blob: 0ea1c7be42214dfd9662510b7be05fbe57e09309 [file] [log] [blame]
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carrutha9174582015-01-22 05:25:13 +000014#include "InstCombineInternal.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000015#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/None.h"
Meador Ingee3f2b262012-11-30 04:05:06 +000019#include "llvm/ADT/Statistic.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000020#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Twine.h"
David Majnemer15032582015-05-22 03:56:46 +000023#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner7a9e47a2010-01-05 07:32:13 +000024#include "llvm/Analysis/MemoryBuiltins.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000025#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/BasicBlock.h"
Chandler Carruth219b89b2014-03-04 11:01:28 +000027#include "llvm/IR/CallSite.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000028#include "llvm/IR/Constant.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/Metadata.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000040#include "llvm/IR/PatternMatch.h"
Philip Reames1a1bdb22014-12-02 18:50:36 +000041#include "llvm/IR/Statepoint.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000042#include "llvm/IR/Type.h"
43#include "llvm/IR/Value.h"
44#include "llvm/IR/ValueHandle.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
Chris Lattner6fcd32e2010-12-25 20:37:57 +000048#include "llvm/Transforms/Utils/Local.h"
Chandler Carruthba4c5172015-01-21 11:23:40 +000049#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000050#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <cstring>
54#include <vector>
55
Chris Lattner7a9e47a2010-01-05 07:32:13 +000056using namespace llvm;
Michael Ilseman536cc322012-12-13 03:13:36 +000057using namespace PatternMatch;
Chris Lattner7a9e47a2010-01-05 07:32:13 +000058
Chandler Carruth964daaa2014-04-22 02:55:47 +000059#define DEBUG_TYPE "instcombine"
60
Meador Ingee3f2b262012-11-30 04:05:06 +000061STATISTIC(NumSimplified, "Number of library calls simplified");
62
Igor Laevskya9b68722017-02-08 15:21:48 +000063static cl::opt<unsigned> UnfoldElementAtomicMemcpyMaxElements(
Igor Laevsky900ffa32017-02-08 14:32:04 +000064 "unfold-element-atomic-memcpy-max-elements",
65 cl::init(16),
66 cl::desc("Maximum number of elements in atomic memcpy the optimizer is "
67 "allowed to unfold"));
68
Sanjay Patelcd4377c2016-01-20 22:24:38 +000069/// Return the specified type promoted as it would be to pass though a va_arg
70/// area.
Chris Lattner229907c2011-07-18 04:54:35 +000071static Type *getPromotedType(Type *Ty) {
72 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +000073 if (ITy->getBitWidth() < 32)
74 return Type::getInt32Ty(Ty->getContext());
75 }
76 return Ty;
77}
78
Sanjay Patel368ac5d2016-02-21 17:29:33 +000079/// Return a constant boolean vector that has true elements in all positions
Sanjay Patel24401302016-02-21 17:33:31 +000080/// where the input constant data vector has an element with the sign bit set.
Sanjay Patel368ac5d2016-02-21 17:29:33 +000081static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
82 SmallVector<Constant *, 32> BoolVec;
83 IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
84 for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
85 Constant *Elt = V->getElementAsConstant(I);
86 assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
87 "Unexpected constant data vector element type");
88 bool Sign = V->getElementType()->isIntegerTy()
89 ? cast<ConstantInt>(Elt)->isNegative()
90 : cast<ConstantFP>(Elt)->isNegative();
91 BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
92 }
93 return ConstantVector::get(BoolVec);
94}
95
Igor Laevsky900ffa32017-02-08 14:32:04 +000096Instruction *
97InstCombiner::SimplifyElementAtomicMemCpy(ElementAtomicMemCpyInst *AMI) {
98 // Try to unfold this intrinsic into sequence of explicit atomic loads and
99 // stores.
100 // First check that number of elements is compile time constant.
101 auto *NumElementsCI = dyn_cast<ConstantInt>(AMI->getNumElements());
102 if (!NumElementsCI)
103 return nullptr;
104
105 // Check that there are not too many elements.
106 uint64_t NumElements = NumElementsCI->getZExtValue();
107 if (NumElements >= UnfoldElementAtomicMemcpyMaxElements)
108 return nullptr;
109
110 // Don't unfold into illegal integers
111 uint64_t ElementSizeInBytes = AMI->getElementSizeInBytes() * 8;
112 if (!getDataLayout().isLegalInteger(ElementSizeInBytes))
113 return nullptr;
114
115 // Cast source and destination to the correct type. Intrinsic input arguments
116 // are usually represented as i8*.
117 // Often operands will be explicitly casted to i8* and we can just strip
118 // those casts instead of inserting new ones. However it's easier to rely on
119 // other InstCombine rules which will cover trivial cases anyway.
120 Value *Src = AMI->getRawSource();
121 Value *Dst = AMI->getRawDest();
122 Type *ElementPointerType = Type::getIntNPtrTy(
123 AMI->getContext(), ElementSizeInBytes, Src->getType()->getPointerAddressSpace());
124
125 Value *SrcCasted = Builder->CreatePointerCast(Src, ElementPointerType,
126 "memcpy_unfold.src_casted");
127 Value *DstCasted = Builder->CreatePointerCast(Dst, ElementPointerType,
128 "memcpy_unfold.dst_casted");
129
130 for (uint64_t i = 0; i < NumElements; ++i) {
131 // Get current element addresses
132 ConstantInt *ElementIdxCI =
133 ConstantInt::get(AMI->getContext(), APInt(64, i));
134 Value *SrcElementAddr =
135 Builder->CreateGEP(SrcCasted, ElementIdxCI, "memcpy_unfold.src_addr");
136 Value *DstElementAddr =
137 Builder->CreateGEP(DstCasted, ElementIdxCI, "memcpy_unfold.dst_addr");
138
139 // Load from the source. Transfer alignment information and mark load as
140 // unordered atomic.
141 LoadInst *Load = Builder->CreateLoad(SrcElementAddr, "memcpy_unfold.val");
142 Load->setOrdering(AtomicOrdering::Unordered);
143 // We know alignment of the first element. It is also guaranteed by the
144 // verifier that element size is less or equal than first element alignment
145 // and both of this values are powers of two.
146 // This means that all subsequent accesses are at least element size
147 // aligned.
148 // TODO: We can infer better alignment but there is no evidence that this
149 // will matter.
150 Load->setAlignment(i == 0 ? AMI->getSrcAlignment()
151 : AMI->getElementSizeInBytes());
152 Load->setDebugLoc(AMI->getDebugLoc());
153
154 // Store loaded value via unordered atomic store.
155 StoreInst *Store = Builder->CreateStore(Load, DstElementAddr);
156 Store->setOrdering(AtomicOrdering::Unordered);
157 Store->setAlignment(i == 0 ? AMI->getDstAlignment()
158 : AMI->getElementSizeInBytes());
159 Store->setDebugLoc(AMI->getDebugLoc());
160 }
161
162 // Set the number of elements of the copy to 0, it will be deleted on the
163 // next iteration.
164 AMI->setNumElements(Constant::getNullValue(NumElementsCI->getType()));
165 return AMI;
166}
167
Pete Cooper67cf9a72015-11-19 05:56:52 +0000168Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000169 unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, &AC, &DT);
170 unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, &AC, &DT);
Pete Cooper67cf9a72015-11-19 05:56:52 +0000171 unsigned MinAlign = std::min(DstAlign, SrcAlign);
172 unsigned CopyAlign = MI->getAlignment();
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000173
Pete Cooper67cf9a72015-11-19 05:56:52 +0000174 if (CopyAlign < MinAlign) {
175 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000176 return MI;
177 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000178
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000179 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
180 // load/store.
Gabor Greif0a136c92010-06-24 13:54:33 +0000181 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +0000182 if (!MemOpLength) return nullptr;
Jim Grosbach7815f562012-02-03 00:07:04 +0000183
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000184 // Source and destination pointer types are always "i8*" for intrinsic. See
185 // if the size is something we can handle with a single primitive load/store.
186 // A single load+store correctly handles overlapping memory in the memmove
187 // case.
Michael Liao69e172a2012-08-15 03:49:59 +0000188 uint64_t Size = MemOpLength->getLimitedValue();
Alp Tokercb402912014-01-24 17:20:08 +0000189 assert(Size && "0-sized memory transferring should be removed already.");
Jim Grosbach7815f562012-02-03 00:07:04 +0000190
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000191 if (Size > 8 || (Size&(Size-1)))
Craig Topperf40110f2014-04-25 05:29:35 +0000192 return nullptr; // If not 1/2/4/8 bytes, exit.
Jim Grosbach7815f562012-02-03 00:07:04 +0000193
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000194 // Use an integer load+store unless we can find something better.
Mon P Wangc576ee92010-04-04 03:10:48 +0000195 unsigned SrcAddrSp =
Gabor Greif0a136c92010-06-24 13:54:33 +0000196 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
Gabor Greiff3755202010-04-16 15:33:14 +0000197 unsigned DstAddrSp =
Gabor Greif0a136c92010-06-24 13:54:33 +0000198 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
Mon P Wangc576ee92010-04-04 03:10:48 +0000199
Chris Lattner229907c2011-07-18 04:54:35 +0000200 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Mon P Wangc576ee92010-04-04 03:10:48 +0000201 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
202 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
Jim Grosbach7815f562012-02-03 00:07:04 +0000203
Mikael Holmen760dc9a2017-03-01 06:45:20 +0000204 // If the memcpy has metadata describing the members, see if we can get the
205 // TBAA tag describing our copy.
Craig Topperf40110f2014-04-25 05:29:35 +0000206 MDNode *CopyMD = nullptr;
Mikael Holmen760dc9a2017-03-01 06:45:20 +0000207 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
208 if (M->getNumOperands() == 3 && M->getOperand(0) &&
209 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
210 mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
211 M->getOperand(1) &&
212 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
213 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
214 Size &&
215 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
216 CopyMD = cast<MDNode>(M->getOperand(2));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000217 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000218
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000219 // If the memcpy/memmove provides better alignment info than we can
220 // infer, use it.
Pete Cooper67cf9a72015-11-19 05:56:52 +0000221 SrcAlign = std::max(SrcAlign, CopyAlign);
222 DstAlign = std::max(DstAlign, CopyAlign);
Jim Grosbach7815f562012-02-03 00:07:04 +0000223
Gabor Greif5f3e6562010-06-25 07:57:14 +0000224 Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
225 Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
Eli Friedman49346012011-05-18 19:57:14 +0000226 LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
227 L->setAlignment(SrcAlign);
Dan Gohman3f553c22012-09-13 21:51:01 +0000228 if (CopyMD)
229 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
Dorit Nuzmanabd15f62016-09-04 07:49:39 +0000230 MDNode *LoopMemParallelMD =
231 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
232 if (LoopMemParallelMD)
233 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
Dorit Nuzman7673ba72016-09-04 07:06:00 +0000234
Eli Friedman49346012011-05-18 19:57:14 +0000235 StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
236 S->setAlignment(DstAlign);
Dan Gohman3f553c22012-09-13 21:51:01 +0000237 if (CopyMD)
238 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
Dorit Nuzmanabd15f62016-09-04 07:49:39 +0000239 if (LoopMemParallelMD)
240 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000241
242 // Set the size of the copy to 0, it will be deleted on the next iteration.
Gabor Greif5b1370e2010-06-28 16:50:57 +0000243 MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000244 return MI;
245}
246
247Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000248 unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
Pete Cooper67cf9a72015-11-19 05:56:52 +0000249 if (MI->getAlignment() < Alignment) {
250 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
251 Alignment, false));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000252 return MI;
253 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000254
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000255 // Extract the length and alignment and fill if they are constant.
256 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
257 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
Duncan Sands9dff9be2010-02-15 16:12:20 +0000258 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
Craig Topperf40110f2014-04-25 05:29:35 +0000259 return nullptr;
Michael Liao69e172a2012-08-15 03:49:59 +0000260 uint64_t Len = LenC->getLimitedValue();
Pete Cooper67cf9a72015-11-19 05:56:52 +0000261 Alignment = MI->getAlignment();
Michael Liao69e172a2012-08-15 03:49:59 +0000262 assert(Len && "0-sized memory setting should be removed already.");
Jim Grosbach7815f562012-02-03 00:07:04 +0000263
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000264 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
265 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000266 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Jim Grosbach7815f562012-02-03 00:07:04 +0000267
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000268 Value *Dest = MI->getDest();
Mon P Wang1991c472010-12-20 01:05:30 +0000269 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
270 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
271 Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000272
273 // Alignment 0 is identity for alignment 1 for memset, but not store.
274 if (Alignment == 0) Alignment = 1;
Jim Grosbach7815f562012-02-03 00:07:04 +0000275
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000276 // Extract the fill value and store.
277 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
Eli Friedman49346012011-05-18 19:57:14 +0000278 StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
279 MI->isVolatile());
280 S->setAlignment(Alignment);
Jim Grosbach7815f562012-02-03 00:07:04 +0000281
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000282 // Set the size of the copy to 0, it will be deleted on the next iteration.
283 MI->setLength(Constant::getNullValue(LenC->getType()));
284 return MI;
285 }
286
Simon Pilgrim18617d12015-08-05 08:18:00 +0000287 return nullptr;
288}
289
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000290static Value *simplifyX86immShift(const IntrinsicInst &II,
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000291 InstCombiner::BuilderTy &Builder) {
292 bool LogicalShift = false;
293 bool ShiftLeft = false;
294
295 switch (II.getIntrinsicID()) {
Craig Topperb4173a52016-11-13 07:26:19 +0000296 default: llvm_unreachable("Unexpected intrinsic!");
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000297 case Intrinsic::x86_sse2_psra_d:
298 case Intrinsic::x86_sse2_psra_w:
299 case Intrinsic::x86_sse2_psrai_d:
300 case Intrinsic::x86_sse2_psrai_w:
301 case Intrinsic::x86_avx2_psra_d:
302 case Intrinsic::x86_avx2_psra_w:
303 case Intrinsic::x86_avx2_psrai_d:
304 case Intrinsic::x86_avx2_psrai_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000305 case Intrinsic::x86_avx512_psra_q_128:
306 case Intrinsic::x86_avx512_psrai_q_128:
307 case Intrinsic::x86_avx512_psra_q_256:
308 case Intrinsic::x86_avx512_psrai_q_256:
309 case Intrinsic::x86_avx512_psra_d_512:
310 case Intrinsic::x86_avx512_psra_q_512:
311 case Intrinsic::x86_avx512_psra_w_512:
312 case Intrinsic::x86_avx512_psrai_d_512:
313 case Intrinsic::x86_avx512_psrai_q_512:
314 case Intrinsic::x86_avx512_psrai_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000315 LogicalShift = false; ShiftLeft = false;
316 break;
317 case Intrinsic::x86_sse2_psrl_d:
318 case Intrinsic::x86_sse2_psrl_q:
319 case Intrinsic::x86_sse2_psrl_w:
320 case Intrinsic::x86_sse2_psrli_d:
321 case Intrinsic::x86_sse2_psrli_q:
322 case Intrinsic::x86_sse2_psrli_w:
323 case Intrinsic::x86_avx2_psrl_d:
324 case Intrinsic::x86_avx2_psrl_q:
325 case Intrinsic::x86_avx2_psrl_w:
326 case Intrinsic::x86_avx2_psrli_d:
327 case Intrinsic::x86_avx2_psrli_q:
328 case Intrinsic::x86_avx2_psrli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000329 case Intrinsic::x86_avx512_psrl_d_512:
330 case Intrinsic::x86_avx512_psrl_q_512:
331 case Intrinsic::x86_avx512_psrl_w_512:
332 case Intrinsic::x86_avx512_psrli_d_512:
333 case Intrinsic::x86_avx512_psrli_q_512:
334 case Intrinsic::x86_avx512_psrli_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000335 LogicalShift = true; ShiftLeft = false;
336 break;
337 case Intrinsic::x86_sse2_psll_d:
338 case Intrinsic::x86_sse2_psll_q:
339 case Intrinsic::x86_sse2_psll_w:
340 case Intrinsic::x86_sse2_pslli_d:
341 case Intrinsic::x86_sse2_pslli_q:
342 case Intrinsic::x86_sse2_pslli_w:
343 case Intrinsic::x86_avx2_psll_d:
344 case Intrinsic::x86_avx2_psll_q:
345 case Intrinsic::x86_avx2_psll_w:
346 case Intrinsic::x86_avx2_pslli_d:
347 case Intrinsic::x86_avx2_pslli_q:
348 case Intrinsic::x86_avx2_pslli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000349 case Intrinsic::x86_avx512_psll_d_512:
350 case Intrinsic::x86_avx512_psll_q_512:
351 case Intrinsic::x86_avx512_psll_w_512:
352 case Intrinsic::x86_avx512_pslli_d_512:
353 case Intrinsic::x86_avx512_pslli_q_512:
354 case Intrinsic::x86_avx512_pslli_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000355 LogicalShift = true; ShiftLeft = true;
356 break;
357 }
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000358 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
359
Simon Pilgrim3815c162015-08-07 18:22:50 +0000360 // Simplify if count is constant.
361 auto Arg1 = II.getArgOperand(1);
362 auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
363 auto CDV = dyn_cast<ConstantDataVector>(Arg1);
364 auto CInt = dyn_cast<ConstantInt>(Arg1);
365 if (!CAZ && !CDV && !CInt)
Simon Pilgrim18617d12015-08-05 08:18:00 +0000366 return nullptr;
Simon Pilgrim3815c162015-08-07 18:22:50 +0000367
368 APInt Count(64, 0);
369 if (CDV) {
370 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
371 // operand to compute the shift amount.
372 auto VT = cast<VectorType>(CDV->getType());
373 unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
374 assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
375 unsigned NumSubElts = 64 / BitWidth;
376
377 // Concatenate the sub-elements to create the 64-bit value.
378 for (unsigned i = 0; i != NumSubElts; ++i) {
379 unsigned SubEltIdx = (NumSubElts - 1) - i;
380 auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
Renato Golin4abfb3d2017-04-23 12:15:30 +0000381 Count = Count.shl(BitWidth);
Simon Pilgrim3815c162015-08-07 18:22:50 +0000382 Count |= SubElt->getValue().zextOrTrunc(64);
383 }
384 }
385 else if (CInt)
386 Count = CInt->getValue();
Simon Pilgrim18617d12015-08-05 08:18:00 +0000387
388 auto Vec = II.getArgOperand(0);
389 auto VT = cast<VectorType>(Vec->getType());
390 auto SVT = VT->getElementType();
Simon Pilgrim3815c162015-08-07 18:22:50 +0000391 unsigned VWidth = VT->getNumElements();
392 unsigned BitWidth = SVT->getPrimitiveSizeInBits();
393
394 // If shift-by-zero then just return the original value.
395 if (Count == 0)
396 return Vec;
397
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000398 // Handle cases when Shift >= BitWidth.
399 if (Count.uge(BitWidth)) {
400 // If LogicalShift - just return zero.
401 if (LogicalShift)
402 return ConstantAggregateZero::get(VT);
403
404 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
405 Count = APInt(64, BitWidth - 1);
406 }
Simon Pilgrim18617d12015-08-05 08:18:00 +0000407
Simon Pilgrim18617d12015-08-05 08:18:00 +0000408 // Get a constant vector of the same type as the first operand.
Simon Pilgrim3815c162015-08-07 18:22:50 +0000409 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
410 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000411
412 if (ShiftLeft)
Simon Pilgrim3815c162015-08-07 18:22:50 +0000413 return Builder.CreateShl(Vec, ShiftVec);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000414
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000415 if (LogicalShift)
416 return Builder.CreateLShr(Vec, ShiftVec);
417
418 return Builder.CreateAShr(Vec, ShiftVec);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000419}
420
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000421// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
422// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
423// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
424static Value *simplifyX86varShift(const IntrinsicInst &II,
425 InstCombiner::BuilderTy &Builder) {
426 bool LogicalShift = false;
427 bool ShiftLeft = false;
428
429 switch (II.getIntrinsicID()) {
Craig Topperb4173a52016-11-13 07:26:19 +0000430 default: llvm_unreachable("Unexpected intrinsic!");
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000431 case Intrinsic::x86_avx2_psrav_d:
432 case Intrinsic::x86_avx2_psrav_d_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000433 case Intrinsic::x86_avx512_psrav_q_128:
434 case Intrinsic::x86_avx512_psrav_q_256:
435 case Intrinsic::x86_avx512_psrav_d_512:
436 case Intrinsic::x86_avx512_psrav_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000437 case Intrinsic::x86_avx512_psrav_w_128:
438 case Intrinsic::x86_avx512_psrav_w_256:
439 case Intrinsic::x86_avx512_psrav_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000440 LogicalShift = false;
441 ShiftLeft = false;
442 break;
443 case Intrinsic::x86_avx2_psrlv_d:
444 case Intrinsic::x86_avx2_psrlv_d_256:
445 case Intrinsic::x86_avx2_psrlv_q:
446 case Intrinsic::x86_avx2_psrlv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000447 case Intrinsic::x86_avx512_psrlv_d_512:
448 case Intrinsic::x86_avx512_psrlv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000449 case Intrinsic::x86_avx512_psrlv_w_128:
450 case Intrinsic::x86_avx512_psrlv_w_256:
451 case Intrinsic::x86_avx512_psrlv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000452 LogicalShift = true;
453 ShiftLeft = false;
454 break;
455 case Intrinsic::x86_avx2_psllv_d:
456 case Intrinsic::x86_avx2_psllv_d_256:
457 case Intrinsic::x86_avx2_psllv_q:
458 case Intrinsic::x86_avx2_psllv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000459 case Intrinsic::x86_avx512_psllv_d_512:
460 case Intrinsic::x86_avx512_psllv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000461 case Intrinsic::x86_avx512_psllv_w_128:
462 case Intrinsic::x86_avx512_psllv_w_256:
463 case Intrinsic::x86_avx512_psllv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000464 LogicalShift = true;
465 ShiftLeft = true;
466 break;
467 }
468 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
469
470 // Simplify if all shift amounts are constant/undef.
471 auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
472 if (!CShift)
473 return nullptr;
474
475 auto Vec = II.getArgOperand(0);
476 auto VT = cast<VectorType>(II.getType());
477 auto SVT = VT->getVectorElementType();
478 int NumElts = VT->getNumElements();
479 int BitWidth = SVT->getIntegerBitWidth();
480
481 // Collect each element's shift amount.
482 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
483 bool AnyOutOfRange = false;
484 SmallVector<int, 8> ShiftAmts;
485 for (int I = 0; I < NumElts; ++I) {
486 auto *CElt = CShift->getAggregateElement(I);
487 if (CElt && isa<UndefValue>(CElt)) {
488 ShiftAmts.push_back(-1);
489 continue;
490 }
491
492 auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
493 if (!COp)
494 return nullptr;
495
496 // Handle out of range shifts.
497 // If LogicalShift - set to BitWidth (special case).
498 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
499 APInt ShiftVal = COp->getValue();
500 if (ShiftVal.uge(BitWidth)) {
501 AnyOutOfRange = LogicalShift;
502 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
503 continue;
504 }
505
506 ShiftAmts.push_back((int)ShiftVal.getZExtValue());
507 }
508
509 // If all elements out of range or UNDEF, return vector of zeros/undefs.
510 // ArithmeticShift should only hit this if they are all UNDEF.
511 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000512 if (all_of(ShiftAmts, OutOfRange)) {
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000513 SmallVector<Constant *, 8> ConstantVec;
514 for (int Idx : ShiftAmts) {
515 if (Idx < 0) {
516 ConstantVec.push_back(UndefValue::get(SVT));
517 } else {
518 assert(LogicalShift && "Logical shift expected");
519 ConstantVec.push_back(ConstantInt::getNullValue(SVT));
520 }
521 }
522 return ConstantVector::get(ConstantVec);
523 }
524
525 // We can't handle only some out of range values with generic logical shifts.
526 if (AnyOutOfRange)
527 return nullptr;
528
529 // Build the shift amount constant vector.
530 SmallVector<Constant *, 8> ShiftVecAmts;
531 for (int Idx : ShiftAmts) {
532 if (Idx < 0)
533 ShiftVecAmts.push_back(UndefValue::get(SVT));
534 else
535 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
536 }
537 auto ShiftVec = ConstantVector::get(ShiftVecAmts);
538
539 if (ShiftLeft)
540 return Builder.CreateShl(Vec, ShiftVec);
541
542 if (LogicalShift)
543 return Builder.CreateLShr(Vec, ShiftVec);
544
545 return Builder.CreateAShr(Vec, ShiftVec);
546}
547
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000548static Value *simplifyX86muldq(const IntrinsicInst &II,
549 InstCombiner::BuilderTy &Builder) {
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000550 Value *Arg0 = II.getArgOperand(0);
551 Value *Arg1 = II.getArgOperand(1);
552 Type *ResTy = II.getType();
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000553 assert(Arg0->getType()->getScalarSizeInBits() == 32 &&
554 Arg1->getType()->getScalarSizeInBits() == 32 &&
555 ResTy->getScalarSizeInBits() == 64 && "Unexpected muldq/muludq types");
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000556
Simon Pilgrimbb13fda2017-01-23 12:07:32 +0000557 // muldq/muludq(undef, undef) -> zero (matches generic mul behavior)
Simon Pilgrim78f86302017-01-24 11:07:41 +0000558 if (isa<UndefValue>(Arg0) || isa<UndefValue>(Arg1))
Simon Pilgrimbb13fda2017-01-23 12:07:32 +0000559 return ConstantAggregateZero::get(ResTy);
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000560
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000561 // Constant folding.
562 // PMULDQ = (mul(vXi64 sext(shuffle<0,2,..>(Arg0)),
563 // vXi64 sext(shuffle<0,2,..>(Arg1))))
564 // PMULUDQ = (mul(vXi64 zext(shuffle<0,2,..>(Arg0)),
565 // vXi64 zext(shuffle<0,2,..>(Arg1))))
566 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
567 return nullptr;
568
569 unsigned NumElts = ResTy->getVectorNumElements();
570 assert(Arg0->getType()->getVectorNumElements() == (2 * NumElts) &&
571 Arg1->getType()->getVectorNumElements() == (2 * NumElts) &&
572 "Unexpected muldq/muludq types");
573
574 unsigned IntrinsicID = II.getIntrinsicID();
575 bool IsSigned = (Intrinsic::x86_sse41_pmuldq == IntrinsicID ||
576 Intrinsic::x86_avx2_pmul_dq == IntrinsicID ||
577 Intrinsic::x86_avx512_pmul_dq_512 == IntrinsicID);
578
579 SmallVector<unsigned, 16> ShuffleMask;
580 for (unsigned i = 0; i != NumElts; ++i)
581 ShuffleMask.push_back(i * 2);
582
583 auto *LHS = Builder.CreateShuffleVector(Arg0, Arg0, ShuffleMask);
584 auto *RHS = Builder.CreateShuffleVector(Arg1, Arg1, ShuffleMask);
585
586 if (IsSigned) {
587 LHS = Builder.CreateSExt(LHS, ResTy);
588 RHS = Builder.CreateSExt(RHS, ResTy);
589 } else {
590 LHS = Builder.CreateZExt(LHS, ResTy);
591 RHS = Builder.CreateZExt(RHS, ResTy);
592 }
593
594 return Builder.CreateMul(LHS, RHS);
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000595}
596
Simon Pilgrim6f6b2792017-01-25 14:37:24 +0000597static Value *simplifyX86pack(IntrinsicInst &II, InstCombiner &IC,
598 InstCombiner::BuilderTy &Builder, bool IsSigned) {
599 Value *Arg0 = II.getArgOperand(0);
600 Value *Arg1 = II.getArgOperand(1);
601 Type *ResTy = II.getType();
602
603 // Fast all undef handling.
604 if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
605 return UndefValue::get(ResTy);
606
607 Type *ArgTy = Arg0->getType();
608 unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
609 unsigned NumDstElts = ResTy->getVectorNumElements();
610 unsigned NumSrcElts = ArgTy->getVectorNumElements();
611 assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
612
613 unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
614 unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
615 unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
616 assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
617 "Unexpected packing types");
618
619 // Constant folding.
620 auto *Cst0 = dyn_cast<Constant>(Arg0);
621 auto *Cst1 = dyn_cast<Constant>(Arg1);
622 if (!Cst0 || !Cst1)
623 return nullptr;
624
625 SmallVector<Constant *, 32> Vals;
626 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
627 for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
628 unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
629 auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
630 auto *COp = Cst->getAggregateElement(SrcIdx);
631 if (COp && isa<UndefValue>(COp)) {
632 Vals.push_back(UndefValue::get(ResTy->getScalarType()));
633 continue;
634 }
635
636 auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
637 if (!CInt)
638 return nullptr;
639
640 APInt Val = CInt->getValue();
641 assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
642 "Unexpected constant bitwidth");
643
644 if (IsSigned) {
645 // PACKSS: Truncate signed value with signed saturation.
646 // Source values less than dst minint are saturated to minint.
647 // Source values greater than dst maxint are saturated to maxint.
648 if (Val.isSignedIntN(DstScalarSizeInBits))
649 Val = Val.trunc(DstScalarSizeInBits);
650 else if (Val.isNegative())
651 Val = APInt::getSignedMinValue(DstScalarSizeInBits);
652 else
653 Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
654 } else {
655 // PACKUS: Truncate signed value with unsigned saturation.
656 // Source values less than zero are saturated to zero.
657 // Source values greater than dst maxuint are saturated to maxuint.
658 if (Val.isIntN(DstScalarSizeInBits))
659 Val = Val.trunc(DstScalarSizeInBits);
660 else if (Val.isNegative())
661 Val = APInt::getNullValue(DstScalarSizeInBits);
662 else
663 Val = APInt::getAllOnesValue(DstScalarSizeInBits);
664 }
665
666 Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
667 }
668 }
669
670 return ConstantVector::get(Vals);
671}
672
Simon Pilgrim91e3ac82016-06-07 08:18:35 +0000673static Value *simplifyX86movmsk(const IntrinsicInst &II,
674 InstCombiner::BuilderTy &Builder) {
675 Value *Arg = II.getArgOperand(0);
676 Type *ResTy = II.getType();
677 Type *ArgTy = Arg->getType();
678
679 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
680 if (isa<UndefValue>(Arg))
681 return Constant::getNullValue(ResTy);
682
683 // We can't easily peek through x86_mmx types.
684 if (!ArgTy->isVectorTy())
685 return nullptr;
686
687 auto *C = dyn_cast<Constant>(Arg);
688 if (!C)
689 return nullptr;
690
691 // Extract signbits of the vector input and pack into integer result.
692 APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
693 for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
694 auto *COp = C->getAggregateElement(I);
695 if (!COp)
696 return nullptr;
697 if (isa<UndefValue>(COp))
698 continue;
699
700 auto *CInt = dyn_cast<ConstantInt>(COp);
701 auto *CFp = dyn_cast<ConstantFP>(COp);
702 if (!CInt && !CFp)
703 return nullptr;
704
705 if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
706 Result.setBit(I);
707 }
708
709 return Constant::getIntegerValue(ResTy, Result);
710}
711
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000712static Value *simplifyX86insertps(const IntrinsicInst &II,
Sanjay Patelc86867c2015-04-16 17:52:13 +0000713 InstCombiner::BuilderTy &Builder) {
Sanjay Patel03c03f52016-01-28 00:03:16 +0000714 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
715 if (!CInt)
716 return nullptr;
Simon Pilgrim54fcd622015-07-25 20:41:00 +0000717
Sanjay Patel03c03f52016-01-28 00:03:16 +0000718 VectorType *VecTy = cast<VectorType>(II.getType());
719 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
Sanjay Patelc86867c2015-04-16 17:52:13 +0000720
Sanjay Patel03c03f52016-01-28 00:03:16 +0000721 // The immediate permute control byte looks like this:
722 // [3:0] - zero mask for each 32-bit lane
723 // [5:4] - select one 32-bit destination lane
724 // [7:6] - select one 32-bit source lane
Sanjay Patelc86867c2015-04-16 17:52:13 +0000725
Sanjay Patel03c03f52016-01-28 00:03:16 +0000726 uint8_t Imm = CInt->getZExtValue();
727 uint8_t ZMask = Imm & 0xf;
728 uint8_t DestLane = (Imm >> 4) & 0x3;
729 uint8_t SourceLane = (Imm >> 6) & 0x3;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000730
Sanjay Patel03c03f52016-01-28 00:03:16 +0000731 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
Sanjay Patelc86867c2015-04-16 17:52:13 +0000732
Sanjay Patel03c03f52016-01-28 00:03:16 +0000733 // If all zero mask bits are set, this was just a weird way to
734 // generate a zero vector.
735 if (ZMask == 0xf)
736 return ZeroVector;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000737
Sanjay Patel03c03f52016-01-28 00:03:16 +0000738 // Initialize by passing all of the first source bits through.
Craig Topper99d1eab2016-06-12 00:41:19 +0000739 uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000740
Sanjay Patel03c03f52016-01-28 00:03:16 +0000741 // We may replace the second operand with the zero vector.
742 Value *V1 = II.getArgOperand(1);
743
744 if (ZMask) {
745 // If the zero mask is being used with a single input or the zero mask
746 // overrides the destination lane, this is a shuffle with the zero vector.
747 if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
748 (ZMask & (1 << DestLane))) {
749 V1 = ZeroVector;
750 // We may still move 32-bits of the first source vector from one lane
751 // to another.
752 ShuffleMask[DestLane] = SourceLane;
753 // The zero mask may override the previous insert operation.
754 for (unsigned i = 0; i < 4; ++i)
755 if ((ZMask >> i) & 0x1)
756 ShuffleMask[i] = i + 4;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000757 } else {
Sanjay Patel03c03f52016-01-28 00:03:16 +0000758 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
759 return nullptr;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000760 }
Sanjay Patel03c03f52016-01-28 00:03:16 +0000761 } else {
762 // Replace the selected destination lane with the selected source lane.
763 ShuffleMask[DestLane] = SourceLane + 4;
Sanjay Patelc86867c2015-04-16 17:52:13 +0000764 }
Sanjay Patel03c03f52016-01-28 00:03:16 +0000765
766 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
Sanjay Patelc86867c2015-04-16 17:52:13 +0000767}
768
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000769/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
770/// or conversion to a shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000771static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000772 ConstantInt *CILength, ConstantInt *CIIndex,
773 InstCombiner::BuilderTy &Builder) {
774 auto LowConstantHighUndef = [&](uint64_t Val) {
775 Type *IntTy64 = Type::getInt64Ty(II.getContext());
776 Constant *Args[] = {ConstantInt::get(IntTy64, Val),
777 UndefValue::get(IntTy64)};
778 return ConstantVector::get(Args);
779 };
780
781 // See if we're dealing with constant values.
782 Constant *C0 = dyn_cast<Constant>(Op0);
783 ConstantInt *CI0 =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +0000784 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000785 : nullptr;
786
787 // Attempt to constant fold.
788 if (CILength && CIIndex) {
789 // From AMD documentation: "The bit index and field length are each six
790 // bits in length other bits of the field are ignored."
791 APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
792 APInt APLength = CILength->getValue().zextOrTrunc(6);
793
794 unsigned Index = APIndex.getZExtValue();
795
796 // From AMD documentation: "a value of zero in the field length is
797 // defined as length of 64".
798 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
799
800 // From AMD documentation: "If the sum of the bit index + length field
801 // is greater than 64, the results are undefined".
802 unsigned End = Index + Length;
803
804 // Note that both field index and field length are 8-bit quantities.
805 // Since variables 'Index' and 'Length' are unsigned values
806 // obtained from zero-extending field index and field length
807 // respectively, their sum should never wrap around.
808 if (End > 64)
809 return UndefValue::get(II.getType());
810
811 // If we are inserting whole bytes, we can convert this to a shuffle.
812 // Lowering can recognize EXTRQI shuffle masks.
813 if ((Length % 8) == 0 && (Index % 8) == 0) {
814 // Convert bit indices to byte indices.
815 Length /= 8;
816 Index /= 8;
817
818 Type *IntTy8 = Type::getInt8Ty(II.getContext());
819 Type *IntTy32 = Type::getInt32Ty(II.getContext());
820 VectorType *ShufTy = VectorType::get(IntTy8, 16);
821
822 SmallVector<Constant *, 16> ShuffleMask;
823 for (int i = 0; i != (int)Length; ++i)
824 ShuffleMask.push_back(
825 Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
826 for (int i = Length; i != 8; ++i)
827 ShuffleMask.push_back(
828 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
829 for (int i = 8; i != 16; ++i)
830 ShuffleMask.push_back(UndefValue::get(IntTy32));
831
832 Value *SV = Builder.CreateShuffleVector(
833 Builder.CreateBitCast(Op0, ShufTy),
834 ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
835 return Builder.CreateBitCast(SV, II.getType());
836 }
837
838 // Constant Fold - shift Index'th bit to lowest position and mask off
839 // Length bits.
840 if (CI0) {
841 APInt Elt = CI0->getValue();
Craig Topperfc947bc2017-04-18 17:14:21 +0000842 Elt.lshrInPlace(Index);
843 Elt = Elt.zextOrTrunc(Length);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000844 return LowConstantHighUndef(Elt.getZExtValue());
845 }
846
847 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
848 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
849 Value *Args[] = {Op0, CILength, CIIndex};
Sanjay Patelaf674fb2015-12-14 17:24:23 +0000850 Module *M = II.getModule();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000851 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
852 return Builder.CreateCall(F, Args);
853 }
854 }
855
856 // Constant Fold - extraction from zero is always {zero, undef}.
857 if (CI0 && CI0->equalsInt(0))
858 return LowConstantHighUndef(0);
859
860 return nullptr;
861}
862
863/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
864/// folding or conversion to a shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000865static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000866 APInt APLength, APInt APIndex,
867 InstCombiner::BuilderTy &Builder) {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000868 // From AMD documentation: "The bit index and field length are each six bits
869 // in length other bits of the field are ignored."
870 APIndex = APIndex.zextOrTrunc(6);
871 APLength = APLength.zextOrTrunc(6);
872
873 // Attempt to constant fold.
874 unsigned Index = APIndex.getZExtValue();
875
876 // From AMD documentation: "a value of zero in the field length is
877 // defined as length of 64".
878 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
879
880 // From AMD documentation: "If the sum of the bit index + length field
881 // is greater than 64, the results are undefined".
882 unsigned End = Index + Length;
883
884 // Note that both field index and field length are 8-bit quantities.
885 // Since variables 'Index' and 'Length' are unsigned values
886 // obtained from zero-extending field index and field length
887 // respectively, their sum should never wrap around.
888 if (End > 64)
889 return UndefValue::get(II.getType());
890
891 // If we are inserting whole bytes, we can convert this to a shuffle.
892 // Lowering can recognize INSERTQI shuffle masks.
893 if ((Length % 8) == 0 && (Index % 8) == 0) {
894 // Convert bit indices to byte indices.
895 Length /= 8;
896 Index /= 8;
897
898 Type *IntTy8 = Type::getInt8Ty(II.getContext());
899 Type *IntTy32 = Type::getInt32Ty(II.getContext());
900 VectorType *ShufTy = VectorType::get(IntTy8, 16);
901
902 SmallVector<Constant *, 16> ShuffleMask;
903 for (int i = 0; i != (int)Index; ++i)
904 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
905 for (int i = 0; i != (int)Length; ++i)
906 ShuffleMask.push_back(
907 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
908 for (int i = Index + Length; i != 8; ++i)
909 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
910 for (int i = 8; i != 16; ++i)
911 ShuffleMask.push_back(UndefValue::get(IntTy32));
912
913 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
914 Builder.CreateBitCast(Op1, ShufTy),
915 ConstantVector::get(ShuffleMask));
916 return Builder.CreateBitCast(SV, II.getType());
917 }
918
919 // See if we're dealing with constant values.
920 Constant *C0 = dyn_cast<Constant>(Op0);
921 Constant *C1 = dyn_cast<Constant>(Op1);
922 ConstantInt *CI00 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +0000923 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000924 : nullptr;
925 ConstantInt *CI10 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +0000926 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000927 : nullptr;
928
929 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
930 if (CI00 && CI10) {
931 APInt V00 = CI00->getValue();
932 APInt V10 = CI10->getValue();
933 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
934 V00 = V00 & ~Mask;
935 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
936 APInt Val = V00 | V10;
937 Type *IntTy64 = Type::getInt64Ty(II.getContext());
938 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
939 UndefValue::get(IntTy64)};
940 return ConstantVector::get(Args);
941 }
942
943 // If we were an INSERTQ call, we'll save demanded elements if we convert to
944 // INSERTQI.
945 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
946 Type *IntTy8 = Type::getInt8Ty(II.getContext());
947 Constant *CILength = ConstantInt::get(IntTy8, Length, false);
948 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
949
950 Value *Args[] = {Op0, Op1, CILength, CIIndex};
Sanjay Patelaf674fb2015-12-14 17:24:23 +0000951 Module *M = II.getModule();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000952 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
953 return Builder.CreateCall(F, Args);
954 }
955
956 return nullptr;
957}
958
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000959/// Attempt to convert pshufb* to shufflevector if the mask is constant.
960static Value *simplifyX86pshufb(const IntrinsicInst &II,
961 InstCombiner::BuilderTy &Builder) {
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000962 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
963 if (!V)
964 return nullptr;
965
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000966 auto *VecTy = cast<VectorType>(II.getType());
967 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
968 unsigned NumElts = VecTy->getNumElements();
Craig Topper9a63d7a2016-12-11 00:23:50 +0000969 assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000970 "Unexpected number of elements in shuffle mask!");
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000971
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000972 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Topper9a63d7a2016-12-11 00:23:50 +0000973 Constant *Indexes[64] = {nullptr};
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000974
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000975 // Each byte in the shuffle control mask forms an index to permute the
976 // corresponding byte in the destination operand.
977 for (unsigned I = 0; I < NumElts; ++I) {
978 Constant *COp = V->getAggregateElement(I);
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000979 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000980 return nullptr;
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000981
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000982 if (isa<UndefValue>(COp)) {
983 Indexes[I] = UndefValue::get(MaskEltTy);
984 continue;
985 }
986
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000987 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
988
989 // If the most significant bit (bit[7]) of each byte of the shuffle
990 // control mask is set, then zero is written in the result byte.
991 // The zero vector is in the right-hand side of the resulting
992 // shufflevector.
993
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000994 // The value of each index for the high 128-bit lane is the least
995 // significant 4 bits of the respective shuffle control byte.
996 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
997 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000998 }
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000999
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001000 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001001 auto V1 = II.getArgOperand(0);
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001002 auto V2 = Constant::getNullValue(VecTy);
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001003 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1004}
1005
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001006/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
1007static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
1008 InstCombiner::BuilderTy &Builder) {
Simon Pilgrim640f9962016-04-30 07:23:30 +00001009 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
1010 if (!V)
1011 return nullptr;
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001012
Craig Topper58917f32016-12-11 01:59:36 +00001013 auto *VecTy = cast<VectorType>(II.getType());
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001014 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
Craig Topper58917f32016-12-11 01:59:36 +00001015 unsigned NumElts = VecTy->getVectorNumElements();
1016 bool IsPD = VecTy->getScalarType()->isDoubleTy();
1017 unsigned NumLaneElts = IsPD ? 2 : 4;
1018 assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001019
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001020 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Topper58917f32016-12-11 01:59:36 +00001021 Constant *Indexes[16] = {nullptr};
Simon Pilgrim640f9962016-04-30 07:23:30 +00001022
1023 // The intrinsics only read one or two bits, clear the rest.
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001024 for (unsigned I = 0; I < NumElts; ++I) {
Simon Pilgrim640f9962016-04-30 07:23:30 +00001025 Constant *COp = V->getAggregateElement(I);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001026 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrim640f9962016-04-30 07:23:30 +00001027 return nullptr;
1028
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001029 if (isa<UndefValue>(COp)) {
1030 Indexes[I] = UndefValue::get(MaskEltTy);
1031 continue;
1032 }
1033
1034 APInt Index = cast<ConstantInt>(COp)->getValue();
1035 Index = Index.zextOrTrunc(32).getLoBits(2);
Simon Pilgrim640f9962016-04-30 07:23:30 +00001036
1037 // The PD variants uses bit 1 to select per-lane element index, so
1038 // shift down to convert to generic shuffle mask index.
Craig Topper58917f32016-12-11 01:59:36 +00001039 if (IsPD)
Craig Topperfc947bc2017-04-18 17:14:21 +00001040 Index.lshrInPlace(1);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001041
1042 // The _256 variants are a bit trickier since the mask bits always index
1043 // into the corresponding 128 half. In order to convert to a generic
1044 // shuffle, we have to make that explicit.
Craig Topper58917f32016-12-11 01:59:36 +00001045 Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001046
1047 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001048 }
1049
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001050 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001051 auto V1 = II.getArgOperand(0);
1052 auto V2 = UndefValue::get(V1->getType());
1053 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1054}
1055
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001056/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1057static Value *simplifyX86vpermv(const IntrinsicInst &II,
1058 InstCombiner::BuilderTy &Builder) {
1059 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1060 if (!V)
1061 return nullptr;
1062
Simon Pilgrimca140b12016-05-01 20:43:02 +00001063 auto *VecTy = cast<VectorType>(II.getType());
1064 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001065 unsigned Size = VecTy->getNumElements();
Craig Toppere3280452016-12-25 23:58:57 +00001066 assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1067 "Unexpected shuffle mask size");
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001068
Simon Pilgrimca140b12016-05-01 20:43:02 +00001069 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Toppere3280452016-12-25 23:58:57 +00001070 Constant *Indexes[64] = {nullptr};
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001071
1072 for (unsigned I = 0; I < Size; ++I) {
1073 Constant *COp = V->getAggregateElement(I);
Simon Pilgrimca140b12016-05-01 20:43:02 +00001074 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001075 return nullptr;
1076
Simon Pilgrimca140b12016-05-01 20:43:02 +00001077 if (isa<UndefValue>(COp)) {
1078 Indexes[I] = UndefValue::get(MaskEltTy);
1079 continue;
1080 }
1081
Craig Toppere3280452016-12-25 23:58:57 +00001082 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1083 Index &= Size - 1;
Simon Pilgrimca140b12016-05-01 20:43:02 +00001084 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001085 }
1086
Simon Pilgrimca140b12016-05-01 20:43:02 +00001087 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001088 auto V1 = II.getArgOperand(0);
1089 auto V2 = UndefValue::get(VecTy);
1090 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1091}
1092
Sanjay Patelccf5f242015-03-20 21:47:56 +00001093/// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
1094/// source vectors, unless a zero bit is set. If a zero bit is set,
1095/// then ignore that half of the mask and clear that half of the vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00001096static Value *simplifyX86vperm2(const IntrinsicInst &II,
Sanjay Patelccf5f242015-03-20 21:47:56 +00001097 InstCombiner::BuilderTy &Builder) {
Sanjay Patel03c03f52016-01-28 00:03:16 +00001098 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
1099 if (!CInt)
1100 return nullptr;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001101
Sanjay Patel03c03f52016-01-28 00:03:16 +00001102 VectorType *VecTy = cast<VectorType>(II.getType());
1103 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001104
Sanjay Patel03c03f52016-01-28 00:03:16 +00001105 // The immediate permute control byte looks like this:
1106 // [1:0] - select 128 bits from sources for low half of destination
1107 // [2] - ignore
1108 // [3] - zero low half of destination
1109 // [5:4] - select 128 bits from sources for high half of destination
1110 // [6] - ignore
1111 // [7] - zero high half of destination
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001112
Sanjay Patel03c03f52016-01-28 00:03:16 +00001113 uint8_t Imm = CInt->getZExtValue();
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001114
Sanjay Patel03c03f52016-01-28 00:03:16 +00001115 bool LowHalfZero = Imm & 0x08;
1116 bool HighHalfZero = Imm & 0x80;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001117
Sanjay Patel03c03f52016-01-28 00:03:16 +00001118 // If both zero mask bits are set, this was just a weird way to
1119 // generate a zero vector.
1120 if (LowHalfZero && HighHalfZero)
1121 return ZeroVector;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001122
Sanjay Patel03c03f52016-01-28 00:03:16 +00001123 // If 0 or 1 zero mask bits are set, this is a simple shuffle.
1124 unsigned NumElts = VecTy->getNumElements();
1125 unsigned HalfSize = NumElts / 2;
Craig Topper99d1eab2016-06-12 00:41:19 +00001126 SmallVector<uint32_t, 8> ShuffleMask(NumElts);
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001127
Sanjay Patel03c03f52016-01-28 00:03:16 +00001128 // The high bit of the selection field chooses the 1st or 2nd operand.
1129 bool LowInputSelect = Imm & 0x02;
1130 bool HighInputSelect = Imm & 0x20;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001131
Sanjay Patel03c03f52016-01-28 00:03:16 +00001132 // The low bit of the selection field chooses the low or high half
1133 // of the selected operand.
1134 bool LowHalfSelect = Imm & 0x01;
1135 bool HighHalfSelect = Imm & 0x10;
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001136
Sanjay Patel03c03f52016-01-28 00:03:16 +00001137 // Determine which operand(s) are actually in use for this instruction.
1138 Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
1139 Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001140
Sanjay Patel03c03f52016-01-28 00:03:16 +00001141 // If needed, replace operands based on zero mask.
1142 V0 = LowHalfZero ? ZeroVector : V0;
1143 V1 = HighHalfZero ? ZeroVector : V1;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001144
Sanjay Patel03c03f52016-01-28 00:03:16 +00001145 // Permute low half of result.
1146 unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
1147 for (unsigned i = 0; i < HalfSize; ++i)
1148 ShuffleMask[i] = StartIndex + i;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001149
Sanjay Patel03c03f52016-01-28 00:03:16 +00001150 // Permute high half of result.
1151 StartIndex = HighHalfSelect ? HalfSize : 0;
1152 StartIndex += NumElts;
1153 for (unsigned i = 0; i < HalfSize; ++i)
1154 ShuffleMask[i + HalfSize] = StartIndex + i;
1155
1156 return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
Sanjay Patelccf5f242015-03-20 21:47:56 +00001157}
1158
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001159/// Decode XOP integer vector comparison intrinsics.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00001160static Value *simplifyX86vpcom(const IntrinsicInst &II,
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00001161 InstCombiner::BuilderTy &Builder,
1162 bool IsSigned) {
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001163 if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
1164 uint64_t Imm = CInt->getZExtValue() & 0x7;
1165 VectorType *VecTy = cast<VectorType>(II.getType());
1166 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1167
1168 switch (Imm) {
1169 case 0x0:
1170 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1171 break;
1172 case 0x1:
1173 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1174 break;
1175 case 0x2:
1176 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1177 break;
1178 case 0x3:
1179 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1180 break;
1181 case 0x4:
1182 Pred = ICmpInst::ICMP_EQ; break;
1183 case 0x5:
1184 Pred = ICmpInst::ICMP_NE; break;
1185 case 0x6:
1186 return ConstantInt::getSigned(VecTy, 0); // FALSE
1187 case 0x7:
1188 return ConstantInt::getSigned(VecTy, -1); // TRUE
1189 }
1190
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00001191 if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
1192 II.getArgOperand(1)))
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001193 return Builder.CreateSExtOrTrunc(Cmp, VecTy);
1194 }
1195 return nullptr;
1196}
1197
Craig Toppere3280452016-12-25 23:58:57 +00001198// Emit a select instruction and appropriate bitcasts to help simplify
1199// masked intrinsics.
1200static Value *emitX86MaskSelect(Value *Mask, Value *Op0, Value *Op1,
1201 InstCombiner::BuilderTy &Builder) {
Craig Topper99163632016-12-30 23:06:28 +00001202 unsigned VWidth = Op0->getType()->getVectorNumElements();
1203
1204 // If the mask is all ones we don't need the select. But we need to check
1205 // only the bit thats will be used in case VWidth is less than 8.
1206 if (auto *C = dyn_cast<ConstantInt>(Mask))
1207 if (C->getValue().zextOrTrunc(VWidth).isAllOnesValue())
1208 return Op0;
1209
Craig Toppere3280452016-12-25 23:58:57 +00001210 auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
1211 cast<IntegerType>(Mask->getType())->getBitWidth());
1212 Mask = Builder.CreateBitCast(Mask, MaskTy);
1213
1214 // If we have less than 8 elements, then the starting mask was an i8 and
1215 // we need to extract down to the right number of elements.
Craig Toppere3280452016-12-25 23:58:57 +00001216 if (VWidth < 8) {
1217 uint32_t Indices[4];
1218 for (unsigned i = 0; i != VWidth; ++i)
1219 Indices[i] = i;
1220 Mask = Builder.CreateShuffleVector(Mask, Mask,
1221 makeArrayRef(Indices, VWidth),
1222 "extract");
1223 }
1224
1225 return Builder.CreateSelect(Mask, Op0, Op1);
1226}
1227
Sanjay Patel0069f562016-01-31 16:35:23 +00001228static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
1229 Value *Arg0 = II.getArgOperand(0);
1230 Value *Arg1 = II.getArgOperand(1);
1231
1232 // fmin(x, x) -> x
1233 if (Arg0 == Arg1)
1234 return Arg0;
1235
1236 const auto *C1 = dyn_cast<ConstantFP>(Arg1);
1237
1238 // fmin(x, nan) -> x
1239 if (C1 && C1->isNaN())
1240 return Arg0;
1241
1242 // This is the value because if undef were NaN, we would return the other
1243 // value and cannot return a NaN unless both operands are.
1244 //
1245 // fmin(undef, x) -> x
1246 if (isa<UndefValue>(Arg0))
1247 return Arg1;
1248
1249 // fmin(x, undef) -> x
1250 if (isa<UndefValue>(Arg1))
1251 return Arg0;
1252
1253 Value *X = nullptr;
1254 Value *Y = nullptr;
1255 if (II.getIntrinsicID() == Intrinsic::minnum) {
1256 // fmin(x, fmin(x, y)) -> fmin(x, y)
1257 // fmin(y, fmin(x, y)) -> fmin(x, y)
1258 if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
1259 if (Arg0 == X || Arg0 == Y)
1260 return Arg1;
1261 }
1262
1263 // fmin(fmin(x, y), x) -> fmin(x, y)
1264 // fmin(fmin(x, y), y) -> fmin(x, y)
1265 if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
1266 if (Arg1 == X || Arg1 == Y)
1267 return Arg0;
1268 }
1269
1270 // TODO: fmin(nnan x, inf) -> x
1271 // TODO: fmin(nnan ninf x, flt_max) -> x
1272 if (C1 && C1->isInfinity()) {
1273 // fmin(x, -inf) -> -inf
1274 if (C1->isNegative())
1275 return Arg1;
1276 }
1277 } else {
1278 assert(II.getIntrinsicID() == Intrinsic::maxnum);
1279 // fmax(x, fmax(x, y)) -> fmax(x, y)
1280 // fmax(y, fmax(x, y)) -> fmax(x, y)
1281 if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
1282 if (Arg0 == X || Arg0 == Y)
1283 return Arg1;
1284 }
1285
1286 // fmax(fmax(x, y), x) -> fmax(x, y)
1287 // fmax(fmax(x, y), y) -> fmax(x, y)
1288 if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
1289 if (Arg1 == X || Arg1 == Y)
1290 return Arg0;
1291 }
1292
1293 // TODO: fmax(nnan x, -inf) -> x
1294 // TODO: fmax(nnan ninf x, -flt_max) -> x
1295 if (C1 && C1->isInfinity()) {
1296 // fmax(x, inf) -> inf
1297 if (!C1->isNegative())
1298 return Arg1;
1299 }
1300 }
1301 return nullptr;
1302}
1303
David Majnemer666aa942016-07-14 06:58:42 +00001304static bool maskIsAllOneOrUndef(Value *Mask) {
1305 auto *ConstMask = dyn_cast<Constant>(Mask);
1306 if (!ConstMask)
1307 return false;
1308 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1309 return true;
1310 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
1311 ++I) {
1312 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1313 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1314 continue;
1315 return false;
1316 }
1317 return true;
1318}
1319
Sanjay Patelb695c552016-02-01 17:00:10 +00001320static Value *simplifyMaskedLoad(const IntrinsicInst &II,
1321 InstCombiner::BuilderTy &Builder) {
David Majnemer666aa942016-07-14 06:58:42 +00001322 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1323 // argument.
1324 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
Sanjay Patelb695c552016-02-01 17:00:10 +00001325 Value *LoadPtr = II.getArgOperand(0);
1326 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1327 return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
1328 }
1329
1330 return nullptr;
1331}
1332
Sanjay Patel04f792b2016-02-01 19:39:52 +00001333static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1334 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1335 if (!ConstMask)
1336 return nullptr;
1337
1338 // If the mask is all zeros, this instruction does nothing.
1339 if (ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001340 return IC.eraseInstFromFunction(II);
Sanjay Patel04f792b2016-02-01 19:39:52 +00001341
1342 // If the mask is all ones, this is a plain vector store of the 1st argument.
1343 if (ConstMask->isAllOnesValue()) {
1344 Value *StorePtr = II.getArgOperand(1);
1345 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1346 return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1347 }
1348
1349 return nullptr;
1350}
1351
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001352static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
1353 // If the mask is all zeros, return the "passthru" argument of the gather.
1354 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
1355 if (ConstMask && ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001356 return IC.replaceInstUsesWith(II, II.getArgOperand(3));
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001357
1358 return nullptr;
1359}
1360
1361static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
1362 // If the mask is all zeros, a scatter does nothing.
1363 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1364 if (ConstMask && ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001365 return IC.eraseInstFromFunction(II);
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001366
1367 return nullptr;
1368}
1369
Amaury Sechet763c59d2016-08-18 20:43:50 +00001370static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1371 assert((II.getIntrinsicID() == Intrinsic::cttz ||
1372 II.getIntrinsicID() == Intrinsic::ctlz) &&
1373 "Expected cttz or ctlz intrinsic");
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001374 Value *Op0 = II.getArgOperand(0);
1375 // FIXME: Try to simplify vectors of integers.
1376 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1377 if (!IT)
1378 return nullptr;
1379
1380 unsigned BitWidth = IT->getBitWidth();
1381 APInt KnownZero(BitWidth, 0);
1382 APInt KnownOne(BitWidth, 0);
1383 IC.computeKnownBits(Op0, KnownZero, KnownOne, 0, &II);
1384
1385 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1386 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1387 unsigned NumMaskBits = IsTZ ? KnownOne.countTrailingZeros()
1388 : KnownOne.countLeadingZeros();
1389 APInt Mask = IsTZ ? APInt::getLowBitsSet(BitWidth, NumMaskBits)
1390 : APInt::getHighBitsSet(BitWidth, NumMaskBits);
1391
1392 // If all bits above (ctlz) or below (cttz) the first known one are known
1393 // zero, this value is constant.
1394 // FIXME: This should be in InstSimplify because we're replacing an
1395 // instruction with a constant.
Amaury Sechet763c59d2016-08-18 20:43:50 +00001396 if ((Mask & KnownZero) == Mask) {
1397 auto *C = ConstantInt::get(IT, APInt(BitWidth, NumMaskBits));
1398 return IC.replaceInstUsesWith(II, C);
1399 }
1400
1401 // If the input to cttz/ctlz is known to be non-zero,
1402 // then change the 'ZeroIsUndef' parameter to 'true'
1403 // because we know the zero behavior can't affect the result.
1404 if (KnownOne != 0 || isKnownNonZero(Op0, IC.getDataLayout())) {
1405 if (!match(II.getArgOperand(1), m_One())) {
1406 II.setOperand(1, IC.Builder->getTrue());
1407 return &II;
1408 }
1409 }
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001410
1411 return nullptr;
1412}
1413
Sanjay Patel1ace9932016-02-26 21:04:14 +00001414// TODO: If the x86 backend knew how to convert a bool vector mask back to an
1415// XMM register mask efficiently, we could transform all x86 masked intrinsics
1416// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
Sanjay Patel98a71502016-02-29 23:16:48 +00001417static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1418 Value *Ptr = II.getOperand(0);
1419 Value *Mask = II.getOperand(1);
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001420 Constant *ZeroVec = Constant::getNullValue(II.getType());
Sanjay Patel98a71502016-02-29 23:16:48 +00001421
1422 // Special case a zero mask since that's not a ConstantDataVector.
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001423 // This masked load instruction creates a zero vector.
Sanjay Patel98a71502016-02-29 23:16:48 +00001424 if (isa<ConstantAggregateZero>(Mask))
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001425 return IC.replaceInstUsesWith(II, ZeroVec);
Sanjay Patel98a71502016-02-29 23:16:48 +00001426
1427 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1428 if (!ConstMask)
1429 return nullptr;
1430
1431 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1432 // to allow target-independent optimizations.
1433
1434 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1435 // the LLVM intrinsic definition for the pointer argument.
1436 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1437 PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1438 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1439
1440 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1441 // on each element's most significant bit (the sign bit).
1442 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1443
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001444 // The pass-through vector for an x86 masked load is a zero vector.
1445 CallInst *NewMaskedLoad =
1446 IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
Sanjay Patel98a71502016-02-29 23:16:48 +00001447 return IC.replaceInstUsesWith(II, NewMaskedLoad);
1448}
1449
1450// TODO: If the x86 backend knew how to convert a bool vector mask back to an
1451// XMM register mask efficiently, we could transform all x86 masked intrinsics
1452// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
Sanjay Patel1ace9932016-02-26 21:04:14 +00001453static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1454 Value *Ptr = II.getOperand(0);
1455 Value *Mask = II.getOperand(1);
1456 Value *Vec = II.getOperand(2);
1457
1458 // Special case a zero mask since that's not a ConstantDataVector:
1459 // this masked store instruction does nothing.
1460 if (isa<ConstantAggregateZero>(Mask)) {
1461 IC.eraseInstFromFunction(II);
1462 return true;
1463 }
1464
Sanjay Patelc4acbae2016-03-12 15:16:59 +00001465 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1466 // anything else at this level.
1467 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1468 return false;
1469
Sanjay Patel1ace9932016-02-26 21:04:14 +00001470 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1471 if (!ConstMask)
1472 return false;
1473
1474 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1475 // to allow target-independent optimizations.
1476
1477 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1478 // the LLVM intrinsic definition for the pointer argument.
1479 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1480 PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
Sanjay Patel1ace9932016-02-26 21:04:14 +00001481 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1482
1483 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1484 // on each element's most significant bit (the sign bit).
1485 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1486
1487 IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1488
1489 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1490 IC.eraseInstFromFunction(II);
1491 return true;
1492}
1493
Matt Arsenaultcdb468c2017-02-27 23:08:49 +00001494// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1495//
1496// A single NaN input is folded to minnum, so we rely on that folding for
1497// handling NaNs.
1498static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1499 const APFloat &Src2) {
1500 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1501
1502 APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1503 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1504 if (Cmp0 == APFloat::cmpEqual)
1505 return maxnum(Src1, Src2);
1506
1507 APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1508 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1509 if (Cmp1 == APFloat::cmpEqual)
1510 return maxnum(Src0, Src2);
1511
1512 return maxnum(Src0, Src1);
1513}
1514
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00001515// Returns true iff the 2 intrinsics have the same operands, limiting the
1516// comparison to the first NumOperands.
1517static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1518 unsigned NumOperands) {
1519 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1520 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1521 for (unsigned i = 0; i < NumOperands; i++)
1522 if (I.getArgOperand(i) != E.getArgOperand(i))
1523 return false;
1524 return true;
1525}
1526
1527// Remove trivially empty start/end intrinsic ranges, i.e. a start
1528// immediately followed by an end (ignoring debuginfo or other
1529// start/end intrinsics in between). As this handles only the most trivial
1530// cases, tracking the nesting level is not needed:
1531//
1532// call @llvm.foo.start(i1 0) ; &I
1533// call @llvm.foo.start(i1 0)
1534// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1535// call @llvm.foo.end(i1 0)
1536static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1537 unsigned EndID, InstCombiner &IC) {
1538 assert(I.getIntrinsicID() == StartID &&
1539 "Start intrinsic does not have expected ID");
1540 BasicBlock::iterator BI(I), BE(I.getParent()->end());
1541 for (++BI; BI != BE; ++BI) {
1542 if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1543 if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1544 continue;
1545 if (E->getIntrinsicID() == EndID &&
1546 haveSameOperands(I, *E, E->getNumArgOperands())) {
1547 IC.eraseInstFromFunction(*E);
1548 IC.eraseInstFromFunction(I);
1549 return true;
1550 }
1551 }
1552 break;
1553 }
1554
1555 return false;
1556}
1557
Justin Lebar698c31b2017-01-27 00:58:58 +00001558// Convert NVVM intrinsics to target-generic LLVM code where possible.
1559static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1560 // Each NVVM intrinsic we can simplify can be replaced with one of:
1561 //
1562 // * an LLVM intrinsic,
1563 // * an LLVM cast operation,
1564 // * an LLVM binary operation, or
1565 // * ad-hoc LLVM IR for the particular operation.
1566
1567 // Some transformations are only valid when the module's
1568 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1569 // transformations are valid regardless of the module's ftz setting.
1570 enum FtzRequirementTy {
1571 FTZ_Any, // Any ftz setting is ok.
1572 FTZ_MustBeOn, // Transformation is valid only if ftz is on.
1573 FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1574 };
1575 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1576 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1577 // simplify.
1578 enum SpecialCase {
1579 SPC_Reciprocal,
1580 };
1581
1582 // SimplifyAction is a poor-man's variant (plus an additional flag) that
1583 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1584 struct SimplifyAction {
1585 // Invariant: At most one of these Optionals has a value.
1586 Optional<Intrinsic::ID> IID;
1587 Optional<Instruction::CastOps> CastOp;
1588 Optional<Instruction::BinaryOps> BinaryOp;
1589 Optional<SpecialCase> Special;
1590
1591 FtzRequirementTy FtzRequirement = FTZ_Any;
1592
1593 SimplifyAction() = default;
1594
1595 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1596 : IID(IID), FtzRequirement(FtzReq) {}
1597
1598 // Cast operations don't have anything to do with FTZ, so we skip that
1599 // argument.
1600 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1601
1602 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1603 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1604
1605 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1606 : Special(Special), FtzRequirement(FtzReq) {}
1607 };
1608
1609 // Try to generate a SimplifyAction describing how to replace our
1610 // IntrinsicInstr with target-generic LLVM IR.
1611 const SimplifyAction Action = [II]() -> SimplifyAction {
1612 switch (II->getIntrinsicID()) {
1613
1614 // NVVM intrinsics that map directly to LLVM intrinsics.
1615 case Intrinsic::nvvm_ceil_d:
1616 return {Intrinsic::ceil, FTZ_Any};
1617 case Intrinsic::nvvm_ceil_f:
1618 return {Intrinsic::ceil, FTZ_MustBeOff};
1619 case Intrinsic::nvvm_ceil_ftz_f:
1620 return {Intrinsic::ceil, FTZ_MustBeOn};
1621 case Intrinsic::nvvm_fabs_d:
1622 return {Intrinsic::fabs, FTZ_Any};
1623 case Intrinsic::nvvm_fabs_f:
1624 return {Intrinsic::fabs, FTZ_MustBeOff};
1625 case Intrinsic::nvvm_fabs_ftz_f:
1626 return {Intrinsic::fabs, FTZ_MustBeOn};
1627 case Intrinsic::nvvm_floor_d:
1628 return {Intrinsic::floor, FTZ_Any};
1629 case Intrinsic::nvvm_floor_f:
1630 return {Intrinsic::floor, FTZ_MustBeOff};
1631 case Intrinsic::nvvm_floor_ftz_f:
1632 return {Intrinsic::floor, FTZ_MustBeOn};
1633 case Intrinsic::nvvm_fma_rn_d:
1634 return {Intrinsic::fma, FTZ_Any};
1635 case Intrinsic::nvvm_fma_rn_f:
1636 return {Intrinsic::fma, FTZ_MustBeOff};
1637 case Intrinsic::nvvm_fma_rn_ftz_f:
1638 return {Intrinsic::fma, FTZ_MustBeOn};
1639 case Intrinsic::nvvm_fmax_d:
1640 return {Intrinsic::maxnum, FTZ_Any};
1641 case Intrinsic::nvvm_fmax_f:
1642 return {Intrinsic::maxnum, FTZ_MustBeOff};
1643 case Intrinsic::nvvm_fmax_ftz_f:
1644 return {Intrinsic::maxnum, FTZ_MustBeOn};
1645 case Intrinsic::nvvm_fmin_d:
1646 return {Intrinsic::minnum, FTZ_Any};
1647 case Intrinsic::nvvm_fmin_f:
1648 return {Intrinsic::minnum, FTZ_MustBeOff};
1649 case Intrinsic::nvvm_fmin_ftz_f:
1650 return {Intrinsic::minnum, FTZ_MustBeOn};
1651 case Intrinsic::nvvm_round_d:
1652 return {Intrinsic::round, FTZ_Any};
1653 case Intrinsic::nvvm_round_f:
1654 return {Intrinsic::round, FTZ_MustBeOff};
1655 case Intrinsic::nvvm_round_ftz_f:
1656 return {Intrinsic::round, FTZ_MustBeOn};
1657 case Intrinsic::nvvm_sqrt_rn_d:
1658 return {Intrinsic::sqrt, FTZ_Any};
1659 case Intrinsic::nvvm_sqrt_f:
1660 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
1661 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
1662 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
1663 // the versions with explicit ftz-ness.
1664 return {Intrinsic::sqrt, FTZ_Any};
1665 case Intrinsic::nvvm_sqrt_rn_f:
1666 return {Intrinsic::sqrt, FTZ_MustBeOff};
1667 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1668 return {Intrinsic::sqrt, FTZ_MustBeOn};
1669 case Intrinsic::nvvm_trunc_d:
1670 return {Intrinsic::trunc, FTZ_Any};
1671 case Intrinsic::nvvm_trunc_f:
1672 return {Intrinsic::trunc, FTZ_MustBeOff};
1673 case Intrinsic::nvvm_trunc_ftz_f:
1674 return {Intrinsic::trunc, FTZ_MustBeOn};
1675
1676 // NVVM intrinsics that map to LLVM cast operations.
1677 //
1678 // Note that llvm's target-generic conversion operators correspond to the rz
1679 // (round to zero) versions of the nvvm conversion intrinsics, even though
1680 // most everything else here uses the rn (round to nearest even) nvvm ops.
1681 case Intrinsic::nvvm_d2i_rz:
1682 case Intrinsic::nvvm_f2i_rz:
1683 case Intrinsic::nvvm_d2ll_rz:
1684 case Intrinsic::nvvm_f2ll_rz:
1685 return {Instruction::FPToSI};
1686 case Intrinsic::nvvm_d2ui_rz:
1687 case Intrinsic::nvvm_f2ui_rz:
1688 case Intrinsic::nvvm_d2ull_rz:
1689 case Intrinsic::nvvm_f2ull_rz:
1690 return {Instruction::FPToUI};
1691 case Intrinsic::nvvm_i2d_rz:
1692 case Intrinsic::nvvm_i2f_rz:
1693 case Intrinsic::nvvm_ll2d_rz:
1694 case Intrinsic::nvvm_ll2f_rz:
1695 return {Instruction::SIToFP};
1696 case Intrinsic::nvvm_ui2d_rz:
1697 case Intrinsic::nvvm_ui2f_rz:
1698 case Intrinsic::nvvm_ull2d_rz:
1699 case Intrinsic::nvvm_ull2f_rz:
1700 return {Instruction::UIToFP};
1701
1702 // NVVM intrinsics that map to LLVM binary ops.
1703 case Intrinsic::nvvm_add_rn_d:
1704 return {Instruction::FAdd, FTZ_Any};
1705 case Intrinsic::nvvm_add_rn_f:
1706 return {Instruction::FAdd, FTZ_MustBeOff};
1707 case Intrinsic::nvvm_add_rn_ftz_f:
1708 return {Instruction::FAdd, FTZ_MustBeOn};
1709 case Intrinsic::nvvm_mul_rn_d:
1710 return {Instruction::FMul, FTZ_Any};
1711 case Intrinsic::nvvm_mul_rn_f:
1712 return {Instruction::FMul, FTZ_MustBeOff};
1713 case Intrinsic::nvvm_mul_rn_ftz_f:
1714 return {Instruction::FMul, FTZ_MustBeOn};
1715 case Intrinsic::nvvm_div_rn_d:
1716 return {Instruction::FDiv, FTZ_Any};
1717 case Intrinsic::nvvm_div_rn_f:
1718 return {Instruction::FDiv, FTZ_MustBeOff};
1719 case Intrinsic::nvvm_div_rn_ftz_f:
1720 return {Instruction::FDiv, FTZ_MustBeOn};
1721
1722 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1723 // need special handling.
1724 //
1725 // We seem to be mising intrinsics for rcp.approx.{ftz.}f32, which is just
1726 // as well.
1727 case Intrinsic::nvvm_rcp_rn_d:
1728 return {SPC_Reciprocal, FTZ_Any};
1729 case Intrinsic::nvvm_rcp_rn_f:
1730 return {SPC_Reciprocal, FTZ_MustBeOff};
1731 case Intrinsic::nvvm_rcp_rn_ftz_f:
1732 return {SPC_Reciprocal, FTZ_MustBeOn};
1733
1734 // We do not currently simplify intrinsics that give an approximate answer.
1735 // These include:
1736 //
1737 // - nvvm_cos_approx_{f,ftz_f}
1738 // - nvvm_ex2_approx_{d,f,ftz_f}
1739 // - nvvm_lg2_approx_{d,f,ftz_f}
1740 // - nvvm_sin_approx_{f,ftz_f}
1741 // - nvvm_sqrt_approx_{f,ftz_f}
1742 // - nvvm_rsqrt_approx_{d,f,ftz_f}
1743 // - nvvm_div_approx_{ftz_d,ftz_f,f}
1744 // - nvvm_rcp_approx_ftz_d
1745 //
1746 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1747 // means that fastmath is enabled in the intrinsic. Unfortunately only
1748 // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1749 // information gets lost and we can't select on it.
1750 //
1751 // TODO: div and rcp are lowered to a binary op, so these we could in theory
1752 // lower them to "fast fdiv".
1753
1754 default:
1755 return {};
1756 }
1757 }();
1758
1759 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1760 // can bail out now. (Notice that in the case that IID is not an NVVM
1761 // intrinsic, we don't have to look up any module metadata, as
1762 // FtzRequirementTy will be FTZ_Any.)
1763 if (Action.FtzRequirement != FTZ_Any) {
1764 bool FtzEnabled =
1765 II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1766 "true";
1767
1768 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1769 return nullptr;
1770 }
1771
1772 // Simplify to target-generic intrinsic.
1773 if (Action.IID) {
1774 SmallVector<Value *, 4> Args(II->arg_operands());
1775 // All the target-generic intrinsics currently of interest to us have one
1776 // type argument, equal to that of the nvvm intrinsic's argument.
Justin Lebare3ac0fb2017-01-27 01:49:39 +00001777 Type *Tys[] = {II->getArgOperand(0)->getType()};
Justin Lebar698c31b2017-01-27 00:58:58 +00001778 return CallInst::Create(
1779 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1780 }
1781
1782 // Simplify to target-generic binary op.
1783 if (Action.BinaryOp)
1784 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1785 II->getArgOperand(1), II->getName());
1786
1787 // Simplify to target-generic cast op.
1788 if (Action.CastOp)
1789 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1790 II->getName());
1791
1792 // All that's left are the special cases.
1793 if (!Action.Special)
1794 return nullptr;
1795
1796 switch (*Action.Special) {
1797 case SPC_Reciprocal:
1798 // Simplify reciprocal.
1799 return BinaryOperator::Create(
1800 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1801 II->getArgOperand(0), II->getName());
1802 }
Justin Lebar25ebe2d2017-01-27 02:04:07 +00001803 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
Justin Lebar698c31b2017-01-27 00:58:58 +00001804}
1805
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00001806Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1807 removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1808 return nullptr;
1809}
1810
1811Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1812 removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1813 return nullptr;
1814}
1815
Sanjay Patelcd4377c2016-01-20 22:24:38 +00001816/// CallInst simplification. This mostly only handles folding of intrinsic
1817/// instructions. For normal calls, it allows visitCallSite to do the heavy
1818/// lifting.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001819Instruction *InstCombiner::visitCallInst(CallInst &CI) {
David Majnemer15032582015-05-22 03:56:46 +00001820 auto Args = CI.arg_operands();
1821 if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00001822 &TLI, &DT, &AC))
Sanjay Patel4b198802016-02-01 22:23:39 +00001823 return replaceInstUsesWith(CI, V);
David Majnemer15032582015-05-22 03:56:46 +00001824
Justin Bogner99798402016-08-05 01:06:44 +00001825 if (isFreeCall(&CI, &TLI))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001826 return visitFree(CI);
1827
1828 // If the caller function is nounwind, mark the call as nounwind, even if the
1829 // callee isn't.
Sanjay Patel5a470952016-08-11 15:16:06 +00001830 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001831 CI.setDoesNotThrow();
1832 return &CI;
1833 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001834
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001835 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1836 if (!II) return visitCallSite(&CI);
Gabor Greif589a0b92010-06-24 12:58:35 +00001837
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001838 // Intrinsics cannot occur in an invoke, so handle them here instead of in
1839 // visitCallSite.
1840 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
1841 bool Changed = false;
1842
1843 // memmove/cpy/set of zero bytes is a noop.
1844 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
Chris Lattnerc663a672010-10-01 05:51:02 +00001845 if (NumBytes->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001846 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001847
1848 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1849 if (CI->getZExtValue() == 1) {
1850 // Replace the instruction with just byte operations. We would
1851 // transform other cases to loads/stores, but we don't know if
1852 // alignment is sufficient.
1853 }
1854 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001855
Chris Lattnerc663a672010-10-01 05:51:02 +00001856 // No other transformations apply to volatile transfers.
1857 if (MI->isVolatile())
Craig Topperf40110f2014-04-25 05:29:35 +00001858 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001859
1860 // If we have a memmove and the source operation is a constant global,
1861 // then the source and dest pointers can't alias, so we can change this
1862 // into a call to memcpy.
1863 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
1864 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1865 if (GVSrc->isConstant()) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001866 Module *M = CI.getModule();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001867 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
Jay Foadb804a2b2011-07-12 14:06:48 +00001868 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1869 CI.getArgOperand(1)->getType(),
1870 CI.getArgOperand(2)->getType() };
Benjamin Kramere6e19332011-07-14 17:45:39 +00001871 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001872 Changed = true;
1873 }
1874 }
1875
1876 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1877 // memmove(x,x,size) -> noop.
1878 if (MTI->getSource() == MTI->getDest())
Sanjay Patel4b198802016-02-01 22:23:39 +00001879 return eraseInstFromFunction(CI);
Eric Christopher7258dcd2010-04-16 23:37:20 +00001880 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001881
Eric Christopher7258dcd2010-04-16 23:37:20 +00001882 // If we can determine a pointer alignment that is bigger than currently
1883 // set, update the alignment.
Pete Cooper67cf9a72015-11-19 05:56:52 +00001884 if (isa<MemTransferInst>(MI)) {
1885 if (Instruction *I = SimplifyMemTransfer(MI))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001886 return I;
1887 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
1888 if (Instruction *I = SimplifyMemSet(MSI))
1889 return I;
1890 }
Gabor Greif590d95e2010-06-24 13:42:49 +00001891
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001892 if (Changed) return II;
1893 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001894
Igor Laevsky4b317fa2017-02-08 14:23:47 +00001895 if (auto *AMI = dyn_cast<ElementAtomicMemCpyInst>(II)) {
1896 if (Constant *C = dyn_cast<Constant>(AMI->getNumElements()))
1897 if (C->isNullValue())
1898 return eraseInstFromFunction(*AMI);
Igor Laevsky900ffa32017-02-08 14:32:04 +00001899
1900 if (Instruction *I = SimplifyElementAtomicMemCpy(AMI))
1901 return I;
Igor Laevsky4b317fa2017-02-08 14:23:47 +00001902 }
1903
Justin Lebar698c31b2017-01-27 00:58:58 +00001904 if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1905 return I;
1906
Sanjay Patel1c600c62016-01-20 16:41:43 +00001907 auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1908 unsigned DemandedWidth) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001909 APInt UndefElts(Width, 0);
1910 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1911 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1912 };
1913
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001914 switch (II->getIntrinsicID()) {
1915 default: break;
George Burgess IV3f089142016-12-20 23:46:36 +00001916 case Intrinsic::objectsize:
1917 if (ConstantInt *N =
1918 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1919 return replaceInstUsesWith(CI, N);
Craig Topperf40110f2014-04-25 05:29:35 +00001920 return nullptr;
George Burgess IV3f089142016-12-20 23:46:36 +00001921
Michael Ilseman536cc322012-12-13 03:13:36 +00001922 case Intrinsic::bswap: {
1923 Value *IIOperand = II->getArgOperand(0);
Craig Topperf40110f2014-04-25 05:29:35 +00001924 Value *X = nullptr;
Michael Ilseman536cc322012-12-13 03:13:36 +00001925
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001926 // bswap(bswap(x)) -> x
Michael Ilseman536cc322012-12-13 03:13:36 +00001927 if (match(IIOperand, m_BSwap(m_Value(X))))
Sanjay Patel4b198802016-02-01 22:23:39 +00001928 return replaceInstUsesWith(CI, X);
Jim Grosbach7815f562012-02-03 00:07:04 +00001929
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001930 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
Michael Ilseman536cc322012-12-13 03:13:36 +00001931 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1932 unsigned C = X->getType()->getPrimitiveSizeInBits() -
1933 IIOperand->getType()->getPrimitiveSizeInBits();
1934 Value *CV = ConstantInt::get(X->getType(), C);
1935 Value *V = Builder->CreateLShr(X, CV);
1936 return new TruncInst(V, IIOperand->getType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001937 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001938 break;
Michael Ilseman536cc322012-12-13 03:13:36 +00001939 }
1940
James Molloy2d09c002015-11-12 12:39:41 +00001941 case Intrinsic::bitreverse: {
1942 Value *IIOperand = II->getArgOperand(0);
1943 Value *X = nullptr;
1944
1945 // bitreverse(bitreverse(x)) -> x
1946 if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
Sanjay Patel4b198802016-02-01 22:23:39 +00001947 return replaceInstUsesWith(CI, X);
James Molloy2d09c002015-11-12 12:39:41 +00001948 break;
1949 }
1950
Sanjay Patelb695c552016-02-01 17:00:10 +00001951 case Intrinsic::masked_load:
1952 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00001953 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
Sanjay Patelb695c552016-02-01 17:00:10 +00001954 break;
Sanjay Patel04f792b2016-02-01 19:39:52 +00001955 case Intrinsic::masked_store:
1956 return simplifyMaskedStore(*II, *this);
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001957 case Intrinsic::masked_gather:
1958 return simplifyMaskedGather(*II, *this);
1959 case Intrinsic::masked_scatter:
1960 return simplifyMaskedScatter(*II, *this);
Sanjay Patelb695c552016-02-01 17:00:10 +00001961
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001962 case Intrinsic::powi:
Gabor Greif589a0b92010-06-24 12:58:35 +00001963 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001964 // powi(x, 0) -> 1.0
1965 if (Power->isZero())
Sanjay Patel4b198802016-02-01 22:23:39 +00001966 return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001967 // powi(x, 1) -> x
1968 if (Power->isOne())
Sanjay Patel4b198802016-02-01 22:23:39 +00001969 return replaceInstUsesWith(CI, II->getArgOperand(0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001970 // powi(x, -1) -> 1/x
1971 if (Power->isAllOnesValue())
1972 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
Gabor Greif589a0b92010-06-24 12:58:35 +00001973 II->getArgOperand(0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001974 }
1975 break;
Jim Grosbach7815f562012-02-03 00:07:04 +00001976
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001977 case Intrinsic::cttz:
1978 case Intrinsic::ctlz:
Amaury Sechet763c59d2016-08-18 20:43:50 +00001979 if (auto *I = foldCttzCtlz(*II, *this))
1980 return I;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001981 break;
Sanjoy Dasb0984472015-04-08 04:27:22 +00001982
Nick Lewyckyabe2cc12015-04-13 19:17:37 +00001983 case Intrinsic::uadd_with_overflow:
1984 case Intrinsic::sadd_with_overflow:
1985 case Intrinsic::umul_with_overflow:
1986 case Intrinsic::smul_with_overflow:
Gabor Greif5b1370e2010-06-28 16:50:57 +00001987 if (isa<Constant>(II->getArgOperand(0)) &&
1988 !isa<Constant>(II->getArgOperand(1))) {
Sanjoy Dasb0984472015-04-08 04:27:22 +00001989 // Canonicalize constants into the RHS.
Gabor Greif5b1370e2010-06-28 16:50:57 +00001990 Value *LHS = II->getArgOperand(0);
1991 II->setArgOperand(0, II->getArgOperand(1));
1992 II->setArgOperand(1, LHS);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001993 return II;
1994 }
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001995 LLVM_FALLTHROUGH;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001996
Nick Lewyckyabe2cc12015-04-13 19:17:37 +00001997 case Intrinsic::usub_with_overflow:
1998 case Intrinsic::ssub_with_overflow: {
Sanjoy Dasb0984472015-04-08 04:27:22 +00001999 OverflowCheckFlavor OCF =
2000 IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
2001 assert(OCF != OCF_INVALID && "unexpected!");
Jim Grosbach7815f562012-02-03 00:07:04 +00002002
Sanjoy Dasb0984472015-04-08 04:27:22 +00002003 Value *OperationResult = nullptr;
2004 Constant *OverflowResult = nullptr;
2005 if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
2006 *II, OperationResult, OverflowResult))
2007 return CreateOverflowTuple(II, OperationResult, OverflowResult);
Benjamin Kramera420df22014-07-04 10:22:21 +00002008
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002009 break;
Erik Eckstein096ff7d2014-12-11 08:02:30 +00002010 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002011
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002012 case Intrinsic::minnum:
2013 case Intrinsic::maxnum: {
2014 Value *Arg0 = II->getArgOperand(0);
2015 Value *Arg1 = II->getArgOperand(1);
Sanjay Patel0069f562016-01-31 16:35:23 +00002016 // Canonicalize constants to the RHS.
2017 if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002018 II->setArgOperand(0, Arg1);
2019 II->setArgOperand(1, Arg0);
2020 return II;
2021 }
Sanjay Patel0069f562016-01-31 16:35:23 +00002022 if (Value *V = simplifyMinnumMaxnum(*II))
Sanjay Patel4b198802016-02-01 22:23:39 +00002023 return replaceInstUsesWith(*II, V);
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002024 break;
2025 }
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002026 case Intrinsic::fmuladd: {
Matt Arsenault92057602017-02-16 18:46:24 +00002027 // Canonicalize fast fmuladd to the separate fmul + fadd.
2028 if (II->hasUnsafeAlgebra()) {
2029 BuilderTy::FastMathFlagGuard Guard(*Builder);
2030 Builder->setFastMathFlags(II->getFastMathFlags());
2031 Value *Mul = Builder->CreateFMul(II->getArgOperand(0),
2032 II->getArgOperand(1));
2033 Value *Add = Builder->CreateFAdd(Mul, II->getArgOperand(2));
2034 Add->takeName(II);
2035 return replaceInstUsesWith(*II, Add);
2036 }
2037
2038 LLVM_FALLTHROUGH;
2039 }
2040 case Intrinsic::fma: {
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002041 Value *Src0 = II->getArgOperand(0);
2042 Value *Src1 = II->getArgOperand(1);
2043
Matt Arsenaultb264c942017-01-03 04:32:35 +00002044 // Canonicalize constants into the RHS.
2045 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
2046 II->setArgOperand(0, Src1);
2047 II->setArgOperand(1, Src0);
2048 std::swap(Src0, Src1);
2049 }
2050
2051 Value *LHS = nullptr;
2052 Value *RHS = nullptr;
2053
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002054 // fma fneg(x), fneg(y), z -> fma x, y, z
2055 if (match(Src0, m_FNeg(m_Value(LHS))) &&
2056 match(Src1, m_FNeg(m_Value(RHS)))) {
Matt Arsenault3f509042017-01-10 23:17:52 +00002057 II->setArgOperand(0, LHS);
2058 II->setArgOperand(1, RHS);
2059 return II;
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002060 }
2061
2062 // fma fabs(x), fabs(x), z -> fma x, x, z
2063 if (match(Src0, m_Intrinsic<Intrinsic::fabs>(m_Value(LHS))) &&
2064 match(Src1, m_Intrinsic<Intrinsic::fabs>(m_Value(RHS))) && LHS == RHS) {
Matt Arsenault3f509042017-01-10 23:17:52 +00002065 II->setArgOperand(0, LHS);
2066 II->setArgOperand(1, RHS);
2067 return II;
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002068 }
2069
Matt Arsenaultb264c942017-01-03 04:32:35 +00002070 // fma x, 1, z -> fadd x, z
2071 if (match(Src1, m_FPOne())) {
2072 Instruction *RI = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
2073 RI->copyFastMathFlags(II);
2074 return RI;
2075 }
2076
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002077 break;
2078 }
Matt Arsenault56ff4832017-01-03 22:40:34 +00002079 case Intrinsic::fabs: {
2080 Value *Cond;
2081 Constant *LHS, *RHS;
2082 if (match(II->getArgOperand(0),
2083 m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2084 CallInst *Call0 = Builder->CreateCall(II->getCalledFunction(), {LHS});
2085 CallInst *Call1 = Builder->CreateCall(II->getCalledFunction(), {RHS});
2086 return SelectInst::Create(Cond, Call0, Call1);
2087 }
2088
Matt Arsenault954a6242017-01-23 23:55:08 +00002089 LLVM_FALLTHROUGH;
2090 }
2091 case Intrinsic::ceil:
2092 case Intrinsic::floor:
2093 case Intrinsic::round:
2094 case Intrinsic::nearbyint:
Joerg Sonnenberger28bed102017-03-31 19:58:07 +00002095 case Intrinsic::rint:
Matt Arsenault954a6242017-01-23 23:55:08 +00002096 case Intrinsic::trunc: {
Matt Arsenault72333442017-01-17 00:10:40 +00002097 Value *ExtSrc;
2098 if (match(II->getArgOperand(0), m_FPExt(m_Value(ExtSrc))) &&
2099 II->getArgOperand(0)->hasOneUse()) {
2100 // fabs (fpext x) -> fpext (fabs x)
Matt Arsenault954a6242017-01-23 23:55:08 +00002101 Value *F = Intrinsic::getDeclaration(II->getModule(), II->getIntrinsicID(),
Matt Arsenault72333442017-01-17 00:10:40 +00002102 { ExtSrc->getType() });
2103 CallInst *NewFabs = Builder->CreateCall(F, ExtSrc);
2104 NewFabs->copyFastMathFlags(II);
2105 NewFabs->takeName(II);
2106 return new FPExtInst(NewFabs, II->getType());
2107 }
2108
Matt Arsenault56ff4832017-01-03 22:40:34 +00002109 break;
2110 }
Matt Arsenault3bdd75d2017-01-04 22:49:03 +00002111 case Intrinsic::cos:
2112 case Intrinsic::amdgcn_cos: {
2113 Value *SrcSrc;
2114 Value *Src = II->getArgOperand(0);
2115 if (match(Src, m_FNeg(m_Value(SrcSrc))) ||
2116 match(Src, m_Intrinsic<Intrinsic::fabs>(m_Value(SrcSrc)))) {
2117 // cos(-x) -> cos(x)
2118 // cos(fabs(x)) -> cos(x)
2119 II->setArgOperand(0, SrcSrc);
2120 return II;
2121 }
2122
2123 break;
2124 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002125 case Intrinsic::ppc_altivec_lvx:
2126 case Intrinsic::ppc_altivec_lvxl:
Bill Wendlingb902f1d2011-04-13 00:36:11 +00002127 // Turn PPC lvx -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002128 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002129 &DT) >= 16) {
Gabor Greif589a0b92010-06-24 12:58:35 +00002130 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002131 PointerType::getUnqual(II->getType()));
2132 return new LoadInst(Ptr);
2133 }
2134 break;
Bill Schmidt72954782014-11-12 04:19:40 +00002135 case Intrinsic::ppc_vsx_lxvw4x:
2136 case Intrinsic::ppc_vsx_lxvd2x: {
2137 // Turn PPC VSX loads into normal loads.
2138 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
2139 PointerType::getUnqual(II->getType()));
2140 return new LoadInst(Ptr, Twine(""), false, 1);
2141 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002142 case Intrinsic::ppc_altivec_stvx:
2143 case Intrinsic::ppc_altivec_stvxl:
2144 // Turn stvx -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002145 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002146 &DT) >= 16) {
Jim Grosbach7815f562012-02-03 00:07:04 +00002147 Type *OpPtrTy =
Gabor Greifa6d75e22010-06-24 15:51:11 +00002148 PointerType::getUnqual(II->getArgOperand(0)->getType());
2149 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2150 return new StoreInst(II->getArgOperand(0), Ptr);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002151 }
2152 break;
Bill Schmidt72954782014-11-12 04:19:40 +00002153 case Intrinsic::ppc_vsx_stxvw4x:
2154 case Intrinsic::ppc_vsx_stxvd2x: {
2155 // Turn PPC VSX stores into normal stores.
2156 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2157 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2158 return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
2159 }
Hal Finkel221f4672015-02-26 18:56:03 +00002160 case Intrinsic::ppc_qpx_qvlfs:
2161 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002162 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002163 &DT) >= 16) {
Hal Finkelf0d68d72015-05-11 06:37:03 +00002164 Type *VTy = VectorType::get(Builder->getFloatTy(),
2165 II->getType()->getVectorNumElements());
Hal Finkel221f4672015-02-26 18:56:03 +00002166 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
Hal Finkelf0d68d72015-05-11 06:37:03 +00002167 PointerType::getUnqual(VTy));
2168 Value *Load = Builder->CreateLoad(Ptr);
2169 return new FPExtInst(Load, II->getType());
Hal Finkel221f4672015-02-26 18:56:03 +00002170 }
2171 break;
2172 case Intrinsic::ppc_qpx_qvlfd:
2173 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002174 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002175 &DT) >= 32) {
Hal Finkel221f4672015-02-26 18:56:03 +00002176 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
2177 PointerType::getUnqual(II->getType()));
2178 return new LoadInst(Ptr);
2179 }
2180 break;
2181 case Intrinsic::ppc_qpx_qvstfs:
2182 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002183 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002184 &DT) >= 16) {
Hal Finkelf0d68d72015-05-11 06:37:03 +00002185 Type *VTy = VectorType::get(Builder->getFloatTy(),
2186 II->getArgOperand(0)->getType()->getVectorNumElements());
2187 Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
2188 Type *OpPtrTy = PointerType::getUnqual(VTy);
Hal Finkel221f4672015-02-26 18:56:03 +00002189 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
Hal Finkelf0d68d72015-05-11 06:37:03 +00002190 return new StoreInst(TOp, Ptr);
Hal Finkel221f4672015-02-26 18:56:03 +00002191 }
2192 break;
2193 case Intrinsic::ppc_qpx_qvstfd:
2194 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002195 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002196 &DT) >= 32) {
Hal Finkel221f4672015-02-26 18:56:03 +00002197 Type *OpPtrTy =
2198 PointerType::getUnqual(II->getArgOperand(0)->getType());
2199 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2200 return new StoreInst(II->getArgOperand(0), Ptr);
2201 }
2202 break;
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002203
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002204 case Intrinsic::x86_vcvtph2ps_128:
2205 case Intrinsic::x86_vcvtph2ps_256: {
2206 auto Arg = II->getArgOperand(0);
2207 auto ArgType = cast<VectorType>(Arg->getType());
2208 auto RetType = cast<VectorType>(II->getType());
2209 unsigned ArgWidth = ArgType->getNumElements();
2210 unsigned RetWidth = RetType->getNumElements();
2211 assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2212 assert(ArgType->isIntOrIntVectorTy() &&
2213 ArgType->getScalarSizeInBits() == 16 &&
2214 "CVTPH2PS input type should be 16-bit integer vector");
2215 assert(RetType->getScalarType()->isFloatTy() &&
2216 "CVTPH2PS output type should be 32-bit float vector");
2217
2218 // Constant folding: Convert to generic half to single conversion.
Simon Pilgrim48ffca02015-09-12 14:00:17 +00002219 if (isa<ConstantAggregateZero>(Arg))
Sanjay Patel4b198802016-02-01 22:23:39 +00002220 return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002221
Simon Pilgrim48ffca02015-09-12 14:00:17 +00002222 if (isa<ConstantDataVector>(Arg)) {
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002223 auto VectorHalfAsShorts = Arg;
2224 if (RetWidth < ArgWidth) {
Craig Topper99d1eab2016-06-12 00:41:19 +00002225 SmallVector<uint32_t, 8> SubVecMask;
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002226 for (unsigned i = 0; i != RetWidth; ++i)
2227 SubVecMask.push_back((int)i);
2228 VectorHalfAsShorts = Builder->CreateShuffleVector(
2229 Arg, UndefValue::get(ArgType), SubVecMask);
2230 }
2231
2232 auto VectorHalfType =
2233 VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2234 auto VectorHalfs =
2235 Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2236 auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
Sanjay Patel4b198802016-02-01 22:23:39 +00002237 return replaceInstUsesWith(*II, VectorFloats);
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002238 }
2239
2240 // We only use the lowest lanes of the argument.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002241 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002242 II->setArgOperand(0, V);
2243 return II;
2244 }
2245 break;
2246 }
2247
Chandler Carruthcf414cf2011-01-10 07:19:37 +00002248 case Intrinsic::x86_sse_cvtss2si:
2249 case Intrinsic::x86_sse_cvtss2si64:
2250 case Intrinsic::x86_sse_cvttss2si:
2251 case Intrinsic::x86_sse_cvttss2si64:
2252 case Intrinsic::x86_sse2_cvtsd2si:
2253 case Intrinsic::x86_sse2_cvtsd2si64:
2254 case Intrinsic::x86_sse2_cvttsd2si:
Craig Topperaeaa52c2016-12-14 07:46:12 +00002255 case Intrinsic::x86_sse2_cvttsd2si64:
2256 case Intrinsic::x86_avx512_vcvtss2si32:
2257 case Intrinsic::x86_avx512_vcvtss2si64:
2258 case Intrinsic::x86_avx512_vcvtss2usi32:
2259 case Intrinsic::x86_avx512_vcvtss2usi64:
2260 case Intrinsic::x86_avx512_vcvtsd2si32:
2261 case Intrinsic::x86_avx512_vcvtsd2si64:
2262 case Intrinsic::x86_avx512_vcvtsd2usi32:
2263 case Intrinsic::x86_avx512_vcvtsd2usi64:
2264 case Intrinsic::x86_avx512_cvttss2si:
2265 case Intrinsic::x86_avx512_cvttss2si64:
2266 case Intrinsic::x86_avx512_cvttss2usi:
2267 case Intrinsic::x86_avx512_cvttss2usi64:
2268 case Intrinsic::x86_avx512_cvttsd2si:
2269 case Intrinsic::x86_avx512_cvttsd2si64:
2270 case Intrinsic::x86_avx512_cvttsd2usi:
2271 case Intrinsic::x86_avx512_cvttsd2usi64: {
Chandler Carruthcf414cf2011-01-10 07:19:37 +00002272 // These intrinsics only demand the 0th element of their input vectors. If
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002273 // we can simplify the input based on that, do so now.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002274 Value *Arg = II->getArgOperand(0);
2275 unsigned VWidth = Arg->getType()->getVectorNumElements();
2276 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
Gabor Greif5b1370e2010-06-28 16:50:57 +00002277 II->setArgOperand(0, V);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002278 return II;
2279 }
Simon Pilgrim18617d12015-08-05 08:18:00 +00002280 break;
2281 }
2282
Simon Pilgrim91e3ac82016-06-07 08:18:35 +00002283 case Intrinsic::x86_mmx_pmovmskb:
2284 case Intrinsic::x86_sse_movmsk_ps:
2285 case Intrinsic::x86_sse2_movmsk_pd:
2286 case Intrinsic::x86_sse2_pmovmskb_128:
2287 case Intrinsic::x86_avx_movmsk_pd_256:
2288 case Intrinsic::x86_avx_movmsk_ps_256:
2289 case Intrinsic::x86_avx2_pmovmskb: {
2290 if (Value *V = simplifyX86movmsk(*II, *Builder))
2291 return replaceInstUsesWith(*II, V);
2292 break;
2293 }
2294
Simon Pilgrim471efd22016-02-20 23:17:35 +00002295 case Intrinsic::x86_sse_comieq_ss:
2296 case Intrinsic::x86_sse_comige_ss:
2297 case Intrinsic::x86_sse_comigt_ss:
2298 case Intrinsic::x86_sse_comile_ss:
2299 case Intrinsic::x86_sse_comilt_ss:
2300 case Intrinsic::x86_sse_comineq_ss:
2301 case Intrinsic::x86_sse_ucomieq_ss:
2302 case Intrinsic::x86_sse_ucomige_ss:
2303 case Intrinsic::x86_sse_ucomigt_ss:
2304 case Intrinsic::x86_sse_ucomile_ss:
2305 case Intrinsic::x86_sse_ucomilt_ss:
2306 case Intrinsic::x86_sse_ucomineq_ss:
2307 case Intrinsic::x86_sse2_comieq_sd:
2308 case Intrinsic::x86_sse2_comige_sd:
2309 case Intrinsic::x86_sse2_comigt_sd:
2310 case Intrinsic::x86_sse2_comile_sd:
2311 case Intrinsic::x86_sse2_comilt_sd:
2312 case Intrinsic::x86_sse2_comineq_sd:
2313 case Intrinsic::x86_sse2_ucomieq_sd:
2314 case Intrinsic::x86_sse2_ucomige_sd:
2315 case Intrinsic::x86_sse2_ucomigt_sd:
2316 case Intrinsic::x86_sse2_ucomile_sd:
2317 case Intrinsic::x86_sse2_ucomilt_sd:
Craig Topperd9639532016-12-11 07:42:04 +00002318 case Intrinsic::x86_sse2_ucomineq_sd:
Craig Topperd00db692016-12-31 00:45:06 +00002319 case Intrinsic::x86_avx512_vcomi_ss:
2320 case Intrinsic::x86_avx512_vcomi_sd:
Craig Topperd9639532016-12-11 07:42:04 +00002321 case Intrinsic::x86_avx512_mask_cmp_ss:
2322 case Intrinsic::x86_avx512_mask_cmp_sd: {
Simon Pilgrim471efd22016-02-20 23:17:35 +00002323 // These intrinsics only demand the 0th element of their input vectors. If
2324 // we can simplify the input based on that, do so now.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002325 bool MadeChange = false;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002326 Value *Arg0 = II->getArgOperand(0);
2327 Value *Arg1 = II->getArgOperand(1);
2328 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2329 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2330 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002331 MadeChange = true;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002332 }
2333 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2334 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002335 MadeChange = true;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002336 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002337 if (MadeChange)
2338 return II;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002339 break;
2340 }
Michael Zuckerman16b20d22017-04-16 13:26:08 +00002341 case Intrinsic::x86_avx512_mask_cmp_pd_128:
2342 case Intrinsic::x86_avx512_mask_cmp_pd_256:
2343 case Intrinsic::x86_avx512_mask_cmp_pd_512:
2344 case Intrinsic::x86_avx512_mask_cmp_ps_128:
2345 case Intrinsic::x86_avx512_mask_cmp_ps_256:
2346 case Intrinsic::x86_avx512_mask_cmp_ps_512: {
2347 // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2348 Value *Arg0 = II->getArgOperand(0);
2349 Value *Arg1 = II->getArgOperand(1);
2350 bool Arg0IsZero = match(Arg0, m_Zero());
2351 if (Arg0IsZero)
2352 std::swap(Arg0, Arg1);
2353 Value *A, *B;
2354 // This fold requires only the NINF(not +/- inf) since inf minus
2355 // inf is nan.
2356 // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2357 // equal for both compares.
2358 // NNAN is not needed because nans compare the same for both compares.
2359 // The compare intrinsic uses the above assumptions and therefore
2360 // doesn't require additional flags.
2361 if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2362 match(Arg1, m_Zero()) &&
2363 cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2364 if (Arg0IsZero)
2365 std::swap(A, B);
2366 II->setArgOperand(0, A);
2367 II->setArgOperand(1, B);
2368 return II;
2369 }
2370 break;
2371 }
Simon Pilgrim471efd22016-02-20 23:17:35 +00002372
Craig Topper020b2282016-12-27 00:23:16 +00002373 case Intrinsic::x86_avx512_mask_add_ps_512:
2374 case Intrinsic::x86_avx512_mask_div_ps_512:
2375 case Intrinsic::x86_avx512_mask_mul_ps_512:
2376 case Intrinsic::x86_avx512_mask_sub_ps_512:
2377 case Intrinsic::x86_avx512_mask_add_pd_512:
2378 case Intrinsic::x86_avx512_mask_div_pd_512:
2379 case Intrinsic::x86_avx512_mask_mul_pd_512:
2380 case Intrinsic::x86_avx512_mask_sub_pd_512:
2381 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2382 // IR operations.
2383 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2384 if (R->getValue() == 4) {
2385 Value *Arg0 = II->getArgOperand(0);
2386 Value *Arg1 = II->getArgOperand(1);
2387
2388 Value *V;
2389 switch (II->getIntrinsicID()) {
2390 default: llvm_unreachable("Case stmts out of sync!");
2391 case Intrinsic::x86_avx512_mask_add_ps_512:
2392 case Intrinsic::x86_avx512_mask_add_pd_512:
2393 V = Builder->CreateFAdd(Arg0, Arg1);
2394 break;
2395 case Intrinsic::x86_avx512_mask_sub_ps_512:
2396 case Intrinsic::x86_avx512_mask_sub_pd_512:
2397 V = Builder->CreateFSub(Arg0, Arg1);
2398 break;
2399 case Intrinsic::x86_avx512_mask_mul_ps_512:
2400 case Intrinsic::x86_avx512_mask_mul_pd_512:
2401 V = Builder->CreateFMul(Arg0, Arg1);
2402 break;
2403 case Intrinsic::x86_avx512_mask_div_ps_512:
2404 case Intrinsic::x86_avx512_mask_div_pd_512:
2405 V = Builder->CreateFDiv(Arg0, Arg1);
2406 break;
2407 }
2408
2409 // Create a select for the masking.
2410 V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
2411 *Builder);
2412 return replaceInstUsesWith(*II, V);
2413 }
2414 }
2415 break;
2416
Craig Topper790d0fa2016-12-11 07:42:01 +00002417 case Intrinsic::x86_avx512_mask_add_ss_round:
2418 case Intrinsic::x86_avx512_mask_div_ss_round:
2419 case Intrinsic::x86_avx512_mask_mul_ss_round:
2420 case Intrinsic::x86_avx512_mask_sub_ss_round:
Craig Topper790d0fa2016-12-11 07:42:01 +00002421 case Intrinsic::x86_avx512_mask_add_sd_round:
2422 case Intrinsic::x86_avx512_mask_div_sd_round:
2423 case Intrinsic::x86_avx512_mask_mul_sd_round:
2424 case Intrinsic::x86_avx512_mask_sub_sd_round:
Craig Topper7b788ada2016-12-26 06:33:19 +00002425 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2426 // IR operations.
2427 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2428 if (R->getValue() == 4) {
Craig Topper7f8540b2016-12-27 01:56:30 +00002429 // Extract the element as scalars.
2430 Value *Arg0 = II->getArgOperand(0);
2431 Value *Arg1 = II->getArgOperand(1);
2432 Value *LHS = Builder->CreateExtractElement(Arg0, (uint64_t)0);
2433 Value *RHS = Builder->CreateExtractElement(Arg1, (uint64_t)0);
Craig Topper7b788ada2016-12-26 06:33:19 +00002434
Craig Topper7f8540b2016-12-27 01:56:30 +00002435 Value *V;
2436 switch (II->getIntrinsicID()) {
2437 default: llvm_unreachable("Case stmts out of sync!");
2438 case Intrinsic::x86_avx512_mask_add_ss_round:
2439 case Intrinsic::x86_avx512_mask_add_sd_round:
2440 V = Builder->CreateFAdd(LHS, RHS);
2441 break;
2442 case Intrinsic::x86_avx512_mask_sub_ss_round:
2443 case Intrinsic::x86_avx512_mask_sub_sd_round:
2444 V = Builder->CreateFSub(LHS, RHS);
2445 break;
2446 case Intrinsic::x86_avx512_mask_mul_ss_round:
2447 case Intrinsic::x86_avx512_mask_mul_sd_round:
2448 V = Builder->CreateFMul(LHS, RHS);
2449 break;
2450 case Intrinsic::x86_avx512_mask_div_ss_round:
2451 case Intrinsic::x86_avx512_mask_div_sd_round:
2452 V = Builder->CreateFDiv(LHS, RHS);
2453 break;
Craig Topper7b788ada2016-12-26 06:33:19 +00002454 }
Craig Topper7f8540b2016-12-27 01:56:30 +00002455
2456 // Handle the masking aspect of the intrinsic.
Craig Topper7f8540b2016-12-27 01:56:30 +00002457 Value *Mask = II->getArgOperand(3);
Craig Topper99163632016-12-30 23:06:28 +00002458 auto *C = dyn_cast<ConstantInt>(Mask);
2459 // We don't need a select if we know the mask bit is a 1.
2460 if (!C || !C->getValue()[0]) {
2461 // Cast the mask to an i1 vector and then extract the lowest element.
2462 auto *MaskTy = VectorType::get(Builder->getInt1Ty(),
Craig Topper7f8540b2016-12-27 01:56:30 +00002463 cast<IntegerType>(Mask->getType())->getBitWidth());
Craig Topper99163632016-12-30 23:06:28 +00002464 Mask = Builder->CreateBitCast(Mask, MaskTy);
2465 Mask = Builder->CreateExtractElement(Mask, (uint64_t)0);
2466 // Extract the lowest element from the passthru operand.
2467 Value *Passthru = Builder->CreateExtractElement(II->getArgOperand(2),
2468 (uint64_t)0);
2469 V = Builder->CreateSelect(Mask, V, Passthru);
2470 }
Craig Topper7f8540b2016-12-27 01:56:30 +00002471
2472 // Insert the result back into the original argument 0.
2473 V = Builder->CreateInsertElement(Arg0, V, (uint64_t)0);
2474
2475 return replaceInstUsesWith(*II, V);
Craig Topper7b788ada2016-12-26 06:33:19 +00002476 }
2477 }
2478 LLVM_FALLTHROUGH;
2479
2480 // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
2481 case Intrinsic::x86_avx512_mask_max_ss_round:
2482 case Intrinsic::x86_avx512_mask_min_ss_round:
Craig Topper790d0fa2016-12-11 07:42:01 +00002483 case Intrinsic::x86_avx512_mask_max_sd_round:
Craig Topper268b3ab2016-12-14 06:06:58 +00002484 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topperab5f3552016-12-15 03:49:45 +00002485 case Intrinsic::x86_avx512_mask_vfmadd_ss:
2486 case Intrinsic::x86_avx512_mask_vfmadd_sd:
2487 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
2488 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
2489 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
2490 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
2491 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
2492 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
2493 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
2494 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
Craig Topperdfd268d2016-12-14 05:43:05 +00002495 case Intrinsic::x86_fma_vfmadd_ss:
2496 case Intrinsic::x86_fma_vfmsub_ss:
2497 case Intrinsic::x86_fma_vfnmadd_ss:
2498 case Intrinsic::x86_fma_vfnmsub_ss:
2499 case Intrinsic::x86_fma_vfmadd_sd:
2500 case Intrinsic::x86_fma_vfmsub_sd:
2501 case Intrinsic::x86_fma_vfnmadd_sd:
2502 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00002503 case Intrinsic::x86_sse_cmp_ss:
2504 case Intrinsic::x86_sse_min_ss:
2505 case Intrinsic::x86_sse_max_ss:
2506 case Intrinsic::x86_sse2_cmp_sd:
2507 case Intrinsic::x86_sse2_min_sd:
2508 case Intrinsic::x86_sse2_max_sd:
Craig Toppereb6a20e2016-12-14 03:17:30 +00002509 case Intrinsic::x86_sse41_round_ss:
2510 case Intrinsic::x86_sse41_round_sd:
Craig Topperac75bca2016-12-13 07:45:45 +00002511 case Intrinsic::x86_xop_vfrcz_ss:
2512 case Intrinsic::x86_xop_vfrcz_sd: {
2513 unsigned VWidth = II->getType()->getVectorNumElements();
2514 APInt UndefElts(VWidth, 0);
2515 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2516 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
2517 if (V != II)
2518 return replaceInstUsesWith(*II, V);
2519 return II;
2520 }
2521 break;
2522 }
2523
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002524 // Constant fold ashr( <A x Bi>, Ci ).
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002525 // Constant fold lshr( <A x Bi>, Ci ).
2526 // Constant fold shl( <A x Bi>, Ci ).
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002527 case Intrinsic::x86_sse2_psrai_d:
2528 case Intrinsic::x86_sse2_psrai_w:
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002529 case Intrinsic::x86_avx2_psrai_d:
2530 case Intrinsic::x86_avx2_psrai_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002531 case Intrinsic::x86_avx512_psrai_q_128:
2532 case Intrinsic::x86_avx512_psrai_q_256:
2533 case Intrinsic::x86_avx512_psrai_d_512:
2534 case Intrinsic::x86_avx512_psrai_q_512:
2535 case Intrinsic::x86_avx512_psrai_w_512:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002536 case Intrinsic::x86_sse2_psrli_d:
2537 case Intrinsic::x86_sse2_psrli_q:
2538 case Intrinsic::x86_sse2_psrli_w:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002539 case Intrinsic::x86_avx2_psrli_d:
2540 case Intrinsic::x86_avx2_psrli_q:
2541 case Intrinsic::x86_avx2_psrli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002542 case Intrinsic::x86_avx512_psrli_d_512:
2543 case Intrinsic::x86_avx512_psrli_q_512:
2544 case Intrinsic::x86_avx512_psrli_w_512:
Michael J. Spencerdee4b2c2014-04-24 00:58:18 +00002545 case Intrinsic::x86_sse2_pslli_d:
2546 case Intrinsic::x86_sse2_pslli_q:
2547 case Intrinsic::x86_sse2_pslli_w:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002548 case Intrinsic::x86_avx2_pslli_d:
2549 case Intrinsic::x86_avx2_pslli_q:
2550 case Intrinsic::x86_avx2_pslli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002551 case Intrinsic::x86_avx512_pslli_d_512:
2552 case Intrinsic::x86_avx512_pslli_q_512:
2553 case Intrinsic::x86_avx512_pslli_w_512:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002554 if (Value *V = simplifyX86immShift(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002555 return replaceInstUsesWith(*II, V);
Simon Pilgrim18617d12015-08-05 08:18:00 +00002556 break;
2557
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002558 case Intrinsic::x86_sse2_psra_d:
2559 case Intrinsic::x86_sse2_psra_w:
2560 case Intrinsic::x86_avx2_psra_d:
2561 case Intrinsic::x86_avx2_psra_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002562 case Intrinsic::x86_avx512_psra_q_128:
2563 case Intrinsic::x86_avx512_psra_q_256:
2564 case Intrinsic::x86_avx512_psra_d_512:
2565 case Intrinsic::x86_avx512_psra_q_512:
2566 case Intrinsic::x86_avx512_psra_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002567 case Intrinsic::x86_sse2_psrl_d:
2568 case Intrinsic::x86_sse2_psrl_q:
2569 case Intrinsic::x86_sse2_psrl_w:
2570 case Intrinsic::x86_avx2_psrl_d:
2571 case Intrinsic::x86_avx2_psrl_q:
2572 case Intrinsic::x86_avx2_psrl_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002573 case Intrinsic::x86_avx512_psrl_d_512:
2574 case Intrinsic::x86_avx512_psrl_q_512:
2575 case Intrinsic::x86_avx512_psrl_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002576 case Intrinsic::x86_sse2_psll_d:
2577 case Intrinsic::x86_sse2_psll_q:
2578 case Intrinsic::x86_sse2_psll_w:
2579 case Intrinsic::x86_avx2_psll_d:
2580 case Intrinsic::x86_avx2_psll_q:
Craig Topper8b831cb2016-11-13 01:51:55 +00002581 case Intrinsic::x86_avx2_psll_w:
2582 case Intrinsic::x86_avx512_psll_d_512:
2583 case Intrinsic::x86_avx512_psll_q_512:
2584 case Intrinsic::x86_avx512_psll_w_512: {
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002585 if (Value *V = simplifyX86immShift(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002586 return replaceInstUsesWith(*II, V);
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002587
2588 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2589 // operand to compute the shift amount.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002590 Value *Arg1 = II->getArgOperand(1);
2591 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002592 "Unexpected packed shift size");
Simon Pilgrim996725e2015-09-19 11:41:53 +00002593 unsigned VWidth = Arg1->getType()->getVectorNumElements();
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002594
Simon Pilgrim996725e2015-09-19 11:41:53 +00002595 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002596 II->setArgOperand(1, V);
2597 return II;
2598 }
2599 break;
2600 }
2601
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002602 case Intrinsic::x86_avx2_psllv_d:
2603 case Intrinsic::x86_avx2_psllv_d_256:
2604 case Intrinsic::x86_avx2_psllv_q:
2605 case Intrinsic::x86_avx2_psllv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002606 case Intrinsic::x86_avx512_psllv_d_512:
2607 case Intrinsic::x86_avx512_psllv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002608 case Intrinsic::x86_avx512_psllv_w_128:
2609 case Intrinsic::x86_avx512_psllv_w_256:
2610 case Intrinsic::x86_avx512_psllv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002611 case Intrinsic::x86_avx2_psrav_d:
2612 case Intrinsic::x86_avx2_psrav_d_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002613 case Intrinsic::x86_avx512_psrav_q_128:
2614 case Intrinsic::x86_avx512_psrav_q_256:
2615 case Intrinsic::x86_avx512_psrav_d_512:
2616 case Intrinsic::x86_avx512_psrav_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002617 case Intrinsic::x86_avx512_psrav_w_128:
2618 case Intrinsic::x86_avx512_psrav_w_256:
2619 case Intrinsic::x86_avx512_psrav_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002620 case Intrinsic::x86_avx2_psrlv_d:
2621 case Intrinsic::x86_avx2_psrlv_d_256:
2622 case Intrinsic::x86_avx2_psrlv_q:
2623 case Intrinsic::x86_avx2_psrlv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002624 case Intrinsic::x86_avx512_psrlv_d_512:
2625 case Intrinsic::x86_avx512_psrlv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002626 case Intrinsic::x86_avx512_psrlv_w_128:
2627 case Intrinsic::x86_avx512_psrlv_w_256:
2628 case Intrinsic::x86_avx512_psrlv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002629 if (Value *V = simplifyX86varShift(*II, *Builder))
2630 return replaceInstUsesWith(*II, V);
2631 break;
2632
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00002633 case Intrinsic::x86_sse2_pmulu_dq:
2634 case Intrinsic::x86_sse41_pmuldq:
2635 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00002636 case Intrinsic::x86_avx2_pmulu_dq:
2637 case Intrinsic::x86_avx512_pmul_dq_512:
2638 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +00002639 if (Value *V = simplifyX86muldq(*II, *Builder))
Simon Pilgrima50a93f2017-01-20 18:20:30 +00002640 return replaceInstUsesWith(*II, V);
2641
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00002642 unsigned VWidth = II->getType()->getVectorNumElements();
2643 APInt UndefElts(VWidth, 0);
2644 APInt DemandedElts = APInt::getAllOnesValue(VWidth);
2645 if (Value *V = SimplifyDemandedVectorElts(II, DemandedElts, UndefElts)) {
2646 if (V != II)
2647 return replaceInstUsesWith(*II, V);
2648 return II;
2649 }
2650 break;
2651 }
2652
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002653 case Intrinsic::x86_sse2_packssdw_128:
2654 case Intrinsic::x86_sse2_packsswb_128:
2655 case Intrinsic::x86_avx2_packssdw:
2656 case Intrinsic::x86_avx2_packsswb:
Craig Topper3731f4d2017-02-16 07:35:23 +00002657 case Intrinsic::x86_avx512_packssdw_512:
2658 case Intrinsic::x86_avx512_packsswb_512:
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002659 if (Value *V = simplifyX86pack(*II, *this, *Builder, true))
2660 return replaceInstUsesWith(*II, V);
2661 break;
2662
2663 case Intrinsic::x86_sse2_packuswb_128:
2664 case Intrinsic::x86_sse41_packusdw:
2665 case Intrinsic::x86_avx2_packusdw:
2666 case Intrinsic::x86_avx2_packuswb:
Craig Topper3731f4d2017-02-16 07:35:23 +00002667 case Intrinsic::x86_avx512_packusdw_512:
2668 case Intrinsic::x86_avx512_packuswb_512:
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002669 if (Value *V = simplifyX86pack(*II, *this, *Builder, false))
2670 return replaceInstUsesWith(*II, V);
2671 break;
2672
Craig Topperb6122122017-01-26 05:17:13 +00002673 case Intrinsic::x86_pclmulqdq: {
2674 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2675 unsigned Imm = C->getZExtValue();
2676
2677 bool MadeChange = false;
2678 Value *Arg0 = II->getArgOperand(0);
2679 Value *Arg1 = II->getArgOperand(1);
2680 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2681 APInt DemandedElts(VWidth, 0);
2682
2683 APInt UndefElts1(VWidth, 0);
2684 DemandedElts = (Imm & 0x01) ? 2 : 1;
2685 if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts,
2686 UndefElts1)) {
2687 II->setArgOperand(0, V);
2688 MadeChange = true;
2689 }
2690
2691 APInt UndefElts2(VWidth, 0);
2692 DemandedElts = (Imm & 0x10) ? 2 : 1;
2693 if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts,
2694 UndefElts2)) {
2695 II->setArgOperand(1, V);
2696 MadeChange = true;
2697 }
2698
2699 // If both input elements are undef, the result is undef.
2700 if (UndefElts1[(Imm & 0x01) ? 1 : 0] ||
2701 UndefElts2[(Imm & 0x10) ? 1 : 0])
2702 return replaceInstUsesWith(*II,
2703 ConstantAggregateZero::get(II->getType()));
2704
2705 if (MadeChange)
2706 return II;
2707 }
2708 break;
2709 }
2710
Sanjay Patelc86867c2015-04-16 17:52:13 +00002711 case Intrinsic::x86_sse41_insertps:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002712 if (Value *V = simplifyX86insertps(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002713 return replaceInstUsesWith(*II, V);
Sanjay Patelc86867c2015-04-16 17:52:13 +00002714 break;
Simon Pilgrim54fcd622015-07-25 20:41:00 +00002715
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002716 case Intrinsic::x86_sse4a_extrq: {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002717 Value *Op0 = II->getArgOperand(0);
2718 Value *Op1 = II->getArgOperand(1);
2719 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2720 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002721 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2722 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2723 VWidth1 == 16 && "Unexpected operand sizes");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002724
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002725 // See if we're dealing with constant values.
2726 Constant *C1 = dyn_cast<Constant>(Op1);
2727 ConstantInt *CILength =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +00002728 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002729 : nullptr;
2730 ConstantInt *CIIndex =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +00002731 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002732 : nullptr;
2733
2734 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002735 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002736 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002737
2738 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2739 // operands and the lowest 16-bits of the second.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002740 bool MadeChange = false;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002741 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2742 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002743 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002744 }
2745 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2746 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002747 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002748 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002749 if (MadeChange)
2750 return II;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002751 break;
2752 }
2753
2754 case Intrinsic::x86_sse4a_extrqi: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002755 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2756 // bits of the lower 64-bits. The upper 64-bits are undefined.
2757 Value *Op0 = II->getArgOperand(0);
2758 unsigned VWidth = Op0->getType()->getVectorNumElements();
2759 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2760 "Unexpected operand size");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002761
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002762 // See if we're dealing with constant values.
2763 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2764 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2765
2766 // Attempt to simplify to a constant or shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002767 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002768 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002769
2770 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2771 // operand.
2772 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002773 II->setArgOperand(0, V);
2774 return II;
2775 }
2776 break;
2777 }
2778
2779 case Intrinsic::x86_sse4a_insertq: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002780 Value *Op0 = II->getArgOperand(0);
2781 Value *Op1 = II->getArgOperand(1);
2782 unsigned VWidth = Op0->getType()->getVectorNumElements();
2783 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2784 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2785 Op1->getType()->getVectorNumElements() == 2 &&
2786 "Unexpected operand size");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002787
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002788 // See if we're dealing with constant values.
2789 Constant *C1 = dyn_cast<Constant>(Op1);
2790 ConstantInt *CI11 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +00002791 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002792 : nullptr;
2793
2794 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2795 if (CI11) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00002796 const APInt &V11 = CI11->getValue();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002797 APInt Len = V11.zextOrTrunc(6);
2798 APInt Idx = V11.lshr(8).zextOrTrunc(6);
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002799 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002800 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002801 }
2802
2803 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2804 // operand.
2805 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002806 II->setArgOperand(0, V);
2807 return II;
2808 }
2809 break;
2810 }
2811
Filipe Cabecinhas1a805952014-04-24 00:38:14 +00002812 case Intrinsic::x86_sse4a_insertqi: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002813 // INSERTQI: Extract lowest Length bits from lower half of second source and
2814 // insert over first source starting at Index bit. The upper 64-bits are
2815 // undefined.
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002816 Value *Op0 = II->getArgOperand(0);
2817 Value *Op1 = II->getArgOperand(1);
2818 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2819 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002820 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2821 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2822 VWidth1 == 2 && "Unexpected operand sizes");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002823
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002824 // See if we're dealing with constant values.
2825 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
2826 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
2827
2828 // Attempt to simplify to a constant or shuffle vector.
2829 if (CILength && CIIndex) {
2830 APInt Len = CILength->getValue().zextOrTrunc(6);
2831 APInt Idx = CIIndex->getValue().zextOrTrunc(6);
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002832 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002833 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002834 }
2835
2836 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
2837 // operands.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002838 bool MadeChange = false;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002839 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2840 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002841 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002842 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002843 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
2844 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002845 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002846 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002847 if (MadeChange)
2848 return II;
Filipe Cabecinhas1a805952014-04-24 00:38:14 +00002849 break;
2850 }
2851
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002852 case Intrinsic::x86_sse41_pblendvb:
2853 case Intrinsic::x86_sse41_blendvps:
2854 case Intrinsic::x86_sse41_blendvpd:
2855 case Intrinsic::x86_avx_blendv_ps_256:
2856 case Intrinsic::x86_avx_blendv_pd_256:
2857 case Intrinsic::x86_avx2_pblendvb: {
2858 // Convert blendv* to vector selects if the mask is constant.
2859 // This optimization is convoluted because the intrinsic is defined as
2860 // getting a vector of floats or doubles for the ps and pd versions.
2861 // FIXME: That should be changed.
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002862
2863 Value *Op0 = II->getArgOperand(0);
2864 Value *Op1 = II->getArgOperand(1);
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002865 Value *Mask = II->getArgOperand(2);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002866
2867 // fold (blend A, A, Mask) -> A
2868 if (Op0 == Op1)
Sanjay Patel4b198802016-02-01 22:23:39 +00002869 return replaceInstUsesWith(CI, Op0);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002870
2871 // Zero Mask - select 1st argument.
Simon Pilgrim93f59f52015-08-12 08:23:36 +00002872 if (isa<ConstantAggregateZero>(Mask))
Sanjay Patel4b198802016-02-01 22:23:39 +00002873 return replaceInstUsesWith(CI, Op0);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002874
2875 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
Sanjay Patel368ac5d2016-02-21 17:29:33 +00002876 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
2877 Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002878 return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002879 }
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002880 break;
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002881 }
2882
Andrea Di Biagio0594e2a2015-09-30 16:44:39 +00002883 case Intrinsic::x86_ssse3_pshuf_b_128:
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00002884 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrima22c3a12017-01-18 13:44:04 +00002885 case Intrinsic::x86_avx512_pshuf_b_512:
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00002886 if (Value *V = simplifyX86pshufb(*II, *Builder))
2887 return replaceInstUsesWith(*II, V);
2888 break;
Andrea Di Biagio0594e2a2015-09-30 16:44:39 +00002889
Rafael Espindolabad3f772014-04-21 22:06:04 +00002890 case Intrinsic::x86_avx_vpermilvar_ps:
2891 case Intrinsic::x86_avx_vpermilvar_ps_256:
Craig Topper58917f32016-12-11 01:59:36 +00002892 case Intrinsic::x86_avx512_vpermilvar_ps_512:
Rafael Espindolabad3f772014-04-21 22:06:04 +00002893 case Intrinsic::x86_avx_vpermilvar_pd:
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00002894 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrima22c3a12017-01-18 13:44:04 +00002895 case Intrinsic::x86_avx512_vpermilvar_pd_512:
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00002896 if (Value *V = simplifyX86vpermilvar(*II, *Builder))
2897 return replaceInstUsesWith(*II, V);
2898 break;
Rafael Espindolabad3f772014-04-21 22:06:04 +00002899
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00002900 case Intrinsic::x86_avx2_permd:
2901 case Intrinsic::x86_avx2_permps:
2902 if (Value *V = simplifyX86vpermv(*II, *Builder))
2903 return replaceInstUsesWith(*II, V);
2904 break;
2905
Craig Toppere3280452016-12-25 23:58:57 +00002906 case Intrinsic::x86_avx512_mask_permvar_df_256:
2907 case Intrinsic::x86_avx512_mask_permvar_df_512:
2908 case Intrinsic::x86_avx512_mask_permvar_di_256:
2909 case Intrinsic::x86_avx512_mask_permvar_di_512:
2910 case Intrinsic::x86_avx512_mask_permvar_hi_128:
2911 case Intrinsic::x86_avx512_mask_permvar_hi_256:
2912 case Intrinsic::x86_avx512_mask_permvar_hi_512:
2913 case Intrinsic::x86_avx512_mask_permvar_qi_128:
2914 case Intrinsic::x86_avx512_mask_permvar_qi_256:
2915 case Intrinsic::x86_avx512_mask_permvar_qi_512:
2916 case Intrinsic::x86_avx512_mask_permvar_sf_256:
2917 case Intrinsic::x86_avx512_mask_permvar_sf_512:
2918 case Intrinsic::x86_avx512_mask_permvar_si_256:
2919 case Intrinsic::x86_avx512_mask_permvar_si_512:
2920 if (Value *V = simplifyX86vpermv(*II, *Builder)) {
2921 // We simplified the permuting, now create a select for the masking.
2922 V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
2923 *Builder);
2924 return replaceInstUsesWith(*II, V);
2925 }
2926 break;
2927
Sanjay Patelccf5f242015-03-20 21:47:56 +00002928 case Intrinsic::x86_avx_vperm2f128_pd_256:
2929 case Intrinsic::x86_avx_vperm2f128_ps_256:
2930 case Intrinsic::x86_avx_vperm2f128_si_256:
Sanjay Patele304bea2015-03-24 22:39:29 +00002931 case Intrinsic::x86_avx2_vperm2i128:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002932 if (Value *V = simplifyX86vperm2(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002933 return replaceInstUsesWith(*II, V);
Sanjay Patelccf5f242015-03-20 21:47:56 +00002934 break;
2935
Sanjay Patel98a71502016-02-29 23:16:48 +00002936 case Intrinsic::x86_avx_maskload_ps:
Sanjay Patel6f2c01f2016-02-29 23:59:00 +00002937 case Intrinsic::x86_avx_maskload_pd:
2938 case Intrinsic::x86_avx_maskload_ps_256:
2939 case Intrinsic::x86_avx_maskload_pd_256:
2940 case Intrinsic::x86_avx2_maskload_d:
2941 case Intrinsic::x86_avx2_maskload_q:
2942 case Intrinsic::x86_avx2_maskload_d_256:
2943 case Intrinsic::x86_avx2_maskload_q_256:
Sanjay Patel98a71502016-02-29 23:16:48 +00002944 if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
2945 return I;
2946 break;
2947
Sanjay Patelc4acbae2016-03-12 15:16:59 +00002948 case Intrinsic::x86_sse2_maskmov_dqu:
Sanjay Patel1ace9932016-02-26 21:04:14 +00002949 case Intrinsic::x86_avx_maskstore_ps:
2950 case Intrinsic::x86_avx_maskstore_pd:
2951 case Intrinsic::x86_avx_maskstore_ps_256:
2952 case Intrinsic::x86_avx_maskstore_pd_256:
Sanjay Patelfc7e7eb2016-02-26 21:51:44 +00002953 case Intrinsic::x86_avx2_maskstore_d:
2954 case Intrinsic::x86_avx2_maskstore_q:
2955 case Intrinsic::x86_avx2_maskstore_d_256:
2956 case Intrinsic::x86_avx2_maskstore_q_256:
Sanjay Patel1ace9932016-02-26 21:04:14 +00002957 if (simplifyX86MaskedStore(*II, *this))
2958 return nullptr;
2959 break;
2960
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00002961 case Intrinsic::x86_xop_vpcomb:
2962 case Intrinsic::x86_xop_vpcomd:
2963 case Intrinsic::x86_xop_vpcomq:
2964 case Intrinsic::x86_xop_vpcomw:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002965 if (Value *V = simplifyX86vpcom(*II, *Builder, true))
Sanjay Patel4b198802016-02-01 22:23:39 +00002966 return replaceInstUsesWith(*II, V);
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00002967 break;
2968
2969 case Intrinsic::x86_xop_vpcomub:
2970 case Intrinsic::x86_xop_vpcomud:
2971 case Intrinsic::x86_xop_vpcomuq:
2972 case Intrinsic::x86_xop_vpcomuw:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002973 if (Value *V = simplifyX86vpcom(*II, *Builder, false))
Sanjay Patel4b198802016-02-01 22:23:39 +00002974 return replaceInstUsesWith(*II, V);
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00002975 break;
2976
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002977 case Intrinsic::ppc_altivec_vperm:
2978 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
Bill Schmidta1184632014-06-05 19:46:04 +00002979 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
2980 // a vectorshuffle for little endian, we must undo the transformation
2981 // performed on vec_perm in altivec.h. That is, we must complement
2982 // the permutation mask with respect to 31 and reverse the order of
2983 // V1 and V2.
Chris Lattner0256be92012-01-27 03:08:05 +00002984 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
2985 assert(Mask->getType()->getVectorNumElements() == 16 &&
2986 "Bad type for intrinsic!");
Jim Grosbach7815f562012-02-03 00:07:04 +00002987
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002988 // Check that all of the elements are integer constants or undefs.
2989 bool AllEltsOk = true;
2990 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0256be92012-01-27 03:08:05 +00002991 Constant *Elt = Mask->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +00002992 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002993 AllEltsOk = false;
2994 break;
2995 }
2996 }
Jim Grosbach7815f562012-02-03 00:07:04 +00002997
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002998 if (AllEltsOk) {
2999 // Cast the input vectors to byte vectors.
Gabor Greif3e44ea12010-07-22 10:37:47 +00003000 Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
3001 Mask->getType());
3002 Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
3003 Mask->getType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003004 Value *Result = UndefValue::get(Op0->getType());
Jim Grosbach7815f562012-02-03 00:07:04 +00003005
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003006 // Only extract each element once.
3007 Value *ExtractedElts[32];
3008 memset(ExtractedElts, 0, sizeof(ExtractedElts));
Jim Grosbach7815f562012-02-03 00:07:04 +00003009
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003010 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0256be92012-01-27 03:08:05 +00003011 if (isa<UndefValue>(Mask->getAggregateElement(i)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003012 continue;
Jim Grosbach7815f562012-02-03 00:07:04 +00003013 unsigned Idx =
Chris Lattner0256be92012-01-27 03:08:05 +00003014 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003015 Idx &= 31; // Match the hardware behavior.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003016 if (DL.isLittleEndian())
Bill Schmidta1184632014-06-05 19:46:04 +00003017 Idx = 31 - Idx;
Jim Grosbach7815f562012-02-03 00:07:04 +00003018
Craig Topperf40110f2014-04-25 05:29:35 +00003019 if (!ExtractedElts[Idx]) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003020 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3021 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
Jim Grosbach7815f562012-02-03 00:07:04 +00003022 ExtractedElts[Idx] =
Bill Schmidta1184632014-06-05 19:46:04 +00003023 Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
Benjamin Kramer547b6c52011-09-27 20:39:19 +00003024 Builder->getInt32(Idx&15));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003025 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003026
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003027 // Insert this value into the result vector.
3028 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
Benjamin Kramer547b6c52011-09-27 20:39:19 +00003029 Builder->getInt32(i));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003030 }
3031 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3032 }
3033 }
3034 break;
3035
Bob Wilsona4e231c2010-10-22 21:41:48 +00003036 case Intrinsic::arm_neon_vld1:
3037 case Intrinsic::arm_neon_vld2:
3038 case Intrinsic::arm_neon_vld3:
3039 case Intrinsic::arm_neon_vld4:
3040 case Intrinsic::arm_neon_vld2lane:
3041 case Intrinsic::arm_neon_vld3lane:
3042 case Intrinsic::arm_neon_vld4lane:
3043 case Intrinsic::arm_neon_vst1:
3044 case Intrinsic::arm_neon_vst2:
3045 case Intrinsic::arm_neon_vst3:
3046 case Intrinsic::arm_neon_vst4:
3047 case Intrinsic::arm_neon_vst2lane:
3048 case Intrinsic::arm_neon_vst3lane:
3049 case Intrinsic::arm_neon_vst4lane: {
Justin Bogner99798402016-08-05 01:06:44 +00003050 unsigned MemAlign =
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003051 getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
Bob Wilsona4e231c2010-10-22 21:41:48 +00003052 unsigned AlignArg = II->getNumArgOperands() - 1;
3053 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3054 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3055 II->setArgOperand(AlignArg,
3056 ConstantInt::get(Type::getInt32Ty(II->getContext()),
3057 MemAlign, false));
3058 return II;
3059 }
3060 break;
3061 }
3062
Lang Hames3a90fab2012-05-01 00:20:38 +00003063 case Intrinsic::arm_neon_vmulls:
Tim Northover00ed9962014-03-29 10:18:08 +00003064 case Intrinsic::arm_neon_vmullu:
Tim Northover3b0846e2014-05-24 12:50:23 +00003065 case Intrinsic::aarch64_neon_smull:
3066 case Intrinsic::aarch64_neon_umull: {
Lang Hames3a90fab2012-05-01 00:20:38 +00003067 Value *Arg0 = II->getArgOperand(0);
3068 Value *Arg1 = II->getArgOperand(1);
3069
3070 // Handle mul by zero first:
3071 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
Sanjay Patel4b198802016-02-01 22:23:39 +00003072 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
Lang Hames3a90fab2012-05-01 00:20:38 +00003073 }
3074
3075 // Check for constant LHS & RHS - in this case we just simplify.
Tim Northover00ed9962014-03-29 10:18:08 +00003076 bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
Tim Northover3b0846e2014-05-24 12:50:23 +00003077 II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
Lang Hames3a90fab2012-05-01 00:20:38 +00003078 VectorType *NewVT = cast<VectorType>(II->getType());
Benjamin Kramer92040952014-02-13 18:23:24 +00003079 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3080 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3081 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3082 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3083
Sanjay Patel4b198802016-02-01 22:23:39 +00003084 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
Lang Hames3a90fab2012-05-01 00:20:38 +00003085 }
3086
Alp Tokercb402912014-01-24 17:20:08 +00003087 // Couldn't simplify - canonicalize constant to the RHS.
Lang Hames3a90fab2012-05-01 00:20:38 +00003088 std::swap(Arg0, Arg1);
3089 }
3090
3091 // Handle mul by one:
Benjamin Kramer92040952014-02-13 18:23:24 +00003092 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
Lang Hames3a90fab2012-05-01 00:20:38 +00003093 if (ConstantInt *Splat =
Benjamin Kramer92040952014-02-13 18:23:24 +00003094 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3095 if (Splat->isOne())
3096 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3097 /*isSigned=*/!Zext);
Lang Hames3a90fab2012-05-01 00:20:38 +00003098
3099 break;
3100 }
Matt Arsenaultbef34e22016-01-22 21:30:34 +00003101 case Intrinsic::amdgcn_rcp: {
Matt Arsenault4c7795d2017-03-24 19:04:57 +00003102 Value *Src = II->getArgOperand(0);
3103
3104 // TODO: Move to ConstantFolding/InstSimplify?
3105 if (isa<UndefValue>(Src))
3106 return replaceInstUsesWith(CI, Src);
3107
3108 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
Matt Arsenaulta0050b02014-06-19 01:19:19 +00003109 const APFloat &ArgVal = C->getValueAPF();
3110 APFloat Val(ArgVal.getSemantics(), 1.0);
3111 APFloat::opStatus Status = Val.divide(ArgVal,
3112 APFloat::rmNearestTiesToEven);
3113 // Only do this if it was exact and therefore not dependent on the
3114 // rounding mode.
3115 if (Status == APFloat::opOK)
Sanjay Patel4b198802016-02-01 22:23:39 +00003116 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
Matt Arsenaulta0050b02014-06-19 01:19:19 +00003117 }
3118
3119 break;
3120 }
Matt Arsenault4c7795d2017-03-24 19:04:57 +00003121 case Intrinsic::amdgcn_rsq: {
3122 Value *Src = II->getArgOperand(0);
3123
3124 // TODO: Move to ConstantFolding/InstSimplify?
3125 if (isa<UndefValue>(Src))
3126 return replaceInstUsesWith(CI, Src);
3127 break;
3128 }
Matt Arsenault2fe4fbc2016-03-30 22:28:52 +00003129 case Intrinsic::amdgcn_frexp_mant:
3130 case Intrinsic::amdgcn_frexp_exp: {
Matt Arsenault5cd4f8f2016-03-30 22:28:26 +00003131 Value *Src = II->getArgOperand(0);
3132 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3133 int Exp;
3134 APFloat Significand = frexp(C->getValueAPF(), Exp,
3135 APFloat::rmNearestTiesToEven);
3136
Matt Arsenault2fe4fbc2016-03-30 22:28:52 +00003137 if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
3138 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3139 Significand));
3140 }
3141
3142 // Match instruction special case behavior.
3143 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3144 Exp = 0;
3145
3146 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3147 }
3148
3149 if (isa<UndefValue>(Src))
3150 return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
Matt Arsenault5cd4f8f2016-03-30 22:28:26 +00003151
3152 break;
3153 }
Matt Arsenault46a03822016-09-03 07:06:58 +00003154 case Intrinsic::amdgcn_class: {
3155 enum {
3156 S_NAN = 1 << 0, // Signaling NaN
3157 Q_NAN = 1 << 1, // Quiet NaN
3158 N_INFINITY = 1 << 2, // Negative infinity
3159 N_NORMAL = 1 << 3, // Negative normal
3160 N_SUBNORMAL = 1 << 4, // Negative subnormal
3161 N_ZERO = 1 << 5, // Negative zero
3162 P_ZERO = 1 << 6, // Positive zero
3163 P_SUBNORMAL = 1 << 7, // Positive subnormal
3164 P_NORMAL = 1 << 8, // Positive normal
3165 P_INFINITY = 1 << 9 // Positive infinity
3166 };
3167
3168 const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3169 N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3170
3171 Value *Src0 = II->getArgOperand(0);
3172 Value *Src1 = II->getArgOperand(1);
3173 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3174 if (!CMask) {
3175 if (isa<UndefValue>(Src0))
3176 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3177
3178 if (isa<UndefValue>(Src1))
3179 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3180 break;
3181 }
3182
3183 uint32_t Mask = CMask->getZExtValue();
3184
3185 // If all tests are made, it doesn't matter what the value is.
3186 if ((Mask & FullMask) == FullMask)
3187 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3188
3189 if ((Mask & FullMask) == 0)
3190 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3191
3192 if (Mask == (S_NAN | Q_NAN)) {
3193 // Equivalent of isnan. Replace with standard fcmp.
3194 Value *FCmp = Builder->CreateFCmpUNO(Src0, Src0);
3195 FCmp->takeName(II);
3196 return replaceInstUsesWith(*II, FCmp);
3197 }
3198
3199 const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3200 if (!CVal) {
3201 if (isa<UndefValue>(Src0))
3202 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3203
3204 // Clamp mask to used bits
3205 if ((Mask & FullMask) != Mask) {
3206 CallInst *NewCall = Builder->CreateCall(II->getCalledFunction(),
3207 { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3208 );
3209
3210 NewCall->takeName(II);
3211 return replaceInstUsesWith(*II, NewCall);
3212 }
3213
3214 break;
3215 }
3216
3217 const APFloat &Val = CVal->getValueAPF();
3218
3219 bool Result =
3220 ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3221 ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3222 ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3223 ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3224 ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3225 ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3226 ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3227 ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3228 ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3229 ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3230
3231 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3232 }
Matt Arsenault1f17c662017-02-22 00:27:34 +00003233 case Intrinsic::amdgcn_cvt_pkrtz: {
3234 Value *Src0 = II->getArgOperand(0);
3235 Value *Src1 = II->getArgOperand(1);
3236 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3237 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3238 const fltSemantics &HalfSem
3239 = II->getType()->getScalarType()->getFltSemantics();
3240 bool LosesInfo;
3241 APFloat Val0 = C0->getValueAPF();
3242 APFloat Val1 = C1->getValueAPF();
3243 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3244 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3245
3246 Constant *Folded = ConstantVector::get({
3247 ConstantFP::get(II->getContext(), Val0),
3248 ConstantFP::get(II->getContext(), Val1) });
3249 return replaceInstUsesWith(*II, Folded);
3250 }
3251 }
3252
3253 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3254 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3255
3256 break;
3257 }
Matt Arsenaultf5262252017-02-22 23:04:58 +00003258 case Intrinsic::amdgcn_ubfe:
3259 case Intrinsic::amdgcn_sbfe: {
3260 // Decompose simple cases into standard shifts.
3261 Value *Src = II->getArgOperand(0);
3262 if (isa<UndefValue>(Src))
3263 return replaceInstUsesWith(*II, Src);
3264
3265 unsigned Width;
3266 Type *Ty = II->getType();
3267 unsigned IntSize = Ty->getIntegerBitWidth();
3268
3269 ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3270 if (CWidth) {
3271 Width = CWidth->getZExtValue();
3272 if ((Width & (IntSize - 1)) == 0)
3273 return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3274
3275 if (Width >= IntSize) {
3276 // Hardware ignores high bits, so remove those.
3277 II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3278 Width & (IntSize - 1)));
3279 return II;
3280 }
3281 }
3282
3283 unsigned Offset;
3284 ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3285 if (COffset) {
3286 Offset = COffset->getZExtValue();
3287 if (Offset >= IntSize) {
3288 II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3289 Offset & (IntSize - 1)));
3290 return II;
3291 }
3292 }
3293
3294 bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
3295
3296 // TODO: Also emit sub if only width is constant.
3297 if (!CWidth && COffset && Offset == 0) {
3298 Constant *KSize = ConstantInt::get(COffset->getType(), IntSize);
3299 Value *ShiftVal = Builder->CreateSub(KSize, II->getArgOperand(2));
3300 ShiftVal = Builder->CreateZExt(ShiftVal, II->getType());
3301
3302 Value *Shl = Builder->CreateShl(Src, ShiftVal);
3303 Value *RightShift = Signed ?
3304 Builder->CreateAShr(Shl, ShiftVal) :
3305 Builder->CreateLShr(Shl, ShiftVal);
3306 RightShift->takeName(II);
3307 return replaceInstUsesWith(*II, RightShift);
3308 }
3309
3310 if (!CWidth || !COffset)
3311 break;
3312
3313 // TODO: This allows folding to undef when the hardware has specific
3314 // behavior?
3315 if (Offset + Width < IntSize) {
3316 Value *Shl = Builder->CreateShl(Src, IntSize - Offset - Width);
3317 Value *RightShift = Signed ?
3318 Builder->CreateAShr(Shl, IntSize - Width) :
3319 Builder->CreateLShr(Shl, IntSize - Width);
3320 RightShift->takeName(II);
3321 return replaceInstUsesWith(*II, RightShift);
3322 }
3323
3324 Value *RightShift = Signed ?
3325 Builder->CreateAShr(Src, Offset) :
3326 Builder->CreateLShr(Src, Offset);
3327
3328 RightShift->takeName(II);
3329 return replaceInstUsesWith(*II, RightShift);
3330 }
Matt Arsenaultd4bca1e2017-02-23 00:44:03 +00003331 case Intrinsic::amdgcn_exp:
3332 case Intrinsic::amdgcn_exp_compr: {
3333 ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
3334 if (!En) // Illegal.
3335 break;
3336
3337 unsigned EnBits = En->getZExtValue();
3338 if (EnBits == 0xf)
3339 break; // All inputs enabled.
3340
3341 bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
3342 bool Changed = false;
3343 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3344 if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3345 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3346 Value *Src = II->getArgOperand(I + 2);
3347 if (!isa<UndefValue>(Src)) {
3348 II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3349 Changed = true;
3350 }
3351 }
3352 }
3353
3354 if (Changed)
3355 return II;
3356
3357 break;
Matt Arsenaultcdb468c2017-02-27 23:08:49 +00003358
3359 }
3360 case Intrinsic::amdgcn_fmed3: {
3361 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3362 // for the shader.
3363
3364 Value *Src0 = II->getArgOperand(0);
3365 Value *Src1 = II->getArgOperand(1);
3366 Value *Src2 = II->getArgOperand(2);
3367
3368 bool Swap = false;
3369 // Canonicalize constants to RHS operands.
3370 //
3371 // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3372 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3373 std::swap(Src0, Src1);
3374 Swap = true;
3375 }
3376
3377 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3378 std::swap(Src1, Src2);
3379 Swap = true;
3380 }
3381
3382 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3383 std::swap(Src0, Src1);
3384 Swap = true;
3385 }
3386
3387 if (Swap) {
3388 II->setArgOperand(0, Src0);
3389 II->setArgOperand(1, Src1);
3390 II->setArgOperand(2, Src2);
3391 return II;
3392 }
3393
3394 if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3395 CallInst *NewCall = Builder->CreateMinNum(Src0, Src1);
3396 NewCall->copyFastMathFlags(II);
3397 NewCall->takeName(II);
3398 return replaceInstUsesWith(*II, NewCall);
3399 }
3400
3401 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3402 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3403 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3404 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3405 C2->getValueAPF());
3406 return replaceInstUsesWith(*II,
3407 ConstantFP::get(Builder->getContext(), Result));
3408 }
3409 }
3410 }
3411
3412 break;
Matt Arsenaultd4bca1e2017-02-23 00:44:03 +00003413 }
Matt Arsenaultd81f5572017-03-13 18:14:02 +00003414 case Intrinsic::amdgcn_icmp:
3415 case Intrinsic::amdgcn_fcmp: {
3416 const ConstantInt *CC = dyn_cast<ConstantInt>(II->getArgOperand(2));
3417 if (!CC)
3418 break;
3419
3420 // Guard against invalid arguments.
3421 int64_t CCVal = CC->getZExtValue();
3422 bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp;
3423 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3424 CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3425 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3426 CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3427 break;
3428
3429 Value *Src0 = II->getArgOperand(0);
3430 Value *Src1 = II->getArgOperand(1);
3431
3432 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3433 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3434 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
Nicolai Haehnle9c661852017-04-24 17:08:43 +00003435 if (CCmp->isNullValue()) {
3436 return replaceInstUsesWith(
3437 *II, ConstantExpr::getSExt(CCmp, II->getType()));
3438 }
3439
3440 // The result of V_ICMP/V_FCMP assembly instructions (which this
3441 // intrinsic exposes) is one bit per thread, masked with the EXEC
3442 // register (which contains the bitmask of live threads). So a
3443 // comparison that always returns true is the same as a read of the
3444 // EXEC register.
3445 Value *NewF = Intrinsic::getDeclaration(
3446 II->getModule(), Intrinsic::read_register, II->getType());
3447 Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3448 MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3449 Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3450 CallInst *NewCall = Builder->CreateCall(NewF, Args);
3451 NewCall->addAttribute(AttributeList::FunctionIndex,
3452 Attribute::Convergent);
3453 NewCall->takeName(II);
3454 return replaceInstUsesWith(*II, NewCall);
Matt Arsenaultd81f5572017-03-13 18:14:02 +00003455 }
3456
3457 // Canonicalize constants to RHS.
3458 CmpInst::Predicate SwapPred
3459 = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3460 II->setArgOperand(0, Src1);
3461 II->setArgOperand(1, Src0);
3462 II->setArgOperand(2, ConstantInt::get(CC->getType(),
3463 static_cast<int>(SwapPred)));
3464 return II;
3465 }
3466
3467 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3468 break;
3469
3470 // Canonicalize compare eq with true value to compare != 0
3471 // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3472 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3473 // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3474 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3475 Value *ExtSrc;
3476 if (CCVal == CmpInst::ICMP_EQ &&
3477 ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3478 (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3479 ExtSrc->getType()->isIntegerTy(1)) {
3480 II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
3481 II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3482 return II;
3483 }
3484
3485 CmpInst::Predicate SrcPred;
3486 Value *SrcLHS;
3487 Value *SrcRHS;
3488
3489 // Fold compare eq/ne with 0 from a compare result as the predicate to the
3490 // intrinsic. The typical use is a wave vote function in the library, which
3491 // will be fed from a user code condition compared with 0. Fold in the
3492 // redundant compare.
3493
3494 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3495 // -> llvm.amdgcn.[if]cmp(a, b, pred)
3496 //
3497 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3498 // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3499 if (match(Src1, m_Zero()) &&
3500 match(Src0,
3501 m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3502 if (CCVal == CmpInst::ICMP_EQ)
3503 SrcPred = CmpInst::getInversePredicate(SrcPred);
3504
3505 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3506 Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3507
3508 Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID,
3509 SrcLHS->getType());
3510 Value *Args[] = { SrcLHS, SrcRHS,
3511 ConstantInt::get(CC->getType(), SrcPred) };
3512 CallInst *NewCall = Builder->CreateCall(NewF, Args);
3513 NewCall->takeName(II);
3514 return replaceInstUsesWith(*II, NewCall);
3515 }
3516
3517 break;
3518 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003519 case Intrinsic::stackrestore: {
3520 // If the save is right next to the restore, remove the restore. This can
3521 // happen when variable allocas are DCE'd.
Gabor Greif589a0b92010-06-24 12:58:35 +00003522 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003523 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003524 if (&*++SS->getIterator() == II)
Sanjay Patel4b198802016-02-01 22:23:39 +00003525 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003526 }
3527 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003528
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003529 // Scan down this block to see if there is another stack restore in the
3530 // same block without an intervening call/alloca.
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003531 BasicBlock::iterator BI(II);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003532 TerminatorInst *TI = II->getParent()->getTerminator();
3533 bool CannotRemove = false;
3534 for (++BI; &*BI != TI; ++BI) {
Nuno Lopes55fff832012-06-21 15:45:28 +00003535 if (isa<AllocaInst>(BI)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003536 CannotRemove = true;
3537 break;
3538 }
3539 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3540 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
3541 // If there is a stackrestore below this one, remove this one.
3542 if (II->getIntrinsicID() == Intrinsic::stackrestore)
Sanjay Patel4b198802016-02-01 22:23:39 +00003543 return eraseInstFromFunction(CI);
Reid Kleckner892ae2e2016-02-27 00:53:54 +00003544
3545 // Bail if we cross over an intrinsic with side effects, such as
3546 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3547 if (II->mayHaveSideEffects()) {
3548 CannotRemove = true;
3549 break;
3550 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003551 } else {
3552 // If we found a non-intrinsic call, we can't remove the stack
3553 // restore.
3554 CannotRemove = true;
3555 break;
3556 }
3557 }
3558 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003559
Bill Wendlingf891bf82011-07-31 06:30:59 +00003560 // If the stack restore is in a return, resume, or unwind block and if there
3561 // are no allocas or calls between the restore and the return, nuke the
3562 // restore.
Bill Wendlingd5d95b02012-02-06 21:16:41 +00003563 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
Sanjay Patel4b198802016-02-01 22:23:39 +00003564 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003565 break;
3566 }
Vitaly Bukaf0500b62016-07-28 22:50:48 +00003567 case Intrinsic::lifetime_start:
Vitaly Buka0ab23cf2016-07-28 22:59:03 +00003568 // Asan needs to poison memory to detect invalid access which is possible
3569 // even for empty lifetime range.
3570 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3571 break;
3572
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00003573 if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3574 Intrinsic::lifetime_end, *this))
3575 return nullptr;
Arnaud A. de Grandmaison849f3bf2015-10-01 14:54:31 +00003576 break;
Hal Finkelf5867a72014-07-25 21:45:17 +00003577 case Intrinsic::assume: {
David Majnemerfcc58112016-04-08 16:37:12 +00003578 Value *IIOperand = II->getArgOperand(0);
3579 // Remove an assume if it is immediately followed by an identical assume.
3580 if (match(II->getNextNode(),
3581 m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3582 return eraseInstFromFunction(CI);
3583
Hal Finkelf5867a72014-07-25 21:45:17 +00003584 // Canonicalize assume(a && b) -> assume(a); assume(b);
Hal Finkel74c2f352014-09-07 12:44:26 +00003585 // Note: New assumption intrinsics created here are registered by
3586 // the InstCombineIRInserter object.
David Majnemerfcc58112016-04-08 16:37:12 +00003587 Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
Hal Finkelf5867a72014-07-25 21:45:17 +00003588 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3589 Builder->CreateCall(AssumeIntrinsic, A, II->getName());
3590 Builder->CreateCall(AssumeIntrinsic, B, II->getName());
Sanjay Patel4b198802016-02-01 22:23:39 +00003591 return eraseInstFromFunction(*II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003592 }
3593 // assume(!(a || b)) -> assume(!a); assume(!b);
3594 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
Hal Finkel74c2f352014-09-07 12:44:26 +00003595 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
3596 II->getName());
3597 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
3598 II->getName());
Sanjay Patel4b198802016-02-01 22:23:39 +00003599 return eraseInstFromFunction(*II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003600 }
Hal Finkel04a15612014-10-04 21:27:06 +00003601
Philip Reames66c6de62014-11-11 23:33:19 +00003602 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3603 // (if assume is valid at the load)
Sanjay Patelf0d1e7732017-01-03 22:25:31 +00003604 CmpInst::Predicate Pred;
3605 Instruction *LHS;
3606 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3607 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3608 LHS->getType()->isPointerTy() &&
3609 isValidAssumeForContext(II, LHS, &DT)) {
3610 MDNode *MD = MDNode::get(II->getContext(), None);
3611 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3612 return eraseInstFromFunction(*II);
3613
Chandler Carruth24969102015-02-10 08:07:32 +00003614 // TODO: apply nonnull return attributes to calls and invokes
Philip Reames66c6de62014-11-11 23:33:19 +00003615 // TODO: apply range metadata for range check patterns?
3616 }
Sanjay Patelf0d1e7732017-01-03 22:25:31 +00003617
Hal Finkel04a15612014-10-04 21:27:06 +00003618 // If there is a dominating assume with the same condition as this one,
3619 // then this one is redundant, and should be removed.
Hal Finkel45646882014-10-05 00:53:02 +00003620 APInt KnownZero(1, 0), KnownOne(1, 0);
3621 computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
3622 if (KnownOne.isAllOnesValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00003623 return eraseInstFromFunction(*II);
Hal Finkel04a15612014-10-04 21:27:06 +00003624
Hal Finkel8a9a7832017-01-11 13:24:24 +00003625 // Update the cache of affected values for this assumption (we might be
3626 // here because we just simplified the condition).
3627 AC.updateAffectedValues(II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003628 break;
3629 }
Philip Reames9db26ff2014-12-29 23:27:30 +00003630 case Intrinsic::experimental_gc_relocate: {
3631 // Translate facts known about a pointer before relocating into
3632 // facts about the relocate value, while being careful to
3633 // preserve relocation semantics.
Manuel Jacob83eefa62016-01-05 04:03:00 +00003634 Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
Philip Reames9db26ff2014-12-29 23:27:30 +00003635
3636 // Remove the relocation if unused, note that this check is required
3637 // to prevent the cases below from looping forever.
3638 if (II->use_empty())
Sanjay Patel4b198802016-02-01 22:23:39 +00003639 return eraseInstFromFunction(*II);
Philip Reames9db26ff2014-12-29 23:27:30 +00003640
3641 // Undef is undef, even after relocation.
3642 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
3643 // most practical collectors, but there was discussion in the review thread
3644 // about whether it was legal for all possible collectors.
Philip Reamesea4d8e82016-02-09 21:09:22 +00003645 if (isa<UndefValue>(DerivedPtr))
3646 // Use undef of gc_relocate's type to replace it.
3647 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
Philip Reames9db26ff2014-12-29 23:27:30 +00003648
Philip Reamesea4d8e82016-02-09 21:09:22 +00003649 if (auto *PT = dyn_cast<PointerType>(II->getType())) {
3650 // The relocation of null will be null for most any collector.
3651 // TODO: provide a hook for this in GCStrategy. There might be some
3652 // weird collector this property does not hold for.
3653 if (isa<ConstantPointerNull>(DerivedPtr))
3654 // Use null-pointer of gc_relocate's type to replace it.
3655 return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00003656
Philip Reamesea4d8e82016-02-09 21:09:22 +00003657 // isKnownNonNull -> nonnull attribute
Justin Bogner99798402016-08-05 01:06:44 +00003658 if (isKnownNonNullAt(DerivedPtr, II, &DT))
Reid Klecknerb5180542017-03-21 16:57:19 +00003659 II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
Ramkumar Ramachandra8fcb4982015-02-14 19:37:54 +00003660 }
Philip Reames9db26ff2014-12-29 23:27:30 +00003661
3662 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3663 // Canonicalize on the type from the uses to the defs
Ramkumar Ramachandra8fcb4982015-02-14 19:37:54 +00003664
Philip Reames9db26ff2014-12-29 23:27:30 +00003665 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
Philip Reamesea4d8e82016-02-09 21:09:22 +00003666 break;
Philip Reames9db26ff2014-12-29 23:27:30 +00003667 }
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003668
3669 case Intrinsic::experimental_guard: {
Sanjoy Dase0e57952017-02-01 16:34:55 +00003670 // Is this guard followed by another guard?
3671 Instruction *NextInst = II->getNextNode();
3672 Value *NextCond = nullptr;
3673 if (match(NextInst,
3674 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3675 Value *CurrCond = II->getArgOperand(0);
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003676
Simon Pilgrim68168d12017-03-30 12:59:53 +00003677 // Remove a guard that it is immediately preceded by an identical guard.
Sanjoy Dase0e57952017-02-01 16:34:55 +00003678 if (CurrCond == NextCond)
3679 return eraseInstFromFunction(*NextInst);
3680
3681 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3682 II->setArgOperand(0, Builder->CreateAnd(CurrCond, NextCond));
3683 return eraseInstFromFunction(*NextInst);
3684 }
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003685 break;
3686 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003687 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003688 return visitCallSite(II);
3689}
3690
Davide Italianoaec46172017-01-31 18:09:05 +00003691// Fence instruction simplification
3692Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
3693 // Remove identical consecutive fences.
3694 if (auto *NFI = dyn_cast<FenceInst>(FI.getNextNode()))
3695 if (FI.isIdenticalTo(NFI))
3696 return eraseInstFromFunction(FI);
3697 return nullptr;
3698}
3699
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003700// InvokeInst simplification
3701//
3702Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
3703 return visitCallSite(&II);
3704}
3705
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003706/// If this cast does not affect the value passed through the varargs area, we
3707/// can eliminate the use of the cast.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003708static bool isSafeToEliminateVarargsCast(const CallSite CS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003709 const DataLayout &DL,
3710 const CastInst *const CI,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003711 const int ix) {
3712 if (!CI->isLosslessCast())
3713 return false;
3714
Philip Reames1a1bdb22014-12-02 18:50:36 +00003715 // If this is a GC intrinsic, avoid munging types. We need types for
3716 // statepoint reconstruction in SelectionDAG.
3717 // TODO: This is probably something which should be expanded to all
3718 // intrinsics since the entire point of intrinsics is that
3719 // they are understandable by the optimizer.
3720 if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
3721 return false;
3722
Reid Kleckner26af2ca2014-01-28 02:38:36 +00003723 // The size of ByVal or InAlloca arguments is derived from the type, so we
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003724 // can't change to a type with a different size. If the size were
3725 // passed explicitly we could avoid this check.
Reid Kleckner26af2ca2014-01-28 02:38:36 +00003726 if (!CS.isByValOrInAllocaArgument(ix))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003727 return true;
3728
Jim Grosbach7815f562012-02-03 00:07:04 +00003729 Type* SrcTy =
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003730 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +00003731 Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003732 if (!SrcTy->isSized() || !DstTy->isSized())
3733 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003734 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003735 return false;
3736 return true;
3737}
3738
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003739Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
Craig Topperf40110f2014-04-25 05:29:35 +00003740 if (!CI->getCalledFunction()) return nullptr;
Eric Christophera7fb58f2010-03-06 10:50:38 +00003741
Chandler Carruthba4c5172015-01-21 11:23:40 +00003742 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
Sanjay Patel4b198802016-02-01 22:23:39 +00003743 replaceInstUsesWith(*From, With);
Chandler Carruthba4c5172015-01-21 11:23:40 +00003744 };
Justin Bogner99798402016-08-05 01:06:44 +00003745 LibCallSimplifier Simplifier(DL, &TLI, InstCombineRAUW);
Chandler Carruthba4c5172015-01-21 11:23:40 +00003746 if (Value *With = Simplifier.optimizeCall(CI)) {
Meador Ingee3f2b262012-11-30 04:05:06 +00003747 ++NumSimplified;
Sanjay Patel4b198802016-02-01 22:23:39 +00003748 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
Meador Ingee3f2b262012-11-30 04:05:06 +00003749 }
Meador Ingedf796f82012-10-13 16:45:24 +00003750
Craig Topperf40110f2014-04-25 05:29:35 +00003751 return nullptr;
Eric Christophera7fb58f2010-03-06 10:50:38 +00003752}
3753
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003754static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
Duncan Sandsa0984362011-09-06 13:37:06 +00003755 // Strip off at most one level of pointer casts, looking for an alloca. This
3756 // is good enough in practice and simpler than handling any number of casts.
3757 Value *Underlying = TrampMem->stripPointerCasts();
3758 if (Underlying != TrampMem &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00003759 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
Craig Topperf40110f2014-04-25 05:29:35 +00003760 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003761 if (!isa<AllocaInst>(Underlying))
Craig Topperf40110f2014-04-25 05:29:35 +00003762 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003763
Craig Topperf40110f2014-04-25 05:29:35 +00003764 IntrinsicInst *InitTrampoline = nullptr;
Chandler Carruthcdf47882014-03-09 03:16:01 +00003765 for (User *U : TrampMem->users()) {
3766 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Duncan Sandsa0984362011-09-06 13:37:06 +00003767 if (!II)
Craig Topperf40110f2014-04-25 05:29:35 +00003768 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003769 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3770 if (InitTrampoline)
3771 // More than one init_trampoline writes to this value. Give up.
Craig Topperf40110f2014-04-25 05:29:35 +00003772 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003773 InitTrampoline = II;
3774 continue;
3775 }
3776 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3777 // Allow any number of calls to adjust.trampoline.
3778 continue;
Craig Topperf40110f2014-04-25 05:29:35 +00003779 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003780 }
3781
3782 // No call to init.trampoline found.
3783 if (!InitTrampoline)
Craig Topperf40110f2014-04-25 05:29:35 +00003784 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003785
3786 // Check that the alloca is being used in the expected way.
3787 if (InitTrampoline->getOperand(0) != TrampMem)
Craig Topperf40110f2014-04-25 05:29:35 +00003788 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003789
3790 return InitTrampoline;
3791}
3792
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003793static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
Duncan Sandsa0984362011-09-06 13:37:06 +00003794 Value *TrampMem) {
3795 // Visit all the previous instructions in the basic block, and try to find a
3796 // init.trampoline which has a direct path to the adjust.trampoline.
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003797 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3798 E = AdjustTramp->getParent()->begin();
3799 I != E;) {
3800 Instruction *Inst = &*--I;
Duncan Sandsa0984362011-09-06 13:37:06 +00003801 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3802 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3803 II->getOperand(0) == TrampMem)
3804 return II;
3805 if (Inst->mayWriteToMemory())
Craig Topperf40110f2014-04-25 05:29:35 +00003806 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003807 }
Craig Topperf40110f2014-04-25 05:29:35 +00003808 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003809}
3810
3811// Given a call to llvm.adjust.trampoline, find and return the corresponding
3812// call to llvm.init.trampoline if the call to the trampoline can be optimized
3813// to a direct call to a function. Otherwise return NULL.
3814//
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003815static IntrinsicInst *findInitTrampoline(Value *Callee) {
Duncan Sandsa0984362011-09-06 13:37:06 +00003816 Callee = Callee->stripPointerCasts();
3817 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3818 if (!AdjustTramp ||
3819 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
Craig Topperf40110f2014-04-25 05:29:35 +00003820 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003821
3822 Value *TrampMem = AdjustTramp->getOperand(0);
3823
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003824 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
Duncan Sandsa0984362011-09-06 13:37:06 +00003825 return IT;
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003826 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
Duncan Sandsa0984362011-09-06 13:37:06 +00003827 return IT;
Craig Topperf40110f2014-04-25 05:29:35 +00003828 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003829}
3830
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003831/// Improvements for call and invoke instructions.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003832Instruction *InstCombiner::visitCallSite(CallSite CS) {
Justin Bogner99798402016-08-05 01:06:44 +00003833 if (isAllocLikeFn(CS.getInstruction(), &TLI))
Nuno Lopes95cc4f32012-07-09 18:38:20 +00003834 return visitAllocSite(*CS.getInstruction());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00003835
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003836 bool Changed = false;
3837
Philip Reamesc25df112015-06-16 20:24:25 +00003838 // Mark any parameters that are known to be non-null with the nonnull
3839 // attribute. This is helpful for inlining calls to functions with null
3840 // checks on their arguments.
Akira Hatanaka237916b2015-12-02 06:58:49 +00003841 SmallVector<unsigned, 4> Indices;
Philip Reamesc25df112015-06-16 20:24:25 +00003842 unsigned ArgNo = 0;
Akira Hatanaka237916b2015-12-02 06:58:49 +00003843
Philip Reamesc25df112015-06-16 20:24:25 +00003844 for (Value *V : CS.args()) {
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00003845 if (V->getType()->isPointerTy() &&
Reid Klecknerfb502d22017-04-14 20:19:02 +00003846 !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
Justin Bogner99798402016-08-05 01:06:44 +00003847 isKnownNonNullAt(V, CS.getInstruction(), &DT))
Akira Hatanaka237916b2015-12-02 06:58:49 +00003848 Indices.push_back(ArgNo + 1);
Philip Reamesc25df112015-06-16 20:24:25 +00003849 ArgNo++;
3850 }
Akira Hatanaka237916b2015-12-02 06:58:49 +00003851
Philip Reamesc25df112015-06-16 20:24:25 +00003852 assert(ArgNo == CS.arg_size() && "sanity check");
3853
Akira Hatanaka237916b2015-12-02 06:58:49 +00003854 if (!Indices.empty()) {
Reid Klecknerb5180542017-03-21 16:57:19 +00003855 AttributeList AS = CS.getAttributes();
Akira Hatanaka237916b2015-12-02 06:58:49 +00003856 LLVMContext &Ctx = CS.getInstruction()->getContext();
3857 AS = AS.addAttribute(Ctx, Indices,
3858 Attribute::get(Ctx, Attribute::NonNull));
3859 CS.setAttributes(AS);
3860 Changed = true;
3861 }
3862
Chris Lattner73989652010-12-20 08:25:06 +00003863 // If the callee is a pointer to a function, attempt to move any casts to the
3864 // arguments of the call/invoke.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003865 Value *Callee = CS.getCalledValue();
Chris Lattner73989652010-12-20 08:25:06 +00003866 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
Craig Topperf40110f2014-04-25 05:29:35 +00003867 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003868
Justin Lebar9d943972016-03-14 20:18:54 +00003869 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
3870 // Remove the convergent attr on calls when the callee is not convergent.
Matt Arsenault802ebcb2016-06-20 19:04:44 +00003871 if (CS.isConvergent() && !CalleeF->isConvergent() &&
3872 !CalleeF->isIntrinsic()) {
Justin Lebar9d943972016-03-14 20:18:54 +00003873 DEBUG(dbgs() << "Removing convergent attr from instr "
3874 << CS.getInstruction() << "\n");
3875 CS.setNotConvergent();
3876 return CS.getInstruction();
3877 }
3878
Chris Lattner846a52e2010-02-01 18:11:34 +00003879 // If the call and callee calling conventions don't match, this call must
3880 // be unreachable, as the call is undefined.
3881 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
3882 // Only do this for calls to a function with a body. A prototype may
3883 // not actually end up matching the implementation's calling conv for a
3884 // variety of reasons (e.g. it may be written in assembly).
3885 !CalleeF->isDeclaration()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003886 Instruction *OldCall = CS.getInstruction();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003887 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
Jim Grosbach7815f562012-02-03 00:07:04 +00003888 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003889 OldCall);
Chad Rosiere28ae302012-12-13 00:18:46 +00003890 // If OldCall does not return void then replaceAllUsesWith undef.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003891 // This allows ValueHandlers and custom metadata to adjust itself.
3892 if (!OldCall->getType()->isVoidTy())
Sanjay Patel4b198802016-02-01 22:23:39 +00003893 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
Chris Lattner2cecedf2010-02-01 18:04:58 +00003894 if (isa<CallInst>(OldCall))
Sanjay Patel4b198802016-02-01 22:23:39 +00003895 return eraseInstFromFunction(*OldCall);
Jim Grosbach7815f562012-02-03 00:07:04 +00003896
Chris Lattner2cecedf2010-02-01 18:04:58 +00003897 // We cannot remove an invoke, because it would change the CFG, just
3898 // change the callee to a null pointer.
Gabor Greiffebf6ab2010-03-20 21:00:25 +00003899 cast<InvokeInst>(OldCall)->setCalledFunction(
Chris Lattner2cecedf2010-02-01 18:04:58 +00003900 Constant::getNullValue(CalleeF->getType()));
Craig Topperf40110f2014-04-25 05:29:35 +00003901 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003902 }
Justin Lebar9d943972016-03-14 20:18:54 +00003903 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003904
3905 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
Gabor Greif589a0b92010-06-24 12:58:35 +00003906 // If CS does not return void then replaceAllUsesWith undef.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003907 // This allows ValueHandlers and custom metadata to adjust itself.
3908 if (!CS.getInstruction()->getType()->isVoidTy())
Sanjay Patel4b198802016-02-01 22:23:39 +00003909 replaceInstUsesWith(*CS.getInstruction(),
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00003910 UndefValue::get(CS.getInstruction()->getType()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003911
Nuno Lopes771e7bd2012-06-21 23:52:14 +00003912 if (isa<InvokeInst>(CS.getInstruction())) {
3913 // Can't remove an invoke because we cannot change the CFG.
Craig Topperf40110f2014-04-25 05:29:35 +00003914 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003915 }
Nuno Lopes771e7bd2012-06-21 23:52:14 +00003916
3917 // This instruction is not reachable, just remove it. We insert a store to
3918 // undef so that we know that this code is not reachable, despite the fact
3919 // that we can't modify the CFG here.
3920 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
3921 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
3922 CS.getInstruction());
3923
Sanjay Patel4b198802016-02-01 22:23:39 +00003924 return eraseInstFromFunction(*CS.getInstruction());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003925 }
3926
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003927 if (IntrinsicInst *II = findInitTrampoline(Callee))
Duncan Sandsa0984362011-09-06 13:37:06 +00003928 return transformCallThroughTrampoline(CS, II);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003929
Chris Lattner229907c2011-07-18 04:54:35 +00003930 PointerType *PTy = cast<PointerType>(Callee->getType());
3931 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003932 if (FTy->isVarArg()) {
Eli Friedman7534b4682011-11-29 01:18:23 +00003933 int ix = FTy->getNumParams();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003934 // See if we can optimize any arguments passed through the varargs area of
3935 // the call.
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00003936 for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003937 E = CS.arg_end(); I != E; ++I, ++ix) {
3938 CastInst *CI = dyn_cast<CastInst>(*I);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003939 if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003940 *I = CI->getOperand(0);
3941 Changed = true;
3942 }
3943 }
3944 }
3945
3946 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
3947 // Inline asm calls cannot throw - mark them 'nounwind'.
3948 CS.setDoesNotThrow();
3949 Changed = true;
3950 }
3951
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003952 // Try to optimize the call if possible, we require DataLayout for most of
Eric Christophera7fb58f2010-03-06 10:50:38 +00003953 // this. None of these calls are seen as possibly dead so go ahead and
3954 // delete the instruction now.
3955 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003956 Instruction *I = tryOptimizeCall(CI);
Eric Christopher1810d772010-03-06 10:59:25 +00003957 // If we changed something return the result, etc. Otherwise let
3958 // the fallthrough check.
Sanjay Patel4b198802016-02-01 22:23:39 +00003959 if (I) return eraseInstFromFunction(*I);
Eric Christophera7fb58f2010-03-06 10:50:38 +00003960 }
3961
Craig Topperf40110f2014-04-25 05:29:35 +00003962 return Changed ? CS.getInstruction() : nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003963}
3964
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003965/// If the callee is a constexpr cast of a function, attempt to move the cast to
3966/// the arguments of the call/invoke.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003967bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Sanjay Patele3c335c2016-08-11 15:21:21 +00003968 auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
Craig Topperf40110f2014-04-25 05:29:35 +00003969 if (!Callee)
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003970 return false;
Sanjay Patel38ae83d2016-08-11 15:23:56 +00003971
3972 // The prototype of a thunk is a lie. Don't directly call such a function.
David Majnemer4c0a6e92015-01-21 22:32:04 +00003973 if (Callee->hasFnAttribute("thunk"))
3974 return false;
Sanjay Patel38ae83d2016-08-11 15:23:56 +00003975
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003976 Instruction *Caller = CS.getInstruction();
Reid Klecknerb5180542017-03-21 16:57:19 +00003977 const AttributeList &CallerPAL = CS.getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003978
3979 // Okay, this is a cast from a function to a different type. Unless doing so
3980 // would cause a type conversion of one of our arguments, change this call to
3981 // be a direct call with arguments casted to the appropriate types.
3982 //
Chris Lattner229907c2011-07-18 04:54:35 +00003983 FunctionType *FT = Callee->getFunctionType();
3984 Type *OldRetTy = Caller->getType();
3985 Type *NewRetTy = FT->getReturnType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003986
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003987 // Check to see if we are changing the return type...
3988 if (OldRetTy != NewRetTy) {
Nick Lewyckya6a17d72014-01-18 22:47:12 +00003989
3990 if (NewRetTy->isStructTy())
3991 return false; // TODO: Handle multiple return values.
3992
David Majnemer9b6b8222015-01-06 08:41:31 +00003993 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
Matt Arsenaulte6952f22013-09-17 21:10:14 +00003994 if (Callee->isDeclaration())
3995 return false; // Cannot transform this return value.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003996
Matt Arsenaulte6952f22013-09-17 21:10:14 +00003997 if (!Caller->use_empty() &&
3998 // void -> non-void is handled specially
3999 !NewRetTy->isVoidTy())
Frederic Rissc1892e22014-10-23 04:08:42 +00004000 return false; // Cannot transform this return value.
Matt Arsenaulte6952f22013-09-17 21:10:14 +00004001 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004002
4003 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Reid Klecknerb5180542017-03-21 16:57:19 +00004004 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
Pete Cooper2777d8872015-05-06 23:19:56 +00004005 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004006 return false; // Attribute not compatible with transformed value.
4007 }
4008
4009 // If the callsite is an invoke instruction, and the return value is used by
4010 // a PHI node in a successor, we cannot change the return type of the call
4011 // because there is no place to put the cast instruction (without breaking
4012 // the critical edge). Bail out in this case.
4013 if (!Caller->use_empty())
4014 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
Chandler Carruthcdf47882014-03-09 03:16:01 +00004015 for (User *U : II->users())
4016 if (PHINode *PN = dyn_cast<PHINode>(U))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004017 if (PN->getParent() == II->getNormalDest() ||
4018 PN->getParent() == II->getUnwindDest())
4019 return false;
4020 }
4021
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00004022 unsigned NumActualArgs = CS.arg_size();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004023 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4024
David Majnemer9b6b8222015-01-06 08:41:31 +00004025 // Prevent us turning:
4026 // declare void @takes_i32_inalloca(i32* inalloca)
4027 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4028 //
4029 // into:
4030 // call void @takes_i32_inalloca(i32* null)
David Majnemerd61a6fd2015-03-11 18:03:05 +00004031 //
4032 // Similarly, avoid folding away bitcasts of byval calls.
4033 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4034 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
David Majnemer9b6b8222015-01-06 08:41:31 +00004035 return false;
4036
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004037 CallSite::arg_iterator AI = CS.arg_begin();
4038 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004039 Type *ParamTy = FT->getParamType(i);
4040 Type *ActTy = (*AI)->getType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004041
David Majnemer9b6b8222015-01-06 08:41:31 +00004042 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004043 return false; // Cannot transform this parameter value.
4044
Reid Klecknerf021fab2017-04-13 23:12:13 +00004045 if (AttrBuilder(CallerPAL.getParamAttributes(i))
4046 .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004047 return false; // Attribute not compatible with transformed value.
Jim Grosbach7815f562012-02-03 00:07:04 +00004048
Reid Kleckner26af2ca2014-01-28 02:38:36 +00004049 if (CS.isInAllocaArgument(i))
4050 return false; // Cannot transform to and from inalloca.
4051
Chris Lattner27ca8eb2010-12-20 08:36:38 +00004052 // If the parameter is passed as a byval argument, then we have to have a
4053 // sized type and the sized type has to have the same size as the old type.
Reid Klecknerf021fab2017-04-13 23:12:13 +00004054 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
Chris Lattner229907c2011-07-18 04:54:35 +00004055 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004056 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
Chris Lattner27ca8eb2010-12-20 08:36:38 +00004057 return false;
Jim Grosbach7815f562012-02-03 00:07:04 +00004058
Matt Arsenaultfa252722013-09-27 22:18:51 +00004059 Type *CurElTy = ActTy->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004060 if (DL.getTypeAllocSize(CurElTy) !=
4061 DL.getTypeAllocSize(ParamPTy->getElementType()))
Chris Lattner27ca8eb2010-12-20 08:36:38 +00004062 return false;
4063 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004064 }
4065
Chris Lattneradf38b32011-02-24 05:10:56 +00004066 if (Callee->isDeclaration()) {
4067 // Do not delete arguments unless we have a function body.
4068 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4069 return false;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004070
Chris Lattneradf38b32011-02-24 05:10:56 +00004071 // If the callee is just a declaration, don't change the varargsness of the
4072 // call. We don't want to introduce a varargs call where one doesn't
4073 // already exist.
Chris Lattner229907c2011-07-18 04:54:35 +00004074 PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
Chris Lattneradf38b32011-02-24 05:10:56 +00004075 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4076 return false;
Jim Grosbache84ae7b2012-02-03 00:00:55 +00004077
4078 // If both the callee and the cast type are varargs, we still have to make
4079 // sure the number of fixed parameters are the same or we have the same
4080 // ABI issues as if we introduce a varargs call.
Jim Grosbach1df8cdc2012-02-03 00:26:07 +00004081 if (FT->isVarArg() &&
4082 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4083 FT->getNumParams() !=
Jim Grosbache84ae7b2012-02-03 00:00:55 +00004084 cast<FunctionType>(APTy->getElementType())->getNumParams())
4085 return false;
Chris Lattneradf38b32011-02-24 05:10:56 +00004086 }
Jim Grosbach7815f562012-02-03 00:07:04 +00004087
Jim Grosbach0ab54182012-02-03 00:00:50 +00004088 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
Reid Kleckneraa0cec72017-04-19 23:17:47 +00004089 !CallerPAL.isEmpty()) {
Jim Grosbach0ab54182012-02-03 00:00:50 +00004090 // In this case we have more arguments than the new function type, but we
4091 // won't be dropping them. Check that these extra arguments have attributes
4092 // that are compatible with being a vararg call argument.
Reid Kleckneraa0cec72017-04-19 23:17:47 +00004093 unsigned SRetIdx;
4094 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4095 SRetIdx > FT->getNumParams())
4096 return false;
4097 }
Jim Grosbach7815f562012-02-03 00:07:04 +00004098
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004099 // Okay, we decided that this is a safe thing to do: go ahead and start
Chris Lattneradf38b32011-02-24 05:10:56 +00004100 // inserting cast instructions as necessary.
Reid Klecknerc3fae792017-04-13 18:11:03 +00004101 SmallVector<Value *, 8> Args;
4102 SmallVector<AttributeSet, 8> ArgAttrs;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004103 Args.reserve(NumActualArgs);
Reid Klecknerc3fae792017-04-13 18:11:03 +00004104 ArgAttrs.reserve(NumActualArgs);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004105
4106 // Get any return attributes.
Reid Klecknerb5180542017-03-21 16:57:19 +00004107 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004108
4109 // If the return value is not being used, the type may not be compatible
4110 // with the existing attributes. Wipe out any problematic attributes.
Pete Cooper2777d8872015-05-06 23:19:56 +00004111 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004112
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004113 AI = CS.arg_begin();
4114 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004115 Type *ParamTy = FT->getParamType(i);
Matt Arsenaultcacbb232013-07-30 20:45:05 +00004116
Reid Klecknerc3fae792017-04-13 18:11:03 +00004117 Value *NewArg = *AI;
4118 if ((*AI)->getType() != ParamTy)
4119 NewArg = Builder->CreateBitOrPointerCast(*AI, ParamTy);
4120 Args.push_back(NewArg);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004121
4122 // Add any parameter attributes.
Reid Klecknerf021fab2017-04-13 23:12:13 +00004123 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004124 }
4125
4126 // If the function takes more arguments than the call was taking, add them
4127 // now.
Reid Klecknerc3fae792017-04-13 18:11:03 +00004128 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004129 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
Reid Klecknerc3fae792017-04-13 18:11:03 +00004130 ArgAttrs.push_back(AttributeSet());
4131 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004132
4133 // If we are removing arguments to the function, emit an obnoxious warning.
4134 if (FT->getNumParams() < NumActualArgs) {
Nick Lewycky90053a12012-12-26 22:00:35 +00004135 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4136 if (FT->isVarArg()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004137 // Add all of the arguments in their promoted form to the arg list.
4138 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004139 Type *PTy = getPromotedType((*AI)->getType());
Reid Klecknerc3fae792017-04-13 18:11:03 +00004140 Value *NewArg = *AI;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004141 if (PTy != (*AI)->getType()) {
4142 // Must promote to pass through va_arg area!
4143 Instruction::CastOps opcode =
4144 CastInst::getCastOpcode(*AI, false, PTy, false);
Reid Klecknerc3fae792017-04-13 18:11:03 +00004145 NewArg = Builder->CreateCast(opcode, *AI, PTy);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004146 }
Reid Klecknerc3fae792017-04-13 18:11:03 +00004147 Args.push_back(NewArg);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004148
4149 // Add any parameter attributes.
Reid Klecknerf021fab2017-04-13 23:12:13 +00004150 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004151 }
4152 }
4153 }
4154
Reid Klecknerc2cb5602017-04-12 00:38:00 +00004155 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004156
4157 if (NewRetTy->isVoidTy())
4158 Caller->setName(""); // Void type should not have a name.
4159
Reid Klecknerc3fae792017-04-13 18:11:03 +00004160 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4161 "missing argument attributes");
4162 LLVMContext &Ctx = Callee->getContext();
4163 AttributeList NewCallerPAL = AttributeList::get(
4164 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004165
Sanjoy Das76293462015-11-25 00:42:19 +00004166 SmallVector<OperandBundleDef, 1> OpBundles;
Sanjoy Dasc521c7b2015-11-25 00:42:24 +00004167 CS.getOperandBundlesAsDefs(OpBundles);
Sanjoy Das76293462015-11-25 00:42:19 +00004168
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004169 CallSite NewCS;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004170 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004171 NewCS = Builder->CreateInvoke(Callee, II->getNormalDest(),
4172 II->getUnwindDest(), Args, OpBundles);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004173 } else {
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004174 NewCS = Builder->CreateCall(Callee, Args, OpBundles);
4175 cast<CallInst>(NewCS.getInstruction())
4176 ->setTailCallKind(cast<CallInst>(Caller)->getTailCallKind());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004177 }
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004178 NewCS->takeName(Caller);
4179 NewCS.setCallingConv(CS.getCallingConv());
4180 NewCS.setAttributes(NewCallerPAL);
4181
4182 // Preserve the weight metadata for the new call instruction. The metadata
4183 // is used by SamplePGO to check callsite's hotness.
4184 uint64_t W;
4185 if (Caller->extractProfTotalWeight(W))
4186 NewCS->setProfWeight(W);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004187
4188 // Insert a cast of the return type as necessary.
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004189 Instruction *NC = NewCS.getInstruction();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004190 Value *NV = NC;
4191 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4192 if (!NV->getType()->isVoidTy()) {
David Majnemer9b6b8222015-01-06 08:41:31 +00004193 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
Eli Friedman35211c62011-05-27 00:19:40 +00004194 NC->setDebugLoc(Caller->getDebugLoc());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004195
4196 // If this is an invoke instruction, we should insert it after the first
4197 // non-phi, instruction in the normal successor block.
4198 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Bill Wendling07efd6f2011-08-25 01:08:34 +00004199 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004200 InsertNewInstBefore(NC, *I);
4201 } else {
Chris Lattner73989652010-12-20 08:25:06 +00004202 // Otherwise, it's a call, just insert cast right after the call.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004203 InsertNewInstBefore(NC, *Caller);
4204 }
4205 Worklist.AddUsersToWorkList(*Caller);
4206 } else {
4207 NV = UndefValue::get(Caller->getType());
4208 }
4209 }
4210
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004211 if (!Caller->use_empty())
Sanjay Patel4b198802016-02-01 22:23:39 +00004212 replaceInstUsesWith(*Caller, NV);
Frederic Rissc1892e22014-10-23 04:08:42 +00004213 else if (Caller->hasValueHandle()) {
4214 if (OldRetTy == NV->getType())
4215 ValueHandleBase::ValueIsRAUWd(Caller, NV);
4216 else
4217 // We cannot call ValueIsRAUWd with a different type, and the
4218 // actual tracked value will disappear.
4219 ValueHandleBase::ValueIsDeleted(Caller);
4220 }
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00004221
Sanjay Patel4b198802016-02-01 22:23:39 +00004222 eraseInstFromFunction(*Caller);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004223 return true;
4224}
4225
Sanjay Patelcd4377c2016-01-20 22:24:38 +00004226/// Turn a call to a function created by init_trampoline / adjust_trampoline
4227/// intrinsic pair into a direct call to the underlying function.
Duncan Sandsa0984362011-09-06 13:37:06 +00004228Instruction *
4229InstCombiner::transformCallThroughTrampoline(CallSite CS,
4230 IntrinsicInst *Tramp) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004231 Value *Callee = CS.getCalledValue();
Chris Lattner229907c2011-07-18 04:54:35 +00004232 PointerType *PTy = cast<PointerType>(Callee->getType());
4233 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Reid Klecknereb9dd5b2017-04-10 23:31:05 +00004234 AttributeList Attrs = CS.getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004235
4236 // If the call already has the 'nest' attribute somewhere then give up -
4237 // otherwise 'nest' would occur twice after splicing in the chain.
Bill Wendling6e95ae82012-12-31 00:49:59 +00004238 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Craig Topperf40110f2014-04-25 05:29:35 +00004239 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004240
Duncan Sandsa0984362011-09-06 13:37:06 +00004241 assert(Tramp &&
4242 "transformCallThroughTrampoline called with incorrect CallSite.");
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004243
Gabor Greif3e44ea12010-07-22 10:37:47 +00004244 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
Manuel Jacob5f6eaac2016-01-16 20:30:46 +00004245 FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004246
Reid Klecknereb9dd5b2017-04-10 23:31:05 +00004247 AttributeList NestAttrs = NestF->getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004248 if (!NestAttrs.isEmpty()) {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004249 unsigned NestArgNo = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00004250 Type *NestTy = nullptr;
Reid Klecknerc2cb5602017-04-12 00:38:00 +00004251 AttributeSet NestAttr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004252
4253 // Look for a parameter marked with the 'nest' attribute.
4254 for (FunctionType::param_iterator I = NestFTy->param_begin(),
Reid Klecknerf021fab2017-04-13 23:12:13 +00004255 E = NestFTy->param_end();
4256 I != E; ++NestArgNo, ++I) {
4257 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
4258 if (AS.hasAttribute(Attribute::Nest)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004259 // Record the parameter type and any other attributes.
4260 NestTy = *I;
Reid Klecknerf021fab2017-04-13 23:12:13 +00004261 NestAttr = AS;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004262 break;
4263 }
Reid Klecknerf021fab2017-04-13 23:12:13 +00004264 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004265
4266 if (NestTy) {
4267 Instruction *Caller = CS.getInstruction();
4268 std::vector<Value*> NewArgs;
Reid Kleckner7f720332017-04-13 00:58:09 +00004269 std::vector<AttributeSet> NewArgAttrs;
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00004270 NewArgs.reserve(CS.arg_size() + 1);
Reid Kleckner7f720332017-04-13 00:58:09 +00004271 NewArgAttrs.reserve(CS.arg_size());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004272
4273 // Insert the nest argument into the call argument list, which may
4274 // mean appending it. Likewise for attributes.
4275
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004276 {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004277 unsigned ArgNo = 0;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004278 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
4279 do {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004280 if (ArgNo == NestArgNo) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004281 // Add the chain argument and attributes.
Gabor Greif589a0b92010-06-24 12:58:35 +00004282 Value *NestVal = Tramp->getArgOperand(2);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004283 if (NestVal->getType() != NestTy)
Eli Friedman41e509a2011-05-18 23:58:37 +00004284 NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004285 NewArgs.push_back(NestVal);
Reid Kleckner7f720332017-04-13 00:58:09 +00004286 NewArgAttrs.push_back(NestAttr);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004287 }
4288
4289 if (I == E)
4290 break;
4291
4292 // Add the original argument and attributes.
4293 NewArgs.push_back(*I);
Reid Klecknerf021fab2017-04-13 23:12:13 +00004294 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004295
Reid Klecknerf021fab2017-04-13 23:12:13 +00004296 ++ArgNo;
Richard Trieu7a083812016-02-18 22:09:30 +00004297 ++I;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00004298 } while (true);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004299 }
4300
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004301 // The trampoline may have been bitcast to a bogus type (FTy).
4302 // Handle this by synthesizing a new function type, equal to FTy
4303 // with the chain parameter inserted.
4304
Jay Foadb804a2b2011-07-12 14:06:48 +00004305 std::vector<Type*> NewTypes;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004306 NewTypes.reserve(FTy->getNumParams()+1);
4307
4308 // Insert the chain's type into the list of parameter types, which may
4309 // mean appending it.
4310 {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004311 unsigned ArgNo = 0;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004312 FunctionType::param_iterator I = FTy->param_begin(),
4313 E = FTy->param_end();
4314
4315 do {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004316 if (ArgNo == NestArgNo)
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004317 // Add the chain's type.
4318 NewTypes.push_back(NestTy);
4319
4320 if (I == E)
4321 break;
4322
4323 // Add the original type.
4324 NewTypes.push_back(*I);
4325
Reid Klecknerf021fab2017-04-13 23:12:13 +00004326 ++ArgNo;
Richard Trieu7a083812016-02-18 22:09:30 +00004327 ++I;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00004328 } while (true);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004329 }
4330
4331 // Replace the trampoline call with a direct call. Let the generic
4332 // code sort out any function type mismatches.
Jim Grosbach7815f562012-02-03 00:07:04 +00004333 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004334 FTy->isVarArg());
4335 Constant *NewCallee =
4336 NestF->getType() == PointerType::getUnqual(NewFTy) ?
Jim Grosbach7815f562012-02-03 00:07:04 +00004337 NestF : ConstantExpr::getBitCast(NestF,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004338 PointerType::getUnqual(NewFTy));
Reid Kleckner7f720332017-04-13 00:58:09 +00004339 AttributeList NewPAL =
4340 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
4341 Attrs.getRetAttributes(), NewArgAttrs);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004342
David Majnemer231a68c2016-04-29 08:07:20 +00004343 SmallVector<OperandBundleDef, 1> OpBundles;
4344 CS.getOperandBundlesAsDefs(OpBundles);
4345
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004346 Instruction *NewCaller;
4347 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4348 NewCaller = InvokeInst::Create(NewCallee,
4349 II->getNormalDest(), II->getUnwindDest(),
David Majnemer231a68c2016-04-29 08:07:20 +00004350 NewArgs, OpBundles);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004351 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4352 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4353 } else {
David Majnemer231a68c2016-04-29 08:07:20 +00004354 NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
David Majnemerd5648c72016-11-25 22:35:09 +00004355 cast<CallInst>(NewCaller)->setTailCallKind(
4356 cast<CallInst>(Caller)->getTailCallKind());
4357 cast<CallInst>(NewCaller)->setCallingConv(
4358 cast<CallInst>(Caller)->getCallingConv());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004359 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4360 }
Eli Friedman49346012011-05-18 19:57:14 +00004361
4362 return NewCaller;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004363 }
4364 }
4365
4366 // Replace the trampoline call with a direct call. Since there is no 'nest'
4367 // parameter, there is no need to adjust the argument list. Let the generic
4368 // code sort out any function type mismatches.
4369 Constant *NewCallee =
Jim Grosbach7815f562012-02-03 00:07:04 +00004370 NestF->getType() == PTy ? NestF :
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004371 ConstantExpr::getBitCast(NestF, PTy);
4372 CS.setCalledFunction(NewCallee);
4373 return CS.getInstruction();
4374}