blob: 49d78a8b22b520ac1a20afb2f67ba09609354d13 [file] [log] [blame]
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001//===--- RDFGraph.h ---------------------------------------------*- C++ -*-===//
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Target-independent, SSA-based data flow graph for register data flow (RDF)
11// for a non-SSA program representation (e.g. post-RA machine code).
12//
13//
14// *** Introduction
15//
16// The RDF graph is a collection of nodes, each of which denotes some element
17// of the program. There are two main types of such elements: code and refe-
18// rences. Conceptually, "code" is something that represents the structure
19// of the program, e.g. basic block or a statement, while "reference" is an
20// instance of accessing a register, e.g. a definition or a use. Nodes are
21// connected with each other based on the structure of the program (such as
22// blocks, instructions, etc.), and based on the data flow (e.g. reaching
23// definitions, reached uses, etc.). The single-reaching-definition principle
24// of SSA is generally observed, although, due to the non-SSA representation
25// of the program, there are some differences between the graph and a "pure"
26// SSA representation.
27//
28//
29// *** Implementation remarks
30//
31// Since the graph can contain a large number of nodes, memory consumption
32// was one of the major design considerations. As a result, there is a single
33// base class NodeBase which defines all members used by all possible derived
34// classes. The members are arranged in a union, and a derived class cannot
35// add any data members of its own. Each derived class only defines the
36// functional interface, i.e. member functions. NodeBase must be a POD,
37// which implies that all of its members must also be PODs.
38// Since nodes need to be connected with other nodes, pointers have been
39// replaced with 32-bit identifiers: each node has an id of type NodeId.
40// There are mapping functions in the graph that translate between actual
41// memory addresses and the corresponding identifiers.
42// A node id of 0 is equivalent to nullptr.
43//
44//
45// *** Structure of the graph
46//
47// A code node is always a collection of other nodes. For example, a code
48// node corresponding to a basic block will contain code nodes corresponding
49// to instructions. In turn, a code node corresponding to an instruction will
50// contain a list of reference nodes that correspond to the definitions and
51// uses of registers in that instruction. The members are arranged into a
52// circular list, which is yet another consequence of the effort to save
53// memory: for each member node it should be possible to obtain its owner,
54// and it should be possible to access all other members. There are other
55// ways to accomplish that, but the circular list seemed the most natural.
56//
57// +- CodeNode -+
58// | | <---------------------------------------------------+
59// +-+--------+-+ |
60// |FirstM |LastM |
61// | +-------------------------------------+ |
62// | | |
63// V V |
64// +----------+ Next +----------+ Next Next +----------+ Next |
65// | |----->| |-----> ... ----->| |----->-+
66// +- Member -+ +- Member -+ +- Member -+
67//
68// The order of members is such that related reference nodes (see below)
69// should be contiguous on the member list.
70//
71// A reference node is a node that encapsulates an access to a register,
72// in other words, data flowing into or out of a register. There are two
73// major kinds of reference nodes: defs and uses. A def node will contain
74// the id of the first reached use, and the id of the first reached def.
75// Each def and use will contain the id of the reaching def, and also the
76// id of the next reached def (for def nodes) or use (for use nodes).
77// The "next node sharing the same reaching def" is denoted as "sibling".
78// In summary:
79// - Def node contains: reaching def, sibling, first reached def, and first
80// reached use.
81// - Use node contains: reaching def and sibling.
82//
83// +-- DefNode --+
84// | R2 = ... | <---+--------------------+
85// ++---------+--+ | |
86// |Reached |Reached | |
87// |Def |Use | |
88// | | |Reaching |Reaching
89// | V |Def |Def
90// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
91// | | ... = R2 |----->| ... = R2 |----> ... ----> 0
92// | +-------------+ +-------------+
93// V
94// +-- DefNode --+ Sib
95// | R2 = ... |----> ...
96// ++---------+--+
97// | |
98// | |
99// ... ...
100//
101// To get a full picture, the circular lists connecting blocks within a
102// function, instructions within a block, etc. should be superimposed with
103// the def-def, def-use links shown above.
104// To illustrate this, consider a small example in a pseudo-assembly:
105// foo:
106// add r2, r0, r1 ; r2 = r0+r1
107// addi r0, r2, 1 ; r0 = r2+1
108// ret r0 ; return value in r0
109//
110// The graph (in a format used by the debugging functions) would look like:
111//
112// DFG dump:[
113// f1: Function foo
114// b2: === BB#0 === preds(0), succs(0):
115// p3: phi [d4<r0>(,d12,u9):]
116// p5: phi [d6<r1>(,,u10):]
117// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
118// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
119// s14: ret [u15<r0>(d12):]
120// ]
121//
122// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
123// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
124// ment, d - def, u - use).
125// The format of a def node is:
126// dN<R>(rd,d,u):sib,
127// where
128// N - numeric node id,
129// R - register being defined
130// rd - reaching def,
131// d - reached def,
132// u - reached use,
133// sib - sibling.
134// The format of a use node is:
135// uN<R>[!](rd):sib,
136// where
137// N - numeric node id,
138// R - register being used,
139// rd - reaching def,
140// sib - sibling.
141// Possible annotations (usually preceding the node id):
142// + - preserving def,
143// ~ - clobbering def,
144// " - shadow ref (follows the node id),
145// ! - fixed register (appears after register name).
146//
147// The circular lists are not explicit in the dump.
148//
149//
150// *** Node attributes
151//
152// NodeBase has a member "Attrs", which is the primary way of determining
153// the node's characteristics. The fields in this member decide whether
154// the node is a code node or a reference node (i.e. node's "type"), then
155// within each type, the "kind" determines what specifically this node
156// represents. The remaining bits, "flags", contain additional information
157// that is even more detailed than the "kind".
158// CodeNode's kinds are:
159// - Phi: Phi node, members are reference nodes.
160// - Stmt: Statement, members are reference nodes.
161// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
162// - Func: The whole function. The members are basic block nodes.
163// RefNode's kinds are:
164// - Use.
165// - Def.
166//
167// Meaning of flags:
168// - Preserving: applies only to defs. A preserving def is one that can
169// preserve some of the original bits among those that are included in
170// the register associated with that def. For example, if R0 is a 32-bit
171// register, but a def can only change the lower 16 bits, then it will
172// be marked as preserving.
173// - Shadow: a reference that has duplicates holding additional reaching
174// defs (see more below).
175// - Clobbering: applied only to defs, indicates that the value generated
176// by this def is unspecified. A typical example would be volatile registers
177// after function calls.
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +0000178// - Fixed: the register in this def/use cannot be replaced with any other
179// register. A typical case would be a parameter register to a call, or
180// the register with the return value from a function.
181// - Undef: the register in this reference the register is assumed to have
182// no pre-existing value, even if it appears to be reached by some def.
183// This is typically used to prevent keeping registers artificially live
184// in cases when they are defined via predicated instructions. For example:
185// r0 = add-if-true cond, r10, r11 (1)
186// r0 = add-if-false cond, r12, r13, r0<imp-use> (2)
187// ... = r0 (3)
188// Before (1), r0 is not intended to be live, and the use of r0 in (3) is
189// not meant to be reached by any def preceding (1). However, since the
190// defs in (1) and (2) are both preserving, these properties alone would
191// imply that the use in (3) may indeed be reached by some prior def.
192// Adding Undef flag to the def in (1) prevents that. The Undef flag
193// may be applied to both defs and uses.
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +0000194// - Dead: applies only to defs. The value coming out of a "dead" def is
195// assumed to be unused, even if the def appears to be reaching other defs
196// or uses. The motivation for this flag comes from dead defs on function
197// calls: there is no way to determine if such a def is dead without
198// analyzing the target's ABI. Hence the graph should contain this info,
199// as it is unavailable otherwise. On the other hand, a def without any
200// uses on a typical instruction is not the intended target for this flag.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000201//
202// *** Shadow references
203//
204// It may happen that a super-register can have two (or more) non-overlapping
205// sub-registers. When both of these sub-registers are defined and followed
206// by a use of the super-register, the use of the super-register will not
207// have a unique reaching def: both defs of the sub-registers need to be
208// accounted for. In such cases, a duplicate use of the super-register is
209// added and it points to the extra reaching def. Both uses are marked with
210// a flag "shadow". Example:
211// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
212// set r0, 1 ; r0 = 1
213// set r1, 1 ; r1 = 1
214// addi t1, t0, 1 ; t1 = t0+1
215//
216// The DFG:
217// s1: set [d2<r0>(,,u9):]
218// s3: set [d4<r1>(,,u10):]
219// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
220//
221// The statement s5 has two use nodes for t0: u7" and u9". The quotation
222// mark " indicates that the node is a shadow.
223//
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000224
225#ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
226#define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000227
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000228#include "llvm/ADT/BitVector.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000229#include "llvm/ADT/STLExtras.h"
230#include "llvm/MC/LaneBitmask.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000231#include "llvm/Support/Allocator.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000232#include "llvm/Support/MathExtras.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000233#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000234#include "llvm/Target/TargetRegisterInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000235#include <cassert>
236#include <cstdint>
237#include <cstring>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000238#include <functional>
239#include <map>
240#include <set>
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000241#include <unordered_map>
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000242#include <utility>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000243#include <vector>
244
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000245// RDF uses uint32_t to refer to registers. This is to ensure that the type
246// size remains specific. In other places, registers are often stored using
247// unsigned.
248static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
249
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000250namespace llvm {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000251
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000252 class MachineBasicBlock;
253 class MachineFunction;
254 class MachineInstr;
255 class MachineOperand;
256 class MachineDominanceFrontier;
257 class MachineDominatorTree;
258 class TargetInstrInfo;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000259
260namespace rdf {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000261
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000262 typedef uint32_t NodeId;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000263 typedef uint32_t RegisterId;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000264
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000265 struct DataFlowGraph;
266
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000267 struct NodeAttrs {
268 enum : uint16_t {
269 None = 0x0000, // Nothing
270
271 // Types: 2 bits
272 TypeMask = 0x0003,
273 Code = 0x0001, // 01, Container
274 Ref = 0x0002, // 10, Reference
275
276 // Kind: 3 bits
277 KindMask = 0x0007 << 2,
278 Def = 0x0001 << 2, // 001
279 Use = 0x0002 << 2, // 010
280 Phi = 0x0003 << 2, // 011
281 Stmt = 0x0004 << 2, // 100
282 Block = 0x0005 << 2, // 101
283 Func = 0x0006 << 2, // 110
284
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +0000285 // Flags: 7 bits for now
286 FlagMask = 0x007F << 5,
287 Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs.
288 Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values.
289 PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode.
290 Preserving = 0x0008 << 5, // 0001000, Def can keep original bits.
291 Fixed = 0x0010 << 5, // 0010000, Fixed register.
292 Undef = 0x0020 << 5, // 0100000, Has no pre-existing value.
293 Dead = 0x0040 << 5, // 1000000, Does not define a value.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000294 };
295
296 static uint16_t type(uint16_t T) { return T & TypeMask; }
297 static uint16_t kind(uint16_t T) { return T & KindMask; }
298 static uint16_t flags(uint16_t T) { return T & FlagMask; }
299
300 static uint16_t set_type(uint16_t A, uint16_t T) {
301 return (A & ~TypeMask) | T;
302 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000303
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000304 static uint16_t set_kind(uint16_t A, uint16_t K) {
305 return (A & ~KindMask) | K;
306 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000307
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000308 static uint16_t set_flags(uint16_t A, uint16_t F) {
309 return (A & ~FlagMask) | F;
310 }
311
312 // Test if A contains B.
313 static bool contains(uint16_t A, uint16_t B) {
314 if (type(A) != Code)
315 return false;
316 uint16_t KB = kind(B);
317 switch (kind(A)) {
318 case Func:
319 return KB == Block;
320 case Block:
321 return KB == Phi || KB == Stmt;
322 case Phi:
323 case Stmt:
324 return type(B) == Ref;
325 }
326 return false;
327 }
328 };
329
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000330 struct BuildOptions {
331 enum : unsigned {
332 None = 0x00,
333 KeepDeadPhis = 0x01, // Do not remove dead phis during build.
334 };
335 };
336
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000337 template <typename T> struct NodeAddr {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000338 NodeAddr() : Addr(nullptr) {}
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000339 NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000340
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000341 // Type cast (casting constructor). The reason for having this class
342 // instead of std::pair.
343 template <typename S> NodeAddr(const NodeAddr<S> &NA)
344 : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
345
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000346 bool operator== (const NodeAddr<T> &NA) const {
347 assert((Addr == NA.Addr) == (Id == NA.Id));
348 return Addr == NA.Addr;
349 }
350 bool operator!= (const NodeAddr<T> &NA) const {
351 return !operator==(NA);
352 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000353
354 T Addr;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000355 NodeId Id = 0;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000356 };
357
358 struct NodeBase;
359
360 // Fast memory allocation and translation between node id and node address.
361 // This is really the same idea as the one underlying the "bump pointer
362 // allocator", the difference being in the translation. A node id is
363 // composed of two components: the index of the block in which it was
364 // allocated, and the index within the block. With the default settings,
365 // where the number of nodes per block is 4096, the node id (minus 1) is:
366 //
367 // bit position: 11 0
368 // +----------------------------+--------------+
369 // | Index of the block |Index in block|
370 // +----------------------------+--------------+
371 //
372 // The actual node id is the above plus 1, to avoid creating a node id of 0.
373 //
374 // This method significantly improved the build time, compared to using maps
375 // (std::unordered_map or DenseMap) to translate between pointers and ids.
376 struct NodeAllocator {
377 // Amount of storage for a single node.
378 enum { NodeMemSize = 32 };
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000379
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000380 NodeAllocator(uint32_t NPB = 4096)
381 : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000382 IndexMask((1 << BitsPerIndex)-1) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000383 assert(isPowerOf2_32(NPB));
384 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000385
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000386 NodeBase *ptr(NodeId N) const {
387 uint32_t N1 = N-1;
388 uint32_t BlockN = N1 >> BitsPerIndex;
389 uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
390 return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
391 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000392
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000393 NodeId id(const NodeBase *P) const;
394 NodeAddr<NodeBase*> New();
395 void clear();
396
397 private:
398 void startNewBlock();
399 bool needNewBlock();
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000400
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000401 uint32_t makeId(uint32_t Block, uint32_t Index) const {
402 // Add 1 to the id, to avoid the id of 0, which is treated as "null".
403 return ((Block << BitsPerIndex) | Index) + 1;
404 }
405
406 const uint32_t NodesPerBlock;
407 const uint32_t BitsPerIndex;
408 const uint32_t IndexMask;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000409 char *ActiveEnd = nullptr;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000410 std::vector<char*> Blocks;
411 typedef BumpPtrAllocatorImpl<MallocAllocator, 65536> AllocatorTy;
412 AllocatorTy MemPool;
413 };
414
415 struct RegisterRef {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000416 RegisterId Reg;
417 LaneBitmask Mask;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000418
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000419 RegisterRef() : RegisterRef(0) {}
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000420 explicit RegisterRef(RegisterId R, LaneBitmask M = LaneBitmask::getAll())
421 : Reg(R), Mask(R != 0 ? M : LaneBitmask::getNone()) {}
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000422
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +0000423 operator bool() const { return Reg != 0 && Mask.any(); }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000424 bool operator== (const RegisterRef &RR) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000425 return Reg == RR.Reg && Mask == RR.Mask;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000426 }
427 bool operator!= (const RegisterRef &RR) const {
428 return !operator==(RR);
429 }
430 bool operator< (const RegisterRef &RR) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000431 return Reg < RR.Reg || (Reg == RR.Reg && Mask < RR.Mask);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000432 }
433 };
434 typedef std::set<RegisterRef> RegisterSet;
435
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000436 struct TargetOperandInfo {
437 TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000438 virtual ~TargetOperandInfo() = default;
439
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000440 virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
441 virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
442 virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
443
444 const TargetInstrInfo &TII;
445 };
446
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000447 // Packed register reference. Only used for storage.
448 struct PackedRegisterRef {
449 RegisterId Reg;
450 uint32_t MaskId;
451 };
452
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000453 // Template class for a map translating uint32_t into arbitrary types.
454 // The map will act like an indexed set: upon insertion of a new object,
455 // it will automatically assign a new index to it. Index of 0 is treated
456 // as invalid and is never allocated.
457 template <typename T, unsigned N = 32>
458 struct IndexedSet {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000459 IndexedSet() : Map() { Map.reserve(N); }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000460
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000461 T get(uint32_t Idx) const {
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000462 // Index Idx corresponds to Map[Idx-1].
463 assert(Idx != 0 && !Map.empty() && Idx-1 < Map.size());
464 return Map[Idx-1];
465 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000466
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000467 uint32_t insert(T Val) {
468 // Linear search.
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000469 auto F = llvm::find(Map, Val);
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000470 if (F != Map.end())
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000471 return F - Map.begin() + 1;
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000472 Map.push_back(Val);
473 return Map.size(); // Return actual_index + 1.
474 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000475
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000476 uint32_t find(T Val) const {
477 auto F = llvm::find(Map, Val);
478 assert(F != Map.end());
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000479 return F - Map.begin();
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000480 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000481
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000482 private:
483 std::vector<T> Map;
484 };
485
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000486 struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000487 LaneMaskIndex() = default;
488
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000489 LaneBitmask getLaneMaskForIndex(uint32_t K) const {
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000490 return K == 0 ? LaneBitmask::getAll() : get(K);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000491 }
492 uint32_t getIndexForLaneMask(LaneBitmask LM) {
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +0000493 assert(LM.any());
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000494 return LM.all() ? 0 : insert(LM);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000495 }
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000496 uint32_t getIndexForLaneMask(LaneBitmask LM) const {
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +0000497 assert(LM.any());
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000498 return LM.all() ? 0 : find(LM);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000499 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000500
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000501 PackedRegisterRef pack(RegisterRef RR) {
502 return { RR.Reg, getIndexForLaneMask(RR.Mask) };
503 }
504 PackedRegisterRef pack(RegisterRef RR) const {
505 return { RR.Reg, getIndexForLaneMask(RR.Mask) };
506 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000507
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000508 RegisterRef unpack(PackedRegisterRef PR) const {
509 return RegisterRef(PR.Reg, getLaneMaskForIndex(PR.MaskId));
510 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000511 };
512
513 struct RegisterAggr {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000514 RegisterAggr(const TargetRegisterInfo &tri)
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000515 : ExpAliasUnits(tri.getNumRegUnits()), CheckUnits(false), TRI(tri) {}
516 RegisterAggr(const RegisterAggr &RG) = default;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000517
518 bool empty() const { return Masks.empty(); }
519 bool hasAliasOf(RegisterRef RR) const;
520 bool hasCoverOf(RegisterRef RR) const;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000521 static bool isCoverOf(RegisterRef RA, RegisterRef RB,
522 const TargetRegisterInfo &TRI) {
523 return RegisterAggr(TRI).insert(RA).hasCoverOf(RB);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000524 }
525
526 RegisterAggr &insert(RegisterRef RR);
527 RegisterAggr &insert(const RegisterAggr &RG);
528 RegisterAggr &clear(RegisterRef RR);
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000529 RegisterAggr &clear(const RegisterAggr &RG);
530
531 RegisterRef clearIn(RegisterRef RR) const;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000532
533 void print(raw_ostream &OS) const;
534
535 private:
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000536 typedef std::unordered_map<RegisterId, LaneBitmask> MapType;
537
538 public:
539 typedef MapType::const_iterator iterator;
540 iterator begin() const { return Masks.begin(); }
541 iterator end() const { return Masks.end(); }
542 RegisterRef normalize(RegisterRef RR) const;
543
544 private:
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000545 MapType Masks;
546 BitVector ExpAliasUnits; // Register units for explicit aliases.
547 bool CheckUnits;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000548 const TargetRegisterInfo &TRI;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000549 };
550
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000551 struct NodeBase {
552 public:
553 // Make sure this is a POD.
554 NodeBase() = default;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000555
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000556 uint16_t getType() const { return NodeAttrs::type(Attrs); }
557 uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
558 uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
559 NodeId getNext() const { return Next; }
560
561 uint16_t getAttrs() const { return Attrs; }
562 void setAttrs(uint16_t A) { Attrs = A; }
563 void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
564
565 // Insert node NA after "this" in the circular chain.
566 void append(NodeAddr<NodeBase*> NA);
567 // Initialize all members to 0.
568 void init() { memset(this, 0, sizeof *this); }
569 void setNext(NodeId N) { Next = N; }
570
571 protected:
572 uint16_t Attrs;
573 uint16_t Reserved;
574 NodeId Next; // Id of the next node in the circular chain.
575 // Definitions of nested types. Using anonymous nested structs would make
576 // this class definition clearer, but unnamed structs are not a part of
577 // the standard.
578 struct Def_struct {
579 NodeId DD, DU; // Ids of the first reached def and use.
580 };
581 struct PhiU_struct {
582 NodeId PredB; // Id of the predecessor block for a phi use.
583 };
584 struct Code_struct {
585 void *CP; // Pointer to the actual code.
586 NodeId FirstM, LastM; // Id of the first member and last.
587 };
588 struct Ref_struct {
589 NodeId RD, Sib; // Ids of the reaching def and the sibling.
590 union {
591 Def_struct Def;
592 PhiU_struct PhiU;
593 };
594 union {
595 MachineOperand *Op; // Non-phi refs point to a machine operand.
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000596 PackedRegisterRef PR; // Phi refs store register info directly.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000597 };
598 };
599
600 // The actual payload.
601 union {
602 Ref_struct Ref;
603 Code_struct Code;
604 };
605 };
606 // The allocator allocates chunks of 32 bytes for each node. The fact that
607 // each node takes 32 bytes in memory is used for fast translation between
608 // the node id and the node address.
609 static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
610 "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
611
612 typedef std::vector<NodeAddr<NodeBase*>> NodeList;
613 typedef std::set<NodeId> NodeSet;
614
615 struct RefNode : public NodeBase {
616 RefNode() = default;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000617
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000618 RegisterRef getRegRef(const DataFlowGraph &G) const;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000619
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000620 MachineOperand &getOp() {
621 assert(!(getFlags() & NodeAttrs::PhiRef));
622 return *Ref.Op;
623 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000624
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000625 void setRegRef(RegisterRef RR, DataFlowGraph &G);
626 void setRegRef(MachineOperand *Op, DataFlowGraph &G);
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000627
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000628 NodeId getReachingDef() const {
629 return Ref.RD;
630 }
631 void setReachingDef(NodeId RD) {
632 Ref.RD = RD;
633 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000634
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000635 NodeId getSibling() const {
636 return Ref.Sib;
637 }
638 void setSibling(NodeId Sib) {
639 Ref.Sib = Sib;
640 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000641
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000642 bool isUse() const {
643 assert(getType() == NodeAttrs::Ref);
644 return getKind() == NodeAttrs::Use;
645 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000646
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000647 bool isDef() const {
648 assert(getType() == NodeAttrs::Ref);
649 return getKind() == NodeAttrs::Def;
650 }
651
652 template <typename Predicate>
653 NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
654 const DataFlowGraph &G);
655 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
656 };
657
658 struct DefNode : public RefNode {
659 NodeId getReachedDef() const {
660 return Ref.Def.DD;
661 }
662 void setReachedDef(NodeId D) {
663 Ref.Def.DD = D;
664 }
665 NodeId getReachedUse() const {
666 return Ref.Def.DU;
667 }
668 void setReachedUse(NodeId U) {
669 Ref.Def.DU = U;
670 }
671
672 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
673 };
674
675 struct UseNode : public RefNode {
676 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
677 };
678
679 struct PhiUseNode : public UseNode {
680 NodeId getPredecessor() const {
681 assert(getFlags() & NodeAttrs::PhiRef);
682 return Ref.PhiU.PredB;
683 }
684 void setPredecessor(NodeId B) {
685 assert(getFlags() & NodeAttrs::PhiRef);
686 Ref.PhiU.PredB = B;
687 }
688 };
689
690 struct CodeNode : public NodeBase {
691 template <typename T> T getCode() const {
692 return static_cast<T>(Code.CP);
693 }
694 void setCode(void *C) {
695 Code.CP = C;
696 }
697
698 NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
699 NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
700 void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
701 void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
702 const DataFlowGraph &G);
703 void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
704
705 NodeList members(const DataFlowGraph &G) const;
706 template <typename Predicate>
707 NodeList members_if(Predicate P, const DataFlowGraph &G) const;
708 };
709
710 struct InstrNode : public CodeNode {
711 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
712 };
713
714 struct PhiNode : public InstrNode {
715 MachineInstr *getCode() const {
716 return nullptr;
717 }
718 };
719
720 struct StmtNode : public InstrNode {
721 MachineInstr *getCode() const {
722 return CodeNode::getCode<MachineInstr*>();
723 }
724 };
725
726 struct BlockNode : public CodeNode {
727 MachineBasicBlock *getCode() const {
728 return CodeNode::getCode<MachineBasicBlock*>();
729 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000730
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000731 void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
732 };
733
734 struct FuncNode : public CodeNode {
735 MachineFunction *getCode() const {
736 return CodeNode::getCode<MachineFunction*>();
737 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000738
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000739 NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
740 const DataFlowGraph &G) const;
741 NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
742 };
743
744 struct DataFlowGraph {
745 DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
746 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000747 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000748
749 NodeBase *ptr(NodeId N) const;
750 template <typename T> T ptr(NodeId N) const {
751 return static_cast<T>(ptr(N));
752 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000753
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000754 NodeId id(const NodeBase *P) const;
755
756 template <typename T> NodeAddr<T> addr(NodeId N) const {
757 return { ptr<T>(N), N };
758 }
759
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000760 NodeAddr<FuncNode*> getFunc() const { return Func; }
761 MachineFunction &getMF() const { return MF; }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000762 const TargetInstrInfo &getTII() const { return TII; }
763 const TargetRegisterInfo &getTRI() const { return TRI; }
764 const MachineDominatorTree &getDT() const { return MDT; }
765 const MachineDominanceFrontier &getDF() const { return MDF; }
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000766
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000767 struct DefStack {
768 DefStack() = default;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000769
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000770 bool empty() const { return Stack.empty() || top() == bottom(); }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000771
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000772 private:
773 typedef NodeAddr<DefNode*> value_type;
774 struct Iterator {
775 typedef DefStack::value_type value_type;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000776
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000777 Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
778 Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000779
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000780 value_type operator*() const {
781 assert(Pos >= 1);
782 return DS.Stack[Pos-1];
783 }
784 const value_type *operator->() const {
785 assert(Pos >= 1);
786 return &DS.Stack[Pos-1];
787 }
788 bool operator==(const Iterator &It) const { return Pos == It.Pos; }
789 bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000790
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000791 private:
792 Iterator(const DefStack &S, bool Top);
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000793
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000794 // Pos-1 is the index in the StorageType object that corresponds to
795 // the top of the DefStack.
796 const DefStack &DS;
797 unsigned Pos;
798 friend struct DefStack;
799 };
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000800
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000801 public:
802 typedef Iterator iterator;
803 iterator top() const { return Iterator(*this, true); }
804 iterator bottom() const { return Iterator(*this, false); }
805 unsigned size() const;
806
807 void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
808 void pop();
809 void start_block(NodeId N);
810 void clear_block(NodeId N);
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000811
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000812 private:
813 friend struct Iterator;
814 typedef std::vector<value_type> StorageType;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000815
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000816 bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
817 return (P.Addr == nullptr) && (N == 0 || P.Id == N);
818 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000819
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000820 unsigned nextUp(unsigned P) const;
821 unsigned nextDown(unsigned P) const;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000822
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000823 StorageType Stack;
824 };
825
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000826 // Make this std::unordered_map for speed of accessing elements.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000827 // Map: Register (physical or virtual) -> DefStack
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000828 typedef std::unordered_map<RegisterId,DefStack> DefStackMap;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000829
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000830 void build(unsigned Options = BuildOptions::None);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000831 void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
832 void markBlock(NodeId B, DefStackMap &DefM);
833 void releaseBlock(NodeId B, DefStackMap &DefM);
834
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000835 PackedRegisterRef pack(RegisterRef RR) { return LMI.pack(RR); }
836 PackedRegisterRef pack(RegisterRef RR) const { return LMI.pack(RR); }
837 RegisterRef unpack(PackedRegisterRef PR) const { return LMI.unpack(PR); }
838 RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000839 RegisterRef normalizeRef(RegisterRef RR) const;
840 RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000841
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000842 NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
843 NodeAddr<RefNode*> RA) const;
844 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
845 NodeAddr<RefNode*> RA, bool Create);
846 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
847 NodeAddr<RefNode*> RA) const;
848 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
849 NodeAddr<RefNode*> RA, bool Create);
850 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
851 NodeAddr<RefNode*> RA) const;
852
853 NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
854 NodeAddr<RefNode*> RA) const;
855
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +0000856 void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
857 unlinkUseDF(UA);
858 if (RemoveFromOwner)
859 removeFromOwner(UA);
860 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000861
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +0000862 void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
863 unlinkDefDF(DA);
864 if (RemoveFromOwner)
865 removeFromOwner(DA);
866 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000867
868 // Some useful filters.
869 template <uint16_t Kind>
870 static bool IsRef(const NodeAddr<NodeBase*> BA) {
871 return BA.Addr->getType() == NodeAttrs::Ref &&
872 BA.Addr->getKind() == Kind;
873 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000874
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000875 template <uint16_t Kind>
876 static bool IsCode(const NodeAddr<NodeBase*> BA) {
877 return BA.Addr->getType() == NodeAttrs::Code &&
878 BA.Addr->getKind() == Kind;
879 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000880
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000881 static bool IsDef(const NodeAddr<NodeBase*> BA) {
882 return BA.Addr->getType() == NodeAttrs::Ref &&
883 BA.Addr->getKind() == NodeAttrs::Def;
884 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000885
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000886 static bool IsUse(const NodeAddr<NodeBase*> BA) {
887 return BA.Addr->getType() == NodeAttrs::Ref &&
888 BA.Addr->getKind() == NodeAttrs::Use;
889 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000890
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000891 static bool IsPhi(const NodeAddr<NodeBase*> BA) {
892 return BA.Addr->getType() == NodeAttrs::Code &&
893 BA.Addr->getKind() == NodeAttrs::Phi;
894 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000895
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +0000896 static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
897 uint16_t Flags = DA.Addr->getFlags();
898 return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
899 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000900
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000901 // Register aliasing.
902 bool alias(RegisterRef RA, RegisterRef RB) const;
903
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000904 private:
905 void reset();
906
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000907 RegisterSet getAliasSet(RegisterId Reg) const;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000908 RegisterSet getLandingPadLiveIns() const;
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000909
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000910 NodeAddr<NodeBase*> newNode(uint16_t Attrs);
911 NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
912 NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
913 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
914 NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
915 RegisterRef RR, NodeAddr<BlockNode*> PredB,
916 uint16_t Flags = NodeAttrs::PhiRef);
917 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
918 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
919 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
920 RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
921 NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
922 NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
923 MachineInstr *MI);
924 NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
925 MachineBasicBlock *BB);
926 NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
927
928 template <typename Predicate>
929 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
930 locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
931 Predicate P) const;
932
933 typedef std::map<NodeId,RegisterSet> BlockRefsMap;
934
935 void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
936 void buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM);
937 void recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
938 NodeAddr<BlockNode*> BA);
939 void buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
940 NodeAddr<BlockNode*> BA);
941 void removeUnusedPhis();
942
943 template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
944 NodeAddr<T> TA, DefStack &DS);
945 void linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA);
946 void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
947
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +0000948 void unlinkUseDF(NodeAddr<UseNode*> UA);
949 void unlinkDefDF(NodeAddr<DefNode*> DA);
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000950
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +0000951 void removeFromOwner(NodeAddr<RefNode*> RA) {
952 NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
953 IA.Addr->removeMember(RA, *this);
954 }
955
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000956 NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) {
957 return BlockNodes[BB];
958 }
959
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000960 NodeAddr<FuncNode*> Func;
961 NodeAllocator Memory;
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000962 // Local map: MachineBasicBlock -> NodeAddr<BlockNode*>
963 std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000964 // Lane mask map.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000965 LaneMaskIndex LMI;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000966
967 MachineFunction &MF;
968 const TargetInstrInfo &TII;
969 const TargetRegisterInfo &TRI;
970 const MachineDominatorTree &MDT;
971 const MachineDominanceFrontier &MDF;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000972 const TargetOperandInfo &TOI;
973 }; // struct DataFlowGraph
974
975 template <typename Predicate>
976 NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
977 bool NextOnly, const DataFlowGraph &G) {
978 // Get the "Next" reference in the circular list that references RR and
979 // satisfies predicate "Pred".
980 auto NA = G.addr<NodeBase*>(getNext());
981
982 while (NA.Addr != this) {
983 if (NA.Addr->getType() == NodeAttrs::Ref) {
984 NodeAddr<RefNode*> RA = NA;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000985 if (RA.Addr->getRegRef(G) == RR && P(NA))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000986 return NA;
987 if (NextOnly)
988 break;
989 NA = G.addr<NodeBase*>(NA.Addr->getNext());
990 } else {
991 // We've hit the beginning of the chain.
992 assert(NA.Addr->getType() == NodeAttrs::Code);
993 NodeAddr<CodeNode*> CA = NA;
994 NA = CA.Addr->getFirstMember(G);
995 }
996 }
997 // Return the equivalent of "nullptr" if such a node was not found.
998 return NodeAddr<RefNode*>();
999 }
1000
1001 template <typename Predicate>
1002 NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
1003 NodeList MM;
1004 auto M = getFirstMember(G);
1005 if (M.Id == 0)
1006 return MM;
1007
1008 while (M.Addr != this) {
1009 if (P(M))
1010 MM.push_back(M);
1011 M = G.addr<NodeBase*>(M.Addr->getNext());
1012 }
1013 return MM;
1014 }
1015
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +00001016 // Optionally print the lane mask, if it is not ~0.
1017 struct PrintLaneMaskOpt {
1018 PrintLaneMaskOpt(LaneBitmask M) : Mask(M) {}
1019 LaneBitmask Mask;
1020 };
1021 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P);
1022
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001023 template <typename T> struct Print;
1024 template <typename T>
1025 raw_ostream &operator<< (raw_ostream &OS, const Print<T> &P);
1026
1027 template <typename T>
1028 struct Print {
1029 Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
1030 const T &Obj;
1031 const DataFlowGraph &G;
1032 };
1033
1034 template <typename T>
1035 struct PrintNode : Print<NodeAddr<T>> {
1036 PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
1037 : Print<NodeAddr<T>>(x, g) {}
1038 };
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001039
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001040} // end namespace rdf
1041
1042} // end namespace llvm
1043
1044#endif // LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H