, 0)
320def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
321 (ADC8ri GR8:$op, 0)>;
322def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
323 (ADC32ri8 GR32:$op, 0)>;
324def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
325 (ADC64ri8 GR64:$op, 0)>;
326
327//===----------------------------------------------------------------------===//
328// String Pseudo Instructions
329//
330let SchedRW = [WriteMicrocoded] in {
331let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
332def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
333 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
334 Requires<[Not64BitMode]>;
335def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
336 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
337 Requires<[Not64BitMode]>;
338def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
339 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
340 Requires<[Not64BitMode]>;
341}
342
343let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
344def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
345 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
346 Requires<[In64BitMode]>;
347def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
348 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
349 Requires<[In64BitMode]>;
350def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
351 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
352 Requires<[In64BitMode]>;
353def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
354 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
355 Requires<[In64BitMode]>;
356}
357
358// FIXME: Should use "(X86rep_stos AL)" as the pattern.
359let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
360 let Uses = [AL,ECX,EDI] in
361 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
362 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
363 Requires<[Not64BitMode]>;
364 let Uses = [AX,ECX,EDI] in
365 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
366 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
367 Requires<[Not64BitMode]>;
368 let Uses = [EAX,ECX,EDI] in
369 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
370 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
371 Requires<[Not64BitMode]>;
372}
373
374let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
375 let Uses = [AL,RCX,RDI] in
376 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
377 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
378 Requires<[In64BitMode]>;
379 let Uses = [AX,RCX,RDI] in
380 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
381 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
382 Requires<[In64BitMode]>;
383 let Uses = [RAX,RCX,RDI] in
384 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
385 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
386 Requires<[In64BitMode]>;
387
388 let Uses = [RAX,RCX,RDI] in
389 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
390 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
391 Requires<[In64BitMode]>;
392}
393} // SchedRW
394
395//===----------------------------------------------------------------------===//
396// Thread Local Storage Instructions
397//
398
399// ELF TLS Support
400// All calls clobber the non-callee saved registers. ESP is marked as
401// a use to prevent stack-pointer assignments that appear immediately
402// before calls from potentially appearing dead.
403let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
404 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
405 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
406 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
407 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
408 Uses = [ESP] in {
409def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
410 "# TLS_addr32",
411 [(X86tlsaddr tls32addr:$sym)]>,
412 Requires<[Not64BitMode]>;
413def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
414 "# TLS_base_addr32",
415 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
416 Requires<[Not64BitMode]>;
417}
418
419// All calls clobber the non-callee saved registers. RSP is marked as
420// a use to prevent stack-pointer assignments that appear immediately
421// before calls from potentially appearing dead.
422let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
423 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
424 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
425 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
426 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
427 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
428 Uses = [RSP] in {
429def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
430 "# TLS_addr64",
431 [(X86tlsaddr tls64addr:$sym)]>,
432 Requires<[In64BitMode]>;
433def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
434 "# TLS_base_addr64",
435 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
436 Requires<[In64BitMode]>;
437}
438
439// Darwin TLS Support
440// For i386, the address of the thunk is passed on the stack, on return the
441// address of the variable is in %eax. %ecx is trashed during the function
442// call. All other registers are preserved.
443let Defs = [EAX, ECX, EFLAGS],
444 Uses = [ESP],
445 usesCustomInserter = 1 in
446def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
447 "# TLSCall_32",
448 [(X86TLSCall addr:$sym)]>,
449 Requires<[Not64BitMode]>;
450
451// For x86_64, the address of the thunk is passed in %rdi, on return
452// the address of the variable is in %rax. All other registers are preserved.
453let Defs = [RAX, EFLAGS],
454 Uses = [RSP, RDI],
455 usesCustomInserter = 1 in
456def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
457 "# TLSCall_64",
458 [(X86TLSCall addr:$sym)]>,
459 Requires<[In64BitMode]>;
460
461
462//===----------------------------------------------------------------------===//
463// Conditional Move Pseudo Instructions
464
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000465// CMOV* - Used to implement the SELECT DAG operation. Expanded after
466// instruction selection into a branch sequence.
467multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
468 def CMOV#NAME : I<0, Pseudo,
469 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
470 "#CMOV_"#NAME#" PSEUDO!",
471 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
472 EFLAGS)))]>;
473}
474
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000475let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000476 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
477 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
478 // however that requires promoting the operands, and can induce additional
479 // i8 register pressure.
480 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000481
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000482 let Predicates = [NoCMov] in {
483 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
484 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
485 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000486
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000487 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
488 // SSE1/SSE2.
489 let Predicates = [FPStackf32] in
490 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000491
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000492 let Predicates = [FPStackf64] in
493 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
494
495 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
496
497 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
498 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
499 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
500 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
501 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
502 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
503 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
504 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
505 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
506 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
507 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000508 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
509 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
510 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
511 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000512} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000513
514//===----------------------------------------------------------------------===//
515// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
516//===----------------------------------------------------------------------===//
517
518// FIXME: Use normal instructions and add lock prefix dynamically.
519
520// Memory barriers
521
522// TODO: Get this to fold the constant into the instruction.
523let isCodeGenOnly = 1, Defs = [EFLAGS] in
524def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
525 "or{l}\t{$zero, $dst|$dst, $zero}",
526 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
527 Sched<[WriteALULd, WriteRMW]>;
528
529let hasSideEffects = 1 in
530def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
531 "#MEMBARRIER",
532 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
533
534// RegOpc corresponds to the mr version of the instruction
535// ImmOpc corresponds to the mi version of the instruction
536// ImmOpc8 corresponds to the mi8 version of the instruction
537// ImmMod corresponds to the instruction format of the mi and mi8 versions
538multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
539 Format ImmMod, string mnemonic> {
540let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
541 SchedRW = [WriteALULd, WriteRMW] in {
542
543def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
544 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
545 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
546 !strconcat(mnemonic, "{b}\t",
547 "{$src2, $dst|$dst, $src2}"),
548 [], IIC_ALU_NONMEM>, LOCK;
549def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
550 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
551 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
552 !strconcat(mnemonic, "{w}\t",
553 "{$src2, $dst|$dst, $src2}"),
554 [], IIC_ALU_NONMEM>, OpSize16, LOCK;
555def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
556 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
557 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
558 !strconcat(mnemonic, "{l}\t",
559 "{$src2, $dst|$dst, $src2}"),
560 [], IIC_ALU_NONMEM>, OpSize32, LOCK;
561def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
562 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
563 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
564 !strconcat(mnemonic, "{q}\t",
565 "{$src2, $dst|$dst, $src2}"),
566 [], IIC_ALU_NONMEM>, LOCK;
567
568def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
569 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
570 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
571 !strconcat(mnemonic, "{b}\t",
572 "{$src2, $dst|$dst, $src2}"),
573 [], IIC_ALU_MEM>, LOCK;
574
575def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
576 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
577 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
578 !strconcat(mnemonic, "{w}\t",
579 "{$src2, $dst|$dst, $src2}"),
580 [], IIC_ALU_MEM>, OpSize16, LOCK;
581
582def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
583 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
584 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
585 !strconcat(mnemonic, "{l}\t",
586 "{$src2, $dst|$dst, $src2}"),
587 [], IIC_ALU_MEM>, OpSize32, LOCK;
588
589def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
590 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
591 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
592 !strconcat(mnemonic, "{q}\t",
593 "{$src2, $dst|$dst, $src2}"),
594 [], IIC_ALU_MEM>, LOCK;
595
596def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
597 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
598 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
599 !strconcat(mnemonic, "{w}\t",
600 "{$src2, $dst|$dst, $src2}"),
601 [], IIC_ALU_MEM>, OpSize16, LOCK;
602def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
603 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
604 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
605 !strconcat(mnemonic, "{l}\t",
606 "{$src2, $dst|$dst, $src2}"),
607 [], IIC_ALU_MEM>, OpSize32, LOCK;
608def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
609 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
610 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
611 !strconcat(mnemonic, "{q}\t",
612 "{$src2, $dst|$dst, $src2}"),
613 [], IIC_ALU_MEM>, LOCK;
614
615}
616
617}
618
619defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
620defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
621defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
622defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
623defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
624
625// Optimized codegen when the non-memory output is not used.
626multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
627 string mnemonic> {
628let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
629 SchedRW = [WriteALULd, WriteRMW] in {
630
631def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
632 !strconcat(mnemonic, "{b}\t$dst"),
633 [], IIC_UNARY_MEM>, LOCK;
634def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
635 !strconcat(mnemonic, "{w}\t$dst"),
636 [], IIC_UNARY_MEM>, OpSize16, LOCK;
637def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
638 !strconcat(mnemonic, "{l}\t$dst"),
639 [], IIC_UNARY_MEM>, OpSize32, LOCK;
640def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
641 !strconcat(mnemonic, "{q}\t$dst"),
642 [], IIC_UNARY_MEM>, LOCK;
643}
644}
645
646defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
647defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
648
649// Atomic compare and swap.
650multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
651 SDPatternOperator frag, X86MemOperand x86memop,
652 InstrItinClass itin> {
653let isCodeGenOnly = 1 in {
654 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
655 !strconcat(mnemonic, "\t$ptr"),
656 [(frag addr:$ptr)], itin>, TB, LOCK;
657}
658}
659
660multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
661 string mnemonic, SDPatternOperator frag,
662 InstrItinClass itin8, InstrItinClass itin> {
663let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
664 let Defs = [AL, EFLAGS], Uses = [AL] in
665 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
666 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
667 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
668 let Defs = [AX, EFLAGS], Uses = [AX] in
669 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
670 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
671 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
672 let Defs = [EAX, EFLAGS], Uses = [EAX] in
673 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
674 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
675 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
676 let Defs = [RAX, EFLAGS], Uses = [RAX] in
677 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
678 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
679 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
680}
681}
682
683let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
684 SchedRW = [WriteALULd, WriteRMW] in {
685defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
686 X86cas8, i64mem,
687 IIC_CMPX_LOCK_8B>;
688}
689
690let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
691 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
692defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
693 X86cas16, i128mem,
694 IIC_CMPX_LOCK_16B>, REX_W;
695}
696
697defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
698 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
699
700// Atomic exchange and add
701multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
702 string frag,
703 InstrItinClass itin8, InstrItinClass itin> {
704 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
705 SchedRW = [WriteALULd, WriteRMW] in {
706 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
707 (ins GR8:$val, i8mem:$ptr),
708 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
709 [(set GR8:$dst,
710 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
711 itin8>;
712 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
713 (ins GR16:$val, i16mem:$ptr),
714 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
715 [(set
716 GR16:$dst,
717 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
718 itin>, OpSize16;
719 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
720 (ins GR32:$val, i32mem:$ptr),
721 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
722 [(set
723 GR32:$dst,
724 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
725 itin>, OpSize32;
726 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
727 (ins GR64:$val, i64mem:$ptr),
728 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
729 [(set
730 GR64:$dst,
731 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
732 itin>;
733 }
734}
735
736defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
737 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
738 TB, LOCK;
739
740/* The following multiclass tries to make sure that in code like
741 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000742 * and
743 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000744 * an operation directly on memory is generated instead of wasting a register.
745 * It is not automatic as atomic_store/load are only lowered to MOV instructions
746 * extremely late to prevent them from being accidentally reordered in the backend
747 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
748 */
JF Bastien0f8a99b2015-08-05 23:15:37 +0000749multiclass RELEASE_BINOP_MI<SDNode op> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000750 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000751 "#BINOP "#NAME#"8mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000752 [(atomic_store_8 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000753 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000754 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
755 "#BINOP "#NAME#"8mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000756 [(atomic_store_8 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000757 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000758 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
759 // costly and avoided as far as possible by this backend anyway
760 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000761 "#BINOP "#NAME#"32mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000762 [(atomic_store_32 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000763 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000764 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
765 "#BINOP "#NAME#"32mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000766 [(atomic_store_32 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000767 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000768 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000769 "#BINOP "#NAME#"64mi32 PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000770 [(atomic_store_64 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000771 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000772 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
773 "#BINOP "#NAME#"64mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000774 [(atomic_store_64 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000775 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000776}
JF Bastien986ed682015-10-13 00:28:47 +0000777let Defs = [EFLAGS] in {
778 defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
779 defm RELEASE_AND : RELEASE_BINOP_MI<and>;
780 defm RELEASE_OR : RELEASE_BINOP_MI<or>;
781 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
782 // Note: we don't deal with sub, because substractions of constants are
783 // optimized into additions before this code can run.
784}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000785
JF Bastien86620832015-08-05 21:04:59 +0000786// Same as above, but for floating-point.
787// FIXME: imm version.
788// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
789// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
790let usesCustomInserter = 1 in {
JF Bastien0f8a99b2015-08-05 23:15:37 +0000791multiclass RELEASE_FP_BINOP_MI<SDNode op> {
JF Bastien86620832015-08-05 21:04:59 +0000792 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
793 "#BINOP "#NAME#"32mr PSEUDO!",
794 [(atomic_store_32 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000795 (i32 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000796 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
797 FR32:$src))))]>, Requires<[HasSSE1]>;
798 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
799 "#BINOP "#NAME#"64mr PSEUDO!",
800 [(atomic_store_64 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000801 (i64 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000802 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
803 FR64:$src))))]>, Requires<[HasSSE2]>;
804}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000805defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
JF Bastien86620832015-08-05 21:04:59 +0000806// FIXME: Add fsub, fmul, fdiv, ...
807}
808
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000809multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
810 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000811 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000812 [(atomic_store_8 addr:$dst, dag8)]>;
813 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000814 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000815 [(atomic_store_16 addr:$dst, dag16)]>;
816 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000817 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000818 [(atomic_store_32 addr:$dst, dag32)]>;
819 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000820 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000821 [(atomic_store_64 addr:$dst, dag64)]>;
822}
823
824defm RELEASE_INC : RELEASE_UNOP<
825 (add (atomic_load_8 addr:$dst), (i8 1)),
826 (add (atomic_load_16 addr:$dst), (i16 1)),
827 (add (atomic_load_32 addr:$dst), (i32 1)),
828 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
829defm RELEASE_DEC : RELEASE_UNOP<
830 (add (atomic_load_8 addr:$dst), (i8 -1)),
831 (add (atomic_load_16 addr:$dst), (i16 -1)),
832 (add (atomic_load_32 addr:$dst), (i32 -1)),
833 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
834/*
835TODO: These don't work because the type inference of TableGen fails.
836TODO: find a way to fix it.
837defm RELEASE_NEG : RELEASE_UNOP<
838 (ineg (atomic_load_8 addr:$dst)),
839 (ineg (atomic_load_16 addr:$dst)),
840 (ineg (atomic_load_32 addr:$dst)),
841 (ineg (atomic_load_64 addr:$dst))>;
842defm RELEASE_NOT : RELEASE_UNOP<
843 (not (atomic_load_8 addr:$dst)),
844 (not (atomic_load_16 addr:$dst)),
845 (not (atomic_load_32 addr:$dst)),
846 (not (atomic_load_64 addr:$dst))>;
847*/
848
849def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000850 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000851 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
852def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000853 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000854 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
855def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000856 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000857 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
858def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000859 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000860 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
861
862def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000863 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000864 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
865def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000866 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000867 [(atomic_store_16 addr:$dst, GR16:$src)]>;
868def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000869 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000870 [(atomic_store_32 addr:$dst, GR32:$src)]>;
871def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000872 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000873 [(atomic_store_64 addr:$dst, GR64:$src)]>;
874
875def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +0000876 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000877 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
878def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000879 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000880 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
881def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000882 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000883 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
884def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000885 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000886 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000887
888//===----------------------------------------------------------------------===//
889// DAG Pattern Matching Rules
890//===----------------------------------------------------------------------===//
891
892// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
893def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
894def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
895def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
896def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
897def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000898def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000899def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
900
901def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
902 (ADD32ri GR32:$src1, tconstpool:$src2)>;
903def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
904 (ADD32ri GR32:$src1, tjumptable:$src2)>;
905def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
906 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
907def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
908 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000909def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
910 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000911def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
912 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
913
914def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
915 (MOV32mi addr:$dst, tglobaladdr:$src)>;
916def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
917 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000918def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
919 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000920def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
921 (MOV32mi addr:$dst, tblockaddress:$src)>;
922
923// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
924// code model mode, should use 'movabs'. FIXME: This is really a hack, the
925// 'movabs' predicate should handle this sort of thing.
926def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
927 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
928def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
929 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
930def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
931 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
932def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
933 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000934def : Pat<(i64 (X86Wrapper mcsym:$dst)),
935 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000936def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
937 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
938
939// In kernel code model, we can get the address of a label
940// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
941// the MOV64ri32 should accept these.
942def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
943 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
944def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
945 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
946def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
947 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
948def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
949 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000950def : Pat<(i64 (X86Wrapper mcsym:$dst)),
951 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000952def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
953 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
954
955// If we have small model and -static mode, it is safe to store global addresses
956// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
957// for MOV64mi32 should handle this sort of thing.
958def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
959 (MOV64mi32 addr:$dst, tconstpool:$src)>,
960 Requires<[NearData, IsStatic]>;
961def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
962 (MOV64mi32 addr:$dst, tjumptable:$src)>,
963 Requires<[NearData, IsStatic]>;
964def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
965 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
966 Requires<[NearData, IsStatic]>;
967def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
968 (MOV64mi32 addr:$dst, texternalsym:$src)>,
969 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000970def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
971 (MOV64mi32 addr:$dst, mcsym:$src)>,
972 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000973def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
974 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
975 Requires<[NearData, IsStatic]>;
976
Rafael Espindola36b718f2015-06-22 17:46:53 +0000977def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
978def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000979
980// Calls
981
982// tls has some funny stuff here...
983// This corresponds to movabs $foo@tpoff, %rax
984def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
985 (MOV64ri32 tglobaltlsaddr :$dst)>;
986// This corresponds to add $foo@tpoff, %rax
987def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
988 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
989
990
991// Direct PC relative function call for small code model. 32-bit displacement
992// sign extended to 64-bit.
993def : Pat<(X86call (i64 tglobaladdr:$dst)),
994 (CALL64pcrel32 tglobaladdr:$dst)>;
995def : Pat<(X86call (i64 texternalsym:$dst)),
996 (CALL64pcrel32 texternalsym:$dst)>;
997
998// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
999// can never use callee-saved registers. That is the purpose of the GR64_TC
1000// register classes.
1001//
1002// The only volatile register that is never used by the calling convention is
1003// %r11. This happens when calling a vararg function with 6 arguments.
1004//
1005// Match an X86tcret that uses less than 7 volatile registers.
1006def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1007 (X86tcret node:$ptr, node:$off), [{
1008 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1009 unsigned NumRegs = 0;
1010 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1011 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1012 return false;
1013 return true;
1014}]>;
1015
1016def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1017 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1018 Requires<[Not64BitMode]>;
1019
1020// FIXME: This is disabled for 32-bit PIC mode because the global base
1021// register which is part of the address mode may be assigned a
1022// callee-saved register.
1023def : Pat<(X86tcret (load addr:$dst), imm:$off),
1024 (TCRETURNmi addr:$dst, imm:$off)>,
1025 Requires<[Not64BitMode, IsNotPIC]>;
1026
1027def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1028 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1029 Requires<[NotLP64]>;
1030
1031def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1032 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1033 Requires<[NotLP64]>;
1034
1035def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1036 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1037 Requires<[In64BitMode]>;
1038
1039// Don't fold loads into X86tcret requiring more than 6 regs.
1040// There wouldn't be enough scratch registers for base+index.
1041def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1042 (TCRETURNmi64 addr:$dst, imm:$off)>,
1043 Requires<[In64BitMode]>;
1044
1045def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1046 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1047 Requires<[IsLP64]>;
1048
1049def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1050 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1051 Requires<[IsLP64]>;
1052
1053// Normal calls, with various flavors of addresses.
1054def : Pat<(X86call (i32 tglobaladdr:$dst)),
1055 (CALLpcrel32 tglobaladdr:$dst)>;
1056def : Pat<(X86call (i32 texternalsym:$dst)),
1057 (CALLpcrel32 texternalsym:$dst)>;
1058def : Pat<(X86call (i32 imm:$dst)),
1059 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1060
1061// Comparisons.
1062
1063// TEST R,R is smaller than CMP R,0
1064def : Pat<(X86cmp GR8:$src1, 0),
1065 (TEST8rr GR8:$src1, GR8:$src1)>;
1066def : Pat<(X86cmp GR16:$src1, 0),
1067 (TEST16rr GR16:$src1, GR16:$src1)>;
1068def : Pat<(X86cmp GR32:$src1, 0),
1069 (TEST32rr GR32:$src1, GR32:$src1)>;
1070def : Pat<(X86cmp GR64:$src1, 0),
1071 (TEST64rr GR64:$src1, GR64:$src1)>;
1072
1073// Conditional moves with folded loads with operands swapped and conditions
1074// inverted.
1075multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1076 Instruction Inst64> {
1077 let Predicates = [HasCMov] in {
1078 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1079 (Inst16 GR16:$src2, addr:$src1)>;
1080 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1081 (Inst32 GR32:$src2, addr:$src1)>;
1082 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1083 (Inst64 GR64:$src2, addr:$src1)>;
1084 }
1085}
1086
1087defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1088defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1089defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1090defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1091defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1092defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1093defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1094defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1095defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1096defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1097defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1098defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1099defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1100defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1101defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1102defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1103
1104// zextload bool -> zextload byte
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001105def : Pat<(zextloadi8i1 addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
Rafael Espindola494a3812015-07-17 00:57:52 +00001106def : Pat<(zextloadi16i1 addr:$src), (AND16ri8 (MOVZX16rm8 addr:$src), (i16 1))>;
1107def : Pat<(zextloadi32i1 addr:$src), (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1))>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001108def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001109 (SUBREG_TO_REG (i64 0),
Rafael Espindola494a3812015-07-17 00:57:52 +00001110 (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001111
1112// extload bool -> extload byte
1113// When extloading from 16-bit and smaller memory locations into 64-bit
1114// registers, use zero-extending loads so that the entire 64-bit register is
1115// defined, avoiding partial-register updates.
1116
1117def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1118def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1119def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1120def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1121def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1122def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1123
1124// For other extloads, use subregs, since the high contents of the register are
1125// defined after an extload.
1126def : Pat<(extloadi64i1 addr:$src),
1127 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1128def : Pat<(extloadi64i8 addr:$src),
1129 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1130def : Pat<(extloadi64i16 addr:$src),
1131 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1132def : Pat<(extloadi64i32 addr:$src),
1133 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1134
1135// anyext. Define these to do an explicit zero-extend to
1136// avoid partial-register updates.
1137def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1138 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1139def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1140
1141// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1142def : Pat<(i32 (anyext GR16:$src)),
1143 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1144
1145def : Pat<(i64 (anyext GR8 :$src)),
1146 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1147def : Pat<(i64 (anyext GR16:$src)),
1148 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1149def : Pat<(i64 (anyext GR32:$src)),
1150 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1151
1152
1153// Any instruction that defines a 32-bit result leaves the high half of the
1154// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1155// be copying from a truncate. And x86's cmov doesn't do anything if the
1156// condition is false. But any other 32-bit operation will zero-extend
1157// up to 64 bits.
1158def def32 : PatLeaf<(i32 GR32:$src), [{
1159 return N->getOpcode() != ISD::TRUNCATE &&
1160 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1161 N->getOpcode() != ISD::CopyFromReg &&
1162 N->getOpcode() != ISD::AssertSext &&
1163 N->getOpcode() != X86ISD::CMOV;
1164}]>;
1165
1166// In the case of a 32-bit def that is known to implicitly zero-extend,
1167// we can use a SUBREG_TO_REG.
1168def : Pat<(i64 (zext def32:$src)),
1169 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1170
1171//===----------------------------------------------------------------------===//
1172// Pattern match OR as ADD
1173//===----------------------------------------------------------------------===//
1174
1175// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1176// 3-addressified into an LEA instruction to avoid copies. However, we also
1177// want to finally emit these instructions as an or at the end of the code
1178// generator to make the generated code easier to read. To do this, we select
1179// into "disjoint bits" pseudo ops.
1180
1181// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1182def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1183 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1184 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1185
1186 APInt KnownZero0, KnownOne0;
1187 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1188 APInt KnownZero1, KnownOne1;
1189 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1190 return (~KnownZero0 & ~KnownZero1) == 0;
1191}]>;
1192
1193
1194// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1195// Try this before the selecting to OR.
1196let AddedComplexity = 5, SchedRW = [WriteALU] in {
1197
1198let isConvertibleToThreeAddress = 1,
1199 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1200let isCommutable = 1 in {
1201def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1202 "", // orw/addw REG, REG
1203 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1204def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1205 "", // orl/addl REG, REG
1206 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1207def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1208 "", // orq/addq REG, REG
1209 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1210} // isCommutable
1211
1212// NOTE: These are order specific, we want the ri8 forms to be listed
1213// first so that they are slightly preferred to the ri forms.
1214
1215def ADD16ri8_DB : I<0, Pseudo,
1216 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1217 "", // orw/addw REG, imm8
1218 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1219def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1220 "", // orw/addw REG, imm
1221 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1222
1223def ADD32ri8_DB : I<0, Pseudo,
1224 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1225 "", // orl/addl REG, imm8
1226 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1227def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1228 "", // orl/addl REG, imm
1229 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1230
1231
1232def ADD64ri8_DB : I<0, Pseudo,
1233 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1234 "", // orq/addq REG, imm8
1235 [(set GR64:$dst, (or_is_add GR64:$src1,
1236 i64immSExt8:$src2))]>;
1237def ADD64ri32_DB : I<0, Pseudo,
1238 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1239 "", // orq/addq REG, imm
1240 [(set GR64:$dst, (or_is_add GR64:$src1,
1241 i64immSExt32:$src2))]>;
1242}
1243} // AddedComplexity, SchedRW
1244
1245
1246//===----------------------------------------------------------------------===//
1247// Some peepholes
1248//===----------------------------------------------------------------------===//
1249
1250// Odd encoding trick: -128 fits into an 8-bit immediate field while
1251// +128 doesn't, so in this special case use a sub instead of an add.
1252def : Pat<(add GR16:$src1, 128),
1253 (SUB16ri8 GR16:$src1, -128)>;
1254def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1255 (SUB16mi8 addr:$dst, -128)>;
1256
1257def : Pat<(add GR32:$src1, 128),
1258 (SUB32ri8 GR32:$src1, -128)>;
1259def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1260 (SUB32mi8 addr:$dst, -128)>;
1261
1262def : Pat<(add GR64:$src1, 128),
1263 (SUB64ri8 GR64:$src1, -128)>;
1264def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1265 (SUB64mi8 addr:$dst, -128)>;
1266
1267// The same trick applies for 32-bit immediate fields in 64-bit
1268// instructions.
1269def : Pat<(add GR64:$src1, 0x0000000080000000),
1270 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1271def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1272 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1273
1274// To avoid needing to materialize an immediate in a register, use a 32-bit and
1275// with implicit zero-extension instead of a 64-bit and if the immediate has at
1276// least 32 bits of leading zeros. If in addition the last 32 bits can be
1277// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001278// This can also reduce instruction size by eliminating the need for the REX
1279// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001280
Craig Topper7ea899a2015-04-04 04:22:12 +00001281// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1282let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001283def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1284 (SUBREG_TO_REG
1285 (i64 0),
1286 (AND32ri8
1287 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1288 (i32 (GetLo8XForm imm:$imm))),
1289 sub_32bit)>;
1290
1291def : Pat<(and GR64:$src, i64immZExt32:$imm),
1292 (SUBREG_TO_REG
1293 (i64 0),
1294 (AND32ri
1295 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1296 (i32 (GetLo32XForm imm:$imm))),
1297 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001298} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001299
1300
Craig Topper7ea899a2015-04-04 04:22:12 +00001301// AddedComplexity is needed due to the increased complexity on the
1302// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1303// the MOVZX patterns keeps thems together in DAGIsel tables.
1304let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001305// r & (2^16-1) ==> movz
1306def : Pat<(and GR32:$src1, 0xffff),
1307 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1308// r & (2^8-1) ==> movz
1309def : Pat<(and GR32:$src1, 0xff),
1310 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1311 GR32_ABCD)),
1312 sub_8bit))>,
1313 Requires<[Not64BitMode]>;
1314// r & (2^8-1) ==> movz
1315def : Pat<(and GR16:$src1, 0xff),
1316 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1317 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1318 sub_16bit)>,
1319 Requires<[Not64BitMode]>;
1320
1321// r & (2^32-1) ==> movz
1322def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1323 (SUBREG_TO_REG (i64 0),
1324 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1325 sub_32bit)>;
1326// r & (2^16-1) ==> movz
1327def : Pat<(and GR64:$src, 0xffff),
1328 (SUBREG_TO_REG (i64 0),
1329 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1330 sub_32bit)>;
1331// r & (2^8-1) ==> movz
1332def : Pat<(and GR64:$src, 0xff),
1333 (SUBREG_TO_REG (i64 0),
1334 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1335 sub_32bit)>;
1336// r & (2^8-1) ==> movz
1337def : Pat<(and GR32:$src1, 0xff),
1338 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1339 Requires<[In64BitMode]>;
1340// r & (2^8-1) ==> movz
1341def : Pat<(and GR16:$src1, 0xff),
1342 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1343 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1344 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001345} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001346
1347
1348// sext_inreg patterns
1349def : Pat<(sext_inreg GR32:$src, i16),
1350 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1351def : Pat<(sext_inreg GR32:$src, i8),
1352 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1353 GR32_ABCD)),
1354 sub_8bit))>,
1355 Requires<[Not64BitMode]>;
1356
1357def : Pat<(sext_inreg GR16:$src, i8),
1358 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1359 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1360 sub_16bit)>,
1361 Requires<[Not64BitMode]>;
1362
1363def : Pat<(sext_inreg GR64:$src, i32),
1364 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1365def : Pat<(sext_inreg GR64:$src, i16),
1366 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1367def : Pat<(sext_inreg GR64:$src, i8),
1368 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1369def : Pat<(sext_inreg GR32:$src, i8),
1370 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1371 Requires<[In64BitMode]>;
1372def : Pat<(sext_inreg GR16:$src, i8),
1373 (EXTRACT_SUBREG (MOVSX32rr8
1374 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1375 Requires<[In64BitMode]>;
1376
1377// sext, sext_load, zext, zext_load
1378def: Pat<(i16 (sext GR8:$src)),
1379 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1380def: Pat<(sextloadi16i8 addr:$src),
1381 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1382def: Pat<(i16 (zext GR8:$src)),
1383 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1384def: Pat<(zextloadi16i8 addr:$src),
1385 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1386
1387// trunc patterns
1388def : Pat<(i16 (trunc GR32:$src)),
1389 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1390def : Pat<(i8 (trunc GR32:$src)),
1391 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1392 sub_8bit)>,
1393 Requires<[Not64BitMode]>;
1394def : Pat<(i8 (trunc GR16:$src)),
1395 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1396 sub_8bit)>,
1397 Requires<[Not64BitMode]>;
1398def : Pat<(i32 (trunc GR64:$src)),
1399 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1400def : Pat<(i16 (trunc GR64:$src)),
1401 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1402def : Pat<(i8 (trunc GR64:$src)),
1403 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1404def : Pat<(i8 (trunc GR32:$src)),
1405 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1406 Requires<[In64BitMode]>;
1407def : Pat<(i8 (trunc GR16:$src)),
1408 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1409 Requires<[In64BitMode]>;
1410
1411// h-register tricks
1412def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1413 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1414 sub_8bit_hi)>,
1415 Requires<[Not64BitMode]>;
1416def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1417 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1418 sub_8bit_hi)>,
1419 Requires<[Not64BitMode]>;
1420def : Pat<(srl GR16:$src, (i8 8)),
1421 (EXTRACT_SUBREG
1422 (MOVZX32rr8
1423 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1424 sub_8bit_hi)),
1425 sub_16bit)>,
1426 Requires<[Not64BitMode]>;
1427def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1428 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1429 GR16_ABCD)),
1430 sub_8bit_hi))>,
1431 Requires<[Not64BitMode]>;
1432def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1433 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1434 GR16_ABCD)),
1435 sub_8bit_hi))>,
1436 Requires<[Not64BitMode]>;
1437def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1438 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1439 GR32_ABCD)),
1440 sub_8bit_hi))>,
1441 Requires<[Not64BitMode]>;
1442def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1443 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1444 GR32_ABCD)),
1445 sub_8bit_hi))>,
1446 Requires<[Not64BitMode]>;
1447
1448// h-register tricks.
1449// For now, be conservative on x86-64 and use an h-register extract only if the
1450// value is immediately zero-extended or stored, which are somewhat common
1451// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1452// from being allocated in the same instruction as the h register, as there's
1453// currently no way to describe this requirement to the register allocator.
1454
1455// h-register extract and zero-extend.
1456def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1457 (SUBREG_TO_REG
1458 (i64 0),
1459 (MOVZX32_NOREXrr8
1460 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1461 sub_8bit_hi)),
1462 sub_32bit)>;
1463def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1464 (MOVZX32_NOREXrr8
1465 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1466 sub_8bit_hi))>,
1467 Requires<[In64BitMode]>;
1468def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1469 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1470 GR32_ABCD)),
1471 sub_8bit_hi))>,
1472 Requires<[In64BitMode]>;
1473def : Pat<(srl GR16:$src, (i8 8)),
1474 (EXTRACT_SUBREG
1475 (MOVZX32_NOREXrr8
1476 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1477 sub_8bit_hi)),
1478 sub_16bit)>,
1479 Requires<[In64BitMode]>;
1480def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1481 (MOVZX32_NOREXrr8
1482 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1483 sub_8bit_hi))>,
1484 Requires<[In64BitMode]>;
1485def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1486 (MOVZX32_NOREXrr8
1487 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1488 sub_8bit_hi))>,
1489 Requires<[In64BitMode]>;
1490def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1491 (SUBREG_TO_REG
1492 (i64 0),
1493 (MOVZX32_NOREXrr8
1494 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1495 sub_8bit_hi)),
1496 sub_32bit)>;
1497def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1498 (SUBREG_TO_REG
1499 (i64 0),
1500 (MOVZX32_NOREXrr8
1501 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1502 sub_8bit_hi)),
1503 sub_32bit)>;
1504
1505// h-register extract and store.
1506def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1507 (MOV8mr_NOREX
1508 addr:$dst,
1509 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1510 sub_8bit_hi))>;
1511def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1512 (MOV8mr_NOREX
1513 addr:$dst,
1514 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1515 sub_8bit_hi))>,
1516 Requires<[In64BitMode]>;
1517def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1518 (MOV8mr_NOREX
1519 addr:$dst,
1520 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1521 sub_8bit_hi))>,
1522 Requires<[In64BitMode]>;
1523
1524
1525// (shl x, 1) ==> (add x, x)
1526// Note that if x is undef (immediate or otherwise), we could theoretically
1527// end up with the two uses of x getting different values, producing a result
1528// where the least significant bit is not 0. However, the probability of this
1529// happening is considered low enough that this is officially not a
1530// "real problem".
1531def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1532def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1533def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1534def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1535
1536// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001537def immShift32 : ImmLeaf<i8, [{
1538 return countTrailingOnes<uint64_t>(Imm) >= 5;
1539}]>;
1540def immShift64 : ImmLeaf<i8, [{
1541 return countTrailingOnes<uint64_t>(Imm) >= 6;
1542}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001543
1544// Shift amount is implicitly masked.
1545multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1546 // (shift x (and y, 31)) ==> (shift x, y)
1547 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1548 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1549 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1550 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1551 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1552 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1553 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1554 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1555 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1556 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1557 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1558 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1559
1560 // (shift x (and y, 63)) ==> (shift x, y)
1561 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1562 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1563 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1564 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1565}
1566
1567defm : MaskedShiftAmountPats<shl, "SHL">;
1568defm : MaskedShiftAmountPats<srl, "SHR">;
1569defm : MaskedShiftAmountPats<sra, "SAR">;
1570defm : MaskedShiftAmountPats<rotl, "ROL">;
1571defm : MaskedShiftAmountPats<rotr, "ROR">;
1572
1573// (anyext (setcc_carry)) -> (setcc_carry)
1574def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1575 (SETB_C16r)>;
1576def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1577 (SETB_C32r)>;
1578def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1579 (SETB_C32r)>;
1580
1581
1582
1583
1584//===----------------------------------------------------------------------===//
1585// EFLAGS-defining Patterns
1586//===----------------------------------------------------------------------===//
1587
1588// add reg, reg
1589def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1590def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1591def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1592
1593// add reg, mem
1594def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1595 (ADD8rm GR8:$src1, addr:$src2)>;
1596def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1597 (ADD16rm GR16:$src1, addr:$src2)>;
1598def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1599 (ADD32rm GR32:$src1, addr:$src2)>;
1600
1601// add reg, imm
1602def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1603def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1604def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1605def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1606 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1607def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1608 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1609
1610// sub reg, reg
1611def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1612def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1613def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1614
1615// sub reg, mem
1616def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1617 (SUB8rm GR8:$src1, addr:$src2)>;
1618def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1619 (SUB16rm GR16:$src1, addr:$src2)>;
1620def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1621 (SUB32rm GR32:$src1, addr:$src2)>;
1622
1623// sub reg, imm
1624def : Pat<(sub GR8:$src1, imm:$src2),
1625 (SUB8ri GR8:$src1, imm:$src2)>;
1626def : Pat<(sub GR16:$src1, imm:$src2),
1627 (SUB16ri GR16:$src1, imm:$src2)>;
1628def : Pat<(sub GR32:$src1, imm:$src2),
1629 (SUB32ri GR32:$src1, imm:$src2)>;
1630def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1631 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1632def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1633 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1634
1635// sub 0, reg
1636def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1637def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1638def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1639def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1640
1641// mul reg, reg
1642def : Pat<(mul GR16:$src1, GR16:$src2),
1643 (IMUL16rr GR16:$src1, GR16:$src2)>;
1644def : Pat<(mul GR32:$src1, GR32:$src2),
1645 (IMUL32rr GR32:$src1, GR32:$src2)>;
1646
1647// mul reg, mem
1648def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1649 (IMUL16rm GR16:$src1, addr:$src2)>;
1650def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1651 (IMUL32rm GR32:$src1, addr:$src2)>;
1652
1653// mul reg, imm
1654def : Pat<(mul GR16:$src1, imm:$src2),
1655 (IMUL16rri GR16:$src1, imm:$src2)>;
1656def : Pat<(mul GR32:$src1, imm:$src2),
1657 (IMUL32rri GR32:$src1, imm:$src2)>;
1658def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1659 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1660def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1661 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1662
1663// reg = mul mem, imm
1664def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1665 (IMUL16rmi addr:$src1, imm:$src2)>;
1666def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1667 (IMUL32rmi addr:$src1, imm:$src2)>;
1668def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1669 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1670def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1671 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1672
1673// Patterns for nodes that do not produce flags, for instructions that do.
1674
1675// addition
1676def : Pat<(add GR64:$src1, GR64:$src2),
1677 (ADD64rr GR64:$src1, GR64:$src2)>;
1678def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1679 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1680def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1681 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1682def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1683 (ADD64rm GR64:$src1, addr:$src2)>;
1684
1685// subtraction
1686def : Pat<(sub GR64:$src1, GR64:$src2),
1687 (SUB64rr GR64:$src1, GR64:$src2)>;
1688def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1689 (SUB64rm GR64:$src1, addr:$src2)>;
1690def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1691 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1692def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1693 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1694
1695// Multiply
1696def : Pat<(mul GR64:$src1, GR64:$src2),
1697 (IMUL64rr GR64:$src1, GR64:$src2)>;
1698def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1699 (IMUL64rm GR64:$src1, addr:$src2)>;
1700def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1701 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1702def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1703 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1704def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1705 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1706def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1707 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1708
1709// Increment/Decrement reg.
1710// Do not make INC/DEC if it is slow
1711let Predicates = [NotSlowIncDec] in {
1712 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1713 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1714 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1715 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1716 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1717 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1718 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1719 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1720}
1721
1722// or reg/reg.
1723def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1724def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1725def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1726def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1727
1728// or reg/mem
1729def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1730 (OR8rm GR8:$src1, addr:$src2)>;
1731def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1732 (OR16rm GR16:$src1, addr:$src2)>;
1733def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1734 (OR32rm GR32:$src1, addr:$src2)>;
1735def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1736 (OR64rm GR64:$src1, addr:$src2)>;
1737
1738// or reg/imm
1739def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1740def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1741def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1742def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1743 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1744def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1745 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1746def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1747 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1748def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1749 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1750
1751// xor reg/reg
1752def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1753def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1754def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1755def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1756
1757// xor reg/mem
1758def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1759 (XOR8rm GR8:$src1, addr:$src2)>;
1760def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1761 (XOR16rm GR16:$src1, addr:$src2)>;
1762def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1763 (XOR32rm GR32:$src1, addr:$src2)>;
1764def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1765 (XOR64rm GR64:$src1, addr:$src2)>;
1766
1767// xor reg/imm
1768def : Pat<(xor GR8:$src1, imm:$src2),
1769 (XOR8ri GR8:$src1, imm:$src2)>;
1770def : Pat<(xor GR16:$src1, imm:$src2),
1771 (XOR16ri GR16:$src1, imm:$src2)>;
1772def : Pat<(xor GR32:$src1, imm:$src2),
1773 (XOR32ri GR32:$src1, imm:$src2)>;
1774def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1775 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1776def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1777 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1778def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1779 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1780def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1781 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1782
1783// and reg/reg
1784def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1785def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1786def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1787def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1788
1789// and reg/mem
1790def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1791 (AND8rm GR8:$src1, addr:$src2)>;
1792def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1793 (AND16rm GR16:$src1, addr:$src2)>;
1794def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1795 (AND32rm GR32:$src1, addr:$src2)>;
1796def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1797 (AND64rm GR64:$src1, addr:$src2)>;
1798
1799// and reg/imm
1800def : Pat<(and GR8:$src1, imm:$src2),
1801 (AND8ri GR8:$src1, imm:$src2)>;
1802def : Pat<(and GR16:$src1, imm:$src2),
1803 (AND16ri GR16:$src1, imm:$src2)>;
1804def : Pat<(and GR32:$src1, imm:$src2),
1805 (AND32ri GR32:$src1, imm:$src2)>;
1806def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1807 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1808def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1809 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1810def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1811 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1812def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1813 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1814
1815// Bit scan instruction patterns to match explicit zero-undef behavior.
1816def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1817def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1818def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1819def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1820def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1821def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1822
1823// When HasMOVBE is enabled it is possible to get a non-legalized
1824// register-register 16 bit bswap. This maps it to a ROL instruction.
1825let Predicates = [HasMOVBE] in {
1826 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1827}