blob: db0de4d797ea2a49ee82c9a6a05761219d209f07 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000069//===----------------------------------------------------------------------===//
70
71#define DEBUG_TYPE "msan"
72
Chandler Carruthed0881b2012-12-03 16:50:05 +000073#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000074#include "BlackList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000075#include "llvm/ADT/DepthFirstIterator.h"
76#include "llvm/ADT/SmallString.h"
77#include "llvm/ADT/SmallVector.h"
78#include "llvm/ADT/ValueMap.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/DataLayout.h"
80#include "llvm/IR/Function.h"
81#include "llvm/IR/IRBuilder.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/IntrinsicInst.h"
84#include "llvm/IR/LLVMContext.h"
85#include "llvm/IR/MDBuilder.h"
86#include "llvm/IR/Module.h"
87#include "llvm/IR/Type.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000088#include "llvm/InstVisitor.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000089#include "llvm/Support/CommandLine.h"
90#include "llvm/Support/Compiler.h"
91#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000092#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000093#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +000094#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000095#include "llvm/Transforms/Utils/ModuleUtils.h"
96
97using namespace llvm;
98
99static const uint64_t kShadowMask32 = 1ULL << 31;
100static const uint64_t kShadowMask64 = 1ULL << 46;
101static const uint64_t kOriginOffset32 = 1ULL << 30;
102static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000103static const unsigned kMinOriginAlignment = 4;
104static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000105
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000106/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000107///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000108/// Adds a section to MemorySanitizer report that points to the allocation
109/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000110static cl::opt<bool> ClTrackOrigins("msan-track-origins",
111 cl::desc("Track origins (allocation sites) of poisoned memory"),
112 cl::Hidden, cl::init(false));
113static cl::opt<bool> ClKeepGoing("msan-keep-going",
114 cl::desc("keep going after reporting a UMR"),
115 cl::Hidden, cl::init(false));
116static cl::opt<bool> ClPoisonStack("msan-poison-stack",
117 cl::desc("poison uninitialized stack variables"),
118 cl::Hidden, cl::init(true));
119static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
120 cl::desc("poison uninitialized stack variables with a call"),
121 cl::Hidden, cl::init(false));
122static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
123 cl::desc("poison uninitialized stack variables with the given patter"),
124 cl::Hidden, cl::init(0xff));
125
126static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
127 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
128 cl::Hidden, cl::init(true));
129
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000130static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
131 cl::desc("store origin for clean (fully initialized) values"),
132 cl::Hidden, cl::init(false));
133
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000134// This flag controls whether we check the shadow of the address
135// operand of load or store. Such bugs are very rare, since load from
136// a garbage address typically results in SEGV, but still happen
137// (e.g. only lower bits of address are garbage, or the access happens
138// early at program startup where malloc-ed memory is more likely to
139// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
140static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
141 cl::desc("report accesses through a pointer which has poisoned shadow"),
142 cl::Hidden, cl::init(true));
143
144static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
145 cl::desc("print out instructions with default strict semantics"),
146 cl::Hidden, cl::init(false));
147
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000148static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000149 cl::desc("File containing the list of functions where MemorySanitizer "
150 "should not report bugs"), cl::Hidden);
151
152namespace {
153
154/// \brief An instrumentation pass implementing detection of uninitialized
155/// reads.
156///
157/// MemorySanitizer: instrument the code in module to find
158/// uninitialized reads.
159class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000160 public:
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000161 MemorySanitizer(bool TrackOrigins = false,
162 StringRef BlacklistFile = StringRef())
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000163 : FunctionPass(ID),
164 TrackOrigins(TrackOrigins || ClTrackOrigins),
165 TD(0),
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000166 WarningFn(0),
167 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
168 : BlacklistFile) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000169 const char *getPassName() const { return "MemorySanitizer"; }
170 bool runOnFunction(Function &F);
171 bool doInitialization(Module &M);
172 static char ID; // Pass identification, replacement for typeid.
173
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000174 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000175 void initializeCallbacks(Module &M);
176
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000177 /// \brief Track origins (allocation points) of uninitialized values.
178 bool TrackOrigins;
179
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000180 DataLayout *TD;
181 LLVMContext *C;
182 Type *IntptrTy;
183 Type *OriginTy;
184 /// \brief Thread-local shadow storage for function parameters.
185 GlobalVariable *ParamTLS;
186 /// \brief Thread-local origin storage for function parameters.
187 GlobalVariable *ParamOriginTLS;
188 /// \brief Thread-local shadow storage for function return value.
189 GlobalVariable *RetvalTLS;
190 /// \brief Thread-local origin storage for function return value.
191 GlobalVariable *RetvalOriginTLS;
192 /// \brief Thread-local shadow storage for in-register va_arg function
193 /// parameters (x86_64-specific).
194 GlobalVariable *VAArgTLS;
195 /// \brief Thread-local shadow storage for va_arg overflow area
196 /// (x86_64-specific).
197 GlobalVariable *VAArgOverflowSizeTLS;
198 /// \brief Thread-local space used to pass origin value to the UMR reporting
199 /// function.
200 GlobalVariable *OriginTLS;
201
202 /// \brief The run-time callback to print a warning.
203 Value *WarningFn;
204 /// \brief Run-time helper that copies origin info for a memory range.
205 Value *MsanCopyOriginFn;
206 /// \brief Run-time helper that generates a new origin value for a stack
207 /// allocation.
208 Value *MsanSetAllocaOriginFn;
209 /// \brief Run-time helper that poisons stack on function entry.
210 Value *MsanPoisonStackFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000211 /// \brief MSan runtime replacements for memmove, memcpy and memset.
212 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000213
214 /// \brief Address mask used in application-to-shadow address calculation.
215 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
216 uint64_t ShadowMask;
217 /// \brief Offset of the origin shadow from the "normal" shadow.
218 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
219 uint64_t OriginOffset;
220 /// \brief Branch weights for error reporting.
221 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000222 /// \brief Branch weights for origin store.
223 MDNode *OriginStoreWeights;
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000224 /// \bried Path to blacklist file.
225 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000226 /// \brief The blacklist.
227 OwningPtr<BlackList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000228 /// \brief An empty volatile inline asm that prevents callback merge.
229 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000230
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000231 friend struct MemorySanitizerVisitor;
232 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000233};
234} // namespace
235
236char MemorySanitizer::ID = 0;
237INITIALIZE_PASS(MemorySanitizer, "msan",
238 "MemorySanitizer: detects uninitialized reads.",
239 false, false)
240
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000241FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
242 StringRef BlacklistFile) {
243 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000244}
245
246/// \brief Create a non-const global initialized with the given string.
247///
248/// Creates a writable global for Str so that we can pass it to the
249/// run-time lib. Runtime uses first 4 bytes of the string to store the
250/// frame ID, so the string needs to be mutable.
251static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
252 StringRef Str) {
253 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
254 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
255 GlobalValue::PrivateLinkage, StrConst, "");
256}
257
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000258
259/// \brief Insert extern declaration of runtime-provided functions and globals.
260void MemorySanitizer::initializeCallbacks(Module &M) {
261 // Only do this once.
262 if (WarningFn)
263 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000264
265 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000266 // Create the callback.
267 // FIXME: this function should have "Cold" calling conv,
268 // which is not yet implemented.
269 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
270 : "__msan_warning_noreturn";
271 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
272
273 MsanCopyOriginFn = M.getOrInsertFunction(
274 "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
275 IRB.getInt8PtrTy(), IntptrTy, NULL);
276 MsanSetAllocaOriginFn = M.getOrInsertFunction(
277 "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
278 IRB.getInt8PtrTy(), NULL);
279 MsanPoisonStackFn = M.getOrInsertFunction(
280 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
281 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000282 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
283 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000284 MemcpyFn = M.getOrInsertFunction(
285 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
286 IntptrTy, NULL);
287 MemsetFn = M.getOrInsertFunction(
288 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000289 IntptrTy, NULL);
290
291 // Create globals.
292 RetvalTLS = new GlobalVariable(
293 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
294 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
295 GlobalVariable::GeneralDynamicTLSModel);
296 RetvalOriginTLS = new GlobalVariable(
297 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
298 "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
299
300 ParamTLS = new GlobalVariable(
301 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
302 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
303 GlobalVariable::GeneralDynamicTLSModel);
304 ParamOriginTLS = new GlobalVariable(
305 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
306 0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
307
308 VAArgTLS = new GlobalVariable(
309 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
310 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
311 GlobalVariable::GeneralDynamicTLSModel);
312 VAArgOverflowSizeTLS = new GlobalVariable(
313 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
314 "__msan_va_arg_overflow_size_tls", 0,
315 GlobalVariable::GeneralDynamicTLSModel);
316 OriginTLS = new GlobalVariable(
317 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
318 "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000319
320 // We insert an empty inline asm after __msan_report* to avoid callback merge.
321 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
322 StringRef(""), StringRef(""),
323 /*hasSideEffects=*/true);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000324}
325
326/// \brief Module-level initialization.
327///
328/// inserts a call to __msan_init to the module's constructor list.
329bool MemorySanitizer::doInitialization(Module &M) {
330 TD = getAnalysisIfAvailable<DataLayout>();
331 if (!TD)
332 return false;
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000333 BL.reset(new BlackList(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000334 C = &(M.getContext());
335 unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
336 switch (PtrSize) {
337 case 64:
338 ShadowMask = kShadowMask64;
339 OriginOffset = kOriginOffset64;
340 break;
341 case 32:
342 ShadowMask = kShadowMask32;
343 OriginOffset = kOriginOffset32;
344 break;
345 default:
346 report_fatal_error("unsupported pointer size");
347 break;
348 }
349
350 IRBuilder<> IRB(*C);
351 IntptrTy = IRB.getIntPtrTy(TD);
352 OriginTy = IRB.getInt32Ty();
353
354 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000355 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000356
357 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
358 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
359 "__msan_init", IRB.getVoidTy(), NULL)), 0);
360
361 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000362 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000363
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000364 return true;
365}
366
367namespace {
368
369/// \brief A helper class that handles instrumentation of VarArg
370/// functions on a particular platform.
371///
372/// Implementations are expected to insert the instrumentation
373/// necessary to propagate argument shadow through VarArg function
374/// calls. Visit* methods are called during an InstVisitor pass over
375/// the function, and should avoid creating new basic blocks. A new
376/// instance of this class is created for each instrumented function.
377struct VarArgHelper {
378 /// \brief Visit a CallSite.
379 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
380
381 /// \brief Visit a va_start call.
382 virtual void visitVAStartInst(VAStartInst &I) = 0;
383
384 /// \brief Visit a va_copy call.
385 virtual void visitVACopyInst(VACopyInst &I) = 0;
386
387 /// \brief Finalize function instrumentation.
388 ///
389 /// This method is called after visiting all interesting (see above)
390 /// instructions in a function.
391 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000392
393 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000394};
395
396struct MemorySanitizerVisitor;
397
398VarArgHelper*
399CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
400 MemorySanitizerVisitor &Visitor);
401
402/// This class does all the work for a given function. Store and Load
403/// instructions store and load corresponding shadow and origin
404/// values. Most instructions propagate shadow from arguments to their
405/// return values. Certain instructions (most importantly, BranchInst)
406/// test their argument shadow and print reports (with a runtime call) if it's
407/// non-zero.
408struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
409 Function &F;
410 MemorySanitizer &MS;
411 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
412 ValueMap<Value*, Value*> ShadowMap, OriginMap;
413 bool InsertChecks;
414 OwningPtr<VarArgHelper> VAHelper;
415
416 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
417 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000418 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000419 static const unsigned AMD64FpEndOffset = 176;
420
421 struct ShadowOriginAndInsertPoint {
422 Instruction *Shadow;
423 Instruction *Origin;
424 Instruction *OrigIns;
425 ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
426 : Shadow(S), Origin(O), OrigIns(I) { }
427 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
428 };
429 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000430 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000431
432 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
433 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
434 InsertChecks = !MS.BL->isIn(F);
435 DEBUG(if (!InsertChecks)
436 dbgs() << "MemorySanitizer is not inserting checks into '"
437 << F.getName() << "'\n");
438 }
439
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000440 void materializeStores() {
441 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
442 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
443
444 IRBuilder<> IRB(&I);
445 Value *Val = I.getValueOperand();
446 Value *Addr = I.getPointerOperand();
447 Value *Shadow = getShadow(Val);
448 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
449
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000450 StoreInst *NewSI =
451 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000452 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000453 (void)NewSI;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000454 // If the store is volatile, add a check.
455 if (I.isVolatile())
456 insertCheck(Val, &I);
457 if (ClCheckAccessAddress)
458 insertCheck(Addr, &I);
459
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000460 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000461 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000462 if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000463 IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
464 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000465 } else {
466 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
467
468 Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
469 // TODO(eugenis): handle non-zero constant shadow by inserting an
470 // unconditional check (can not simply fail compilation as this could
471 // be in the dead code).
472 if (Cst)
473 continue;
474
475 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
476 getCleanShadow(ConvertedShadow), "_mscmp");
477 Instruction *CheckTerm =
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000478 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
479 MS.OriginStoreWeights);
480 IRBuilder<> IRBNew(CheckTerm);
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000481 IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
482 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000483 }
484 }
485 }
486 }
487
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000488 void materializeChecks() {
489 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
490 Instruction *Shadow = InstrumentationList[i].Shadow;
491 Instruction *OrigIns = InstrumentationList[i].OrigIns;
492 IRBuilder<> IRB(OrigIns);
493 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
494 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
495 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
496 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
497 getCleanShadow(ConvertedShadow), "_mscmp");
498 Instruction *CheckTerm =
499 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
500 /* Unreachable */ !ClKeepGoing,
501 MS.ColdCallWeights);
502
503 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000504 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000505 Instruction *Origin = InstrumentationList[i].Origin;
506 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
507 MS.OriginTLS);
508 }
509 CallInst *Call = IRB.CreateCall(MS.WarningFn);
510 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000511 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000512 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
513 }
514 DEBUG(dbgs() << "DONE:\n" << F);
515 }
516
517 /// \brief Add MemorySanitizer instrumentation to a function.
518 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000519 MS.initializeCallbacks(*F.getParent());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000520 if (!MS.TD) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000521
522 // In the presence of unreachable blocks, we may see Phi nodes with
523 // incoming nodes from such blocks. Since InstVisitor skips unreachable
524 // blocks, such nodes will not have any shadow value associated with them.
525 // It's easier to remove unreachable blocks than deal with missing shadow.
526 removeUnreachableBlocks(F);
527
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000528 // Iterate all BBs in depth-first order and create shadow instructions
529 // for all instructions (where applicable).
530 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
531 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
532 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
533 BasicBlock *BB = *DI;
534 visit(*BB);
535 }
536
537 // Finalize PHI nodes.
538 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
539 PHINode *PN = ShadowPHINodes[i];
540 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000541 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000542 size_t NumValues = PN->getNumIncomingValues();
543 for (size_t v = 0; v < NumValues; v++) {
544 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
545 if (PNO)
546 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
547 }
548 }
549
550 VAHelper->finalizeInstrumentation();
551
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000552 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000553 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000554 materializeStores();
555
556 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000557 materializeChecks();
558
559 return true;
560 }
561
562 /// \brief Compute the shadow type that corresponds to a given Value.
563 Type *getShadowTy(Value *V) {
564 return getShadowTy(V->getType());
565 }
566
567 /// \brief Compute the shadow type that corresponds to a given Type.
568 Type *getShadowTy(Type *OrigTy) {
569 if (!OrigTy->isSized()) {
570 return 0;
571 }
572 // For integer type, shadow is the same as the original type.
573 // This may return weird-sized types like i1.
574 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
575 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000576 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +0000577 uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000578 return VectorType::get(IntegerType::get(*MS.C, EltSize),
579 VT->getNumElements());
580 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000581 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
582 SmallVector<Type*, 4> Elements;
583 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
584 Elements.push_back(getShadowTy(ST->getElementType(i)));
585 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
586 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
587 return Res;
588 }
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +0000589 uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000590 return IntegerType::get(*MS.C, TypeSize);
591 }
592
593 /// \brief Flatten a vector type.
594 Type *getShadowTyNoVec(Type *ty) {
595 if (VectorType *vt = dyn_cast<VectorType>(ty))
596 return IntegerType::get(*MS.C, vt->getBitWidth());
597 return ty;
598 }
599
600 /// \brief Convert a shadow value to it's flattened variant.
601 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
602 Type *Ty = V->getType();
603 Type *NoVecTy = getShadowTyNoVec(Ty);
604 if (Ty == NoVecTy) return V;
605 return IRB.CreateBitCast(V, NoVecTy);
606 }
607
608 /// \brief Compute the shadow address that corresponds to a given application
609 /// address.
610 ///
611 /// Shadow = Addr & ~ShadowMask.
612 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
613 IRBuilder<> &IRB) {
614 Value *ShadowLong =
615 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
616 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
617 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
618 }
619
620 /// \brief Compute the origin address that corresponds to a given application
621 /// address.
622 ///
623 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000624 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
625 Value *ShadowLong =
626 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000627 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000628 Value *Add =
629 IRB.CreateAdd(ShadowLong,
630 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000631 Value *SecondAnd =
632 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
633 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000634 }
635
636 /// \brief Compute the shadow address for a given function argument.
637 ///
638 /// Shadow = ParamTLS+ArgOffset.
639 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
640 int ArgOffset) {
641 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
642 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
643 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
644 "_msarg");
645 }
646
647 /// \brief Compute the origin address for a given function argument.
648 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
649 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000650 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000651 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
652 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
653 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
654 "_msarg_o");
655 }
656
657 /// \brief Compute the shadow address for a retval.
658 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
659 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
660 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
661 "_msret");
662 }
663
664 /// \brief Compute the origin address for a retval.
665 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
666 // We keep a single origin for the entire retval. Might be too optimistic.
667 return MS.RetvalOriginTLS;
668 }
669
670 /// \brief Set SV to be the shadow value for V.
671 void setShadow(Value *V, Value *SV) {
672 assert(!ShadowMap.count(V) && "Values may only have one shadow");
673 ShadowMap[V] = SV;
674 }
675
676 /// \brief Set Origin to be the origin value for V.
677 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000678 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000679 assert(!OriginMap.count(V) && "Values may only have one origin");
680 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
681 OriginMap[V] = Origin;
682 }
683
684 /// \brief Create a clean shadow value for a given value.
685 ///
686 /// Clean shadow (all zeroes) means all bits of the value are defined
687 /// (initialized).
688 Value *getCleanShadow(Value *V) {
689 Type *ShadowTy = getShadowTy(V);
690 if (!ShadowTy)
691 return 0;
692 return Constant::getNullValue(ShadowTy);
693 }
694
695 /// \brief Create a dirty shadow of a given shadow type.
696 Constant *getPoisonedShadow(Type *ShadowTy) {
697 assert(ShadowTy);
698 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
699 return Constant::getAllOnesValue(ShadowTy);
700 StructType *ST = cast<StructType>(ShadowTy);
701 SmallVector<Constant *, 4> Vals;
702 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
703 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
704 return ConstantStruct::get(ST, Vals);
705 }
706
707 /// \brief Create a clean (zero) origin.
708 Value *getCleanOrigin() {
709 return Constant::getNullValue(MS.OriginTy);
710 }
711
712 /// \brief Get the shadow value for a given Value.
713 ///
714 /// This function either returns the value set earlier with setShadow,
715 /// or extracts if from ParamTLS (for function arguments).
716 Value *getShadow(Value *V) {
717 if (Instruction *I = dyn_cast<Instruction>(V)) {
718 // For instructions the shadow is already stored in the map.
719 Value *Shadow = ShadowMap[V];
720 if (!Shadow) {
721 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000722 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000723 assert(Shadow && "No shadow for a value");
724 }
725 return Shadow;
726 }
727 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
728 Value *AllOnes = getPoisonedShadow(getShadowTy(V));
729 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000730 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000731 return AllOnes;
732 }
733 if (Argument *A = dyn_cast<Argument>(V)) {
734 // For arguments we compute the shadow on demand and store it in the map.
735 Value **ShadowPtr = &ShadowMap[V];
736 if (*ShadowPtr)
737 return *ShadowPtr;
738 Function *F = A->getParent();
739 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
740 unsigned ArgOffset = 0;
741 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
742 AI != AE; ++AI) {
743 if (!AI->getType()->isSized()) {
744 DEBUG(dbgs() << "Arg is not sized\n");
745 continue;
746 }
747 unsigned Size = AI->hasByValAttr()
748 ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
749 : MS.TD->getTypeAllocSize(AI->getType());
750 if (A == AI) {
751 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
752 if (AI->hasByValAttr()) {
753 // ByVal pointer itself has clean shadow. We copy the actual
754 // argument shadow to the underlying memory.
755 Value *Cpy = EntryIRB.CreateMemCpy(
756 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
757 Base, Size, AI->getParamAlignment());
758 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000759 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000760 *ShadowPtr = getCleanShadow(V);
761 } else {
762 *ShadowPtr = EntryIRB.CreateLoad(Base);
763 }
764 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
765 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000766 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000767 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
768 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
769 }
770 }
771 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
772 }
773 assert(*ShadowPtr && "Could not find shadow for an argument");
774 return *ShadowPtr;
775 }
776 // For everything else the shadow is zero.
777 return getCleanShadow(V);
778 }
779
780 /// \brief Get the shadow for i-th argument of the instruction I.
781 Value *getShadow(Instruction *I, int i) {
782 return getShadow(I->getOperand(i));
783 }
784
785 /// \brief Get the origin for a value.
786 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000787 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000788 if (isa<Instruction>(V) || isa<Argument>(V)) {
789 Value *Origin = OriginMap[V];
790 if (!Origin) {
791 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
792 Origin = getCleanOrigin();
793 }
794 return Origin;
795 }
796 return getCleanOrigin();
797 }
798
799 /// \brief Get the origin for i-th argument of the instruction I.
800 Value *getOrigin(Instruction *I, int i) {
801 return getOrigin(I->getOperand(i));
802 }
803
804 /// \brief Remember the place where a shadow check should be inserted.
805 ///
806 /// This location will be later instrumented with a check that will print a
807 /// UMR warning in runtime if the value is not fully defined.
808 void insertCheck(Value *Val, Instruction *OrigIns) {
809 assert(Val);
810 if (!InsertChecks) return;
811 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
812 if (!Shadow) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000813#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000814 Type *ShadowTy = Shadow->getType();
815 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
816 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000817#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000818 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
819 InstrumentationList.push_back(
820 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
821 }
822
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000823 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000824
825 /// \brief Instrument LoadInst
826 ///
827 /// Loads the corresponding shadow and (optionally) origin.
828 /// Optionally, checks that the load address is fully defined.
829 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000830 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000831 IRBuilder<> IRB(&I);
832 Type *ShadowTy = getShadowTy(&I);
833 Value *Addr = I.getPointerOperand();
834 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
Evgeniy Stepanoveeb8b7c2012-11-29 14:05:53 +0000835 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000836
837 if (ClCheckAccessAddress)
838 insertCheck(I.getPointerOperand(), &I);
839
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000840 if (MS.TrackOrigins) {
841 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
842 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
843 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000844 }
845
846 /// \brief Instrument StoreInst
847 ///
848 /// Stores the corresponding shadow and (optionally) origin.
849 /// Optionally, checks that the store address is fully defined.
850 /// Volatile stores check that the value being stored is fully defined.
851 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000852 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000853 }
854
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +0000855 // Vector manipulation.
856 void visitExtractElementInst(ExtractElementInst &I) {
857 insertCheck(I.getOperand(1), &I);
858 IRBuilder<> IRB(&I);
859 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
860 "_msprop"));
861 setOrigin(&I, getOrigin(&I, 0));
862 }
863
864 void visitInsertElementInst(InsertElementInst &I) {
865 insertCheck(I.getOperand(2), &I);
866 IRBuilder<> IRB(&I);
867 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
868 I.getOperand(2), "_msprop"));
869 setOriginForNaryOp(I);
870 }
871
872 void visitShuffleVectorInst(ShuffleVectorInst &I) {
873 insertCheck(I.getOperand(2), &I);
874 IRBuilder<> IRB(&I);
875 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
876 I.getOperand(2), "_msprop"));
877 setOriginForNaryOp(I);
878 }
879
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000880 // Casts.
881 void visitSExtInst(SExtInst &I) {
882 IRBuilder<> IRB(&I);
883 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
884 setOrigin(&I, getOrigin(&I, 0));
885 }
886
887 void visitZExtInst(ZExtInst &I) {
888 IRBuilder<> IRB(&I);
889 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
890 setOrigin(&I, getOrigin(&I, 0));
891 }
892
893 void visitTruncInst(TruncInst &I) {
894 IRBuilder<> IRB(&I);
895 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
896 setOrigin(&I, getOrigin(&I, 0));
897 }
898
899 void visitBitCastInst(BitCastInst &I) {
900 IRBuilder<> IRB(&I);
901 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
902 setOrigin(&I, getOrigin(&I, 0));
903 }
904
905 void visitPtrToIntInst(PtrToIntInst &I) {
906 IRBuilder<> IRB(&I);
907 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
908 "_msprop_ptrtoint"));
909 setOrigin(&I, getOrigin(&I, 0));
910 }
911
912 void visitIntToPtrInst(IntToPtrInst &I) {
913 IRBuilder<> IRB(&I);
914 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
915 "_msprop_inttoptr"));
916 setOrigin(&I, getOrigin(&I, 0));
917 }
918
919 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
920 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
921 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
922 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
923 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
924 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
925
926 /// \brief Propagate shadow for bitwise AND.
927 ///
928 /// This code is exact, i.e. if, for example, a bit in the left argument
929 /// is defined and 0, then neither the value not definedness of the
930 /// corresponding bit in B don't affect the resulting shadow.
931 void visitAnd(BinaryOperator &I) {
932 IRBuilder<> IRB(&I);
933 // "And" of 0 and a poisoned value results in unpoisoned value.
934 // 1&1 => 1; 0&1 => 0; p&1 => p;
935 // 1&0 => 0; 0&0 => 0; p&0 => 0;
936 // 1&p => p; 0&p => 0; p&p => p;
937 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
938 Value *S1 = getShadow(&I, 0);
939 Value *S2 = getShadow(&I, 1);
940 Value *V1 = I.getOperand(0);
941 Value *V2 = I.getOperand(1);
942 if (V1->getType() != S1->getType()) {
943 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
944 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
945 }
946 Value *S1S2 = IRB.CreateAnd(S1, S2);
947 Value *V1S2 = IRB.CreateAnd(V1, S2);
948 Value *S1V2 = IRB.CreateAnd(S1, V2);
949 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
950 setOriginForNaryOp(I);
951 }
952
953 void visitOr(BinaryOperator &I) {
954 IRBuilder<> IRB(&I);
955 // "Or" of 1 and a poisoned value results in unpoisoned value.
956 // 1|1 => 1; 0|1 => 1; p|1 => 1;
957 // 1|0 => 1; 0|0 => 0; p|0 => p;
958 // 1|p => 1; 0|p => p; p|p => p;
959 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
960 Value *S1 = getShadow(&I, 0);
961 Value *S2 = getShadow(&I, 1);
962 Value *V1 = IRB.CreateNot(I.getOperand(0));
963 Value *V2 = IRB.CreateNot(I.getOperand(1));
964 if (V1->getType() != S1->getType()) {
965 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
966 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
967 }
968 Value *S1S2 = IRB.CreateAnd(S1, S2);
969 Value *V1S2 = IRB.CreateAnd(V1, S2);
970 Value *S1V2 = IRB.CreateAnd(S1, V2);
971 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
972 setOriginForNaryOp(I);
973 }
974
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000975 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000976 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000977 /// This class implements the general case of shadow propagation, used in all
978 /// cases where we don't know and/or don't care about what the operation
979 /// actually does. It converts all input shadow values to a common type
980 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000981 ///
982 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
983 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000984 ///
985 /// This class also implements the general case of origin propagation. For a
986 /// Nary operation, result origin is set to the origin of an argument that is
987 /// not entirely initialized. If there is more than one such arguments, the
988 /// rightmost of them is picked. It does not matter which one is picked if all
989 /// arguments are initialized.
990 template <bool CombineShadow>
991 class Combiner {
992 Value *Shadow;
993 Value *Origin;
994 IRBuilder<> &IRB;
995 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000996
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +0000997 public:
998 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
999 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1000
1001 /// \brief Add a pair of shadow and origin values to the mix.
1002 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1003 if (CombineShadow) {
1004 assert(OpShadow);
1005 if (!Shadow)
1006 Shadow = OpShadow;
1007 else {
1008 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1009 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1010 }
1011 }
1012
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001013 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001014 assert(OpOrigin);
1015 if (!Origin) {
1016 Origin = OpOrigin;
1017 } else {
1018 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1019 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1020 MSV->getCleanShadow(FlatShadow));
1021 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1022 }
1023 }
1024 return *this;
1025 }
1026
1027 /// \brief Add an application value to the mix.
1028 Combiner &Add(Value *V) {
1029 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001030 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001031 return Add(OpShadow, OpOrigin);
1032 }
1033
1034 /// \brief Set the current combined values as the given instruction's shadow
1035 /// and origin.
1036 void Done(Instruction *I) {
1037 if (CombineShadow) {
1038 assert(Shadow);
1039 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1040 MSV->setShadow(I, Shadow);
1041 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001042 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001043 assert(Origin);
1044 MSV->setOrigin(I, Origin);
1045 }
1046 }
1047 };
1048
1049 typedef Combiner<true> ShadowAndOriginCombiner;
1050 typedef Combiner<false> OriginCombiner;
1051
1052 /// \brief Propagate origin for arbitrary operation.
1053 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001054 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001055 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001056 OriginCombiner OC(this, IRB);
1057 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1058 OC.Add(OI->get());
1059 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001060 }
1061
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001062 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001063 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1064 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001065 return Ty->isVectorTy() ?
1066 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1067 Ty->getPrimitiveSizeInBits();
1068 }
1069
1070 /// \brief Cast between two shadow types, extending or truncating as
1071 /// necessary.
1072 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
1073 Type *srcTy = V->getType();
1074 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1075 return IRB.CreateIntCast(V, dstTy, false);
1076 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1077 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1078 return IRB.CreateIntCast(V, dstTy, false);
1079 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1080 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1081 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1082 Value *V2 =
1083 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
1084 return IRB.CreateBitCast(V2, dstTy);
1085 // TODO: handle struct types.
1086 }
1087
1088 /// \brief Propagate shadow for arbitrary operation.
1089 void handleShadowOr(Instruction &I) {
1090 IRBuilder<> IRB(&I);
1091 ShadowAndOriginCombiner SC(this, IRB);
1092 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1093 SC.Add(OI->get());
1094 SC.Done(&I);
1095 }
1096
1097 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1098 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1099 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1100 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1101 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1102 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1103 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001104
1105 void handleDiv(Instruction &I) {
1106 IRBuilder<> IRB(&I);
1107 // Strict on the second argument.
1108 insertCheck(I.getOperand(1), &I);
1109 setShadow(&I, getShadow(&I, 0));
1110 setOrigin(&I, getOrigin(&I, 0));
1111 }
1112
1113 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1114 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1115 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1116 void visitURem(BinaryOperator &I) { handleDiv(I); }
1117 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1118 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1119
1120 /// \brief Instrument == and != comparisons.
1121 ///
1122 /// Sometimes the comparison result is known even if some of the bits of the
1123 /// arguments are not.
1124 void handleEqualityComparison(ICmpInst &I) {
1125 IRBuilder<> IRB(&I);
1126 Value *A = I.getOperand(0);
1127 Value *B = I.getOperand(1);
1128 Value *Sa = getShadow(A);
1129 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001130
1131 // Get rid of pointers and vectors of pointers.
1132 // For ints (and vectors of ints), types of A and Sa match,
1133 // and this is a no-op.
1134 A = IRB.CreatePointerCast(A, Sa->getType());
1135 B = IRB.CreatePointerCast(B, Sb->getType());
1136
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001137 // A == B <==> (C = A^B) == 0
1138 // A != B <==> (C = A^B) != 0
1139 // Sc = Sa | Sb
1140 Value *C = IRB.CreateXor(A, B);
1141 Value *Sc = IRB.CreateOr(Sa, Sb);
1142 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1143 // Result is defined if one of the following is true
1144 // * there is a defined 1 bit in C
1145 // * C is fully defined
1146 // Si = !(C & ~Sc) && Sc
1147 Value *Zero = Constant::getNullValue(Sc->getType());
1148 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1149 Value *Si =
1150 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1151 IRB.CreateICmpEQ(
1152 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1153 Si->setName("_msprop_icmp");
1154 setShadow(&I, Si);
1155 setOriginForNaryOp(I);
1156 }
1157
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001158 /// \brief Instrument signed relational comparisons.
1159 ///
1160 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1161 /// propagating the highest bit of the shadow. Everything else is delegated
1162 /// to handleShadowOr().
1163 void handleSignedRelationalComparison(ICmpInst &I) {
1164 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1165 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1166 Value* op = NULL;
1167 CmpInst::Predicate pre = I.getPredicate();
1168 if (constOp0 && constOp0->isNullValue() &&
1169 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1170 op = I.getOperand(1);
1171 } else if (constOp1 && constOp1->isNullValue() &&
1172 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1173 op = I.getOperand(0);
1174 }
1175 if (op) {
1176 IRBuilder<> IRB(&I);
1177 Value* Shadow =
1178 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1179 setShadow(&I, Shadow);
1180 setOrigin(&I, getOrigin(op));
1181 } else {
1182 handleShadowOr(I);
1183 }
1184 }
1185
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001186 void visitICmpInst(ICmpInst &I) {
1187 if (ClHandleICmp && I.isEquality())
1188 handleEqualityComparison(I);
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001189 else if (ClHandleICmp && I.isSigned() && I.isRelational())
1190 handleSignedRelationalComparison(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001191 else
1192 handleShadowOr(I);
1193 }
1194
1195 void visitFCmpInst(FCmpInst &I) {
1196 handleShadowOr(I);
1197 }
1198
1199 void handleShift(BinaryOperator &I) {
1200 IRBuilder<> IRB(&I);
1201 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1202 // Otherwise perform the same shift on S1.
1203 Value *S1 = getShadow(&I, 0);
1204 Value *S2 = getShadow(&I, 1);
1205 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1206 S2->getType());
1207 Value *V2 = I.getOperand(1);
1208 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1209 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1210 setOriginForNaryOp(I);
1211 }
1212
1213 void visitShl(BinaryOperator &I) { handleShift(I); }
1214 void visitAShr(BinaryOperator &I) { handleShift(I); }
1215 void visitLShr(BinaryOperator &I) { handleShift(I); }
1216
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001217 /// \brief Instrument llvm.memmove
1218 ///
1219 /// At this point we don't know if llvm.memmove will be inlined or not.
1220 /// If we don't instrument it and it gets inlined,
1221 /// our interceptor will not kick in and we will lose the memmove.
1222 /// If we instrument the call here, but it does not get inlined,
1223 /// we will memove the shadow twice: which is bad in case
1224 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1225 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001226 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001227 void visitMemMoveInst(MemMoveInst &I) {
1228 IRBuilder<> IRB(&I);
1229 IRB.CreateCall3(
1230 MS.MemmoveFn,
1231 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1232 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1233 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1234 I.eraseFromParent();
1235 }
1236
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001237 // Similar to memmove: avoid copying shadow twice.
1238 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1239 // FIXME: consider doing manual inline for small constant sizes and proper
1240 // alignment.
1241 void visitMemCpyInst(MemCpyInst &I) {
1242 IRBuilder<> IRB(&I);
1243 IRB.CreateCall3(
1244 MS.MemcpyFn,
1245 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1246 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1247 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1248 I.eraseFromParent();
1249 }
1250
1251 // Same as memcpy.
1252 void visitMemSetInst(MemSetInst &I) {
1253 IRBuilder<> IRB(&I);
1254 IRB.CreateCall3(
1255 MS.MemsetFn,
1256 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1257 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1258 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1259 I.eraseFromParent();
1260 }
1261
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001262 void visitVAStartInst(VAStartInst &I) {
1263 VAHelper->visitVAStartInst(I);
1264 }
1265
1266 void visitVACopyInst(VACopyInst &I) {
1267 VAHelper->visitVACopyInst(I);
1268 }
1269
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001270 enum IntrinsicKind {
1271 IK_DoesNotAccessMemory,
1272 IK_OnlyReadsMemory,
1273 IK_WritesMemory
1274 };
1275
1276 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1277 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1278 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1279 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1280 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1281 const int UnknownModRefBehavior = IK_WritesMemory;
1282#define GET_INTRINSIC_MODREF_BEHAVIOR
1283#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001284#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001285#undef ModRefBehavior
1286#undef GET_INTRINSIC_MODREF_BEHAVIOR
1287 }
1288
1289 /// \brief Handle vector store-like intrinsics.
1290 ///
1291 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1292 /// has 1 pointer argument and 1 vector argument, returns void.
1293 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1294 IRBuilder<> IRB(&I);
1295 Value* Addr = I.getArgOperand(0);
1296 Value *Shadow = getShadow(&I, 1);
1297 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1298
1299 // We don't know the pointer alignment (could be unaligned SSE store!).
1300 // Have to assume to worst case.
1301 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1302
1303 if (ClCheckAccessAddress)
1304 insertCheck(Addr, &I);
1305
1306 // FIXME: use ClStoreCleanOrigin
1307 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001308 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001309 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1310 return true;
1311 }
1312
1313 /// \brief Handle vector load-like intrinsics.
1314 ///
1315 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1316 /// has 1 pointer argument, returns a vector.
1317 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1318 IRBuilder<> IRB(&I);
1319 Value *Addr = I.getArgOperand(0);
1320
1321 Type *ShadowTy = getShadowTy(&I);
1322 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1323 // We don't know the pointer alignment (could be unaligned SSE load!).
1324 // Have to assume to worst case.
1325 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1326
1327 if (ClCheckAccessAddress)
1328 insertCheck(Addr, &I);
1329
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001330 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001331 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1332 return true;
1333 }
1334
1335 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1336 ///
1337 /// Instrument intrinsics with any number of arguments of the same type,
1338 /// equal to the return type. The type should be simple (no aggregates or
1339 /// pointers; vectors are fine).
1340 /// Caller guarantees that this intrinsic does not access memory.
1341 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1342 Type *RetTy = I.getType();
1343 if (!(RetTy->isIntOrIntVectorTy() ||
1344 RetTy->isFPOrFPVectorTy() ||
1345 RetTy->isX86_MMXTy()))
1346 return false;
1347
1348 unsigned NumArgOperands = I.getNumArgOperands();
1349
1350 for (unsigned i = 0; i < NumArgOperands; ++i) {
1351 Type *Ty = I.getArgOperand(i)->getType();
1352 if (Ty != RetTy)
1353 return false;
1354 }
1355
1356 IRBuilder<> IRB(&I);
1357 ShadowAndOriginCombiner SC(this, IRB);
1358 for (unsigned i = 0; i < NumArgOperands; ++i)
1359 SC.Add(I.getArgOperand(i));
1360 SC.Done(&I);
1361
1362 return true;
1363 }
1364
1365 /// \brief Heuristically instrument unknown intrinsics.
1366 ///
1367 /// The main purpose of this code is to do something reasonable with all
1368 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1369 /// We recognize several classes of intrinsics by their argument types and
1370 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1371 /// sure that we know what the intrinsic does.
1372 ///
1373 /// We special-case intrinsics where this approach fails. See llvm.bswap
1374 /// handling as an example of that.
1375 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1376 unsigned NumArgOperands = I.getNumArgOperands();
1377 if (NumArgOperands == 0)
1378 return false;
1379
1380 Intrinsic::ID iid = I.getIntrinsicID();
1381 IntrinsicKind IK = getIntrinsicKind(iid);
1382 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1383 bool WritesMemory = IK == IK_WritesMemory;
1384 assert(!(OnlyReadsMemory && WritesMemory));
1385
1386 if (NumArgOperands == 2 &&
1387 I.getArgOperand(0)->getType()->isPointerTy() &&
1388 I.getArgOperand(1)->getType()->isVectorTy() &&
1389 I.getType()->isVoidTy() &&
1390 WritesMemory) {
1391 // This looks like a vector store.
1392 return handleVectorStoreIntrinsic(I);
1393 }
1394
1395 if (NumArgOperands == 1 &&
1396 I.getArgOperand(0)->getType()->isPointerTy() &&
1397 I.getType()->isVectorTy() &&
1398 OnlyReadsMemory) {
1399 // This looks like a vector load.
1400 return handleVectorLoadIntrinsic(I);
1401 }
1402
1403 if (!OnlyReadsMemory && !WritesMemory)
1404 if (maybeHandleSimpleNomemIntrinsic(I))
1405 return true;
1406
1407 // FIXME: detect and handle SSE maskstore/maskload
1408 return false;
1409 }
1410
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001411 void handleBswap(IntrinsicInst &I) {
1412 IRBuilder<> IRB(&I);
1413 Value *Op = I.getArgOperand(0);
1414 Type *OpType = Op->getType();
1415 Function *BswapFunc = Intrinsic::getDeclaration(
1416 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1417 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1418 setOrigin(&I, getOrigin(Op));
1419 }
1420
1421 void visitIntrinsicInst(IntrinsicInst &I) {
1422 switch (I.getIntrinsicID()) {
1423 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001424 handleBswap(I);
1425 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001426 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001427 if (!handleUnknownIntrinsic(I))
1428 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00001429 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001430 }
1431 }
1432
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001433 void visitCallSite(CallSite CS) {
1434 Instruction &I = *CS.getInstruction();
1435 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1436 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00001437 CallInst *Call = cast<CallInst>(&I);
1438
1439 // For inline asm, do the usual thing: check argument shadow and mark all
1440 // outputs as clean. Note that any side effects of the inline asm that are
1441 // not immediately visible in its constraints are not handled.
1442 if (Call->isInlineAsm()) {
1443 visitInstruction(I);
1444 return;
1445 }
1446
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001447 // Allow only tail calls with the same types, otherwise
1448 // we may have a false positive: shadow for a non-void RetVal
1449 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001450 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
1451 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001452
1453 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001454
1455 // We are going to insert code that relies on the fact that the callee
1456 // will become a non-readonly function after it is instrumented by us. To
1457 // prevent this code from being optimized out, mark that function
1458 // non-readonly in advance.
1459 if (Function *Func = Call->getCalledFunction()) {
1460 // Clear out readonly/readnone attributes.
1461 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001462 B.addAttribute(Attribute::ReadOnly)
1463 .addAttribute(Attribute::ReadNone);
Bill Wendlinge94d8432012-12-07 23:16:57 +00001464 Func->removeAttribute(AttributeSet::FunctionIndex,
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001465 Attribute::get(Func->getContext(), B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001466 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001467 }
1468 IRBuilder<> IRB(&I);
1469 unsigned ArgOffset = 0;
1470 DEBUG(dbgs() << " CallSite: " << I << "\n");
1471 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1472 ArgIt != End; ++ArgIt) {
1473 Value *A = *ArgIt;
1474 unsigned i = ArgIt - CS.arg_begin();
1475 if (!A->getType()->isSized()) {
1476 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
1477 continue;
1478 }
1479 unsigned Size = 0;
1480 Value *Store = 0;
1481 // Compute the Shadow for arg even if it is ByVal, because
1482 // in that case getShadow() will copy the actual arg shadow to
1483 // __msan_param_tls.
1484 Value *ArgShadow = getShadow(A);
1485 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
1486 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
1487 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001488 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001489 assert(A->getType()->isPointerTy() &&
1490 "ByVal argument is not a pointer!");
1491 Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
1492 unsigned Alignment = CS.getParamAlignment(i + 1);
1493 Store = IRB.CreateMemCpy(ArgShadowBase,
1494 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
1495 Size, Alignment);
1496 } else {
1497 Size = MS.TD->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001498 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
1499 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001500 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001501 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00001502 IRB.CreateStore(getOrigin(A),
1503 getOriginPtrForArgument(A, IRB, ArgOffset));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001504 assert(Size != 0 && Store != 0);
1505 DEBUG(dbgs() << " Param:" << *Store << "\n");
1506 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
1507 }
1508 DEBUG(dbgs() << " done with call args\n");
1509
1510 FunctionType *FT =
1511 cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
1512 if (FT->isVarArg()) {
1513 VAHelper->visitCallSite(CS, IRB);
1514 }
1515
1516 // Now, get the shadow for the RetVal.
1517 if (!I.getType()->isSized()) return;
1518 IRBuilder<> IRBBefore(&I);
1519 // Untill we have full dynamic coverage, make sure the retval shadow is 0.
1520 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001521 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001522 Instruction *NextInsn = 0;
1523 if (CS.isCall()) {
1524 NextInsn = I.getNextNode();
1525 } else {
1526 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
1527 if (!NormalDest->getSinglePredecessor()) {
1528 // FIXME: this case is tricky, so we are just conservative here.
1529 // Perhaps we need to split the edge between this BB and NormalDest,
1530 // but a naive attempt to use SplitEdge leads to a crash.
1531 setShadow(&I, getCleanShadow(&I));
1532 setOrigin(&I, getCleanOrigin());
1533 return;
1534 }
1535 NextInsn = NormalDest->getFirstInsertionPt();
1536 assert(NextInsn &&
1537 "Could not find insertion point for retval shadow load");
1538 }
1539 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001540 Value *RetvalShadow =
1541 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
1542 kShadowTLSAlignment, "_msret");
1543 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001544 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001545 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
1546 }
1547
1548 void visitReturnInst(ReturnInst &I) {
1549 IRBuilder<> IRB(&I);
1550 if (Value *RetVal = I.getReturnValue()) {
1551 // Set the shadow for the RetVal.
1552 Value *Shadow = getShadow(RetVal);
1553 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
1554 DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001555 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001556 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001557 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
1558 }
1559 }
1560
1561 void visitPHINode(PHINode &I) {
1562 IRBuilder<> IRB(&I);
1563 ShadowPHINodes.push_back(&I);
1564 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
1565 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001566 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001567 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
1568 "_msphi_o"));
1569 }
1570
1571 void visitAllocaInst(AllocaInst &I) {
1572 setShadow(&I, getCleanShadow(&I));
1573 if (!ClPoisonStack) return;
1574 IRBuilder<> IRB(I.getNextNode());
1575 uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
1576 if (ClPoisonStackWithCall) {
1577 IRB.CreateCall2(MS.MsanPoisonStackFn,
1578 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1579 ConstantInt::get(MS.IntptrTy, Size));
1580 } else {
1581 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
1582 IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
1583 Size, I.getAlignment());
1584 }
1585
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001586 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001587 setOrigin(&I, getCleanOrigin());
1588 SmallString<2048> StackDescriptionStorage;
1589 raw_svector_ostream StackDescription(StackDescriptionStorage);
1590 // We create a string with a description of the stack allocation and
1591 // pass it into __msan_set_alloca_origin.
1592 // It will be printed by the run-time if stack-originated UMR is found.
1593 // The first 4 bytes of the string are set to '----' and will be replaced
1594 // by __msan_va_arg_overflow_size_tls at the first call.
1595 StackDescription << "----" << I.getName() << "@" << F.getName();
1596 Value *Descr =
1597 createPrivateNonConstGlobalForString(*F.getParent(),
1598 StackDescription.str());
1599 IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
1600 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1601 ConstantInt::get(MS.IntptrTy, Size),
1602 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
1603 }
1604 }
1605
1606 void visitSelectInst(SelectInst& I) {
1607 IRBuilder<> IRB(&I);
1608 setShadow(&I, IRB.CreateSelect(I.getCondition(),
1609 getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
1610 "_msprop"));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00001611 if (MS.TrackOrigins) {
1612 // Origins are always i32, so any vector conditions must be flattened.
1613 // FIXME: consider tracking vector origins for app vectors?
1614 Value *Cond = I.getCondition();
1615 if (Cond->getType()->isVectorTy()) {
1616 Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
1617 Cond = IRB.CreateICmpNE(ConvertedShadow,
1618 getCleanShadow(ConvertedShadow), "_mso_select");
1619 }
1620 setOrigin(&I, IRB.CreateSelect(Cond,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001621 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00001622 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001623 }
1624
1625 void visitLandingPadInst(LandingPadInst &I) {
1626 // Do nothing.
1627 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
1628 setShadow(&I, getCleanShadow(&I));
1629 setOrigin(&I, getCleanOrigin());
1630 }
1631
1632 void visitGetElementPtrInst(GetElementPtrInst &I) {
1633 handleShadowOr(I);
1634 }
1635
1636 void visitExtractValueInst(ExtractValueInst &I) {
1637 IRBuilder<> IRB(&I);
1638 Value *Agg = I.getAggregateOperand();
1639 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
1640 Value *AggShadow = getShadow(Agg);
1641 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1642 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
1643 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
1644 setShadow(&I, ResShadow);
1645 setOrigin(&I, getCleanOrigin());
1646 }
1647
1648 void visitInsertValueInst(InsertValueInst &I) {
1649 IRBuilder<> IRB(&I);
1650 DEBUG(dbgs() << "InsertValue: " << I << "\n");
1651 Value *AggShadow = getShadow(I.getAggregateOperand());
1652 Value *InsShadow = getShadow(I.getInsertedValueOperand());
1653 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1654 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
1655 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
1656 DEBUG(dbgs() << " Res: " << *Res << "\n");
1657 setShadow(&I, Res);
1658 setOrigin(&I, getCleanOrigin());
1659 }
1660
1661 void dumpInst(Instruction &I) {
1662 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1663 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
1664 } else {
1665 errs() << "ZZZ " << I.getOpcodeName() << "\n";
1666 }
1667 errs() << "QQQ " << I << "\n";
1668 }
1669
1670 void visitResumeInst(ResumeInst &I) {
1671 DEBUG(dbgs() << "Resume: " << I << "\n");
1672 // Nothing to do here.
1673 }
1674
1675 void visitInstruction(Instruction &I) {
1676 // Everything else: stop propagating and check for poisoned shadow.
1677 if (ClDumpStrictInstructions)
1678 dumpInst(I);
1679 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
1680 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
1681 insertCheck(I.getOperand(i), &I);
1682 setShadow(&I, getCleanShadow(&I));
1683 setOrigin(&I, getCleanOrigin());
1684 }
1685};
1686
1687/// \brief AMD64-specific implementation of VarArgHelper.
1688struct VarArgAMD64Helper : public VarArgHelper {
1689 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
1690 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001691 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001692 static const unsigned AMD64FpEndOffset = 176;
1693
1694 Function &F;
1695 MemorySanitizer &MS;
1696 MemorySanitizerVisitor &MSV;
1697 Value *VAArgTLSCopy;
1698 Value *VAArgOverflowSize;
1699
1700 SmallVector<CallInst*, 16> VAStartInstrumentationList;
1701
1702 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
1703 MemorySanitizerVisitor &MSV)
1704 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
1705
1706 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
1707
1708 ArgKind classifyArgument(Value* arg) {
1709 // A very rough approximation of X86_64 argument classification rules.
1710 Type *T = arg->getType();
1711 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
1712 return AK_FloatingPoint;
1713 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
1714 return AK_GeneralPurpose;
1715 if (T->isPointerTy())
1716 return AK_GeneralPurpose;
1717 return AK_Memory;
1718 }
1719
1720 // For VarArg functions, store the argument shadow in an ABI-specific format
1721 // that corresponds to va_list layout.
1722 // We do this because Clang lowers va_arg in the frontend, and this pass
1723 // only sees the low level code that deals with va_list internals.
1724 // A much easier alternative (provided that Clang emits va_arg instructions)
1725 // would have been to associate each live instance of va_list with a copy of
1726 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
1727 // order.
1728 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
1729 unsigned GpOffset = 0;
1730 unsigned FpOffset = AMD64GpEndOffset;
1731 unsigned OverflowOffset = AMD64FpEndOffset;
1732 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1733 ArgIt != End; ++ArgIt) {
1734 Value *A = *ArgIt;
1735 ArgKind AK = classifyArgument(A);
1736 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
1737 AK = AK_Memory;
1738 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
1739 AK = AK_Memory;
1740 Value *Base;
1741 switch (AK) {
1742 case AK_GeneralPurpose:
1743 Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
1744 GpOffset += 8;
1745 break;
1746 case AK_FloatingPoint:
1747 Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
1748 FpOffset += 16;
1749 break;
1750 case AK_Memory:
1751 uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
1752 Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
1753 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
1754 }
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001755 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001756 }
1757 Constant *OverflowSize =
1758 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
1759 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
1760 }
1761
1762 /// \brief Compute the shadow address for a given va_arg.
1763 Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
1764 int ArgOffset) {
1765 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
1766 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1767 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
1768 "_msarg");
1769 }
1770
1771 void visitVAStartInst(VAStartInst &I) {
1772 IRBuilder<> IRB(&I);
1773 VAStartInstrumentationList.push_back(&I);
1774 Value *VAListTag = I.getArgOperand(0);
1775 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1776
1777 // Unpoison the whole __va_list_tag.
1778 // FIXME: magic ABI constants.
1779 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00001780 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001781 }
1782
1783 void visitVACopyInst(VACopyInst &I) {
1784 IRBuilder<> IRB(&I);
1785 Value *VAListTag = I.getArgOperand(0);
1786 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1787
1788 // Unpoison the whole __va_list_tag.
1789 // FIXME: magic ABI constants.
1790 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00001791 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001792 }
1793
1794 void finalizeInstrumentation() {
1795 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
1796 "finalizeInstrumentation called twice");
1797 if (!VAStartInstrumentationList.empty()) {
1798 // If there is a va_start in this function, make a backup copy of
1799 // va_arg_tls somewhere in the function entry block.
1800 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1801 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
1802 Value *CopySize =
1803 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
1804 VAArgOverflowSize);
1805 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
1806 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
1807 }
1808
1809 // Instrument va_start.
1810 // Copy va_list shadow from the backup copy of the TLS contents.
1811 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
1812 CallInst *OrigInst = VAStartInstrumentationList[i];
1813 IRBuilder<> IRB(OrigInst->getNextNode());
1814 Value *VAListTag = OrigInst->getArgOperand(0);
1815
1816 Value *RegSaveAreaPtrPtr =
1817 IRB.CreateIntToPtr(
1818 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1819 ConstantInt::get(MS.IntptrTy, 16)),
1820 Type::getInt64PtrTy(*MS.C));
1821 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
1822 Value *RegSaveAreaShadowPtr =
1823 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
1824 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
1825 AMD64FpEndOffset, 16);
1826
1827 Value *OverflowArgAreaPtrPtr =
1828 IRB.CreateIntToPtr(
1829 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1830 ConstantInt::get(MS.IntptrTy, 8)),
1831 Type::getInt64PtrTy(*MS.C));
1832 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
1833 Value *OverflowArgAreaShadowPtr =
1834 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
1835 Value *SrcPtr =
1836 getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
1837 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
1838 }
1839 }
1840};
1841
1842VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1843 MemorySanitizerVisitor &Visitor) {
1844 return new VarArgAMD64Helper(Func, Msan, Visitor);
1845}
1846
1847} // namespace
1848
1849bool MemorySanitizer::runOnFunction(Function &F) {
1850 MemorySanitizerVisitor Visitor(F, *this);
1851
1852 // Clear out readonly/readnone attributes.
1853 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001854 B.addAttribute(Attribute::ReadOnly)
1855 .addAttribute(Attribute::ReadNone);
Bill Wendlinge94d8432012-12-07 23:16:57 +00001856 F.removeAttribute(AttributeSet::FunctionIndex,
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001857 Attribute::get(F.getContext(), B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001858
1859 return Visitor.runOnFunction();
1860}