blob: 06f564b40344a7e8844ad32fdd748d9a187fc592 [file] [log] [blame]
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// The InductiveRangeCheckElimination pass splits a loop's iteration space into
10// three disjoint ranges. It does that in a way such that the loop running in
11// the middle loop provably does not need range checks. As an example, it will
12// convert
13//
14// len = < known positive >
15// for (i = 0; i < n; i++) {
16// if (0 <= i && i < len) {
17// do_something();
18// } else {
19// throw_out_of_bounds();
20// }
21// }
22//
23// to
24//
25// len = < known positive >
26// limit = smin(n, len)
27// // no first segment
28// for (i = 0; i < limit; i++) {
29// if (0 <= i && i < len) { // this check is fully redundant
30// do_something();
31// } else {
32// throw_out_of_bounds();
33// }
34// }
35// for (i = limit; i < n; i++) {
36// if (0 <= i && i < len) {
37// do_something();
38// } else {
39// throw_out_of_bounds();
40// }
41// }
42//===----------------------------------------------------------------------===//
43
44#include "llvm/ADT/Optional.h"
Sanjoy Dasdcf26512015-01-27 21:38:12 +000045#include "llvm/Analysis/BranchProbabilityInfo.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000046#include "llvm/Analysis/InstructionSimplify.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Analysis/ScalarEvolution.h"
50#include "llvm/Analysis/ScalarEvolutionExpander.h"
51#include "llvm/Analysis/ScalarEvolutionExpressions.h"
52#include "llvm/Analysis/ValueTracking.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000053#include "llvm/IR/Dominators.h"
54#include "llvm/IR/Function.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000055#include "llvm/IR/IRBuilder.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000056#include "llvm/IR/Instructions.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000057#include "llvm/IR/Module.h"
58#include "llvm/IR/PatternMatch.h"
59#include "llvm/IR/ValueHandle.h"
60#include "llvm/IR/Verifier.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000061#include "llvm/Pass.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000062#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000063#include "llvm/Support/raw_ostream.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000064#include "llvm/Transforms/Scalar.h"
65#include "llvm/Transforms/Utils/BasicBlockUtils.h"
66#include "llvm/Transforms/Utils/Cloning.h"
67#include "llvm/Transforms/Utils/LoopUtils.h"
68#include "llvm/Transforms/Utils/SimplifyIndVar.h"
69#include "llvm/Transforms/Utils/UnrollLoop.h"
Sanjoy Dasa1837a32015-01-16 01:03:22 +000070
71using namespace llvm;
72
Benjamin Kramer970eac42015-02-06 17:51:54 +000073static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
74 cl::init(64));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000075
Benjamin Kramer970eac42015-02-06 17:51:54 +000076static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
77 cl::init(false));
Sanjoy Dasa1837a32015-01-16 01:03:22 +000078
Sanjoy Das9c1bfae2015-03-17 01:40:22 +000079static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
80 cl::init(false));
81
Sanjoy Dase91665d2015-02-26 08:56:04 +000082static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
83 cl::Hidden, cl::init(10));
84
Sanjoy Dasa1837a32015-01-16 01:03:22 +000085#define DEBUG_TYPE "irce"
86
87namespace {
88
89/// An inductive range check is conditional branch in a loop with
90///
91/// 1. a very cold successor (i.e. the branch jumps to that successor very
92/// rarely)
93///
94/// and
95///
Sanjoy Dase2cde6f2015-03-17 00:42:13 +000096/// 2. a condition that is provably true for some contiguous range of values
97/// taken by the containing loop's induction variable.
Sanjoy Dasa1837a32015-01-16 01:03:22 +000098///
Sanjoy Dasa1837a32015-01-16 01:03:22 +000099class InductiveRangeCheck {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000100 // Classifies a range check
Reid Kleckner0b168592015-03-17 16:50:20 +0000101 enum RangeCheckKind : unsigned {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000102 // Range check of the form "0 <= I".
103 RANGE_CHECK_LOWER = 1,
104
105 // Range check of the form "I < L" where L is known positive.
106 RANGE_CHECK_UPPER = 2,
107
108 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
109 // conditions.
110 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
111
112 // Unrecognized range check condition.
113 RANGE_CHECK_UNKNOWN = (unsigned)-1
114 };
115
Sanjoy Das2eac48d2016-03-09 02:34:19 +0000116 static StringRef rangeCheckKindToStr(RangeCheckKind);
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000117
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000118 const SCEV *Offset;
119 const SCEV *Scale;
120 Value *Length;
Sanjoy Dasaa83c472016-05-23 22:16:45 +0000121 Use *CheckUse;
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000122 RangeCheckKind Kind;
123
Sanjoy Das337d46b2015-03-24 19:29:18 +0000124 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
125 ScalarEvolution &SE, Value *&Index,
126 Value *&Length);
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000127
Sanjoy Dasa0992682016-05-26 00:09:02 +0000128 static void
129 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
130 SmallVectorImpl<InductiveRangeCheck> &Checks,
131 SmallPtrSetImpl<Value *> &Visited);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000132
Sanjoy Dasaa83c472016-05-23 22:16:45 +0000133 InductiveRangeCheck()
134 : Offset(nullptr), Scale(nullptr), Length(nullptr),
135 CheckUse(nullptr) {}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000136
137public:
138 const SCEV *getOffset() const { return Offset; }
139 const SCEV *getScale() const { return Scale; }
140 Value *getLength() const { return Length; }
141
142 void print(raw_ostream &OS) const {
143 OS << "InductiveRangeCheck:\n";
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000144 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n";
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000145 OS << " Offset: ";
146 Offset->print(OS);
147 OS << " Scale: ";
148 Scale->print(OS);
149 OS << " Length: ";
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000150 if (Length)
151 Length->print(OS);
152 else
153 OS << "(null)";
Sanjoy Dasaa83c472016-05-23 22:16:45 +0000154 OS << "\n CheckUse: ";
155 getCheckUse()->getUser()->print(OS);
156 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000157 }
158
159#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
160 void dump() {
161 print(dbgs());
162 }
163#endif
164
Sanjoy Dasaa83c472016-05-23 22:16:45 +0000165 Use *getCheckUse() const { return CheckUse; }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000166
Sanjoy Das351db052015-01-22 09:32:02 +0000167 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
168 /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
169
170 class Range {
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000171 const SCEV *Begin;
172 const SCEV *End;
Sanjoy Das351db052015-01-22 09:32:02 +0000173
174 public:
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000175 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
Sanjoy Das351db052015-01-22 09:32:02 +0000176 assert(Begin->getType() == End->getType() && "ill-typed range!");
177 }
178
179 Type *getType() const { return Begin->getType(); }
Sanjoy Das7fc60da2015-02-21 22:07:32 +0000180 const SCEV *getBegin() const { return Begin; }
181 const SCEV *getEnd() const { return End; }
Sanjoy Das351db052015-01-22 09:32:02 +0000182 };
183
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000184 /// This is the value the condition of the branch needs to evaluate to for the
185 /// branch to take the hot successor (see (1) above).
186 bool getPassingDirection() { return true; }
187
Sanjoy Das95c476d2015-02-21 22:20:22 +0000188 /// Computes a range for the induction variable (IndVar) in which the range
189 /// check is redundant and can be constant-folded away. The induction
190 /// variable is not required to be the canonical {0,+,1} induction variable.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000191 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
Sanjoy Das59776732016-05-21 02:31:51 +0000192 const SCEVAddRecExpr *IndVar) const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000193
Sanjoy Dasa0992682016-05-26 00:09:02 +0000194 /// Parse out a set of inductive range checks from \p BI and append them to \p
195 /// Checks.
196 ///
197 /// NB! There may be conditions feeding into \p BI that aren't inductive range
198 /// checks, and hence don't end up in \p Checks.
199 static void
200 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
201 BranchProbabilityInfo &BPI,
202 SmallVectorImpl<InductiveRangeCheck> &Checks);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000203};
204
205class InductiveRangeCheckElimination : public LoopPass {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000206public:
207 static char ID;
208 InductiveRangeCheckElimination() : LoopPass(ID) {
209 initializeInductiveRangeCheckEliminationPass(
210 *PassRegistry::getPassRegistry());
211 }
212
213 void getAnalysisUsage(AnalysisUsage &AU) const override {
Cong Houab23bfb2015-07-15 22:48:29 +0000214 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Chandler Carruth31088a92016-02-19 10:45:18 +0000215 getLoopAnalysisUsage(AU);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000216 }
217
218 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
219};
220
221char InductiveRangeCheckElimination::ID = 0;
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000222}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000223
Sanjoy Dasda0d79e2015-09-09 03:47:18 +0000224INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
225 "Inductive range check elimination", false, false)
Sanjoy Dasda0d79e2015-09-09 03:47:18 +0000226INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Chandler Carruth31088a92016-02-19 10:45:18 +0000227INITIALIZE_PASS_DEPENDENCY(LoopPass)
Sanjoy Dasda0d79e2015-09-09 03:47:18 +0000228INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
229 "Inductive range check elimination", false, false)
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000230
Sanjoy Das2eac48d2016-03-09 02:34:19 +0000231StringRef InductiveRangeCheck::rangeCheckKindToStr(
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000232 InductiveRangeCheck::RangeCheckKind RCK) {
233 switch (RCK) {
234 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
235 return "RANGE_CHECK_UNKNOWN";
236
237 case InductiveRangeCheck::RANGE_CHECK_UPPER:
238 return "RANGE_CHECK_UPPER";
239
240 case InductiveRangeCheck::RANGE_CHECK_LOWER:
241 return "RANGE_CHECK_LOWER";
242
243 case InductiveRangeCheck::RANGE_CHECK_BOTH:
244 return "RANGE_CHECK_BOTH";
245 }
246
247 llvm_unreachable("unknown range check type!");
248}
249
Sanjoy Dasf13900f2016-03-09 02:34:15 +0000250/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000251/// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
Sanjoy Dasf13900f2016-03-09 02:34:15 +0000252/// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000253/// range checked, and set `Length` to the upper limit `Index` is being range
254/// checked with if (and only if) the range check type is stronger or equal to
255/// RANGE_CHECK_UPPER.
256///
257InductiveRangeCheck::RangeCheckKind
Sanjoy Das337d46b2015-03-24 19:29:18 +0000258InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
259 ScalarEvolution &SE, Value *&Index,
260 Value *&Length) {
261
262 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
263 const SCEV *S = SE.getSCEV(V);
264 if (isa<SCEVCouldNotCompute>(S))
265 return false;
266
267 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
268 SE.isKnownNonNegative(S);
269 };
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000270
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000271 using namespace llvm::PatternMatch;
272
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000273 ICmpInst::Predicate Pred = ICI->getPredicate();
274 Value *LHS = ICI->getOperand(0);
275 Value *RHS = ICI->getOperand(1);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000276
277 switch (Pred) {
278 default:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000279 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000280
281 case ICmpInst::ICMP_SLE:
282 std::swap(LHS, RHS);
283 // fallthrough
284 case ICmpInst::ICMP_SGE:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000285 if (match(RHS, m_ConstantInt<0>())) {
286 Index = LHS;
287 return RANGE_CHECK_LOWER;
288 }
289 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000290
291 case ICmpInst::ICMP_SLT:
292 std::swap(LHS, RHS);
293 // fallthrough
294 case ICmpInst::ICMP_SGT:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000295 if (match(RHS, m_ConstantInt<-1>())) {
296 Index = LHS;
297 return RANGE_CHECK_LOWER;
298 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000299
Sanjoy Das337d46b2015-03-24 19:29:18 +0000300 if (IsNonNegativeAndNotLoopVarying(LHS)) {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000301 Index = RHS;
302 Length = LHS;
303 return RANGE_CHECK_UPPER;
304 }
305 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000306
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000307 case ICmpInst::ICMP_ULT:
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000308 std::swap(LHS, RHS);
309 // fallthrough
310 case ICmpInst::ICMP_UGT:
Sanjoy Das337d46b2015-03-24 19:29:18 +0000311 if (IsNonNegativeAndNotLoopVarying(LHS)) {
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000312 Index = RHS;
313 Length = LHS;
314 return RANGE_CHECK_BOTH;
315 }
316 return RANGE_CHECK_UNKNOWN;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000317 }
Sanjoy Dase2cde6f2015-03-17 00:42:13 +0000318
319 llvm_unreachable("default clause returns!");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000320}
321
Sanjoy Dasa0992682016-05-26 00:09:02 +0000322void InductiveRangeCheck::extractRangeChecksFromCond(
323 Loop *L, ScalarEvolution &SE, Use &ConditionUse,
324 SmallVectorImpl<InductiveRangeCheck> &Checks,
325 SmallPtrSetImpl<Value *> &Visited) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000326 using namespace llvm::PatternMatch;
327
Sanjoy Das8fe88922016-05-26 00:08:24 +0000328 Value *Condition = ConditionUse.get();
Sanjoy Dasa0992682016-05-26 00:09:02 +0000329 if (!Visited.insert(Condition).second)
330 return;
Sanjoy Das8fe88922016-05-26 00:08:24 +0000331
Sanjoy Dasa0992682016-05-26 00:09:02 +0000332 if (match(Condition, m_And(m_Value(), m_Value()))) {
333 SmallVector<InductiveRangeCheck, 8> SubChecks;
334 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
335 SubChecks, Visited);
336 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
337 SubChecks, Visited);
Sanjoy Das8fe88922016-05-26 00:08:24 +0000338
Sanjoy Dasa0992682016-05-26 00:09:02 +0000339 if (SubChecks.size() == 2) {
340 // Handle a special case where we know how to merge two checks separately
341 // checking the upper and lower bounds into a full range check.
342 const auto &RChkA = SubChecks[0];
343 const auto &RChkB = SubChecks[1];
344 if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
345 RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000346
Sanjoy Dasa0992682016-05-26 00:09:02 +0000347 // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
348 // But if one of them is a RANGE_CHECK_LOWER and the other is a
349 // RANGE_CHECK_UPPER (only possibility if they're different) then
350 // together they form a RANGE_CHECK_BOTH.
351 SubChecks[0].Kind =
352 (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
353 SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
354 SubChecks[0].CheckUse = &ConditionUse;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000355
Sanjoy Dasa0992682016-05-26 00:09:02 +0000356 // We updated one of the checks in place, now erase the other.
357 SubChecks.pop_back();
358 }
359 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000360
Sanjoy Dasa0992682016-05-26 00:09:02 +0000361 Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
362 return;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000363 }
364
Sanjoy Dasa0992682016-05-26 00:09:02 +0000365 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
366 if (!ICI)
367 return;
368
369 Value *Length = nullptr, *Index;
370 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
371 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
372 return;
373
Sanjoy Das5fd7ac42016-05-24 17:19:56 +0000374 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000375 bool IsAffineIndex =
376 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
377
378 if (!IsAffineIndex)
Sanjoy Dasa0992682016-05-26 00:09:02 +0000379 return;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000380
Sanjoy Dasc5b11692016-05-21 02:52:13 +0000381 InductiveRangeCheck IRC;
382 IRC.Length = Length;
383 IRC.Offset = IndexAddRec->getStart();
384 IRC.Scale = IndexAddRec->getStepRecurrence(SE);
Sanjoy Das8fe88922016-05-26 00:08:24 +0000385 IRC.CheckUse = &ConditionUse;
Sanjoy Dasc5b11692016-05-21 02:52:13 +0000386 IRC.Kind = RCKind;
Sanjoy Dasa0992682016-05-26 00:09:02 +0000387 Checks.push_back(IRC);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000388}
389
Sanjoy Dasa0992682016-05-26 00:09:02 +0000390void InductiveRangeCheck::extractRangeChecksFromBranch(
391 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
392 SmallVectorImpl<InductiveRangeCheck> &Checks) {
Sanjoy Das8fe88922016-05-26 00:08:24 +0000393
394 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
Sanjoy Dasa0992682016-05-26 00:09:02 +0000395 return;
Sanjoy Das8fe88922016-05-26 00:08:24 +0000396
397 BranchProbability LikelyTaken(15, 16);
398
399 if (BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
Sanjoy Dasa0992682016-05-26 00:09:02 +0000400 return;
Sanjoy Das8fe88922016-05-26 00:08:24 +0000401
Sanjoy Dasa0992682016-05-26 00:09:02 +0000402 SmallPtrSet<Value *, 8> Visited;
403 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
404 Checks, Visited);
Sanjoy Das8fe88922016-05-26 00:08:24 +0000405}
406
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000407namespace {
408
Sanjoy Dase75ed922015-02-26 08:19:31 +0000409// Keeps track of the structure of a loop. This is similar to llvm::Loop,
410// except that it is more lightweight and can track the state of a loop through
411// changing and potentially invalid IR. This structure also formalizes the
412// kinds of loops we can deal with -- ones that have a single latch that is also
413// an exiting block *and* have a canonical induction variable.
414struct LoopStructure {
415 const char *Tag;
416
417 BasicBlock *Header;
418 BasicBlock *Latch;
419
420 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
421 // successor is `LatchExit', the exit block of the loop.
422 BranchInst *LatchBr;
423 BasicBlock *LatchExit;
424 unsigned LatchBrExitIdx;
425
426 Value *IndVarNext;
427 Value *IndVarStart;
428 Value *LoopExitAt;
429 bool IndVarIncreasing;
430
431 LoopStructure()
432 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
433 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
434 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
435
436 template <typename M> LoopStructure map(M Map) const {
437 LoopStructure Result;
438 Result.Tag = Tag;
439 Result.Header = cast<BasicBlock>(Map(Header));
440 Result.Latch = cast<BasicBlock>(Map(Latch));
441 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
442 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
443 Result.LatchBrExitIdx = LatchBrExitIdx;
444 Result.IndVarNext = Map(IndVarNext);
445 Result.IndVarStart = Map(IndVarStart);
446 Result.LoopExitAt = Map(LoopExitAt);
447 Result.IndVarIncreasing = IndVarIncreasing;
448 return Result;
449 }
450
Sanjoy Dase91665d2015-02-26 08:56:04 +0000451 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
452 BranchProbabilityInfo &BPI,
453 Loop &,
Sanjoy Dase75ed922015-02-26 08:19:31 +0000454 const char *&);
455};
456
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000457/// This class is used to constrain loops to run within a given iteration space.
458/// The algorithm this class implements is given a Loop and a range [Begin,
459/// End). The algorithm then tries to break out a "main loop" out of the loop
460/// it is given in a way that the "main loop" runs with the induction variable
461/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
462/// loops to run any remaining iterations. The pre loop runs any iterations in
463/// which the induction variable is < Begin, and the post loop runs any
464/// iterations in which the induction variable is >= End.
465///
466class LoopConstrainer {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000467 // The representation of a clone of the original loop we started out with.
468 struct ClonedLoop {
469 // The cloned blocks
470 std::vector<BasicBlock *> Blocks;
471
472 // `Map` maps values in the clonee into values in the cloned version
473 ValueToValueMapTy Map;
474
475 // An instance of `LoopStructure` for the cloned loop
476 LoopStructure Structure;
477 };
478
479 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
480 // more details on what these fields mean.
481 struct RewrittenRangeInfo {
482 BasicBlock *PseudoExit;
483 BasicBlock *ExitSelector;
484 std::vector<PHINode *> PHIValuesAtPseudoExit;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000485 PHINode *IndVarEnd;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000486
Sanjoy Dase75ed922015-02-26 08:19:31 +0000487 RewrittenRangeInfo()
488 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000489 };
490
491 // Calculated subranges we restrict the iteration space of the main loop to.
492 // See the implementation of `calculateSubRanges' for more details on how
Sanjoy Dase75ed922015-02-26 08:19:31 +0000493 // these fields are computed. `LowLimit` is None if there is no restriction
494 // on low end of the restricted iteration space of the main loop. `HighLimit`
495 // is None if there is no restriction on high end of the restricted iteration
496 // space of the main loop.
497
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000498 struct SubRanges {
Sanjoy Dase75ed922015-02-26 08:19:31 +0000499 Optional<const SCEV *> LowLimit;
500 Optional<const SCEV *> HighLimit;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000501 };
502
503 // A utility function that does a `replaceUsesOfWith' on the incoming block
504 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
505 // incoming block list with `ReplaceBy'.
506 static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
507 BasicBlock *ReplaceBy);
508
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000509 // Compute a safe set of limits for the main loop to run in -- effectively the
510 // intersection of `Range' and the iteration space of the original loop.
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000511 // Return None if unable to compute the set of subranges.
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000512 //
Sanjoy Dase75ed922015-02-26 08:19:31 +0000513 Optional<SubRanges> calculateSubRanges() const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000514
515 // Clone `OriginalLoop' and return the result in CLResult. The IR after
516 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
517 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
518 // but there is no such edge.
519 //
520 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
521
522 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
523 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
524 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
525 // `OriginalHeaderCount'.
526 //
527 // If there are iterations left to execute, control is made to jump to
528 // `ContinuationBlock', otherwise they take the normal loop exit. The
529 // returned `RewrittenRangeInfo' object is populated as follows:
530 //
531 // .PseudoExit is a basic block that unconditionally branches to
532 // `ContinuationBlock'.
533 //
534 // .ExitSelector is a basic block that decides, on exit from the loop,
535 // whether to branch to the "true" exit or to `PseudoExit'.
536 //
537 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
538 // for each PHINode in the loop header on taking the pseudo exit.
539 //
540 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
541 // preheader because it is made to branch to the loop header only
542 // conditionally.
543 //
544 RewrittenRangeInfo
545 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
546 Value *ExitLoopAt,
547 BasicBlock *ContinuationBlock) const;
548
549 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
550 // function creates a new preheader for `LS' and returns it.
551 //
Sanjoy Dase75ed922015-02-26 08:19:31 +0000552 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
553 const char *Tag) const;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000554
555 // `ContinuationBlockAndPreheader' was the continuation block for some call to
556 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
557 // This function rewrites the PHI nodes in `LS.Header' to start with the
558 // correct value.
559 void rewriteIncomingValuesForPHIs(
Sanjoy Dase75ed922015-02-26 08:19:31 +0000560 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000561 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
562
563 // Even though we do not preserve any passes at this time, we at least need to
564 // keep the parent loop structure consistent. The `LPPassManager' seems to
565 // verify this after running a loop pass. This function adds the list of
Benjamin Kramer39f76ac2015-02-06 14:43:49 +0000566 // blocks denoted by BBs to this loops parent loop if required.
567 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000568
569 // Some global state.
570 Function &F;
571 LLVMContext &Ctx;
572 ScalarEvolution &SE;
573
574 // Information about the original loop we started out with.
575 Loop &OriginalLoop;
576 LoopInfo &OriginalLoopInfo;
577 const SCEV *LatchTakenCount;
578 BasicBlock *OriginalPreheader;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000579
580 // The preheader of the main loop. This may or may not be different from
581 // `OriginalPreheader'.
582 BasicBlock *MainLoopPreheader;
583
584 // The range we need to run the main loop in.
585 InductiveRangeCheck::Range Range;
586
587 // The structure of the main loop (see comment at the beginning of this class
588 // for a definition)
589 LoopStructure MainLoopStructure;
590
591public:
Sanjoy Dase75ed922015-02-26 08:19:31 +0000592 LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
593 ScalarEvolution &SE, InductiveRangeCheck::Range R)
594 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
595 SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
596 OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
597 MainLoopStructure(LS) {}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000598
599 // Entry point for the algorithm. Returns true on success.
600 bool run();
601};
602
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000603}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000604
605void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
606 BasicBlock *ReplaceBy) {
607 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
608 if (PN->getIncomingBlock(i) == Block)
609 PN->setIncomingBlock(i, ReplaceBy);
610}
611
Sanjoy Dase75ed922015-02-26 08:19:31 +0000612static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
613 APInt SMax =
614 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
615 return SE.getSignedRange(S).contains(SMax) &&
616 SE.getUnsignedRange(S).contains(SMax);
617}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000618
Sanjoy Dase75ed922015-02-26 08:19:31 +0000619static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
620 APInt SMin =
621 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
622 return SE.getSignedRange(S).contains(SMin) &&
623 SE.getUnsignedRange(S).contains(SMin);
624}
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000625
Sanjoy Dase75ed922015-02-26 08:19:31 +0000626Optional<LoopStructure>
Sanjoy Dase91665d2015-02-26 08:56:04 +0000627LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
628 Loop &L, const char *&FailureReason) {
Sanjoy Dase75ed922015-02-26 08:19:31 +0000629 assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
630
631 BasicBlock *Latch = L.getLoopLatch();
632 if (!L.isLoopExiting(Latch)) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000633 FailureReason = "no loop latch";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000634 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000635 }
636
Sanjoy Dase75ed922015-02-26 08:19:31 +0000637 BasicBlock *Header = L.getHeader();
638 BasicBlock *Preheader = L.getLoopPreheader();
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000639 if (!Preheader) {
640 FailureReason = "no preheader";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000641 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000642 }
643
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000644 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000645 if (!LatchBr || LatchBr->isUnconditional()) {
646 FailureReason = "latch terminator not conditional branch";
Sanjoy Dase75ed922015-02-26 08:19:31 +0000647 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000648 }
649
Sanjoy Dase75ed922015-02-26 08:19:31 +0000650 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000651
Sanjoy Dase91665d2015-02-26 08:56:04 +0000652 BranchProbability ExitProbability =
653 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
654
655 if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
656 FailureReason = "short running loop, not profitable";
657 return None;
658 }
659
Sanjoy Dase75ed922015-02-26 08:19:31 +0000660 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
661 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
662 FailureReason = "latch terminator branch not conditional on integral icmp";
663 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000664 }
665
Sanjoy Dase75ed922015-02-26 08:19:31 +0000666 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
667 if (isa<SCEVCouldNotCompute>(LatchCount)) {
668 FailureReason = "could not compute latch count";
669 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000670 }
671
Sanjoy Dase75ed922015-02-26 08:19:31 +0000672 ICmpInst::Predicate Pred = ICI->getPredicate();
673 Value *LeftValue = ICI->getOperand(0);
674 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
675 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
676
677 Value *RightValue = ICI->getOperand(1);
678 const SCEV *RightSCEV = SE.getSCEV(RightValue);
679
680 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
681 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
682 if (isa<SCEVAddRecExpr>(RightSCEV)) {
683 std::swap(LeftSCEV, RightSCEV);
684 std::swap(LeftValue, RightValue);
685 Pred = ICmpInst::getSwappedPredicate(Pred);
686 } else {
687 FailureReason = "no add recurrences in the icmp";
688 return None;
689 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000690 }
691
Sanjoy Das45dc94a2015-03-24 19:29:22 +0000692 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
693 if (AR->getNoWrapFlags(SCEV::FlagNSW))
694 return true;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000695
696 IntegerType *Ty = cast<IntegerType>(AR->getType());
697 IntegerType *WideTy =
698 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
699
Sanjoy Das45dc94a2015-03-24 19:29:22 +0000700 const SCEVAddRecExpr *ExtendAfterOp =
701 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
702 if (ExtendAfterOp) {
703 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
704 const SCEV *ExtendedStep =
705 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
706
707 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
708 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
709
710 if (NoSignedWrap)
711 return true;
712 }
713
714 // We may have proved this when computing the sign extension above.
715 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
716 };
717
718 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
719 if (!AR->isAffine())
720 return false;
721
Sanjoy Dase75ed922015-02-26 08:19:31 +0000722 // Currently we only work with induction variables that have been proved to
723 // not wrap. This restriction can potentially be lifted in the future.
724
Sanjoy Das45dc94a2015-03-24 19:29:22 +0000725 if (!HasNoSignedWrap(AR))
Sanjoy Dase75ed922015-02-26 08:19:31 +0000726 return false;
727
728 if (const SCEVConstant *StepExpr =
729 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
730 ConstantInt *StepCI = StepExpr->getValue();
731 if (StepCI->isOne() || StepCI->isMinusOne()) {
732 IsIncreasing = StepCI->isOne();
733 return true;
734 }
735 }
736
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000737 return false;
Sanjoy Dase75ed922015-02-26 08:19:31 +0000738 };
739
740 // `ICI` is interpreted as taking the backedge if the *next* value of the
741 // induction variable satisfies some constraint.
742
743 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
744 bool IsIncreasing = false;
745 if (!IsInductionVar(IndVarNext, IsIncreasing)) {
746 FailureReason = "LHS in icmp not induction variable";
747 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000748 }
749
Sanjoy Dase75ed922015-02-26 08:19:31 +0000750 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
751 // TODO: generalize the predicates here to also match their unsigned variants.
752 if (IsIncreasing) {
753 bool FoundExpectedPred =
754 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
755 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
756
757 if (!FoundExpectedPred) {
758 FailureReason = "expected icmp slt semantically, found something else";
759 return None;
760 }
761
762 if (LatchBrExitIdx == 0) {
763 if (CanBeSMax(SE, RightSCEV)) {
764 // TODO: this restriction is easily removable -- we just have to
765 // remember that the icmp was an slt and not an sle.
766 FailureReason = "limit may overflow when coercing sle to slt";
767 return None;
768 }
769
770 IRBuilder<> B(&*Preheader->rbegin());
771 RightValue = B.CreateAdd(RightValue, One);
772 }
773
774 } else {
775 bool FoundExpectedPred =
776 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
777 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
778
779 if (!FoundExpectedPred) {
780 FailureReason = "expected icmp sgt semantically, found something else";
781 return None;
782 }
783
784 if (LatchBrExitIdx == 0) {
785 if (CanBeSMin(SE, RightSCEV)) {
786 // TODO: this restriction is easily removable -- we just have to
787 // remember that the icmp was an sgt and not an sge.
788 FailureReason = "limit may overflow when coercing sge to sgt";
789 return None;
790 }
791
792 IRBuilder<> B(&*Preheader->rbegin());
793 RightValue = B.CreateSub(RightValue, One);
794 }
795 }
796
797 const SCEV *StartNext = IndVarNext->getStart();
798 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
799 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
800
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000801 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
802
Sanjoy Dase75ed922015-02-26 08:19:31 +0000803 assert(SE.getLoopDisposition(LatchCount, &L) ==
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000804 ScalarEvolution::LoopInvariant &&
805 "loop variant exit count doesn't make sense!");
806
Sanjoy Dase75ed922015-02-26 08:19:31 +0000807 assert(!L.contains(LatchExit) && "expected an exit block!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000808 const DataLayout &DL = Preheader->getModule()->getDataLayout();
809 Value *IndVarStartV =
810 SCEVExpander(SE, DL, "irce")
811 .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
Sanjoy Dase75ed922015-02-26 08:19:31 +0000812 IndVarStartV->setName("indvar.start");
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000813
Sanjoy Dase75ed922015-02-26 08:19:31 +0000814 LoopStructure Result;
815
816 Result.Tag = "main";
817 Result.Header = Header;
818 Result.Latch = Latch;
819 Result.LatchBr = LatchBr;
820 Result.LatchExit = LatchExit;
821 Result.LatchBrExitIdx = LatchBrExitIdx;
822 Result.IndVarStart = IndVarStartV;
823 Result.IndVarNext = LeftValue;
824 Result.IndVarIncreasing = IsIncreasing;
825 Result.LoopExitAt = RightValue;
826
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000827 FailureReason = nullptr;
828
Sanjoy Dase75ed922015-02-26 08:19:31 +0000829 return Result;
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000830}
831
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000832Optional<LoopConstrainer::SubRanges>
Sanjoy Dase75ed922015-02-26 08:19:31 +0000833LoopConstrainer::calculateSubRanges() const {
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000834 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
835
Sanjoy Das351db052015-01-22 09:32:02 +0000836 if (Range.getType() != Ty)
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +0000837 return None;
838
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000839 LoopConstrainer::SubRanges Result;
840
841 // I think we can be more aggressive here and make this nuw / nsw if the
842 // addition that feeds into the icmp for the latch's terminating branch is nuw
843 // / nsw. In any case, a wrapping 2's complement addition is safe.
844 ConstantInt *One = ConstantInt::get(Ty, 1);
Sanjoy Dase75ed922015-02-26 08:19:31 +0000845 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
846 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000847
Sanjoy Dase75ed922015-02-26 08:19:31 +0000848 bool Increasing = MainLoopStructure.IndVarIncreasing;
Sanjoy Das7a0b7f52015-03-17 00:42:16 +0000849
Sanjoy Dase75ed922015-02-26 08:19:31 +0000850 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
851 // range of values the induction variable takes.
Sanjoy Das7a0b7f52015-03-17 00:42:16 +0000852
853 const SCEV *Smallest = nullptr, *Greatest = nullptr;
854
855 if (Increasing) {
856 Smallest = Start;
857 Greatest = End;
858 } else {
859 // These two computations may sign-overflow. Here is why that is okay:
860 //
861 // We know that the induction variable does not sign-overflow on any
862 // iteration except the last one, and it starts at `Start` and ends at
863 // `End`, decrementing by one every time.
864 //
865 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
866 // induction variable is decreasing we know that that the smallest value
867 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
868 //
869 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
870 // that case, `Clamp` will always return `Smallest` and
871 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
872 // will be an empty range. Returning an empty range is always safe.
873 //
874
875 Smallest = SE.getAddExpr(End, SE.getSCEV(One));
876 Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
877 }
Sanjoy Dase75ed922015-02-26 08:19:31 +0000878
879 auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
880 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
881 };
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000882
883 // In some cases we can prove that we don't need a pre or post loop
884
885 bool ProvablyNoPreloop =
Sanjoy Dase75ed922015-02-26 08:19:31 +0000886 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
887 if (!ProvablyNoPreloop)
888 Result.LowLimit = Clamp(Range.getBegin());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000889
890 bool ProvablyNoPostLoop =
Sanjoy Dase75ed922015-02-26 08:19:31 +0000891 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
892 if (!ProvablyNoPostLoop)
893 Result.HighLimit = Clamp(Range.getEnd());
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000894
895 return Result;
896}
897
898void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
899 const char *Tag) const {
900 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
901 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
902 Result.Blocks.push_back(Clone);
903 Result.Map[BB] = Clone;
904 }
905
906 auto GetClonedValue = [&Result](Value *V) {
907 assert(V && "null values not in domain!");
908 auto It = Result.Map.find(V);
909 if (It == Result.Map.end())
910 return V;
911 return static_cast<Value *>(It->second);
912 };
913
914 Result.Structure = MainLoopStructure.map(GetClonedValue);
915 Result.Structure.Tag = Tag;
916
917 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
918 BasicBlock *ClonedBB = Result.Blocks[i];
919 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
920
921 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
922
923 for (Instruction &I : *ClonedBB)
924 RemapInstruction(&I, Result.Map,
Duncan P. N. Exon Smithda68cbc2016-04-07 00:26:43 +0000925 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000926
927 // Exit blocks will now have one more predecessor and their PHI nodes need
928 // to be edited to reflect that. No phi nodes need to be introduced because
929 // the loop is in LCSSA.
930
931 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
932 SBBI != SBBE; ++SBBI) {
933
934 if (OriginalLoop.contains(*SBBI))
935 continue; // not an exit block
936
937 for (Instruction &I : **SBBI) {
938 if (!isa<PHINode>(&I))
939 break;
940
941 PHINode *PN = cast<PHINode>(&I);
942 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
943 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
944 }
945 }
946 }
947}
948
949LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
Sanjoy Dase75ed922015-02-26 08:19:31 +0000950 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
Sanjoy Dasa1837a32015-01-16 01:03:22 +0000951 BasicBlock *ContinuationBlock) const {
952
953 // We start with a loop with a single latch:
954 //
955 // +--------------------+
956 // | |
957 // | preheader |
958 // | |
959 // +--------+-----------+
960 // | ----------------\
961 // | / |
962 // +--------v----v------+ |
963 // | | |
964 // | header | |
965 // | | |
966 // +--------------------+ |
967 // |
968 // ..... |
969 // |
970 // +--------------------+ |
971 // | | |
972 // | latch >----------/
973 // | |
974 // +-------v------------+
975 // |
976 // |
977 // | +--------------------+
978 // | | |
979 // +---> original exit |
980 // | |
981 // +--------------------+
982 //
983 // We change the control flow to look like
984 //
985 //
986 // +--------------------+
987 // | |
988 // | preheader >-------------------------+
989 // | | |
990 // +--------v-----------+ |
991 // | /-------------+ |
992 // | / | |
993 // +--------v--v--------+ | |
994 // | | | |
995 // | header | | +--------+ |
996 // | | | | | |
997 // +--------------------+ | | +-----v-----v-----------+
998 // | | | |
999 // | | | .pseudo.exit |
1000 // | | | |
1001 // | | +-----------v-----------+
1002 // | | |
1003 // ..... | | |
1004 // | | +--------v-------------+
1005 // +--------------------+ | | | |
1006 // | | | | | ContinuationBlock |
1007 // | latch >------+ | | |
1008 // | | | +----------------------+
1009 // +---------v----------+ |
1010 // | |
1011 // | |
1012 // | +---------------^-----+
1013 // | | |
1014 // +-----> .exit.selector |
1015 // | |
1016 // +----------v----------+
1017 // |
1018 // +--------------------+ |
1019 // | | |
1020 // | original exit <----+
1021 // | |
1022 // +--------------------+
1023 //
1024
1025 RewrittenRangeInfo RRI;
1026
1027 auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
1028 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
Duncan P. N. Exon Smith3a9c9e32015-10-13 18:26:00 +00001029 &F, &*BBInsertLocation);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001030 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
Duncan P. N. Exon Smith3a9c9e32015-10-13 18:26:00 +00001031 &*BBInsertLocation);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001032
1033 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
Sanjoy Dase75ed922015-02-26 08:19:31 +00001034 bool Increasing = LS.IndVarIncreasing;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001035
1036 IRBuilder<> B(PreheaderJump);
1037
1038 // EnterLoopCond - is it okay to start executing this `LS'?
Sanjoy Dase75ed922015-02-26 08:19:31 +00001039 Value *EnterLoopCond = Increasing
1040 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1041 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1042
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001043 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1044 PreheaderJump->eraseFromParent();
1045
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001046 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
Sanjoy Dase75ed922015-02-26 08:19:31 +00001047 B.SetInsertPoint(LS.LatchBr);
1048 Value *TakeBackedgeLoopCond =
1049 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1050 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1051 Value *CondForBranch = LS.LatchBrExitIdx == 1
1052 ? TakeBackedgeLoopCond
1053 : B.CreateNot(TakeBackedgeLoopCond);
1054
1055 LS.LatchBr->setCondition(CondForBranch);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001056
1057 B.SetInsertPoint(RRI.ExitSelector);
1058
1059 // IterationsLeft - are there any more iterations left, given the original
1060 // upper bound on the induction variable? If not, we branch to the "real"
1061 // exit.
Sanjoy Dase75ed922015-02-26 08:19:31 +00001062 Value *IterationsLeft = Increasing
1063 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1064 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001065 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1066
1067 BranchInst *BranchToContinuation =
1068 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1069
1070 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1071 // each of the PHI nodes in the loop header. This feeds into the initial
1072 // value of the same PHI nodes if/when we continue execution.
1073 for (Instruction &I : *LS.Header) {
1074 if (!isa<PHINode>(&I))
1075 break;
1076
1077 PHINode *PN = cast<PHINode>(&I);
1078
1079 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1080 BranchToContinuation);
1081
1082 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1083 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1084 RRI.ExitSelector);
1085 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1086 }
1087
Sanjoy Dase75ed922015-02-26 08:19:31 +00001088 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1089 BranchToContinuation);
1090 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1091 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1092
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001093 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1094 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1095 for (Instruction &I : *LS.LatchExit) {
1096 if (PHINode *PN = dyn_cast<PHINode>(&I))
1097 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1098 else
1099 break;
1100 }
1101
1102 return RRI;
1103}
1104
1105void LoopConstrainer::rewriteIncomingValuesForPHIs(
Sanjoy Dase75ed922015-02-26 08:19:31 +00001106 LoopStructure &LS, BasicBlock *ContinuationBlock,
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001107 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1108
1109 unsigned PHIIndex = 0;
1110 for (Instruction &I : *LS.Header) {
1111 if (!isa<PHINode>(&I))
1112 break;
1113
1114 PHINode *PN = cast<PHINode>(&I);
1115
1116 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1117 if (PN->getIncomingBlock(i) == ContinuationBlock)
1118 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1119 }
1120
Sanjoy Dase75ed922015-02-26 08:19:31 +00001121 LS.IndVarStart = RRI.IndVarEnd;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001122}
1123
Sanjoy Dase75ed922015-02-26 08:19:31 +00001124BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1125 BasicBlock *OldPreheader,
1126 const char *Tag) const {
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001127
1128 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1129 BranchInst::Create(LS.Header, Preheader);
1130
1131 for (Instruction &I : *LS.Header) {
1132 if (!isa<PHINode>(&I))
1133 break;
1134
1135 PHINode *PN = cast<PHINode>(&I);
1136 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1137 replacePHIBlock(PN, OldPreheader, Preheader);
1138 }
1139
1140 return Preheader;
1141}
1142
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001143void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001144 Loop *ParentLoop = OriginalLoop.getParentLoop();
1145 if (!ParentLoop)
1146 return;
1147
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001148 for (BasicBlock *BB : BBs)
1149 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001150}
1151
1152bool LoopConstrainer::run() {
1153 BasicBlock *Preheader = nullptr;
Sanjoy Dase75ed922015-02-26 08:19:31 +00001154 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1155 Preheader = OriginalLoop.getLoopPreheader();
1156 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1157 "preconditions!");
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001158
1159 OriginalPreheader = Preheader;
1160 MainLoopPreheader = Preheader;
1161
Sanjoy Dase75ed922015-02-26 08:19:31 +00001162 Optional<SubRanges> MaybeSR = calculateSubRanges();
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001163 if (!MaybeSR.hasValue()) {
1164 DEBUG(dbgs() << "irce: could not compute subranges\n");
1165 return false;
1166 }
Sanjoy Dase75ed922015-02-26 08:19:31 +00001167
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001168 SubRanges SR = MaybeSR.getValue();
Sanjoy Dase75ed922015-02-26 08:19:31 +00001169 bool Increasing = MainLoopStructure.IndVarIncreasing;
1170 IntegerType *IVTy =
1171 cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1172
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001173 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
Sanjoy Dase75ed922015-02-26 08:19:31 +00001174 Instruction *InsertPt = OriginalPreheader->getTerminator();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001175
1176 // It would have been better to make `PreLoop' and `PostLoop'
1177 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1178 // constructor.
1179 ClonedLoop PreLoop, PostLoop;
Sanjoy Dase75ed922015-02-26 08:19:31 +00001180 bool NeedsPreLoop =
1181 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1182 bool NeedsPostLoop =
1183 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1184
1185 Value *ExitPreLoopAt = nullptr;
1186 Value *ExitMainLoopAt = nullptr;
1187 const SCEVConstant *MinusOneS =
1188 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1189
1190 if (NeedsPreLoop) {
1191 const SCEV *ExitPreLoopAtSCEV = nullptr;
1192
1193 if (Increasing)
1194 ExitPreLoopAtSCEV = *SR.LowLimit;
1195 else {
1196 if (CanBeSMin(SE, *SR.HighLimit)) {
1197 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1198 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
1199 << "\n");
1200 return false;
1201 }
1202 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1203 }
1204
1205 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1206 ExitPreLoopAt->setName("exit.preloop.at");
1207 }
1208
1209 if (NeedsPostLoop) {
1210 const SCEV *ExitMainLoopAtSCEV = nullptr;
1211
1212 if (Increasing)
1213 ExitMainLoopAtSCEV = *SR.HighLimit;
1214 else {
1215 if (CanBeSMin(SE, *SR.LowLimit)) {
1216 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1217 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
1218 << "\n");
1219 return false;
1220 }
1221 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1222 }
1223
1224 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1225 ExitMainLoopAt->setName("exit.mainloop.at");
1226 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001227
1228 // We clone these ahead of time so that we don't have to deal with changing
1229 // and temporarily invalid IR as we transform the loops.
1230 if (NeedsPreLoop)
1231 cloneLoop(PreLoop, "preloop");
1232 if (NeedsPostLoop)
1233 cloneLoop(PostLoop, "postloop");
1234
1235 RewrittenRangeInfo PreLoopRRI;
1236
1237 if (NeedsPreLoop) {
1238 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1239 PreLoop.Structure.Header);
1240
1241 MainLoopPreheader =
1242 createPreheader(MainLoopStructure, Preheader, "mainloop");
Sanjoy Dase75ed922015-02-26 08:19:31 +00001243 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1244 ExitPreLoopAt, MainLoopPreheader);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001245 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1246 PreLoopRRI);
1247 }
1248
1249 BasicBlock *PostLoopPreheader = nullptr;
1250 RewrittenRangeInfo PostLoopRRI;
1251
1252 if (NeedsPostLoop) {
1253 PostLoopPreheader =
1254 createPreheader(PostLoop.Structure, Preheader, "postloop");
1255 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
Sanjoy Dase75ed922015-02-26 08:19:31 +00001256 ExitMainLoopAt, PostLoopPreheader);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001257 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1258 PostLoopRRI);
1259 }
1260
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001261 BasicBlock *NewMainLoopPreheader =
1262 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1263 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1264 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1265 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001266
1267 // Some of the above may be nullptr, filter them out before passing to
1268 // addToParentLoopIfNeeded.
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001269 auto NewBlocksEnd =
1270 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001271
Benjamin Kramer39f76ac2015-02-06 14:43:49 +00001272 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1273 addToParentLoopIfNeeded(PreLoop.Blocks);
1274 addToParentLoopIfNeeded(PostLoop.Blocks);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001275
1276 return true;
1277}
1278
Sanjoy Das95c476d2015-02-21 22:20:22 +00001279/// Computes and returns a range of values for the induction variable (IndVar)
1280/// in which the range check can be safely elided. If it cannot compute such a
1281/// range, returns None.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001282Optional<InductiveRangeCheck::Range>
Sanjoy Das59776732016-05-21 02:31:51 +00001283InductiveRangeCheck::computeSafeIterationSpace(
1284 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
Sanjoy Das95c476d2015-02-21 22:20:22 +00001285 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1286 // variable, that may or may not exist as a real llvm::Value in the loop) and
1287 // this inductive range check is a range check on the "C + D * I" ("C" is
1288 // getOffset() and "D" is getScale()). We rewrite the value being range
1289 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1290 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1291 // can be generalized as needed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001292 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001293 // The actual inequalities we solve are of the form
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001294 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001295 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1296 //
1297 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
1298 // and subtractions are twos-complement wrapping and comparisons are signed.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001299 //
1300 // Proof:
1301 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001302 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1303 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
1304 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
1305 // overflown.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001306 //
Sanjoy Das95c476d2015-02-21 22:20:22 +00001307 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
1308 // Hence 0 <= (IndVar + M) < L
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001309
Sanjoy Das95c476d2015-02-21 22:20:22 +00001310 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1311 // 127, IndVar = 126 and L = -2 in an i8 world.
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001312
Sanjoy Das95c476d2015-02-21 22:20:22 +00001313 if (!IndVar->isAffine())
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001314 return None;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001315
Sanjoy Das95c476d2015-02-21 22:20:22 +00001316 const SCEV *A = IndVar->getStart();
1317 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1318 if (!B)
1319 return None;
1320
1321 const SCEV *C = getOffset();
1322 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1323 if (D != B)
1324 return None;
1325
1326 ConstantInt *ConstD = D->getValue();
1327 if (!(ConstD->isMinusOne() || ConstD->isOne()))
1328 return None;
1329
1330 const SCEV *M = SE.getMinusSCEV(C, A);
1331
1332 const SCEV *Begin = SE.getNegativeSCEV(M);
Sanjoy Dase2cde6f2015-03-17 00:42:13 +00001333 const SCEV *UpperLimit = nullptr;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001334
Sanjoy Dase2cde6f2015-03-17 00:42:13 +00001335 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1336 // We can potentially do much better here.
1337 if (Value *V = getLength()) {
1338 UpperLimit = SE.getSCEV(V);
1339 } else {
1340 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1341 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1342 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1343 }
1344
1345 const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
Sanjoy Das351db052015-01-22 09:32:02 +00001346 return InductiveRangeCheck::Range(Begin, End);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001347}
1348
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001349static Optional<InductiveRangeCheck::Range>
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001350IntersectRange(ScalarEvolution &SE,
1351 const Optional<InductiveRangeCheck::Range> &R1,
Sanjoy Das59776732016-05-21 02:31:51 +00001352 const InductiveRangeCheck::Range &R2) {
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001353 if (!R1.hasValue())
1354 return R2;
1355 auto &R1Value = R1.getValue();
1356
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001357 // TODO: we could widen the smaller range and have this work; but for now we
1358 // bail out to keep things simple.
Sanjoy Das351db052015-01-22 09:32:02 +00001359 if (R1Value.getType() != R2.getType())
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001360 return None;
1361
Sanjoy Das7fc60da2015-02-21 22:07:32 +00001362 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1363 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1364
1365 return InductiveRangeCheck::Range(NewBegin, NewEnd);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001366}
1367
1368bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
Andrew Kaylor50271f72016-05-03 22:32:30 +00001369 if (skipLoop(L))
1370 return false;
1371
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001372 if (L->getBlocks().size() >= LoopSizeCutoff) {
1373 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1374 return false;
1375 }
1376
1377 BasicBlock *Preheader = L->getLoopPreheader();
1378 if (!Preheader) {
1379 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1380 return false;
1381 }
1382
1383 LLVMContext &Context = Preheader->getContext();
Sanjoy Dasc5b11692016-05-21 02:52:13 +00001384 SmallVector<InductiveRangeCheck, 16> RangeChecks;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001385 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Cong Houab23bfb2015-07-15 22:48:29 +00001386 BranchProbabilityInfo &BPI =
1387 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001388
1389 for (auto BBI : L->getBlocks())
1390 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
Sanjoy Dasa0992682016-05-26 00:09:02 +00001391 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1392 RangeChecks);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001393
1394 if (RangeChecks.empty())
1395 return false;
1396
Sanjoy Das9c1bfae2015-03-17 01:40:22 +00001397 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1398 OS << "irce: looking at loop "; L->print(OS);
1399 OS << "irce: loop has " << RangeChecks.size()
1400 << " inductive range checks: \n";
Sanjoy Dasc5b11692016-05-21 02:52:13 +00001401 for (InductiveRangeCheck &IRC : RangeChecks)
1402 IRC.print(OS);
Sanjoy Das9c1bfae2015-03-17 01:40:22 +00001403 };
1404
1405 DEBUG(PrintRecognizedRangeChecks(dbgs()));
1406
1407 if (PrintRangeChecks)
1408 PrintRecognizedRangeChecks(errs());
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001409
Sanjoy Dase75ed922015-02-26 08:19:31 +00001410 const char *FailureReason = nullptr;
1411 Optional<LoopStructure> MaybeLoopStructure =
Sanjoy Dase91665d2015-02-26 08:56:04 +00001412 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
Sanjoy Dase75ed922015-02-26 08:19:31 +00001413 if (!MaybeLoopStructure.hasValue()) {
1414 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1415 << "\n";);
1416 return false;
1417 }
1418 LoopStructure LS = MaybeLoopStructure.getValue();
1419 bool Increasing = LS.IndVarIncreasing;
1420 const SCEV *MinusOne =
1421 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1422 const SCEVAddRecExpr *IndVar =
1423 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1424
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001425 Optional<InductiveRangeCheck::Range> SafeIterRange;
1426 Instruction *ExprInsertPt = Preheader->getTerminator();
1427
Sanjoy Dasc5b11692016-05-21 02:52:13 +00001428 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001429
1430 IRBuilder<> B(ExprInsertPt);
Sanjoy Dasc5b11692016-05-21 02:52:13 +00001431 for (InductiveRangeCheck &IRC : RangeChecks) {
1432 auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001433 if (Result.hasValue()) {
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001434 auto MaybeSafeIterRange =
Sanjoy Das59776732016-05-21 02:31:51 +00001435 IntersectRange(SE, SafeIterRange, Result.getValue());
Sanjoy Dasd1fb13c2015-01-22 08:29:18 +00001436 if (MaybeSafeIterRange.hasValue()) {
1437 RangeChecksToEliminate.push_back(IRC);
1438 SafeIterRange = MaybeSafeIterRange.getValue();
1439 }
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001440 }
1441 }
1442
1443 if (!SafeIterRange.hasValue())
1444 return false;
1445
Sanjoy Dase75ed922015-02-26 08:19:31 +00001446 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1447 SE, SafeIterRange.getValue());
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001448 bool Changed = LC.run();
1449
1450 if (Changed) {
1451 auto PrintConstrainedLoopInfo = [L]() {
1452 dbgs() << "irce: in function ";
1453 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1454 dbgs() << "constrained ";
1455 L->print(dbgs());
1456 };
1457
1458 DEBUG(PrintConstrainedLoopInfo());
1459
1460 if (PrintChangedLoops)
1461 PrintConstrainedLoopInfo();
1462
1463 // Optimize away the now-redundant range checks.
1464
Sanjoy Dasc5b11692016-05-21 02:52:13 +00001465 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1466 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001467 ? ConstantInt::getTrue(Context)
1468 : ConstantInt::getFalse(Context);
Sanjoy Dasaa83c472016-05-23 22:16:45 +00001469 IRC.getCheckUse()->set(FoldedRangeCheck);
Sanjoy Dasa1837a32015-01-16 01:03:22 +00001470 }
1471 }
1472
1473 return Changed;
1474}
1475
1476Pass *llvm::createInductiveRangeCheckEliminationPass() {
1477 return new InductiveRangeCheckElimination;
1478}