blob: ce8504b87a7c59612b6a38efc4866aee96c860a8 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000030#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000031#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000033#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000034#include "llvm/IR/Function.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000037#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000038#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000039#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000040#include "llvm/IR/PassManager.h"
41#include "llvm/IR/Use.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000047#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000048#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000049#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000050#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000051#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000052#include <cassert>
53#include <iterator>
54#include <memory>
55#include <utility>
56
57using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000058
59#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000060
Geoff Berryefb0dd12016-06-14 21:19:40 +000061INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000062 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000063INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000065INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000067
Chad Rosier232e29e2016-07-06 21:20:47 +000068INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72 "Memory SSA Printer", false, false)
73
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000074static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
78
Chad Rosier232e29e2016-07-06 21:20:47 +000079static cl::opt<bool>
80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
81 cl::desc("Verify MemorySSA in legacy printer pass."));
82
George Burgess IVe1100f52016-02-02 22:46:49 +000083namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000084
George Burgess IVe1100f52016-02-02 22:46:49 +000085/// \brief An assembly annotator class to print Memory SSA information in
86/// comments.
87class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
88 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090 const MemorySSA *MSSA;
91
92public:
93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
94
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000095 void emitBasicBlockStartAnnot(const BasicBlock *BB,
96 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +000097 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
98 OS << "; " << *MA << "\n";
99 }
100
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000101 void emitInstructionAnnot(const Instruction *I,
102 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
104 OS << "; " << *MA << "\n";
105 }
106};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000107
108} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000109
George Burgess IV5f308972016-07-19 01:29:15 +0000110namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000111
Daniel Berlindff31de2016-08-02 21:57:52 +0000112/// Our current alias analysis API differentiates heavily between calls and
113/// non-calls, and functions called on one usually assert on the other.
114/// This class encapsulates the distinction to simplify other code that wants
115/// "Memory affecting instructions and related data" to use as a key.
116/// For example, this class is used as a densemap key in the use optimizer.
117class MemoryLocOrCall {
118public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000119 bool IsCall = false;
120
121 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000122 MemoryLocOrCall(MemoryUseOrDef *MUD)
123 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000124 MemoryLocOrCall(const MemoryUseOrDef *MUD)
125 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000126
127 MemoryLocOrCall(Instruction *Inst) {
128 if (ImmutableCallSite(Inst)) {
129 IsCall = true;
130 CS = ImmutableCallSite(Inst);
131 } else {
132 IsCall = false;
133 // There is no such thing as a memorylocation for a fence inst, and it is
134 // unique in that regard.
135 if (!isa<FenceInst>(Inst))
136 Loc = MemoryLocation::get(Inst);
137 }
138 }
139
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000141
Daniel Berlindff31de2016-08-02 21:57:52 +0000142 ImmutableCallSite getCS() const {
143 assert(IsCall);
144 return CS;
145 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000146
Daniel Berlindff31de2016-08-02 21:57:52 +0000147 MemoryLocation getLoc() const {
148 assert(!IsCall);
149 return Loc;
150 }
151
152 bool operator==(const MemoryLocOrCall &Other) const {
153 if (IsCall != Other.IsCall)
154 return false;
155
156 if (IsCall)
157 return CS.getCalledValue() == Other.CS.getCalledValue();
158 return Loc == Other.Loc;
159 }
160
161private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000162 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000163 ImmutableCallSite CS;
164 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000165 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000166};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000167
168} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000169
170namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000171
Daniel Berlindff31de2016-08-02 21:57:52 +0000172template <> struct DenseMapInfo<MemoryLocOrCall> {
173 static inline MemoryLocOrCall getEmptyKey() {
174 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
175 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000176
Daniel Berlindff31de2016-08-02 21:57:52 +0000177 static inline MemoryLocOrCall getTombstoneKey() {
178 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
179 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000180
Daniel Berlindff31de2016-08-02 21:57:52 +0000181 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
182 if (MLOC.IsCall)
183 return hash_combine(MLOC.IsCall,
184 DenseMapInfo<const Value *>::getHashValue(
185 MLOC.getCS().getCalledValue()));
186 return hash_combine(
187 MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
188 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000189
Daniel Berlindff31de2016-08-02 21:57:52 +0000190 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
191 return LHS == RHS;
192 }
193};
Daniel Berlindf101192016-08-03 00:01:46 +0000194
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000195} // end namespace llvm
196
George Burgess IV82e355c2016-08-03 19:39:54 +0000197/// This does one-way checks to see if Use could theoretically be hoisted above
198/// MayClobber. This will not check the other way around.
199///
200/// This assumes that, for the purposes of MemorySSA, Use comes directly after
201/// MayClobber, with no potentially clobbering operations in between them.
202/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000203static bool areLoadsReorderable(const LoadInst *Use,
204 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000205 bool VolatileUse = Use->isVolatile();
206 bool VolatileClobber = MayClobber->isVolatile();
207 // Volatile operations may never be reordered with other volatile operations.
208 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000209 return false;
210 // Otherwise, volatile doesn't matter here. From the language reference:
211 // 'optimizers may change the order of volatile operations relative to
212 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000213
214 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
215 // is weaker, it can be moved above other loads. We just need to be sure that
216 // MayClobber isn't an acquire load, because loads can't be moved above
217 // acquire loads.
218 //
219 // Note that this explicitly *does* allow the free reordering of monotonic (or
220 // weaker) loads of the same address.
221 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
222 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
223 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000224 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000225}
226
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000227namespace {
228
229struct ClobberAlias {
230 bool IsClobber;
231 Optional<AliasResult> AR;
232};
233
234} // end anonymous namespace
235
236// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
237// ignored if IsClobber = false.
238static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
239 const MemoryLocation &UseLoc,
240 const Instruction *UseInst,
241 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000242 Instruction *DefInst = MD->getMemoryInst();
243 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000244 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000245 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000246
Daniel Berlindf101192016-08-03 00:01:46 +0000247 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
248 // These intrinsics will show up as affecting memory, but they are just
249 // markers.
250 switch (II->getIntrinsicID()) {
251 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000252 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000253 return {false, NoAlias};
254 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
255 return {AR == MustAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000256 case Intrinsic::lifetime_end:
257 case Intrinsic::invariant_start:
258 case Intrinsic::invariant_end:
259 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000260 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000261 default:
262 break;
263 }
264 }
265
Hans Wennborg70e22d12017-11-21 18:00:01 +0000266 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000267 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000268 AR = isMustSet(I) ? MustAlias : MayAlias;
269 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000270 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000271
Alina Sbirleaca741a82017-12-22 19:54:03 +0000272 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
273 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000274 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000275
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000276 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
277 AR = isMustSet(I) ? MustAlias : MayAlias;
278 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000279}
280
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000281static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
282 const MemoryUseOrDef *MU,
283 const MemoryLocOrCall &UseMLOC,
284 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000285 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
286 // to exist while MemoryLocOrCall is pushed through places.
287 if (UseMLOC.IsCall)
288 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
289 AA);
290 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
291 AA);
292}
293
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000294// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000295bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
296 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000297 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000298}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000299
300namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000301
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000302struct UpwardsMemoryQuery {
303 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000304 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000305 // The pointer location we started the query with. This will be empty if
306 // IsCall is true.
307 MemoryLocation StartingLoc;
308 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000309 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000310 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000311 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000312 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000313
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000314 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000315
316 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
317 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
318 if (!IsCall)
319 StartingLoc = MemoryLocation::get(Inst);
320 }
321};
322
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000323} // end anonymous namespace
324
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000325static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
326 AliasAnalysis &AA) {
327 Instruction *Inst = MD->getMemoryInst();
328 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
329 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000330 case Intrinsic::lifetime_end:
331 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
332 default:
333 return false;
334 }
335 }
336 return false;
337}
338
339static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
340 const Instruction *I) {
341 // If the memory can't be changed, then loads of the memory can't be
342 // clobbered.
343 //
344 // FIXME: We should handle invariant groups, as well. It's a bit harder,
345 // because we need to pay close attention to invariant group barriers.
346 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000347 AA.pointsToConstantMemory(cast<LoadInst>(I)->
348 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000349}
350
George Burgess IV5f308972016-07-19 01:29:15 +0000351/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
352/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
353///
354/// This is meant to be as simple and self-contained as possible. Because it
355/// uses no cache, etc., it can be relatively expensive.
356///
357/// \param Start The MemoryAccess that we want to walk from.
358/// \param ClobberAt A clobber for Start.
359/// \param StartLoc The MemoryLocation for Start.
360/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
361/// \param Query The UpwardsMemoryQuery we used for our search.
362/// \param AA The AliasAnalysis we used for our search.
363static void LLVM_ATTRIBUTE_UNUSED
364checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
365 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
366 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
367 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
368
369 if (MSSA.isLiveOnEntryDef(Start)) {
370 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
371 "liveOnEntry must clobber itself");
372 return;
373 }
374
George Burgess IV5f308972016-07-19 01:29:15 +0000375 bool FoundClobber = false;
376 DenseSet<MemoryAccessPair> VisitedPhis;
377 SmallVector<MemoryAccessPair, 8> Worklist;
378 Worklist.emplace_back(Start, StartLoc);
379 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
380 // is found, complain.
381 while (!Worklist.empty()) {
382 MemoryAccessPair MAP = Worklist.pop_back_val();
383 // All we care about is that nothing from Start to ClobberAt clobbers Start.
384 // We learn nothing from revisiting nodes.
385 if (!VisitedPhis.insert(MAP).second)
386 continue;
387
388 for (MemoryAccess *MA : def_chain(MAP.first)) {
389 if (MA == ClobberAt) {
390 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
391 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
392 // since it won't let us short-circuit.
393 //
394 // Also, note that this can't be hoisted out of the `Worklist` loop,
395 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000396 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
397 if (!FoundClobber) {
398 ClobberAlias CA =
399 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
400 if (CA.IsClobber) {
401 FoundClobber = true;
402 // Not used: CA.AR;
403 }
404 }
George Burgess IV5f308972016-07-19 01:29:15 +0000405 }
406 break;
407 }
408
409 // We should never hit liveOnEntry, unless it's the clobber.
410 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
411
412 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
413 (void)MD;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000414 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
415 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000416 "Found clobber before reaching ClobberAt!");
417 continue;
418 }
419
420 assert(isa<MemoryPhi>(MA));
421 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
422 }
423 }
424
425 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
426 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
427 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
428 "ClobberAt never acted as a clobber");
429}
430
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000431namespace {
432
George Burgess IV5f308972016-07-19 01:29:15 +0000433/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
434/// in one class.
435class ClobberWalker {
436 /// Save a few bytes by using unsigned instead of size_t.
437 using ListIndex = unsigned;
438
439 /// Represents a span of contiguous MemoryDefs, potentially ending in a
440 /// MemoryPhi.
441 struct DefPath {
442 MemoryLocation Loc;
443 // Note that, because we always walk in reverse, Last will always dominate
444 // First. Also note that First and Last are inclusive.
445 MemoryAccess *First;
446 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000447 Optional<ListIndex> Previous;
448
449 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
450 Optional<ListIndex> Previous)
451 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
452
453 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
454 Optional<ListIndex> Previous)
455 : DefPath(Loc, Init, Init, Previous) {}
456 };
457
458 const MemorySSA &MSSA;
459 AliasAnalysis &AA;
460 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000461 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000462
463 // Phi optimization bookkeeping
464 SmallVector<DefPath, 32> Paths;
465 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000466
George Burgess IV5f308972016-07-19 01:29:15 +0000467 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000468 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000469 assert(From->getNumOperands() && "Phi with no operands?");
470
471 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000472 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
473 DomTreeNode *Node = DT.getNode(BB);
474 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000475 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
476 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000477 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000478 }
George Burgess IV5f308972016-07-19 01:29:15 +0000479 return Result;
480 }
481
482 /// Result of calling walkToPhiOrClobber.
483 struct UpwardsWalkResult {
484 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000485 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000486 MemoryAccess *Result;
487 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000488 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000489 };
490
491 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
492 /// This will update Desc.Last as it walks. It will (optionally) also stop at
493 /// StopAt.
494 ///
495 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000496 UpwardsWalkResult
497 walkToPhiOrClobber(DefPath &Desc,
498 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000499 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
500
501 for (MemoryAccess *Current : def_chain(Desc.Last)) {
502 Desc.Last = Current;
503 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000504 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000505
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000506 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
507 if (MSSA.isLiveOnEntryDef(MD))
508 return {MD, true, MustAlias};
509 ClobberAlias CA =
510 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
511 if (CA.IsClobber)
512 return {MD, true, CA.AR};
513 }
George Burgess IV5f308972016-07-19 01:29:15 +0000514 }
515
516 assert(isa<MemoryPhi>(Desc.Last) &&
517 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000518 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000519 }
520
521 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
522 ListIndex PriorNode) {
523 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
524 upward_defs_end());
525 for (const MemoryAccessPair &P : UpwardDefs) {
526 PausedSearches.push_back(Paths.size());
527 Paths.emplace_back(P.second, P.first, PriorNode);
528 }
529 }
530
531 /// Represents a search that terminated after finding a clobber. This clobber
532 /// may or may not be present in the path of defs from LastNode..SearchStart,
533 /// since it may have been retrieved from cache.
534 struct TerminatedPath {
535 MemoryAccess *Clobber;
536 ListIndex LastNode;
537 };
538
539 /// Get an access that keeps us from optimizing to the given phi.
540 ///
541 /// PausedSearches is an array of indices into the Paths array. Its incoming
542 /// value is the indices of searches that stopped at the last phi optimization
543 /// target. It's left in an unspecified state.
544 ///
545 /// If this returns None, NewPaused is a vector of searches that terminated
546 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000547 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000548 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000549 SmallVectorImpl<ListIndex> &PausedSearches,
550 SmallVectorImpl<ListIndex> &NewPaused,
551 SmallVectorImpl<TerminatedPath> &Terminated) {
552 assert(!PausedSearches.empty() && "No searches to continue?");
553
554 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
555 // PausedSearches as our stack.
556 while (!PausedSearches.empty()) {
557 ListIndex PathIndex = PausedSearches.pop_back_val();
558 DefPath &Node = Paths[PathIndex];
559
560 // If we've already visited this path with this MemoryLocation, we don't
561 // need to do so again.
562 //
563 // NOTE: That we just drop these paths on the ground makes caching
564 // behavior sporadic. e.g. given a diamond:
565 // A
566 // B C
567 // D
568 //
569 // ...If we walk D, B, A, C, we'll only cache the result of phi
570 // optimization for A, B, and D; C will be skipped because it dies here.
571 // This arguably isn't the worst thing ever, since:
572 // - We generally query things in a top-down order, so if we got below D
573 // without needing cache entries for {C, MemLoc}, then chances are
574 // that those cache entries would end up ultimately unused.
575 // - We still cache things for A, so C only needs to walk up a bit.
576 // If this behavior becomes problematic, we can fix without a ton of extra
577 // work.
578 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
579 continue;
580
581 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
582 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000583 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000584 // If this wasn't a cache hit, we hit a clobber when walking. That's a
585 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000586 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000587 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000588 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000589
590 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000591 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000592 continue;
593 }
594
595 if (Res.Result == StopWhere) {
596 // We've hit our target. Save this path off for if we want to continue
597 // walking.
598 NewPaused.push_back(PathIndex);
599 continue;
600 }
601
602 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
603 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
604 }
605
606 return None;
607 }
608
609 template <typename T, typename Walker>
610 struct generic_def_path_iterator
611 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
612 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000613 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000614 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
615
616 T &operator*() const { return curNode(); }
617
618 generic_def_path_iterator &operator++() {
619 N = curNode().Previous;
620 return *this;
621 }
622
623 bool operator==(const generic_def_path_iterator &O) const {
624 if (N.hasValue() != O.N.hasValue())
625 return false;
626 return !N.hasValue() || *N == *O.N;
627 }
628
629 private:
630 T &curNode() const { return W->Paths[*N]; }
631
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000632 Walker *W = nullptr;
633 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000634 };
635
636 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
637 using const_def_path_iterator =
638 generic_def_path_iterator<const DefPath, const ClobberWalker>;
639
640 iterator_range<def_path_iterator> def_path(ListIndex From) {
641 return make_range(def_path_iterator(this, From), def_path_iterator());
642 }
643
644 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
645 return make_range(const_def_path_iterator(this, From),
646 const_def_path_iterator());
647 }
648
649 struct OptznResult {
650 /// The path that contains our result.
651 TerminatedPath PrimaryClobber;
652 /// The paths that we can legally cache back from, but that aren't
653 /// necessarily the result of the Phi optimization.
654 SmallVector<TerminatedPath, 4> OtherClobbers;
655 };
656
657 ListIndex defPathIndex(const DefPath &N) const {
658 // The assert looks nicer if we don't need to do &N
659 const DefPath *NP = &N;
660 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
661 "Out of bounds DefPath!");
662 return NP - &Paths.front();
663 }
664
665 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
666 /// that act as legal clobbers. Note that this won't return *all* clobbers.
667 ///
668 /// Phi optimization algorithm tl;dr:
669 /// - Find the earliest def/phi, A, we can optimize to
670 /// - Find if all paths from the starting memory access ultimately reach A
671 /// - If not, optimization isn't possible.
672 /// - Otherwise, walk from A to another clobber or phi, A'.
673 /// - If A' is a def, we're done.
674 /// - If A' is a phi, try to optimize it.
675 ///
676 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
677 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
678 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
679 const MemoryLocation &Loc) {
680 assert(Paths.empty() && VisitedPhis.empty() &&
681 "Reset the optimization state.");
682
683 Paths.emplace_back(Loc, Start, Phi, None);
684 // Stores how many "valid" optimization nodes we had prior to calling
685 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
686 auto PriorPathsSize = Paths.size();
687
688 SmallVector<ListIndex, 16> PausedSearches;
689 SmallVector<ListIndex, 8> NewPaused;
690 SmallVector<TerminatedPath, 4> TerminatedPaths;
691
692 addSearches(Phi, PausedSearches, 0);
693
694 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
695 // Paths.
696 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
697 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000698 auto Dom = Paths.begin();
699 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
700 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
701 Dom = I;
702 auto Last = Paths.end() - 1;
703 if (Last != Dom)
704 std::iter_swap(Last, Dom);
705 };
706
707 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000708 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000709 assert(!MSSA.isLiveOnEntryDef(Current) &&
710 "liveOnEntry wasn't treated as a clobber?");
711
Daniel Berlind0420312017-04-01 09:01:12 +0000712 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000713 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
714 // optimization for the prior phi.
715 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
716 return MSSA.dominates(P.Clobber, Target);
717 }));
718
719 // FIXME: This is broken, because the Blocker may be reported to be
720 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000721 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000722 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000723 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000724
725 // Find the node we started at. We can't search based on N->Last, since
726 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000727 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000728 return defPathIndex(N) < PriorPathsSize;
729 });
730 assert(Iter != def_path_iterator());
731
732 DefPath &CurNode = *Iter;
733 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000734
735 // Two things:
736 // A. We can't reliably cache all of NewPaused back. Consider a case
737 // where we have two paths in NewPaused; one of which can't optimize
738 // above this phi, whereas the other can. If we cache the second path
739 // back, we'll end up with suboptimal cache entries. We can handle
740 // cases like this a bit better when we either try to find all
741 // clobbers that block phi optimization, or when our cache starts
742 // supporting unfinished searches.
743 // B. We can't reliably cache TerminatedPaths back here without doing
744 // extra checks; consider a case like:
745 // T
746 // / \
747 // D C
748 // \ /
749 // S
750 // Where T is our target, C is a node with a clobber on it, D is a
751 // diamond (with a clobber *only* on the left or right node, N), and
752 // S is our start. Say we walk to D, through the node opposite N
753 // (read: ignoring the clobber), and see a cache entry in the top
754 // node of D. That cache entry gets put into TerminatedPaths. We then
755 // walk up to C (N is later in our worklist), find the clobber, and
756 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
757 // the bottom part of D to the cached clobber, ignoring the clobber
758 // in N. Again, this problem goes away if we start tracking all
759 // blockers for a given phi optimization.
760 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
761 return {Result, {}};
762 }
763
764 // If there's nothing left to search, then all paths led to valid clobbers
765 // that we got from our cache; pick the nearest to the start, and allow
766 // the rest to be cached back.
767 if (NewPaused.empty()) {
768 MoveDominatedPathToEnd(TerminatedPaths);
769 TerminatedPath Result = TerminatedPaths.pop_back_val();
770 return {Result, std::move(TerminatedPaths)};
771 }
772
773 MemoryAccess *DefChainEnd = nullptr;
774 SmallVector<TerminatedPath, 4> Clobbers;
775 for (ListIndex Paused : NewPaused) {
776 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
777 if (WR.IsKnownClobber)
778 Clobbers.push_back({WR.Result, Paused});
779 else
780 // Micro-opt: If we hit the end of the chain, save it.
781 DefChainEnd = WR.Result;
782 }
783
784 if (!TerminatedPaths.empty()) {
785 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
786 // do it now.
787 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000788 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000789 DefChainEnd = MA;
790
791 // If any of the terminated paths don't dominate the phi we'll try to
792 // optimize, we need to figure out what they are and quit.
793 const BasicBlock *ChainBB = DefChainEnd->getBlock();
794 for (const TerminatedPath &TP : TerminatedPaths) {
795 // Because we know that DefChainEnd is as "high" as we can go, we
796 // don't need local dominance checks; BB dominance is sufficient.
797 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
798 Clobbers.push_back(TP);
799 }
800 }
801
802 // If we have clobbers in the def chain, find the one closest to Current
803 // and quit.
804 if (!Clobbers.empty()) {
805 MoveDominatedPathToEnd(Clobbers);
806 TerminatedPath Result = Clobbers.pop_back_val();
807 return {Result, std::move(Clobbers)};
808 }
809
810 assert(all_of(NewPaused,
811 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
812
813 // Because liveOnEntry is a clobber, this must be a phi.
814 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
815
816 PriorPathsSize = Paths.size();
817 PausedSearches.clear();
818 for (ListIndex I : NewPaused)
819 addSearches(DefChainPhi, PausedSearches, I);
820 NewPaused.clear();
821
822 Current = DefChainPhi;
823 }
824 }
825
George Burgess IV5f308972016-07-19 01:29:15 +0000826 void verifyOptResult(const OptznResult &R) const {
827 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
828 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
829 }));
830 }
831
832 void resetPhiOptznState() {
833 Paths.clear();
834 VisitedPhis.clear();
835 }
836
837public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000838 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
839 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000840
Daniel Berlin7500c562017-04-01 08:59:45 +0000841 void reset() {}
George Burgess IV5f308972016-07-19 01:29:15 +0000842
843 /// Finds the nearest clobber for the given query, optimizing phis if
844 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000845 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000846 Query = &Q;
847
848 MemoryAccess *Current = Start;
849 // This walker pretends uses don't exist. If we're handed one, silently grab
850 // its def. (This has the nice side-effect of ensuring we never cache uses)
851 if (auto *MU = dyn_cast<MemoryUse>(Start))
852 Current = MU->getDefiningAccess();
853
854 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
855 // Fast path for the overly-common case (no crazy phi optimization
856 // necessary)
857 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000858 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000859 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000860 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000861 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000862 } else {
863 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
864 Current, Q.StartingLoc);
865 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000866 resetPhiOptznState();
867 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000868 }
869
George Burgess IV5f308972016-07-19 01:29:15 +0000870#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000871 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000872#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000873 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000874 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000875
876 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000877};
878
879struct RenamePassData {
880 DomTreeNode *DTN;
881 DomTreeNode::const_iterator ChildIt;
882 MemoryAccess *IncomingVal;
883
884 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
885 MemoryAccess *M)
886 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000887
George Burgess IV5f308972016-07-19 01:29:15 +0000888 void swap(RenamePassData &RHS) {
889 std::swap(DTN, RHS.DTN);
890 std::swap(ChildIt, RHS.ChildIt);
891 std::swap(IncomingVal, RHS.IncomingVal);
892 }
893};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000894
895} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000896
897namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000898
Daniel Berlind952cea2017-04-07 01:28:36 +0000899/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
900/// longer does caching on its own,
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000901/// but the name has been retained for the moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000902class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000903 ClobberWalker Walker;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000904 bool AutoResetWalker = true;
George Burgess IV5f308972016-07-19 01:29:15 +0000905
906 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000907
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000908public:
909 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000910 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000911
George Burgess IV400ae402016-07-20 19:51:34 +0000912 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000913
George Burgess IV400ae402016-07-20 19:51:34 +0000914 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000915 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000916 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000917 void invalidateInfo(MemoryAccess *) override;
918
George Burgess IV5f308972016-07-19 01:29:15 +0000919 /// Whether we call resetClobberWalker() after each time we *actually* walk to
920 /// answer a clobber query.
921 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000922
Daniel Berlin7500c562017-04-01 08:59:45 +0000923 /// Drop the walker's persistent data structures.
George Burgess IV5f308972016-07-19 01:29:15 +0000924 void resetClobberWalker() { Walker.reset(); }
Geoff Berrycdf53332016-08-08 17:52:01 +0000925
926 void verify(const MemorySSA *MSSA) override {
927 MemorySSAWalker::verify(MSSA);
928 Walker.verify(MSSA);
929 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000930};
George Burgess IVe1100f52016-02-02 22:46:49 +0000931
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000932} // end namespace llvm
933
Daniel Berlin78cbd282017-02-20 22:26:03 +0000934void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
935 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000936 // Pass through values to our successors
937 for (const BasicBlock *S : successors(BB)) {
938 auto It = PerBlockAccesses.find(S);
939 // Rename the phi nodes in our successor block
940 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
941 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000942 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000943 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000944 if (RenameAllUses) {
945 int PhiIndex = Phi->getBasicBlockIndex(BB);
946 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
947 Phi->setIncomingValue(PhiIndex, IncomingVal);
948 } else
949 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000950 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000951}
George Burgess IVe1100f52016-02-02 22:46:49 +0000952
Daniel Berlin78cbd282017-02-20 22:26:03 +0000953/// \brief Rename a single basic block into MemorySSA form.
954/// Uses the standard SSA renaming algorithm.
955/// \returns The new incoming value.
956MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
957 bool RenameAllUses) {
958 auto It = PerBlockAccesses.find(BB);
959 // Skip most processing if the list is empty.
960 if (It != PerBlockAccesses.end()) {
961 AccessList *Accesses = It->second.get();
962 for (MemoryAccess &L : *Accesses) {
963 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
964 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
965 MUD->setDefiningAccess(IncomingVal);
966 if (isa<MemoryDef>(&L))
967 IncomingVal = &L;
968 } else {
969 IncomingVal = &L;
970 }
971 }
972 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000973 return IncomingVal;
974}
975
976/// \brief This is the standard SSA renaming algorithm.
977///
978/// We walk the dominator tree in preorder, renaming accesses, and then filling
979/// in phi nodes in our successors.
980void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000981 SmallPtrSetImpl<BasicBlock *> &Visited,
982 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000983 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +0000984 // Skip everything if we already renamed this block and we are skipping.
985 // Note: You can't sink this into the if, because we need it to occur
986 // regardless of whether we skip blocks or not.
987 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
988 if (SkipVisited && AlreadyVisited)
989 return;
990
991 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
992 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +0000993 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +0000994
995 while (!WorkStack.empty()) {
996 DomTreeNode *Node = WorkStack.back().DTN;
997 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
998 IncomingVal = WorkStack.back().IncomingVal;
999
1000 if (ChildIt == Node->end()) {
1001 WorkStack.pop_back();
1002 } else {
1003 DomTreeNode *Child = *ChildIt;
1004 ++WorkStack.back().ChildIt;
1005 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001006 // Note: You can't sink this into the if, because we need it to occur
1007 // regardless of whether we skip blocks or not.
1008 AlreadyVisited = !Visited.insert(BB).second;
1009 if (SkipVisited && AlreadyVisited) {
1010 // We already visited this during our renaming, which can happen when
1011 // being asked to rename multiple blocks. Figure out the incoming val,
1012 // which is the last def.
1013 // Incoming value can only change if there is a block def, and in that
1014 // case, it's the last block def in the list.
1015 if (auto *BlockDefs = getWritableBlockDefs(BB))
1016 IncomingVal = &*BlockDefs->rbegin();
1017 } else
1018 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1019 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001020 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1021 }
1022 }
1023}
1024
George Burgess IVa362b092016-07-06 00:28:43 +00001025/// \brief This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001026/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1027/// being uses of the live on entry definition.
1028void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1029 assert(!DT->isReachableFromEntry(BB) &&
1030 "Reachable block found while handling unreachable blocks");
1031
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001032 // Make sure phi nodes in our reachable successors end up with a
1033 // LiveOnEntryDef for our incoming edge, even though our block is forward
1034 // unreachable. We could just disconnect these blocks from the CFG fully,
1035 // but we do not right now.
1036 for (const BasicBlock *S : successors(BB)) {
1037 if (!DT->isReachableFromEntry(S))
1038 continue;
1039 auto It = PerBlockAccesses.find(S);
1040 // Rename the phi nodes in our successor block
1041 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1042 continue;
1043 AccessList *Accesses = It->second.get();
1044 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1045 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1046 }
1047
George Burgess IVe1100f52016-02-02 22:46:49 +00001048 auto It = PerBlockAccesses.find(BB);
1049 if (It == PerBlockAccesses.end())
1050 return;
1051
1052 auto &Accesses = It->second;
1053 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1054 auto Next = std::next(AI);
1055 // If we have a phi, just remove it. We are going to replace all
1056 // users with live on entry.
1057 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1058 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1059 else
1060 Accesses->erase(AI);
1061 AI = Next;
1062 }
1063}
1064
Geoff Berryb96d3b22016-06-01 21:30:40 +00001065MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1066 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001067 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001068 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001069}
1070
George Burgess IVe1100f52016-02-02 22:46:49 +00001071MemorySSA::~MemorySSA() {
1072 // Drop all our references
1073 for (const auto &Pair : PerBlockAccesses)
1074 for (MemoryAccess &MA : *Pair.second)
1075 MA.dropAllReferences();
1076}
1077
Daniel Berlin14300262016-06-21 18:39:20 +00001078MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001079 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1080
1081 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001082 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001083 return Res.first->second.get();
1084}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001085
Daniel Berlind602e042017-01-25 20:56:19 +00001086MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1087 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1088
1089 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001090 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001091 return Res.first->second.get();
1092}
George Burgess IVe1100f52016-02-02 22:46:49 +00001093
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001094namespace llvm {
1095
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001096/// This class is a batch walker of all MemoryUse's in the program, and points
1097/// their defining access at the thing that actually clobbers them. Because it
1098/// is a batch walker that touches everything, it does not operate like the
1099/// other walkers. This walker is basically performing a top-down SSA renaming
1100/// pass, where the version stack is used as the cache. This enables it to be
1101/// significantly more time and memory efficient than using the regular walker,
1102/// which is walking bottom-up.
1103class MemorySSA::OptimizeUses {
1104public:
1105 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1106 DominatorTree *DT)
1107 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1108 Walker = MSSA->getWalker();
1109 }
1110
1111 void optimizeUses();
1112
1113private:
1114 /// This represents where a given memorylocation is in the stack.
1115 struct MemlocStackInfo {
1116 // This essentially is keeping track of versions of the stack. Whenever
1117 // the stack changes due to pushes or pops, these versions increase.
1118 unsigned long StackEpoch;
1119 unsigned long PopEpoch;
1120 // This is the lower bound of places on the stack to check. It is equal to
1121 // the place the last stack walk ended.
1122 // Note: Correctness depends on this being initialized to 0, which densemap
1123 // does
1124 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001125 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001126 // This is where the last walk for this memory location ended.
1127 unsigned long LastKill;
1128 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001129 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001130 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001131
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001132 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1133 SmallVectorImpl<MemoryAccess *> &,
1134 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001135
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001136 MemorySSA *MSSA;
1137 MemorySSAWalker *Walker;
1138 AliasAnalysis *AA;
1139 DominatorTree *DT;
1140};
1141
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001142} // end namespace llvm
1143
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001144/// Optimize the uses in a given block This is basically the SSA renaming
1145/// algorithm, with one caveat: We are able to use a single stack for all
1146/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1147/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1148/// going to be some position in that stack of possible ones.
1149///
1150/// We track the stack positions that each MemoryLocation needs
1151/// to check, and last ended at. This is because we only want to check the
1152/// things that changed since last time. The same MemoryLocation should
1153/// get clobbered by the same store (getModRefInfo does not use invariantness or
1154/// things like this, and if they start, we can modify MemoryLocOrCall to
1155/// include relevant data)
1156void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1157 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1158 SmallVectorImpl<MemoryAccess *> &VersionStack,
1159 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1160
1161 /// If no accesses, nothing to do.
1162 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1163 if (Accesses == nullptr)
1164 return;
1165
1166 // Pop everything that doesn't dominate the current block off the stack,
1167 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001168 while (true) {
1169 assert(
1170 !VersionStack.empty() &&
1171 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001172 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1173 if (DT->dominates(BackBlock, BB))
1174 break;
1175 while (VersionStack.back()->getBlock() == BackBlock)
1176 VersionStack.pop_back();
1177 ++PopEpoch;
1178 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001179
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001180 for (MemoryAccess &MA : *Accesses) {
1181 auto *MU = dyn_cast<MemoryUse>(&MA);
1182 if (!MU) {
1183 VersionStack.push_back(&MA);
1184 ++StackEpoch;
1185 continue;
1186 }
1187
George Burgess IV024f3d22016-08-03 19:57:02 +00001188 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001189 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001190 continue;
1191 }
1192
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001193 MemoryLocOrCall UseMLOC(MU);
1194 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001195 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001196 // stack due to changing blocks. We may have to reset the lower bound or
1197 // last kill info.
1198 if (LocInfo.PopEpoch != PopEpoch) {
1199 LocInfo.PopEpoch = PopEpoch;
1200 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001201 // If the lower bound was in something that no longer dominates us, we
1202 // have to reset it.
1203 // We can't simply track stack size, because the stack may have had
1204 // pushes/pops in the meantime.
1205 // XXX: This is non-optimal, but only is slower cases with heavily
1206 // branching dominator trees. To get the optimal number of queries would
1207 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1208 // the top of that stack dominates us. This does not seem worth it ATM.
1209 // A much cheaper optimization would be to always explore the deepest
1210 // branch of the dominator tree first. This will guarantee this resets on
1211 // the smallest set of blocks.
1212 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001213 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001214 // Reset the lower bound of things to check.
1215 // TODO: Some day we should be able to reset to last kill, rather than
1216 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001217 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001218 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001219 LocInfo.LastKillValid = false;
1220 }
1221 } else if (LocInfo.StackEpoch != StackEpoch) {
1222 // If all that has changed is the StackEpoch, we only have to check the
1223 // new things on the stack, because we've checked everything before. In
1224 // this case, the lower bound of things to check remains the same.
1225 LocInfo.PopEpoch = PopEpoch;
1226 LocInfo.StackEpoch = StackEpoch;
1227 }
1228 if (!LocInfo.LastKillValid) {
1229 LocInfo.LastKill = VersionStack.size() - 1;
1230 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001231 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001232 }
1233
1234 // At this point, we should have corrected last kill and LowerBound to be
1235 // in bounds.
1236 assert(LocInfo.LowerBound < VersionStack.size() &&
1237 "Lower bound out of range");
1238 assert(LocInfo.LastKill < VersionStack.size() &&
1239 "Last kill info out of range");
1240 // In any case, the new upper bound is the top of the stack.
1241 unsigned long UpperBound = VersionStack.size() - 1;
1242
1243 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Daniel Berlin26fcea92016-08-02 20:02:21 +00001244 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1245 << *(MU->getMemoryInst()) << ")"
1246 << " because there are " << UpperBound - LocInfo.LowerBound
1247 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001248 // Because we did not walk, LastKill is no longer valid, as this may
1249 // have been a kill.
1250 LocInfo.LastKillValid = false;
1251 continue;
1252 }
1253 bool FoundClobberResult = false;
1254 while (UpperBound > LocInfo.LowerBound) {
1255 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1256 // For phis, use the walker, see where we ended up, go there
1257 Instruction *UseInst = MU->getMemoryInst();
1258 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1259 // We are guaranteed to find it or something is wrong
1260 while (VersionStack[UpperBound] != Result) {
1261 assert(UpperBound != 0);
1262 --UpperBound;
1263 }
1264 FoundClobberResult = true;
1265 break;
1266 }
1267
1268 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001269 // If the lifetime of the pointer ends at this instruction, it's live on
1270 // entry.
1271 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1272 // Reset UpperBound to liveOnEntryDef's place in the stack
1273 UpperBound = 0;
1274 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001275 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001276 break;
1277 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001278 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1279 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001280 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001281 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001282 break;
1283 }
1284 --UpperBound;
1285 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001286
1287 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1288
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001289 // At the end of this loop, UpperBound is either a clobber, or lower bound
1290 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1291 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001292 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001293 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1294 LocInfo.AR = None;
1295 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001296 LocInfo.LastKill = UpperBound;
1297 } else {
1298 // Otherwise, we checked all the new ones, and now we know we can get to
1299 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001300 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001301 }
1302 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001303 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001304 }
1305}
1306
1307/// Optimize uses to point to their actual clobbering definitions.
1308void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001309 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001310 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001311 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1312
1313 unsigned long StackEpoch = 1;
1314 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001315 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001316 for (const auto *DomNode : depth_first(DT->getRootNode()))
1317 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1318 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001319}
1320
Daniel Berlin3d512a22016-08-22 19:14:30 +00001321void MemorySSA::placePHINodes(
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001322 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
1323 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001324 // Determine where our MemoryPhi's should go
1325 ForwardIDFCalculator IDFs(*DT);
1326 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001327 SmallVector<BasicBlock *, 32> IDFBlocks;
1328 IDFs.calculate(IDFBlocks);
1329
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001330 std::sort(IDFBlocks.begin(), IDFBlocks.end(),
1331 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
1332 return BBNumbers.lookup(A) < BBNumbers.lookup(B);
1333 });
1334
Daniel Berlin3d512a22016-08-22 19:14:30 +00001335 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001336 for (auto &BB : IDFBlocks)
1337 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001338}
1339
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001340void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001341 // We create an access to represent "live on entry", for things like
1342 // arguments or users of globals, where the memory they use is defined before
1343 // the beginning of the function. We do not actually insert it into the IR.
1344 // We do not define a live on exit for the immediate uses, and thus our
1345 // semantics do *not* imply that something with no immediate uses can simply
1346 // be removed.
1347 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001348 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1349 &StartingPoint, NextID++));
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001350 DenseMap<const BasicBlock *, unsigned int> BBNumbers;
1351 unsigned NextBBNum = 0;
George Burgess IVe1100f52016-02-02 22:46:49 +00001352
1353 // We maintain lists of memory accesses per-block, trading memory for time. We
1354 // could just look up the memory access for every possible instruction in the
1355 // stream.
1356 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001357 // Go through each block, figure out where defs occur, and chain together all
1358 // the accesses.
1359 for (BasicBlock &B : F) {
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001360 BBNumbers[&B] = NextBBNum++;
Daniel Berlin7898ca62016-02-07 01:52:15 +00001361 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001362 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001363 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001364 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001365 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001366 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001367 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001368
George Burgess IVe1100f52016-02-02 22:46:49 +00001369 if (!Accesses)
1370 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001371 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001372 if (isa<MemoryDef>(MUD)) {
1373 InsertIntoDef = true;
1374 if (!Defs)
1375 Defs = getOrCreateDefsList(&B);
1376 Defs->push_back(*MUD);
1377 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001378 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001379 if (InsertIntoDef)
1380 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001381 }
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001382 placePHINodes(DefiningBlocks, BBNumbers);
George Burgess IVe1100f52016-02-02 22:46:49 +00001383
1384 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1385 // filled in with all blocks.
1386 SmallPtrSet<BasicBlock *, 16> Visited;
1387 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1388
George Burgess IV5f308972016-07-19 01:29:15 +00001389 CachingWalker *Walker = getWalkerImpl();
1390
1391 // We're doing a batch of updates; don't drop useful caches between them.
1392 Walker->setAutoResetWalker(false);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001393 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001394 Walker->setAutoResetWalker(true);
1395 Walker->resetClobberWalker();
1396
George Burgess IVe1100f52016-02-02 22:46:49 +00001397 // Mark the uses in unreachable blocks as live on entry, so that they go
1398 // somewhere.
1399 for (auto &BB : F)
1400 if (!Visited.count(&BB))
1401 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001402}
George Burgess IVe1100f52016-02-02 22:46:49 +00001403
George Burgess IV5f308972016-07-19 01:29:15 +00001404MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1405
1406MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001407 if (Walker)
1408 return Walker.get();
1409
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001410 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001411 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001412}
1413
Daniel Berlind602e042017-01-25 20:56:19 +00001414// This is a helper function used by the creation routines. It places NewAccess
1415// into the access and defs lists for a given basic block, at the given
1416// insertion point.
1417void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1418 const BasicBlock *BB,
1419 InsertionPlace Point) {
1420 auto *Accesses = getOrCreateAccessList(BB);
1421 if (Point == Beginning) {
1422 // If it's a phi node, it goes first, otherwise, it goes after any phi
1423 // nodes.
1424 if (isa<MemoryPhi>(NewAccess)) {
1425 Accesses->push_front(NewAccess);
1426 auto *Defs = getOrCreateDefsList(BB);
1427 Defs->push_front(*NewAccess);
1428 } else {
1429 auto AI = find_if_not(
1430 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1431 Accesses->insert(AI, NewAccess);
1432 if (!isa<MemoryUse>(NewAccess)) {
1433 auto *Defs = getOrCreateDefsList(BB);
1434 auto DI = find_if_not(
1435 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1436 Defs->insert(DI, *NewAccess);
1437 }
1438 }
1439 } else {
1440 Accesses->push_back(NewAccess);
1441 if (!isa<MemoryUse>(NewAccess)) {
1442 auto *Defs = getOrCreateDefsList(BB);
1443 Defs->push_back(*NewAccess);
1444 }
1445 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001446 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001447}
1448
1449void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1450 AccessList::iterator InsertPt) {
1451 auto *Accesses = getWritableBlockAccesses(BB);
1452 bool WasEnd = InsertPt == Accesses->end();
1453 Accesses->insert(AccessList::iterator(InsertPt), What);
1454 if (!isa<MemoryUse>(What)) {
1455 auto *Defs = getOrCreateDefsList(BB);
1456 // If we got asked to insert at the end, we have an easy job, just shove it
1457 // at the end. If we got asked to insert before an existing def, we also get
1458 // an terator. If we got asked to insert before a use, we have to hunt for
1459 // the next def.
1460 if (WasEnd) {
1461 Defs->push_back(*What);
1462 } else if (isa<MemoryDef>(InsertPt)) {
1463 Defs->insert(InsertPt->getDefsIterator(), *What);
1464 } else {
1465 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1466 ++InsertPt;
1467 // Either we found a def, or we are inserting at the end
1468 if (InsertPt == Accesses->end())
1469 Defs->push_back(*What);
1470 else
1471 Defs->insert(InsertPt->getDefsIterator(), *What);
1472 }
1473 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001474 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001475}
1476
Daniel Berlin60ead052017-01-28 01:23:13 +00001477// Move What before Where in the IR. The end result is taht What will belong to
1478// the right lists and have the right Block set, but will not otherwise be
1479// correct. It will not have the right defining access, and if it is a def,
1480// things below it will not properly be updated.
1481void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1482 AccessList::iterator Where) {
1483 // Keep it in the lookup tables, remove from the lists
1484 removeFromLists(What, false);
1485 What->setBlock(BB);
1486 insertIntoListsBefore(What, BB, Where);
1487}
1488
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001489void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1490 InsertionPlace Point) {
1491 removeFromLists(What, false);
1492 What->setBlock(BB);
1493 insertIntoListsForBlock(What, BB, Point);
1494}
1495
Daniel Berlin14300262016-06-21 18:39:20 +00001496MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1497 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001498 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001499 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001500 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001501 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001502 return Phi;
1503}
1504
1505MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1506 MemoryAccess *Definition) {
1507 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1508 MemoryUseOrDef *NewAccess = createNewAccess(I);
1509 assert(
1510 NewAccess != nullptr &&
1511 "Tried to create a memory access for a non-memory touching instruction");
1512 NewAccess->setDefiningAccess(Definition);
1513 return NewAccess;
1514}
1515
Daniel Berlind952cea2017-04-07 01:28:36 +00001516// Return true if the instruction has ordering constraints.
1517// Note specifically that this only considers stores and loads
1518// because others are still considered ModRef by getModRefInfo.
1519static inline bool isOrdered(const Instruction *I) {
1520 if (auto *SI = dyn_cast<StoreInst>(I)) {
1521 if (!SI->isUnordered())
1522 return true;
1523 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1524 if (!LI->isUnordered())
1525 return true;
1526 }
1527 return false;
1528}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001529
George Burgess IVe1100f52016-02-02 22:46:49 +00001530/// \brief Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001531MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001532 // The assume intrinsic has a control dependency which we model by claiming
1533 // that it writes arbitrarily. Ignore that fake memory dependency here.
1534 // FIXME: Replace this special casing with a more accurate modelling of
1535 // assume's control dependency.
1536 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1537 if (II->getIntrinsicID() == Intrinsic::assume)
1538 return nullptr;
1539
George Burgess IVe1100f52016-02-02 22:46:49 +00001540 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001541 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001542 // The isOrdered check is used to ensure that volatiles end up as defs
1543 // (atomics end up as ModRef right now anyway). Until we separate the
1544 // ordering chain from the memory chain, this enables people to see at least
1545 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1546 // will still give an answer that bypasses other volatile loads. TODO:
1547 // Separate memory aliasing and ordering into two different chains so that we
1548 // can precisely represent both "what memory will this read/write/is clobbered
1549 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001550 bool Def = isModSet(ModRef) || isOrdered(I);
1551 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001552
1553 // It's possible for an instruction to not modify memory at all. During
1554 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001555 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001556 return nullptr;
1557
1558 assert((Def || Use) &&
1559 "Trying to create a memory access with a non-memory instruction");
1560
George Burgess IVb42b7622016-03-11 19:34:03 +00001561 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001562 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001563 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001564 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001565 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001566 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001567 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001568}
1569
George Burgess IVe1100f52016-02-02 22:46:49 +00001570/// \brief Returns true if \p Replacer dominates \p Replacee .
1571bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1572 const MemoryAccess *Replacee) const {
1573 if (isa<MemoryUseOrDef>(Replacee))
1574 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1575 const auto *MP = cast<MemoryPhi>(Replacee);
1576 // For a phi node, the use occurs in the predecessor block of the phi node.
1577 // Since we may occur multiple times in the phi node, we have to check each
1578 // operand to ensure Replacer dominates each operand where Replacee occurs.
1579 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001580 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001581 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1582 return false;
1583 }
1584 return true;
1585}
1586
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001587/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001588void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1589 assert(MA->use_empty() &&
1590 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001591 BlockNumbering.erase(MA);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001592 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
1593 MUD->setDefiningAccess(nullptr);
1594 // Invalidate our walker's cache if necessary
1595 if (!isa<MemoryUse>(MA))
1596 Walker->invalidateInfo(MA);
1597 // The call below to erase will destroy MA, so we can't change the order we
1598 // are doing things here
1599 Value *MemoryInst;
1600 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1601 MemoryInst = MUD->getMemoryInst();
1602 } else {
1603 MemoryInst = MA->getBlock();
1604 }
Daniel Berlin5130cc82016-07-31 21:08:20 +00001605 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1606 if (VMA->second == MA)
1607 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001608}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001609
Daniel Berlin60ead052017-01-28 01:23:13 +00001610/// \brief Properly remove \p MA from all of MemorySSA's lists.
1611///
1612/// Because of the way the intrusive list and use lists work, it is important to
1613/// do removal in the right order.
1614/// ShouldDelete defaults to true, and will cause the memory access to also be
1615/// deleted, not just removed.
1616void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Daniel Berlind602e042017-01-25 20:56:19 +00001617 // The access list owns the reference, so we erase it from the non-owning list
1618 // first.
1619 if (!isa<MemoryUse>(MA)) {
1620 auto DefsIt = PerBlockDefs.find(MA->getBlock());
1621 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1622 Defs->remove(*MA);
1623 if (Defs->empty())
1624 PerBlockDefs.erase(DefsIt);
1625 }
1626
Daniel Berlin60ead052017-01-28 01:23:13 +00001627 // The erase call here will delete it. If we don't want it deleted, we call
1628 // remove instead.
George Burgess IVe0e6e482016-03-02 02:35:04 +00001629 auto AccessIt = PerBlockAccesses.find(MA->getBlock());
Daniel Berlinada263d2016-06-20 20:21:33 +00001630 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001631 if (ShouldDelete)
1632 Accesses->erase(MA);
1633 else
1634 Accesses->remove(MA);
1635
George Burgess IVe0e6e482016-03-02 02:35:04 +00001636 if (Accesses->empty())
1637 PerBlockAccesses.erase(AccessIt);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001638}
1639
George Burgess IVe1100f52016-02-02 22:46:49 +00001640void MemorySSA::print(raw_ostream &OS) const {
1641 MemorySSAAnnotatedWriter Writer(this);
1642 F.print(OS, &Writer);
1643}
1644
Aaron Ballman615eb472017-10-15 14:32:27 +00001645#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001646LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001647#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001648
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001649void MemorySSA::verifyMemorySSA() const {
1650 verifyDefUses(F);
1651 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001652 verifyOrdering(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001653 Walker->verify(this);
Daniel Berlin14300262016-06-21 18:39:20 +00001654}
1655
1656/// \brief Verify that the order and existence of MemoryAccesses matches the
1657/// order and existence of memory affecting instructions.
1658void MemorySSA::verifyOrdering(Function &F) const {
1659 // Walk all the blocks, comparing what the lookups think and what the access
1660 // lists think, as well as the order in the blocks vs the order in the access
1661 // lists.
1662 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001663 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001664 for (BasicBlock &B : F) {
1665 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001666 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001667 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001668 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001669 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001670 ActualDefs.push_back(Phi);
1671 }
1672
Daniel Berlin14300262016-06-21 18:39:20 +00001673 for (Instruction &I : B) {
1674 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001675 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1676 "We have memory affecting instructions "
1677 "in this block but they are not in the "
1678 "access list or defs list");
1679 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001680 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001681 if (isa<MemoryDef>(MA))
1682 ActualDefs.push_back(MA);
1683 }
Daniel Berlin14300262016-06-21 18:39:20 +00001684 }
1685 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001686 // accesses and an access list.
1687 // Same with defs.
1688 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001689 continue;
1690 assert(AL->size() == ActualAccesses.size() &&
1691 "We don't have the same number of accesses in the block as on the "
1692 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001693 assert((DL || ActualDefs.size() == 0) &&
1694 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001695 assert((!DL || DL->size() == ActualDefs.size()) &&
1696 "We don't have the same number of defs in the block as on the "
1697 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001698 auto ALI = AL->begin();
1699 auto AAI = ActualAccesses.begin();
1700 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1701 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1702 ++ALI;
1703 ++AAI;
1704 }
1705 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001706 if (DL) {
1707 auto DLI = DL->begin();
1708 auto ADI = ActualDefs.begin();
1709 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1710 assert(&*DLI == *ADI && "Not the same defs in the same order");
1711 ++DLI;
1712 ++ADI;
1713 }
1714 }
1715 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001716 }
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001717}
1718
George Burgess IVe1100f52016-02-02 22:46:49 +00001719/// \brief Verify the domination properties of MemorySSA by checking that each
1720/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001721void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001722#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001723 for (BasicBlock &B : F) {
1724 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001725 if (MemoryPhi *MP = getMemoryAccess(&B))
1726 for (const Use &U : MP->uses())
1727 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001728
George Burgess IVe1100f52016-02-02 22:46:49 +00001729 for (Instruction &I : B) {
1730 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1731 if (!MD)
1732 continue;
1733
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001734 for (const Use &U : MD->uses())
1735 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001736 }
1737 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001738#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001739}
1740
1741/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
1742/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001743void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001744#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001745 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001746 if (!Def)
1747 assert(isLiveOnEntryDef(Use) &&
1748 "Null def but use not point to live on entry def");
1749 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001750 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001751 "Did not find use in def's use list");
1752#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001753}
1754
1755/// \brief Verify the immediate use information, by walking all the memory
1756/// accesses and verifying that, for each use, it appears in the
1757/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001758void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001759 for (BasicBlock &B : F) {
1760 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001761 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001762 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1763 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001764 "Incomplete MemoryPhi Node");
George Burgess IVe1100f52016-02-02 22:46:49 +00001765 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1766 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Daniel Berlin14300262016-06-21 18:39:20 +00001767 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001768
1769 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001770 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1771 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001772 }
1773 }
1774 }
1775}
1776
George Burgess IV66837ab2016-11-01 21:17:46 +00001777MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1778 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
George Burgess IVe1100f52016-02-02 22:46:49 +00001779}
1780
1781MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
George Burgess IV66837ab2016-11-01 21:17:46 +00001782 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
George Burgess IVe1100f52016-02-02 22:46:49 +00001783}
1784
Daniel Berlin5c46b942016-07-19 22:49:43 +00001785/// Perform a local numbering on blocks so that instruction ordering can be
1786/// determined in constant time.
1787/// TODO: We currently just number in order. If we numbered by N, we could
1788/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1789/// log2(N) sequences of mixed before and after) without needing to invalidate
1790/// the numbering.
1791void MemorySSA::renumberBlock(const BasicBlock *B) const {
1792 // The pre-increment ensures the numbers really start at 1.
1793 unsigned long CurrentNumber = 0;
1794 const AccessList *AL = getBlockAccesses(B);
1795 assert(AL != nullptr && "Asking to renumber an empty block");
1796 for (const auto &I : *AL)
1797 BlockNumbering[&I] = ++CurrentNumber;
1798 BlockNumberingValid.insert(B);
1799}
1800
George Burgess IVe1100f52016-02-02 22:46:49 +00001801/// \brief Determine, for two memory accesses in the same block,
1802/// whether \p Dominator dominates \p Dominatee.
1803/// \returns True if \p Dominator dominates \p Dominatee.
1804bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1805 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001806 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001807
Daniel Berlin19860302016-07-19 23:08:08 +00001808 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001809 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001810 // A node dominates itself.
1811 if (Dominatee == Dominator)
1812 return true;
1813
1814 // When Dominatee is defined on function entry, it is not dominated by another
1815 // memory access.
1816 if (isLiveOnEntryDef(Dominatee))
1817 return false;
1818
1819 // When Dominator is defined on function entry, it dominates the other memory
1820 // access.
1821 if (isLiveOnEntryDef(Dominator))
1822 return true;
1823
Daniel Berlin5c46b942016-07-19 22:49:43 +00001824 if (!BlockNumberingValid.count(DominatorBlock))
1825 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001826
Daniel Berlin5c46b942016-07-19 22:49:43 +00001827 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1828 // All numbers start with 1
1829 assert(DominatorNum != 0 && "Block was not numbered properly");
1830 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1831 assert(DominateeNum != 0 && "Block was not numbered properly");
1832 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001833}
1834
George Burgess IV5f308972016-07-19 01:29:15 +00001835bool MemorySSA::dominates(const MemoryAccess *Dominator,
1836 const MemoryAccess *Dominatee) const {
1837 if (Dominator == Dominatee)
1838 return true;
1839
1840 if (isLiveOnEntryDef(Dominatee))
1841 return false;
1842
1843 if (Dominator->getBlock() != Dominatee->getBlock())
1844 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1845 return locallyDominates(Dominator, Dominatee);
1846}
1847
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001848bool MemorySSA::dominates(const MemoryAccess *Dominator,
1849 const Use &Dominatee) const {
1850 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1851 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1852 // The def must dominate the incoming block of the phi.
1853 if (UseBB != Dominator->getBlock())
1854 return DT->dominates(Dominator->getBlock(), UseBB);
1855 // If the UseBB and the DefBB are the same, compare locally.
1856 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1857 }
1858 // If it's not a PHI node use, the normal dominates can already handle it.
1859 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1860}
1861
George Burgess IVe1100f52016-02-02 22:46:49 +00001862const static char LiveOnEntryStr[] = "liveOnEntry";
1863
Reid Kleckner96ab8722017-05-18 17:24:10 +00001864void MemoryAccess::print(raw_ostream &OS) const {
1865 switch (getValueID()) {
1866 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1867 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1868 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1869 }
1870 llvm_unreachable("invalid value id");
1871}
1872
George Burgess IVe1100f52016-02-02 22:46:49 +00001873void MemoryDef::print(raw_ostream &OS) const {
1874 MemoryAccess *UO = getDefiningAccess();
1875
1876 OS << getID() << " = MemoryDef(";
1877 if (UO && UO->getID())
1878 OS << UO->getID();
1879 else
1880 OS << LiveOnEntryStr;
1881 OS << ')';
1882}
1883
1884void MemoryPhi::print(raw_ostream &OS) const {
1885 bool First = true;
1886 OS << getID() << " = MemoryPhi(";
1887 for (const auto &Op : operands()) {
1888 BasicBlock *BB = getIncomingBlock(Op);
1889 MemoryAccess *MA = cast<MemoryAccess>(Op);
1890 if (!First)
1891 OS << ',';
1892 else
1893 First = false;
1894
1895 OS << '{';
1896 if (BB->hasName())
1897 OS << BB->getName();
1898 else
1899 BB->printAsOperand(OS, false);
1900 OS << ',';
1901 if (unsigned ID = MA->getID())
1902 OS << ID;
1903 else
1904 OS << LiveOnEntryStr;
1905 OS << '}';
1906 }
1907 OS << ')';
1908}
1909
George Burgess IVe1100f52016-02-02 22:46:49 +00001910void MemoryUse::print(raw_ostream &OS) const {
1911 MemoryAccess *UO = getDefiningAccess();
1912 OS << "MemoryUse(";
1913 if (UO && UO->getID())
1914 OS << UO->getID();
1915 else
1916 OS << LiveOnEntryStr;
1917 OS << ')';
1918}
1919
1920void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00001921// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00001922#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00001923 print(dbgs());
1924 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00001925#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001926}
1927
Chad Rosier232e29e2016-07-06 21:20:47 +00001928char MemorySSAPrinterLegacyPass::ID = 0;
1929
1930MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1931 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1932}
1933
1934void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1935 AU.setPreservesAll();
1936 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00001937}
1938
1939bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1940 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1941 MSSA.print(dbgs());
1942 if (VerifyMemorySSA)
1943 MSSA.verifyMemorySSA();
1944 return false;
1945}
1946
Chandler Carruthdab4eae2016-11-23 17:53:26 +00001947AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00001948
Daniel Berlin1e98c042016-09-26 17:22:54 +00001949MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
1950 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00001951 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1952 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001953 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001954}
1955
Geoff Berryb96d3b22016-06-01 21:30:40 +00001956PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
1957 FunctionAnalysisManager &AM) {
1958 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00001959 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001960
1961 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00001962}
1963
Geoff Berryb96d3b22016-06-01 21:30:40 +00001964PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
1965 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00001966 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001967
1968 return PreservedAnalyses::all();
1969}
1970
1971char MemorySSAWrapperPass::ID = 0;
1972
1973MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
1974 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
1975}
1976
1977void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
1978
1979void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001980 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001981 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1982 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001983}
1984
Geoff Berryb96d3b22016-06-01 21:30:40 +00001985bool MemorySSAWrapperPass::runOnFunction(Function &F) {
1986 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1987 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1988 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001989 return false;
1990}
1991
Geoff Berryb96d3b22016-06-01 21:30:40 +00001992void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00001993
Geoff Berryb96d3b22016-06-01 21:30:40 +00001994void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001995 MSSA->print(OS);
1996}
1997
George Burgess IVe1100f52016-02-02 22:46:49 +00001998MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
1999
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002000MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2001 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002002 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00002003
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002004void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002005 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2006 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00002007}
2008
George Burgess IVe1100f52016-02-02 22:46:49 +00002009/// \brief Walk the use-def chains starting at \p MA and find
2010/// the MemoryAccess that actually clobbers Loc.
2011///
2012/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002013MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2014 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +00002015 MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
2016#ifdef EXPENSIVE_CHECKS
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002017 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
George Burgess IV5f308972016-07-19 01:29:15 +00002018 assert(NewNoCache == New && "Cache made us hand back a different result?");
Simon Pilgrim51693842017-06-11 12:49:29 +00002019 (void)NewNoCache;
George Burgess IV5f308972016-07-19 01:29:15 +00002020#endif
2021 if (AutoResetWalker)
2022 resetClobberWalker();
2023 return New;
George Burgess IVe1100f52016-02-02 22:46:49 +00002024}
2025
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002026MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002027 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002028 if (isa<MemoryPhi>(StartingAccess))
2029 return StartingAccess;
2030
2031 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2032 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2033 return StartingUseOrDef;
2034
2035 Instruction *I = StartingUseOrDef->getMemoryInst();
2036
2037 // Conservatively, fences are always clobbers, so don't perform the walk if we
2038 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002039 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002040 return StartingUseOrDef;
2041
2042 UpwardsMemoryQuery Q;
2043 Q.OriginalAccess = StartingUseOrDef;
2044 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002045 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002046 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002047
George Burgess IVe1100f52016-02-02 22:46:49 +00002048 // Unlike the other function, do not walk to the def of a def, because we are
2049 // handed something we already believe is the clobbering access.
2050 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2051 ? StartingUseOrDef->getDefiningAccess()
2052 : StartingUseOrDef;
2053
2054 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002055 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2056 DEBUG(dbgs() << *StartingUseOrDef << "\n");
2057 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2058 DEBUG(dbgs() << *Clobber << "\n");
2059 return Clobber;
2060}
2061
2062MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002063MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2064 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2065 // If this is a MemoryPhi, we can't do anything.
2066 if (!StartingAccess)
2067 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002068
Daniel Berlincd2deac2016-10-20 20:13:45 +00002069 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002070 // Note: Currently, we store the optimized def result in a separate field,
2071 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002072 if (StartingAccess->isOptimized())
2073 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002074
George Burgess IV400ae402016-07-20 19:51:34 +00002075 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002076 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002077 // We can't sanely do anything with a fence, since they conservatively clobber
2078 // all memory, and have no locations to get pointers from to try to
2079 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002080 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002081 return StartingAccess;
2082
George Burgess IV024f3d22016-08-03 19:57:02 +00002083 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2084 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002085 StartingAccess->setOptimized(LiveOnEntry);
2086 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002087 return LiveOnEntry;
2088 }
2089
George Burgess IVe1100f52016-02-02 22:46:49 +00002090 // Start with the thing we already think clobbers this location
2091 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2092
2093 // At this point, DefiningAccess may be the live on entry def.
2094 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002095 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002096 StartingAccess->setOptimized(DefiningAccess);
2097 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002098 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002099 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002100
2101 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002102 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2103 DEBUG(dbgs() << *DefiningAccess << "\n");
2104 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2105 DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002106
George Burgess IV44477c62018-03-11 04:16:12 +00002107 StartingAccess->setOptimized(Result);
2108 if (MSSA->isLiveOnEntryDef(Result))
2109 StartingAccess->setOptimizedAccessType(None);
2110 else if (Q.AR == MustAlias)
2111 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002112
2113 return Result;
2114}
2115
George Burgess IVe1100f52016-02-02 22:46:49 +00002116MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002117DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002118 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2119 return Use->getDefiningAccess();
2120 return MA;
2121}
2122
2123MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002124 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002125 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2126 return Use->getDefiningAccess();
2127 return StartingAccess;
2128}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002129
2130void MemoryPhi::deleteMe(DerivedUser *Self) {
2131 delete static_cast<MemoryPhi *>(Self);
2132}
2133
2134void MemoryDef::deleteMe(DerivedUser *Self) {
2135 delete static_cast<MemoryDef *>(Self);
2136}
2137
2138void MemoryUse::deleteMe(DerivedUser *Self) {
2139 delete static_cast<MemoryUse *>(Self);
2140}