blob: 6bb48dc2e8aac8cef90628f54a512bd99bf7fdb1 [file] [log] [blame]
Eugene Zelenko76bf48d2017-06-26 22:44:03 +00001//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
Quentin Colombet8e8e85c2016-04-05 19:06:01 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the RegBankSelect class.
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
Quentin Colombetcfd97b92016-05-20 00:35:26 +000014#include "llvm/ADT/PostOrderIterator.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000015#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallVector.h"
Tim Northover69fa84a2016-10-14 22:18:18 +000017#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
Quentin Colombet40ad5732016-04-07 18:19:27 +000018#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000019#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
Ahmed Bougachaae9dade2017-02-23 21:05:42 +000020#include "llvm/CodeGen/GlobalISel/Utils.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000021#include "llvm/CodeGen/MachineBasicBlock.h"
Quentin Colombet55650752016-05-20 00:49:10 +000022#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
23#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000024#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
Quentin Colombet40ad5732016-04-07 18:19:27 +000028#include "llvm/CodeGen/MachineRegisterInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000029#include "llvm/CodeGen/TargetOpcodes.h"
Quentin Colombetacb857b2016-08-27 02:38:27 +000030#include "llvm/CodeGen/TargetPassConfig.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000031#include "llvm/CodeGen/TargetRegisterInfo.h"
32#include "llvm/CodeGen/TargetSubtargetInfo.h"
Nico Weber432a3882018-04-30 14:59:11 +000033#include "llvm/Config/llvm-config.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000034#include "llvm/IR/Attributes.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000035#include "llvm/IR/Function.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000036#include "llvm/Pass.h"
Quentin Colombetcfd97b92016-05-20 00:35:26 +000037#include "llvm/Support/BlockFrequency.h"
Quentin Colombeta41272f2016-06-08 15:49:23 +000038#include "llvm/Support/CommandLine.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000039#include "llvm/Support/Compiler.h"
Quentin Colombete16f5612016-04-07 23:53:55 +000040#include "llvm/Support/Debug.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000041#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000043#include <algorithm>
44#include <cassert>
45#include <cstdint>
46#include <limits>
47#include <memory>
48#include <utility>
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000049
50#define DEBUG_TYPE "regbankselect"
51
52using namespace llvm;
53
Quentin Colombeta41272f2016-06-08 15:49:23 +000054static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
55 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
56 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
57 "Run the Fast mode (default mapping)"),
58 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
Mehdi Amini732afdd2016-10-08 19:41:06 +000059 "Use the Greedy mode (best local mapping)")));
Quentin Colombeta41272f2016-06-08 15:49:23 +000060
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000061char RegBankSelect::ID = 0;
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000062
Quentin Colombetc13ea882016-09-23 17:50:06 +000063INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
Quentin Colombet25fcef72016-05-20 17:54:09 +000064 "Assign register bank of generic virtual registers",
65 false, false);
66INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
67INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
Quentin Colombetacb857b2016-08-27 02:38:27 +000068INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
Quentin Colombetc13ea882016-09-23 17:50:06 +000069INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
Quentin Colombet25fcef72016-05-20 17:54:09 +000070 "Assign register bank of generic virtual registers", false,
Tim Northover884b47e2016-07-26 03:29:18 +000071 false)
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000072
Quentin Colombet46df7222016-05-20 16:55:35 +000073RegBankSelect::RegBankSelect(Mode RunningMode)
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000074 : MachineFunctionPass(ID), OptMode(RunningMode) {
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000075 initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
Quentin Colombeta41272f2016-06-08 15:49:23 +000076 if (RegBankSelectMode.getNumOccurrences() != 0) {
77 OptMode = RegBankSelectMode;
78 if (RegBankSelectMode != RunningMode)
Nicola Zaghend34e60c2018-05-14 12:53:11 +000079 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
Quentin Colombeta41272f2016-06-08 15:49:23 +000080 }
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000081}
82
Quentin Colombet40ad5732016-04-07 18:19:27 +000083void RegBankSelect::init(MachineFunction &MF) {
84 RBI = MF.getSubtarget().getRegBankInfo();
85 assert(RBI && "Cannot work without RegisterBankInfo");
86 MRI = &MF.getRegInfo();
Quentin Colombetaac71a42016-04-07 21:32:23 +000087 TRI = MF.getSubtarget().getRegisterInfo();
Quentin Colombetacb857b2016-08-27 02:38:27 +000088 TPC = &getAnalysis<TargetPassConfig>();
Quentin Colombet25fcef72016-05-20 17:54:09 +000089 if (OptMode != Mode::Fast) {
90 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
91 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
92 } else {
93 MBFI = nullptr;
94 MBPI = nullptr;
95 }
Quentin Colombet40ad5732016-04-07 18:19:27 +000096 MIRBuilder.setMF(MF);
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000097 MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
Quentin Colombet40ad5732016-04-07 18:19:27 +000098}
99
Quentin Colombet25fcef72016-05-20 17:54:09 +0000100void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
101 if (OptMode != Mode::Fast) {
102 // We could preserve the information from these two analysis but
103 // the APIs do not allow to do so yet.
104 AU.addRequired<MachineBlockFrequencyInfo>();
105 AU.addRequired<MachineBranchProbabilityInfo>();
106 }
Quentin Colombetacb857b2016-08-27 02:38:27 +0000107 AU.addRequired<TargetPassConfig>();
Matthias Braun90ad6832018-07-13 00:08:38 +0000108 getSelectionDAGFallbackAnalysisUsage(AU);
Quentin Colombet25fcef72016-05-20 17:54:09 +0000109 MachineFunctionPass::getAnalysisUsage(AU);
110}
111
Quentin Colombet40ad5732016-04-07 18:19:27 +0000112bool RegBankSelect::assignmentMatch(
Quentin Colombet0d77da42016-05-20 00:42:57 +0000113 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
114 bool &OnlyAssign) const {
115 // By default we assume we will have to repair something.
116 OnlyAssign = false;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000117 // Each part of a break down needs to end up in a different register.
118 // In other word, Reg assignement does not match.
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000119 if (ValMapping.NumBreakDowns > 1)
Quentin Colombet40ad5732016-04-07 18:19:27 +0000120 return false;
121
Quentin Colombet6d6d6af2016-04-08 16:48:16 +0000122 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
123 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
Quentin Colombet0d77da42016-05-20 00:42:57 +0000124 // Reg is free of assignment, a simple assignment will make the
125 // register bank to match.
126 OnlyAssign = CurRegBank == nullptr;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000127 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
128 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
129 dbgs() << " against ";
130 assert(DesiredRegBrank && "The mapping must be valid");
131 dbgs() << *DesiredRegBrank << '\n';);
Quentin Colombet6d6d6af2016-04-08 16:48:16 +0000132 return CurRegBank == DesiredRegBrank;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000133}
134
Quentin Colombetacb857b2016-08-27 02:38:27 +0000135bool RegBankSelect::repairReg(
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000136 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
137 RegBankSelect::RepairingPlacement &RepairPt,
Quentin Colombet06ef4e22016-06-08 16:24:55 +0000138 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000139 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
Quentin Colombetacb857b2016-08-27 02:38:27 +0000140 return false;
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000141 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
Quentin Colombetf33e3652016-06-08 16:30:55 +0000142 // An empty range of new register means no repairing.
Matthias Braun9fd397b2018-10-31 00:23:23 +0000143 assert(!empty(NewVRegs) && "We should not have to repair");
Quentin Colombetf33e3652016-06-08 16:30:55 +0000144
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000145 // Assume we are repairing a use and thus, the original reg will be
146 // the source of the repairing.
147 unsigned Src = MO.getReg();
148 unsigned Dst = *NewVRegs.begin();
Quentin Colombet904a2c72016-04-12 00:12:59 +0000149
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000150 // If we repair a definition, swap the source and destination for
151 // the repairing.
152 if (MO.isDef())
Quentin Colombet904a2c72016-04-12 00:12:59 +0000153 std::swap(Src, Dst);
Quentin Colombet904a2c72016-04-12 00:12:59 +0000154
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000155 assert((RepairPt.getNumInsertPoints() == 1 ||
156 TargetRegisterInfo::isPhysicalRegister(Dst)) &&
157 "We are about to create several defs for Dst");
Quentin Colombet904a2c72016-04-12 00:12:59 +0000158
Tim Northover849fcca2017-06-27 21:41:40 +0000159 // Build the instruction used to repair, then clone it at the right
160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161 // same types because the type is a placeholder when this function is called.
162 MachineInstr *MI =
163 MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000164 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
165 << '\n');
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000166 // TODO:
167 // Check if MI is legal. if not, we need to legalize all the
168 // instructions we are going to insert.
169 std::unique_ptr<MachineInstr *[]> NewInstrs(
170 new MachineInstr *[RepairPt.getNumInsertPoints()]);
171 bool IsFirst = true;
172 unsigned Idx = 0;
173 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
174 MachineInstr *CurMI;
175 if (IsFirst)
176 CurMI = MI;
177 else
178 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
179 InsertPt->insert(*CurMI);
180 NewInstrs[Idx++] = CurMI;
181 IsFirst = false;
182 }
183 // TODO:
184 // Legalize NewInstrs if need be.
Quentin Colombetacb857b2016-08-27 02:38:27 +0000185 return true;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000186}
187
Quentin Colombetf2723a22016-05-21 01:43:25 +0000188uint64_t RegBankSelect::getRepairCost(
189 const MachineOperand &MO,
190 const RegisterBankInfo::ValueMapping &ValMapping) const {
191 assert(MO.isReg() && "We should only repair register operand");
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000192 assert(ValMapping.NumBreakDowns && "Nothing to map??");
Quentin Colombetf2723a22016-05-21 01:43:25 +0000193
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000194 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
Quentin Colombetf2723a22016-05-21 01:43:25 +0000195 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
196 // If MO does not have a register bank, we should have just been
197 // able to set one unless we have to break the value down.
198 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
199 // Def: Val <- NewDefs
200 // Same number of values: copy
201 // Different number: Val = build_sequence Defs1, Defs2, ...
202 // Use: NewSources <- Val.
203 // Same number of values: copy.
204 // Different number: Src1, Src2, ... =
205 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
206 // We should remember that this value is available somewhere else to
207 // coalesce the value.
208
209 if (IsSameNumOfValues) {
210 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
211 // If we repair a definition, swap the source and destination for
212 // the repairing.
213 if (MO.isDef())
214 std::swap(CurRegBank, DesiredRegBrank);
Quentin Colombetd6886bd2016-06-08 17:39:43 +0000215 // TODO: It may be possible to actually avoid the copy.
216 // If we repair something where the source is defined by a copy
217 // and the source of that copy is on the right bank, we can reuse
218 // it for free.
219 // E.g.,
220 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
221 // = op RegToRepair<BankA>
222 // We can simply propagate AlternativeSrc instead of copying RegToRepair
223 // into a new virtual register.
224 // We would also need to propagate this information in the
225 // repairing placement.
Quentin Colombet4a6b7502017-10-13 21:16:15 +0000226 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
227 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
Quentin Colombetf2723a22016-05-21 01:43:25 +0000228 // TODO: use a dedicated constant for ImpossibleCost.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000229 if (Cost != std::numeric_limits<unsigned>::max())
Quentin Colombetf2723a22016-05-21 01:43:25 +0000230 return Cost;
Quentin Colombetf2723a22016-05-21 01:43:25 +0000231 // Return the legalization cost of that repairing.
232 }
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000233 return std::numeric_limits<unsigned>::max();
Quentin Colombetf2723a22016-05-21 01:43:25 +0000234}
235
Quentin Colombet245994d2017-05-05 22:48:22 +0000236const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000237 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
238 SmallVectorImpl<RepairingPlacement> &RepairPts) {
Quentin Colombetacb857b2016-08-27 02:38:27 +0000239 assert(!PossibleMappings.empty() &&
240 "Do not know how to map this instruction");
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000241
Quentin Colombet245994d2017-05-05 22:48:22 +0000242 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000243 MappingCost Cost = MappingCost::ImpossibleCost();
244 SmallVector<RepairingPlacement, 4> LocalRepairPts;
Quentin Colombet245994d2017-05-05 22:48:22 +0000245 for (const RegisterBankInfo::InstructionMapping *CurMapping :
246 PossibleMappings) {
247 MappingCost CurCost =
248 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000249 if (CurCost < Cost) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000250 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000251 Cost = CurCost;
Quentin Colombet245994d2017-05-05 22:48:22 +0000252 BestMapping = CurMapping;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000253 RepairPts.clear();
254 for (RepairingPlacement &RepairPt : LocalRepairPts)
255 RepairPts.emplace_back(std::move(RepairPt));
256 }
257 }
Quentin Colombetacb857b2016-08-27 02:38:27 +0000258 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
259 // If none of the mapping worked that means they are all impossible.
260 // Thus, pick the first one and set an impossible repairing point.
261 // It will trigger the failed isel mode.
Quentin Colombet245994d2017-05-05 22:48:22 +0000262 BestMapping = *PossibleMappings.begin();
Quentin Colombetacb857b2016-08-27 02:38:27 +0000263 RepairPts.emplace_back(
264 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
265 } else
266 assert(BestMapping && "No suitable mapping for instruction");
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000267 return *BestMapping;
268}
269
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000270void RegBankSelect::tryAvoidingSplit(
271 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
272 const RegisterBankInfo::ValueMapping &ValMapping) const {
273 const MachineInstr &MI = *MO.getParent();
274 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
275 // Splitting should only occur for PHIs or between terminators,
276 // because we only do local repairing.
277 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
278
279 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
280 "Repairing placement does not match operand");
281
282 // If we need splitting for phis, that means it is because we
283 // could not find an insertion point before the terminators of
284 // the predecessor block for this argument. In other words,
285 // the input value is defined by one of the terminators.
286 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
287
288 // We split to repair the use of a phi or a terminator.
289 if (!MO.isDef()) {
290 if (MI.isTerminator()) {
291 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
292 "Need to split for the first terminator?!");
293 } else {
294 // For the PHI case, the split may not be actually required.
295 // In the copy case, a phi is already a copy on the incoming edge,
296 // therefore there is no need to split.
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000297 if (ValMapping.NumBreakDowns == 1)
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000298 // This is a already a copy, there is nothing to do.
299 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
300 }
301 return;
302 }
303
304 // At this point, we need to repair a defintion of a terminator.
305
306 // Technically we need to fix the def of MI on all outgoing
307 // edges of MI to keep the repairing local. In other words, we
308 // will create several definitions of the same register. This
309 // does not work for SSA unless that definition is a physical
310 // register.
311 // However, there are other cases where we can get away with
312 // that while still keeping the repairing local.
313 assert(MI.isTerminator() && MO.isDef() &&
314 "This code is for the def of a terminator");
315
316 // Since we use RPO traversal, if we need to repair a definition
317 // this means this definition could be:
318 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
319 // uses of a phi.), or
320 // 2. Part of a target specific instruction (i.e., the target applied
321 // some register class constraints when creating the instruction.)
322 // If the constraints come for #2, the target said that another mapping
323 // is supported so we may just drop them. Indeed, if we do not change
324 // the number of registers holding that value, the uses will get fixed
325 // when we get to them.
326 // Uses in PHIs may have already been proceeded though.
327 // If the constraints come for #1, then, those are weak constraints and
328 // no actual uses may rely on them. However, the problem remains mainly
329 // the same as for #2. If the value stays in one register, we could
330 // just switch the register bank of the definition, but we would need to
331 // account for a repairing cost for each phi we silently change.
332 //
333 // In any case, if the value needs to be broken down into several
334 // registers, the repairing is not local anymore as we need to patch
335 // every uses to rebuild the value in just one register.
336 //
337 // To summarize:
338 // - If the value is in a physical register, we can do the split and
339 // fix locally.
340 // Otherwise if the value is in a virtual register:
341 // - If the value remains in one register, we do not have to split
342 // just switching the register bank would do, but we need to account
343 // in the repairing cost all the phi we changed.
344 // - If the value spans several registers, then we cannot do a local
345 // repairing.
346
347 // Check if this is a physical or virtual register.
348 unsigned Reg = MO.getReg();
349 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
350 // We are going to split every outgoing edges.
351 // Check that this is possible.
352 // FIXME: The machine representation is currently broken
353 // since it also several terminators in one basic block.
354 // Because of that we would technically need a way to get
355 // the targets of just one terminator to know which edges
356 // we have to split.
357 // Assert that we do not hit the ill-formed representation.
358
359 // If there are other terminators before that one, some of
360 // the outgoing edges may not be dominated by this definition.
361 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
362 "Do not know which outgoing edges are relevant");
363 const MachineInstr *Next = MI.getNextNode();
364 assert((!Next || Next->isUnconditionalBranch()) &&
365 "Do not know where each terminator ends up");
366 if (Next)
367 // If the next terminator uses Reg, this means we have
368 // to split right after MI and thus we need a way to ask
369 // which outgoing edges are affected.
370 assert(!Next->readsRegister(Reg) && "Need to split between terminators");
371 // We will split all the edges and repair there.
372 } else {
373 // This is a virtual register defined by a terminator.
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000374 if (ValMapping.NumBreakDowns == 1) {
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000375 // There is nothing to repair, but we may actually lie on
376 // the repairing cost because of the PHIs already proceeded
377 // as already stated.
378 // Though the code will be correct.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000379 assert(false && "Repairing cost may not be accurate");
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000380 } else {
381 // We need to do non-local repairing. Basically, patch all
382 // the uses (i.e., phis) that we already proceeded.
383 // For now, just say this mapping is not possible.
384 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
385 }
386 }
387}
388
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000389RegBankSelect::MappingCost RegBankSelect::computeMapping(
390 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000391 SmallVectorImpl<RepairingPlacement> &RepairPts,
392 const RegBankSelect::MappingCost *BestCost) {
393 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
Quentin Colombete16f5612016-04-07 23:53:55 +0000394
Tim Northoverc1a23852016-12-06 18:38:38 +0000395 if (!InstrMapping.isValid())
396 return MappingCost::ImpossibleCost();
397
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000398 // If mapped with InstrMapping, MI will have the recorded cost.
Quentin Colombet25fcef72016-05-20 17:54:09 +0000399 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000400 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
401 assert(!Saturated && "Possible mapping saturated the cost");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000402 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
403 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000404 RepairPts.clear();
Quentin Colombet0b63b312017-01-11 00:48:41 +0000405 if (BestCost && Cost > *BestCost) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000406 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000407 return Cost;
Quentin Colombet0b63b312017-01-11 00:48:41 +0000408 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000409
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000410 // Moreover, to realize this mapping, the register bank of each operand must
411 // match this mapping. In other words, we may need to locally reassign the
412 // register banks. Account for that repairing cost as well.
413 // In this context, local means in the surrounding of MI.
Quentin Colombet1b016772016-09-29 19:51:46 +0000414 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
415 OpIdx != EndOpIdx; ++OpIdx) {
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000416 const MachineOperand &MO = MI.getOperand(OpIdx);
Quentin Colombet40ad5732016-04-07 18:19:27 +0000417 if (!MO.isReg())
418 continue;
419 unsigned Reg = MO.getReg();
420 if (!Reg)
421 continue;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000422 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
Quentin Colombet40ad5732016-04-07 18:19:27 +0000423 const RegisterBankInfo::ValueMapping &ValMapping =
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000424 InstrMapping.getOperandMapping(OpIdx);
425 // If Reg is already properly mapped, this is free.
426 bool Assign;
427 if (assignmentMatch(Reg, ValMapping, Assign)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000428 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
Quentin Colombet40ad5732016-04-07 18:19:27 +0000429 continue;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000430 }
431 if (Assign) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000432 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000433 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
434 RepairingPlacement::Reassign));
435 continue;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000436 }
Quentin Colombet904a2c72016-04-12 00:12:59 +0000437
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000438 // Find the insertion point for the repairing code.
439 RepairPts.emplace_back(
440 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
441 RepairingPlacement &RepairPt = RepairPts.back();
442
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000443 // If we need to split a basic block to materialize this insertion point,
444 // we may give a higher cost to this mapping.
445 // Nevertheless, we may get away with the split, so try that first.
446 if (RepairPt.hasSplit())
447 tryAvoidingSplit(RepairPt, MO, ValMapping);
448
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000449 // Check that the materialization of the repairing is possible.
Quentin Colombet0b63b312017-01-11 00:48:41 +0000450 if (!RepairPt.canMaterialize()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000451 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000452 return MappingCost::ImpossibleCost();
Quentin Colombet0b63b312017-01-11 00:48:41 +0000453 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000454
455 // Account for the split cost and repair cost.
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000456 // Unless the cost is already saturated or we do not care about the cost.
457 if (!BestCost || Saturated)
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000458 continue;
459
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000460 // To get accurate information we need MBFI and MBPI.
461 // Thus, if we end up here this information should be here.
462 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
463
Quentin Colombet6feaf8202016-06-08 15:40:32 +0000464 // FIXME: We will have to rework the repairing cost model.
465 // The repairing cost depends on the register bank that MO has.
466 // However, when we break down the value into different values,
467 // MO may not have a register bank while still needing repairing.
468 // For the fast mode, we don't compute the cost so that is fine,
469 // but still for the repairing code, we will have to make a choice.
470 // For the greedy mode, we should choose greedily what is the best
471 // choice based on the next use of MO.
472
Quentin Colombetf2723a22016-05-21 01:43:25 +0000473 // Sums up the repairing cost of MO at each insertion point.
474 uint64_t RepairCost = getRepairCost(MO, ValMapping);
Tom Stellard049e7e02017-05-15 09:52:33 +0000475
476 // This is an impossible to repair cost.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000477 if (RepairCost == std::numeric_limits<unsigned>::max())
Tom Stellard179757e2018-07-25 03:08:35 +0000478 return MappingCost::ImpossibleCost();
Tom Stellard049e7e02017-05-15 09:52:33 +0000479
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000480 // Bias used for splitting: 5%.
481 const uint64_t PercentageForBias = 5;
482 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
483 // We should not need more than a couple of instructions to repair
484 // an assignment. In other words, the computation should not
485 // overflow because the repairing cost is free of basic block
486 // frequency.
487 assert(((RepairCost < RepairCost * PercentageForBias) &&
488 (RepairCost * PercentageForBias <
489 RepairCost * PercentageForBias + 99)) &&
490 "Repairing involves more than a billion of instructions?!");
491 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
492 assert(InsertPt->canMaterialize() && "We should not have made it here");
493 // We will applied some basic block frequency and those uses uint64_t.
494 if (!InsertPt->isSplit())
495 Saturated = Cost.addLocalCost(RepairCost);
496 else {
497 uint64_t CostForInsertPt = RepairCost;
498 // Again we shouldn't overflow here givent that
499 // CostForInsertPt is frequency free at this point.
500 assert(CostForInsertPt + Bias > CostForInsertPt &&
501 "Repairing + split bias overflows");
502 CostForInsertPt += Bias;
503 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
504 // Check if we just overflowed.
505 if ((Saturated = PtCost < CostForInsertPt))
506 Cost.saturate();
507 else
508 Saturated = Cost.addNonLocalCost(PtCost);
509 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000510
511 // Stop looking into what it takes to repair, this is already
512 // too expensive.
Quentin Colombet0b63b312017-01-11 00:48:41 +0000513 if (BestCost && Cost > *BestCost) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000514 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000515 return Cost;
Quentin Colombet0b63b312017-01-11 00:48:41 +0000516 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000517
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000518 // No need to accumulate more cost information.
519 // We need to still gather the repairing information though.
520 if (Saturated)
521 break;
522 }
Quentin Colombet40ad5732016-04-07 18:19:27 +0000523 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000524 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000525 return Cost;
526}
527
Quentin Colombetacb857b2016-08-27 02:38:27 +0000528bool RegBankSelect::applyMapping(
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000529 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
530 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
Quentin Colombetf33e3652016-06-08 16:30:55 +0000531 // OpdMapper will hold all the information needed for the rewritting.
532 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
533
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000534 // First, place the repairing code.
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000535 for (RepairingPlacement &RepairPt : RepairPts) {
Quentin Colombetacb857b2016-08-27 02:38:27 +0000536 if (!RepairPt.canMaterialize() ||
537 RepairPt.getKind() == RepairingPlacement::Impossible)
538 return false;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000539 assert(RepairPt.getKind() != RepairingPlacement::None &&
540 "This should not make its way in the list");
541 unsigned OpIdx = RepairPt.getOpIdx();
542 MachineOperand &MO = MI.getOperand(OpIdx);
543 const RegisterBankInfo::ValueMapping &ValMapping =
544 InstrMapping.getOperandMapping(OpIdx);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000545 unsigned Reg = MO.getReg();
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000546
547 switch (RepairPt.getKind()) {
548 case RepairingPlacement::Reassign:
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000549 assert(ValMapping.NumBreakDowns == 1 &&
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000550 "Reassignment should only be for simple mapping");
551 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
552 break;
553 case RepairingPlacement::Insert:
Quentin Colombetf33e3652016-06-08 16:30:55 +0000554 OpdMapper.createVRegs(OpIdx);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000555 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
556 return false;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000557 break;
558 default:
559 llvm_unreachable("Other kind should not happen");
560 }
561 }
Tim Northover849fcca2017-06-27 21:41:40 +0000562
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000563 // Second, rewrite the instruction.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000564 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000565 RBI->applyMapping(OpdMapper);
Tim Northover849fcca2017-06-27 21:41:40 +0000566
Quentin Colombetacb857b2016-08-27 02:38:27 +0000567 return true;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000568}
569
Quentin Colombetacb857b2016-08-27 02:38:27 +0000570bool RegBankSelect::assignInstr(MachineInstr &MI) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000571 LLVM_DEBUG(dbgs() << "Assign: " << MI);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000572 // Remember the repairing placement for all the operands.
573 SmallVector<RepairingPlacement, 4> RepairPts;
574
Quentin Colombet245994d2017-05-05 22:48:22 +0000575 const RegisterBankInfo::InstructionMapping *BestMapping;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000576 if (OptMode == RegBankSelect::Mode::Fast) {
Quentin Colombet245994d2017-05-05 22:48:22 +0000577 BestMapping = &RBI->getInstrMapping(MI);
578 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000579 (void)DefaultCost;
Quentin Colombetacb857b2016-08-27 02:38:27 +0000580 if (DefaultCost == MappingCost::ImpossibleCost())
581 return false;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000582 } else {
583 RegisterBankInfo::InstructionMappings PossibleMappings =
584 RBI->getInstrPossibleMappings(MI);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000585 if (PossibleMappings.empty())
586 return false;
Quentin Colombet245994d2017-05-05 22:48:22 +0000587 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000588 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000589 // Make sure the mapping is valid for MI.
Quentin Colombet245994d2017-05-05 22:48:22 +0000590 assert(BestMapping->verify(MI) && "Invalid instruction mapping");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000591
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000592 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000593
Quentin Colombet9400bfb2016-06-08 21:55:29 +0000594 // After this call, MI may not be valid anymore.
595 // Do not use it.
Quentin Colombet245994d2017-05-05 22:48:22 +0000596 return applyMapping(MI, *BestMapping, RepairPts);
Quentin Colombet40ad5732016-04-07 18:19:27 +0000597}
598
Quentin Colombet8e8e85c2016-04-05 19:06:01 +0000599bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
Quentin Colombet60495242016-08-27 00:18:24 +0000600 // If the ISel pipeline failed, do not bother running that pass.
601 if (MF.getProperties().hasProperty(
602 MachineFunctionProperties::Property::FailedISel))
603 return false;
604
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000605 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
Matthias Braunf1caa282017-12-15 22:22:58 +0000606 const Function &F = MF.getFunction();
Quentin Colombeta5530122016-05-20 17:36:54 +0000607 Mode SaveOptMode = OptMode;
Matthias Braunf1caa282017-12-15 22:22:58 +0000608 if (F.hasFnAttribute(Attribute::OptimizeNone))
Quentin Colombeta5530122016-05-20 17:36:54 +0000609 OptMode = Mode::Fast;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000610 init(MF);
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000611
612#ifndef NDEBUG
613 // Check that our input is fully legal: we require the function to have the
614 // Legalized property, so it should be.
Roman Tereshin2b949722018-03-01 00:27:48 +0000615 // FIXME: This should be in the MachineVerifier.
616 if (!DisableGISelLegalityCheck)
617 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
618 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
619 "instruction is not legal", *MI);
620 return false;
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000621 }
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000622#endif
623
Quentin Colombet40ad5732016-04-07 18:19:27 +0000624 // Walk the function and assign register banks to all operands.
Quentin Colombetab8c21f2016-04-08 17:19:10 +0000625 // Use a RPOT to make sure all registers are assigned before we choose
626 // the best mapping of the current instruction.
627 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000628 for (MachineBasicBlock *MBB : RPOT) {
629 // Set a sensible insertion point so that subsequent calls to
630 // MIRBuilder.
631 MIRBuilder.setMBB(*MBB);
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000632 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
633 MII != End;) {
634 // MI might be invalidated by the assignment, so move the
635 // iterator before hand.
Ahmed Bougacha45eb3b92016-08-02 11:41:16 +0000636 MachineInstr &MI = *MII++;
637
638 // Ignore target-specific instructions: they should use proper regclasses.
639 if (isTargetSpecificOpcode(MI.getOpcode()))
640 continue;
641
Quentin Colombetacb857b2016-08-27 02:38:27 +0000642 if (!assignInstr(MI)) {
Ahmed Bougachaae9dade2017-02-23 21:05:42 +0000643 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
644 "unable to map instruction", MI);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000645 return false;
646 }
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000647 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000648 }
Quentin Colombeta5530122016-05-20 17:36:54 +0000649 OptMode = SaveOptMode;
Quentin Colombet8e8e85c2016-04-05 19:06:01 +0000650 return false;
651}
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000652
653//------------------------------------------------------------------------------
Quentin Colombet55650752016-05-20 00:49:10 +0000654// Helper Classes Implementation
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000655//------------------------------------------------------------------------------
Quentin Colombet55650752016-05-20 00:49:10 +0000656RegBankSelect::RepairingPlacement::RepairingPlacement(
657 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
658 RepairingPlacement::RepairingKind Kind)
659 // Default is, we are going to insert code to repair OpIdx.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000660 : Kind(Kind), OpIdx(OpIdx),
661 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
Quentin Colombet55650752016-05-20 00:49:10 +0000662 const MachineOperand &MO = MI.getOperand(OpIdx);
663 assert(MO.isReg() && "Trying to repair a non-reg operand");
664
665 if (Kind != RepairingKind::Insert)
666 return;
667
668 // Repairings for definitions happen after MI, uses happen before.
669 bool Before = !MO.isDef();
670
671 // Check if we are done with MI.
672 if (!MI.isPHI() && !MI.isTerminator()) {
673 addInsertPoint(MI, Before);
674 // We are done with the initialization.
675 return;
676 }
677
678 // Now, look for the special cases.
679 if (MI.isPHI()) {
680 // - PHI must be the first instructions:
681 // * Before, we have to split the related incoming edge.
682 // * After, move the insertion point past the last phi.
683 if (!Before) {
684 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
685 if (It != MI.getParent()->end())
686 addInsertPoint(*It, /*Before*/ true);
687 else
688 addInsertPoint(*(--It), /*Before*/ false);
689 return;
690 }
691 // We repair a use of a phi, we may need to split the related edge.
692 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
693 // Check if we can move the insertion point prior to the
694 // terminators of the predecessor.
695 unsigned Reg = MO.getReg();
696 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
697 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
698 if (It->modifiesRegister(Reg, &TRI)) {
699 // We cannot hoist the repairing code in the predecessor.
700 // Split the edge.
701 addInsertPoint(Pred, *MI.getParent());
702 return;
703 }
704 // At this point, we can insert in Pred.
705
706 // - If It is invalid, Pred is empty and we can insert in Pred
707 // wherever we want.
708 // - If It is valid, It is the first non-terminator, insert after It.
709 if (It == Pred.end())
710 addInsertPoint(Pred, /*Beginning*/ false);
711 else
712 addInsertPoint(*It, /*Before*/ false);
713 } else {
714 // - Terminators must be the last instructions:
715 // * Before, move the insert point before the first terminator.
716 // * After, we have to split the outcoming edges.
717 unsigned Reg = MO.getReg();
718 if (Before) {
719 // Check whether Reg is defined by any terminator.
720 MachineBasicBlock::iterator It = MI;
721 for (auto Begin = MI.getParent()->begin();
722 --It != Begin && It->isTerminator();)
723 if (It->modifiesRegister(Reg, &TRI)) {
724 // Insert the repairing code right after the definition.
725 addInsertPoint(*It, /*Before*/ false);
726 return;
727 }
728 addInsertPoint(*It, /*Before*/ true);
729 return;
730 }
731 // Make sure Reg is not redefined by other terminators, otherwise
732 // we do not know how to split.
733 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
734 ++It != End;)
735 // The machine verifier should reject this kind of code.
736 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
737 // Split each outcoming edges.
738 MachineBasicBlock &Src = *MI.getParent();
739 for (auto &Succ : Src.successors())
740 addInsertPoint(Src, Succ);
741 }
742}
743
744void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
745 bool Before) {
746 addInsertPoint(*new InstrInsertPoint(MI, Before));
747}
748
749void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
750 bool Beginning) {
751 addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
752}
753
754void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
755 MachineBasicBlock &Dst) {
756 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
757}
758
759void RegBankSelect::RepairingPlacement::addInsertPoint(
760 RegBankSelect::InsertPoint &Point) {
761 CanMaterialize &= Point.canMaterialize();
762 HasSplit |= Point.isSplit();
763 InsertPoints.emplace_back(&Point);
764}
765
766RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
767 bool Before)
768 : InsertPoint(), Instr(Instr), Before(Before) {
769 // Since we do not support splitting, we do not need to update
770 // liveness and such, so do not do anything with P.
771 assert((!Before || !Instr.isPHI()) &&
772 "Splitting before phis requires more points");
773 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
774 "Splitting between phis does not make sense");
775}
776
777void RegBankSelect::InstrInsertPoint::materialize() {
778 if (isSplit()) {
779 // Slice and return the beginning of the new block.
780 // If we need to split between the terminators, we theoritically
781 // need to know where the first and second set of terminators end
782 // to update the successors properly.
783 // Now, in pratice, we should have a maximum of 2 branch
784 // instructions; one conditional and one unconditional. Therefore
785 // we know how to update the successor by looking at the target of
786 // the unconditional branch.
787 // If we end up splitting at some point, then, we should update
788 // the liveness information and such. I.e., we would need to
789 // access P here.
790 // The machine verifier should actually make sure such cases
791 // cannot happen.
792 llvm_unreachable("Not yet implemented");
793 }
794 // Otherwise the insertion point is just the current or next
795 // instruction depending on Before. I.e., there is nothing to do
796 // here.
797}
798
799bool RegBankSelect::InstrInsertPoint::isSplit() const {
800 // If the insertion point is after a terminator, we need to split.
801 if (!Before)
802 return Instr.isTerminator();
803 // If we insert before an instruction that is after a terminator,
804 // we are still after a terminator.
805 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
806}
807
808uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
809 // Even if we need to split, because we insert between terminators,
810 // this split has actually the same frequency as the instruction.
811 const MachineBlockFrequencyInfo *MBFI =
812 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
813 if (!MBFI)
814 return 1;
815 return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
816}
817
818uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
819 const MachineBlockFrequencyInfo *MBFI =
820 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
821 if (!MBFI)
822 return 1;
823 return MBFI->getBlockFreq(&MBB).getFrequency();
824}
825
826void RegBankSelect::EdgeInsertPoint::materialize() {
827 // If we end up repairing twice at the same place before materializing the
828 // insertion point, we may think we have to split an edge twice.
829 // We should have a factory for the insert point such that identical points
830 // are the same instance.
831 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
832 "This point has already been split");
833 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
834 assert(NewBB && "Invalid call to materialize");
835 // We reuse the destination block to hold the information of the new block.
836 DstOrSplit = NewBB;
837}
838
839uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
840 const MachineBlockFrequencyInfo *MBFI =
841 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
842 if (!MBFI)
843 return 1;
844 if (WasMaterialized)
845 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
846
847 const MachineBranchProbabilityInfo *MBPI =
848 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
849 if (!MBPI)
850 return 1;
851 // The basic block will be on the edge.
852 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
853 .getFrequency();
854}
855
856bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
857 // If this is not a critical edge, we should not have used this insert
858 // point. Indeed, either the successor or the predecessor should
859 // have do.
860 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
861 "Edge is not critical");
862 return Src.canSplitCriticalEdge(DstOrSplit);
863}
864
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000865RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000866 : LocalFreq(LocalFreq.getFrequency()) {}
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000867
868bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
869 // Check if this overflows.
870 if (LocalCost + Cost < LocalCost) {
871 saturate();
872 return true;
873 }
874 LocalCost += Cost;
875 return isSaturated();
876}
877
878bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
879 // Check if this overflows.
880 if (NonLocalCost + Cost < NonLocalCost) {
881 saturate();
882 return true;
883 }
884 NonLocalCost += Cost;
885 return isSaturated();
886}
887
888bool RegBankSelect::MappingCost::isSaturated() const {
889 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
890 LocalFreq == UINT64_MAX;
891}
892
893void RegBankSelect::MappingCost::saturate() {
894 *this = ImpossibleCost();
895 --LocalCost;
896}
897
898RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
899 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
900}
901
902bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
903 // Sort out the easy cases.
904 if (*this == Cost)
905 return false;
906 // If one is impossible to realize the other is cheaper unless it is
907 // impossible as well.
908 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
909 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
910 // If one is saturated the other is cheaper, unless it is saturated
911 // as well.
912 if (isSaturated() || Cost.isSaturated())
913 return isSaturated() < Cost.isSaturated();
914 // At this point we know both costs hold sensible values.
915
916 // If both values have a different base frequency, there is no much
917 // we can do but to scale everything.
918 // However, if they have the same base frequency we can avoid making
919 // complicated computation.
920 uint64_t ThisLocalAdjust;
921 uint64_t OtherLocalAdjust;
922 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
923
924 // At this point, we know the local costs are comparable.
925 // Do the case that do not involve potential overflow first.
926 if (NonLocalCost == Cost.NonLocalCost)
927 // Since the non-local costs do not discriminate on the result,
928 // just compare the local costs.
929 return LocalCost < Cost.LocalCost;
930
931 // The base costs are comparable so we may only keep the relative
932 // value to increase our chances of avoiding overflows.
933 ThisLocalAdjust = 0;
934 OtherLocalAdjust = 0;
935 if (LocalCost < Cost.LocalCost)
936 OtherLocalAdjust = Cost.LocalCost - LocalCost;
937 else
938 ThisLocalAdjust = LocalCost - Cost.LocalCost;
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000939 } else {
940 ThisLocalAdjust = LocalCost;
941 OtherLocalAdjust = Cost.LocalCost;
942 }
943
944 // The non-local costs are comparable, just keep the relative value.
945 uint64_t ThisNonLocalAdjust = 0;
946 uint64_t OtherNonLocalAdjust = 0;
947 if (NonLocalCost < Cost.NonLocalCost)
948 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
949 else
950 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
951 // Scale everything to make them comparable.
952 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
953 // Check for overflow on that operation.
954 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
955 ThisScaledCost < LocalFreq);
956 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
957 // Check for overflow on the last operation.
958 bool OtherOverflows =
959 OtherLocalAdjust &&
960 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
961 // Add the non-local costs.
962 ThisOverflows |= ThisNonLocalAdjust &&
963 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
964 ThisScaledCost += ThisNonLocalAdjust;
965 OtherOverflows |= OtherNonLocalAdjust &&
966 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
967 OtherScaledCost += OtherNonLocalAdjust;
968 // If both overflows, we cannot compare without additional
969 // precision, e.g., APInt. Just give up on that case.
970 if (ThisOverflows && OtherOverflows)
971 return false;
972 // If one overflows but not the other, we can still compare.
973 if (ThisOverflows || OtherOverflows)
974 return ThisOverflows < OtherOverflows;
975 // Otherwise, just compare the values.
976 return ThisScaledCost < OtherScaledCost;
977}
978
979bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
980 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
981 LocalFreq == Cost.LocalFreq;
982}
Quentin Colombet0b63b312017-01-11 00:48:41 +0000983
Aaron Ballman615eb472017-10-15 14:32:27 +0000984#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +0000985LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
Quentin Colombet0b63b312017-01-11 00:48:41 +0000986 print(dbgs());
987 dbgs() << '\n';
988}
Matthias Braun8c209aa2017-01-28 02:02:38 +0000989#endif
Quentin Colombet0b63b312017-01-11 00:48:41 +0000990
991void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
992 if (*this == ImpossibleCost()) {
993 OS << "impossible";
994 return;
995 }
996 if (isSaturated()) {
997 OS << "saturated";
998 return;
999 }
1000 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1001}