blob: 0646d855ab73177fb2a431ec2f453a0e532b07f6 [file] [log] [blame]
Chandler Carruth93dcdc42015-01-31 11:17:59 +00001//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
Tim Northover3b0846e2014-05-24 12:50:23 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Tim Northover3b0846e2014-05-24 12:50:23 +00009
Chandler Carruth93dcdc42015-01-31 11:17:59 +000010#include "AArch64TargetTransformInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000011#include "MCTargetDesc/AArch64AddressingModes.h"
12#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000013#include "llvm/CodeGen/BasicTTIImpl.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000014#include "llvm/Support/Debug.h"
15#include "llvm/Target/CostTable.h"
16#include "llvm/Target/TargetLowering.h"
17#include <algorithm>
18using namespace llvm;
19
20#define DEBUG_TYPE "aarch64tti"
21
Tim Northover3b0846e2014-05-24 12:50:23 +000022/// \brief Calculate the cost of materializing a 64-bit value. This helper
23/// method might only calculate a fraction of a larger immediate. Therefore it
24/// is valid to return a cost of ZERO.
Chandler Carruth705b1852015-01-31 03:43:40 +000025unsigned AArch64TTIImpl::getIntImmCost(int64_t Val) {
Tim Northover3b0846e2014-05-24 12:50:23 +000026 // Check if the immediate can be encoded within an instruction.
27 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
28 return 0;
29
30 if (Val < 0)
31 Val = ~Val;
32
33 // Calculate how many moves we will need to materialize this constant.
34 unsigned LZ = countLeadingZeros((uint64_t)Val);
35 return (64 - LZ + 15) / 16;
36}
37
38/// \brief Calculate the cost of materializing the given constant.
Chandler Carruth705b1852015-01-31 03:43:40 +000039unsigned AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Tim Northover3b0846e2014-05-24 12:50:23 +000040 assert(Ty->isIntegerTy());
41
42 unsigned BitSize = Ty->getPrimitiveSizeInBits();
43 if (BitSize == 0)
44 return ~0U;
45
46 // Sign-extend all constants to a multiple of 64-bit.
47 APInt ImmVal = Imm;
48 if (BitSize & 0x3f)
49 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
50
51 // Split the constant into 64-bit chunks and calculate the cost for each
52 // chunk.
53 unsigned Cost = 0;
54 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
55 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
56 int64_t Val = Tmp.getSExtValue();
57 Cost += getIntImmCost(Val);
58 }
59 // We need at least one instruction to materialze the constant.
60 return std::max(1U, Cost);
61}
62
Chandler Carruth705b1852015-01-31 03:43:40 +000063unsigned AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
64 const APInt &Imm, Type *Ty) {
Tim Northover3b0846e2014-05-24 12:50:23 +000065 assert(Ty->isIntegerTy());
66
67 unsigned BitSize = Ty->getPrimitiveSizeInBits();
68 // There is no cost model for constants with a bit size of 0. Return TCC_Free
69 // here, so that constant hoisting will ignore this constant.
70 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +000071 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +000072
73 unsigned ImmIdx = ~0U;
74 switch (Opcode) {
75 default:
Chandler Carruth705b1852015-01-31 03:43:40 +000076 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +000077 case Instruction::GetElementPtr:
78 // Always hoist the base address of a GetElementPtr.
79 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +000080 return 2 * TTI::TCC_Basic;
81 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +000082 case Instruction::Store:
83 ImmIdx = 0;
84 break;
85 case Instruction::Add:
86 case Instruction::Sub:
87 case Instruction::Mul:
88 case Instruction::UDiv:
89 case Instruction::SDiv:
90 case Instruction::URem:
91 case Instruction::SRem:
92 case Instruction::And:
93 case Instruction::Or:
94 case Instruction::Xor:
95 case Instruction::ICmp:
96 ImmIdx = 1;
97 break;
98 // Always return TCC_Free for the shift value of a shift instruction.
99 case Instruction::Shl:
100 case Instruction::LShr:
101 case Instruction::AShr:
102 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +0000103 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +0000104 break;
105 case Instruction::Trunc:
106 case Instruction::ZExt:
107 case Instruction::SExt:
108 case Instruction::IntToPtr:
109 case Instruction::PtrToInt:
110 case Instruction::BitCast:
111 case Instruction::PHI:
112 case Instruction::Call:
113 case Instruction::Select:
114 case Instruction::Ret:
115 case Instruction::Load:
116 break;
117 }
118
119 if (Idx == ImmIdx) {
120 unsigned NumConstants = (BitSize + 63) / 64;
Chandler Carruth705b1852015-01-31 03:43:40 +0000121 unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
122 return (Cost <= NumConstants * TTI::TCC_Basic)
123 ? static_cast<unsigned>(TTI::TCC_Free)
124 : Cost;
Tim Northover3b0846e2014-05-24 12:50:23 +0000125 }
Chandler Carruth705b1852015-01-31 03:43:40 +0000126 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
Tim Northover3b0846e2014-05-24 12:50:23 +0000127}
128
Chandler Carruth705b1852015-01-31 03:43:40 +0000129unsigned AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
130 const APInt &Imm, Type *Ty) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000131 assert(Ty->isIntegerTy());
132
133 unsigned BitSize = Ty->getPrimitiveSizeInBits();
134 // There is no cost model for constants with a bit size of 0. Return TCC_Free
135 // here, so that constant hoisting will ignore this constant.
136 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +0000137 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +0000138
139 switch (IID) {
140 default:
Chandler Carruth705b1852015-01-31 03:43:40 +0000141 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +0000142 case Intrinsic::sadd_with_overflow:
143 case Intrinsic::uadd_with_overflow:
144 case Intrinsic::ssub_with_overflow:
145 case Intrinsic::usub_with_overflow:
146 case Intrinsic::smul_with_overflow:
147 case Intrinsic::umul_with_overflow:
148 if (Idx == 1) {
149 unsigned NumConstants = (BitSize + 63) / 64;
Chandler Carruth705b1852015-01-31 03:43:40 +0000150 unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
151 return (Cost <= NumConstants * TTI::TCC_Basic)
152 ? static_cast<unsigned>(TTI::TCC_Free)
153 : Cost;
Tim Northover3b0846e2014-05-24 12:50:23 +0000154 }
155 break;
156 case Intrinsic::experimental_stackmap:
157 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +0000158 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +0000159 break;
160 case Intrinsic::experimental_patchpoint_void:
161 case Intrinsic::experimental_patchpoint_i64:
162 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +0000163 return TTI::TCC_Free;
Tim Northover3b0846e2014-05-24 12:50:23 +0000164 break;
165 }
Chandler Carruth705b1852015-01-31 03:43:40 +0000166 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
Tim Northover3b0846e2014-05-24 12:50:23 +0000167}
168
Chandler Carruth705b1852015-01-31 03:43:40 +0000169TargetTransformInfo::PopcntSupportKind
170AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000171 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
172 if (TyWidth == 32 || TyWidth == 64)
Chandler Carruth705b1852015-01-31 03:43:40 +0000173 return TTI::PSK_FastHardware;
Tim Northover3b0846e2014-05-24 12:50:23 +0000174 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
Chandler Carruth705b1852015-01-31 03:43:40 +0000175 return TTI::PSK_Software;
Tim Northover3b0846e2014-05-24 12:50:23 +0000176}
177
Chandler Carruth705b1852015-01-31 03:43:40 +0000178unsigned AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
179 Type *Src) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000180 int ISD = TLI->InstructionOpcodeToISD(Opcode);
181 assert(ISD && "Invalid opcode");
182
183 EVT SrcTy = TLI->getValueType(Src);
184 EVT DstTy = TLI->getValueType(Dst);
185
186 if (!SrcTy.isSimple() || !DstTy.isSimple())
Chandler Carruth705b1852015-01-31 03:43:40 +0000187 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Tim Northover3b0846e2014-05-24 12:50:23 +0000188
189 static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
190 // LowerVectorINT_TO_FP:
191 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000192 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000193 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
194 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000195 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000196 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000197
198 // Complex: to v2f32
199 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
200 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000201 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000202 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
203 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000204 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000205
206 // Complex: to v4f32
207 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
208 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
209 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
210 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
211
212 // Complex: to v2f64
213 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
214 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
215 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
216 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
217 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
218 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
219
220
Tim Northover3b0846e2014-05-24 12:50:23 +0000221 // LowerVectorFP_TO_INT
Tim Northoveref0d7602014-06-15 09:27:06 +0000222 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000223 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
224 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000225 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000226 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
227 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000228
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000229 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
Tim Northoveref0d7602014-06-15 09:27:06 +0000230 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000231 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
232 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000233 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000234 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
235 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
236
237 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
238 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
239 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000240 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000241 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
242
243 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
244 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
245 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
246 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
247 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
248 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
249 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000250 };
251
252 int Idx = ConvertCostTableLookup<MVT>(
253 ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
254 SrcTy.getSimpleVT());
255 if (Idx != -1)
256 return ConversionTbl[Idx].Cost;
257
Chandler Carruth705b1852015-01-31 03:43:40 +0000258 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Tim Northover3b0846e2014-05-24 12:50:23 +0000259}
260
Chandler Carruth705b1852015-01-31 03:43:40 +0000261unsigned AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
262 unsigned Index) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000263 assert(Val->isVectorTy() && "This must be a vector type");
264
265 if (Index != -1U) {
266 // Legalize the type.
267 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
268
269 // This type is legalized to a scalar type.
270 if (!LT.second.isVector())
271 return 0;
272
273 // The type may be split. Normalize the index to the new type.
274 unsigned Width = LT.second.getVectorNumElements();
275 Index = Index % Width;
276
277 // The element at index zero is already inside the vector.
278 if (Index == 0)
279 return 0;
280 }
281
282 // All other insert/extracts cost this much.
283 return 2;
284}
285
Chandler Carruth705b1852015-01-31 03:43:40 +0000286unsigned AArch64TTIImpl::getArithmeticInstrCost(
287 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
288 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
289 TTI::OperandValueProperties Opd2PropInfo) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000290 // Legalize the type.
291 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
292
293 int ISD = TLI->InstructionOpcodeToISD(Opcode);
294
Chad Rosier70d54ac2014-09-29 13:59:31 +0000295 if (ISD == ISD::SDIV &&
296 Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
297 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
298 // On AArch64, scalar signed division by constants power-of-two are
299 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
300 // The OperandValue properties many not be same as that of previous
301 // operation; conservatively assume OP_None.
302 unsigned Cost =
303 getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
304 TargetTransformInfo::OP_None,
305 TargetTransformInfo::OP_None);
306 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
307 TargetTransformInfo::OP_None,
308 TargetTransformInfo::OP_None);
309 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
310 TargetTransformInfo::OP_None,
311 TargetTransformInfo::OP_None);
312 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
313 TargetTransformInfo::OP_None,
314 TargetTransformInfo::OP_None);
315 return Cost;
316 }
317
Tim Northover3b0846e2014-05-24 12:50:23 +0000318 switch (ISD) {
319 default:
Chandler Carruth705b1852015-01-31 03:43:40 +0000320 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
321 Opd1PropInfo, Opd2PropInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +0000322 case ISD::ADD:
323 case ISD::MUL:
324 case ISD::XOR:
325 case ISD::OR:
326 case ISD::AND:
327 // These nodes are marked as 'custom' for combining purposes only.
328 // We know that they are legal. See LowerAdd in ISelLowering.
329 return 1 * LT.first;
330 }
331}
332
Chandler Carruth705b1852015-01-31 03:43:40 +0000333unsigned AArch64TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000334 // Address computations in vectorized code with non-consecutive addresses will
335 // likely result in more instructions compared to scalar code where the
336 // computation can more often be merged into the index mode. The resulting
337 // extra micro-ops can significantly decrease throughput.
338 unsigned NumVectorInstToHideOverhead = 10;
339
340 if (Ty->isVectorTy() && IsComplex)
341 return NumVectorInstToHideOverhead;
342
343 // In many cases the address computation is not merged into the instruction
344 // addressing mode.
345 return 1;
346}
347
Chandler Carruth705b1852015-01-31 03:43:40 +0000348unsigned AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
349 Type *CondTy) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000350
351 int ISD = TLI->InstructionOpcodeToISD(Opcode);
352 // We don't lower vector selects well that are wider than the register width.
353 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
354 // We would need this many instructions to hide the scalarization happening.
355 unsigned AmortizationCost = 20;
356 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
357 VectorSelectTbl[] = {
358 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
359 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
360 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
361 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
362 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
363 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
364 };
365
366 EVT SelCondTy = TLI->getValueType(CondTy);
367 EVT SelValTy = TLI->getValueType(ValTy);
368 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
369 int Idx =
370 ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
371 SelValTy.getSimpleVT());
372 if (Idx != -1)
373 return VectorSelectTbl[Idx].Cost;
374 }
375 }
Chandler Carruth705b1852015-01-31 03:43:40 +0000376 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Tim Northover3b0846e2014-05-24 12:50:23 +0000377}
378
Chandler Carruth705b1852015-01-31 03:43:40 +0000379unsigned AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
380 unsigned Alignment,
381 unsigned AddressSpace) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000382 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
383
384 if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
385 Src->getVectorElementType()->isIntegerTy(64)) {
386 // Unaligned stores are extremely inefficient. We don't split
387 // unaligned v2i64 stores because the negative impact that has shown in
388 // practice on inlined memcpy code.
389 // We make v2i64 stores expensive so that we will only vectorize if there
390 // are 6 other instructions getting vectorized.
391 unsigned AmortizationCost = 6;
392
393 return LT.first * 2 * AmortizationCost;
394 }
395
396 if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
397 Src->getVectorNumElements() < 8) {
398 // We scalarize the loads/stores because there is not v.4b register and we
399 // have to promote the elements to v.4h.
400 unsigned NumVecElts = Src->getVectorNumElements();
401 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
402 // We generate 2 instructions per vector element.
403 return NumVectorizableInstsToAmortize * NumVecElts * 2;
404 }
405
406 return LT.first;
407}
James Molloy2b8933c2014-08-05 12:30:34 +0000408
Chandler Carruth705b1852015-01-31 03:43:40 +0000409unsigned AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
James Molloy2b8933c2014-08-05 12:30:34 +0000410 unsigned Cost = 0;
411 for (auto *I : Tys) {
412 if (!I->isVectorTy())
413 continue;
414 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
415 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
416 getMemoryOpCost(Instruction::Load, I, 128, 0);
417 }
418 return Cost;
419}
James Molloya88896b2014-08-21 00:02:51 +0000420
Chandler Carruth705b1852015-01-31 03:43:40 +0000421unsigned AArch64TTIImpl::getMaxInterleaveFactor() {
Gerolf Hoflehner7b0abb82014-09-10 20:31:57 +0000422 if (ST->isCortexA57())
James Molloya88896b2014-08-21 00:02:51 +0000423 return 4;
424 return 2;
425}
Kevin Qin72a799a2014-10-09 10:13:27 +0000426
Chandler Carruthab5cb362015-02-01 14:31:23 +0000427void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
Chandler Carruth705b1852015-01-31 03:43:40 +0000428 TTI::UnrollingPreferences &UP) {
Kevin Qin72a799a2014-10-09 10:13:27 +0000429 // Disable partial & runtime unrolling on -Os.
430 UP.PartialOptSizeThreshold = 0;
431}
Chad Rosierf9327d62015-01-26 22:51:15 +0000432
Chandler Carruth705b1852015-01-31 03:43:40 +0000433Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
434 Type *ExpectedType) {
Chad Rosierf9327d62015-01-26 22:51:15 +0000435 switch (Inst->getIntrinsicID()) {
436 default:
437 return nullptr;
438 case Intrinsic::aarch64_neon_st2:
439 case Intrinsic::aarch64_neon_st3:
440 case Intrinsic::aarch64_neon_st4: {
441 // Create a struct type
442 StructType *ST = dyn_cast<StructType>(ExpectedType);
443 if (!ST)
444 return nullptr;
445 unsigned NumElts = Inst->getNumArgOperands() - 1;
446 if (ST->getNumElements() != NumElts)
447 return nullptr;
448 for (unsigned i = 0, e = NumElts; i != e; ++i) {
449 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
450 return nullptr;
451 }
452 Value *Res = UndefValue::get(ExpectedType);
453 IRBuilder<> Builder(Inst);
454 for (unsigned i = 0, e = NumElts; i != e; ++i) {
455 Value *L = Inst->getArgOperand(i);
456 Res = Builder.CreateInsertValue(Res, L, i);
457 }
458 return Res;
459 }
460 case Intrinsic::aarch64_neon_ld2:
461 case Intrinsic::aarch64_neon_ld3:
462 case Intrinsic::aarch64_neon_ld4:
463 if (Inst->getType() == ExpectedType)
464 return Inst;
465 return nullptr;
466 }
467}
468
Chandler Carruth705b1852015-01-31 03:43:40 +0000469bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
470 MemIntrinsicInfo &Info) {
Chad Rosierf9327d62015-01-26 22:51:15 +0000471 switch (Inst->getIntrinsicID()) {
472 default:
473 break;
474 case Intrinsic::aarch64_neon_ld2:
475 case Intrinsic::aarch64_neon_ld3:
476 case Intrinsic::aarch64_neon_ld4:
477 Info.ReadMem = true;
478 Info.WriteMem = false;
479 Info.Vol = false;
480 Info.NumMemRefs = 1;
481 Info.PtrVal = Inst->getArgOperand(0);
482 break;
483 case Intrinsic::aarch64_neon_st2:
484 case Intrinsic::aarch64_neon_st3:
485 case Intrinsic::aarch64_neon_st4:
486 Info.ReadMem = false;
487 Info.WriteMem = true;
488 Info.Vol = false;
489 Info.NumMemRefs = 1;
490 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
491 break;
492 }
493
494 switch (Inst->getIntrinsicID()) {
495 default:
496 return false;
497 case Intrinsic::aarch64_neon_ld2:
498 case Intrinsic::aarch64_neon_st2:
499 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
500 break;
501 case Intrinsic::aarch64_neon_ld3:
502 case Intrinsic::aarch64_neon_st3:
503 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
504 break;
505 case Intrinsic::aarch64_neon_ld4:
506 case Intrinsic::aarch64_neon_st4:
507 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
508 break;
509 }
510 return true;
511}