blob: ff3831736f2db2b3fc8c7bef49423e8c130976ab [file] [log] [blame]
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001//===--- HexagonBitTracker.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/CodeGen/MachineRegisterInfo.h"
11#include "llvm/IR/Module.h"
12#include "llvm/Support/Debug.h"
13#include "llvm/Support/raw_ostream.h"
14
15#include "Hexagon.h"
16#include "HexagonInstrInfo.h"
17#include "HexagonRegisterInfo.h"
18#include "HexagonTargetMachine.h"
19#include "HexagonBitTracker.h"
20
21using namespace llvm;
22
23typedef BitTracker BT;
24
Benjamin Kramerd8861512015-07-13 20:38:16 +000025HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
26 MachineRegisterInfo &mri,
27 const HexagonInstrInfo &tii,
28 MachineFunction &mf)
Matthias Braun941a7052016-07-28 18:40:00 +000029 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000030 // Populate the VRX map (VR to extension-type).
31 // Go over all the formal parameters of the function. If a given parameter
32 // P is sign- or zero-extended, locate the virtual register holding that
33 // parameter and create an entry in the VRX map indicating the type of ex-
34 // tension (and the source type).
35 // This is a bit complicated to do accurately, since the memory layout in-
36 // formation is necessary to precisely determine whether an aggregate para-
37 // meter will be passed in a register or in memory. What is given in MRI
38 // is the association between the physical register that is live-in (i.e.
39 // holds an argument), and the virtual register that this value will be
40 // copied into. This, by itself, is not sufficient to map back the virtual
41 // register to a formal parameter from Function (since consecutive live-ins
42 // from MRI may not correspond to consecutive formal parameters from Func-
43 // tion). To avoid the complications with in-memory arguments, only consi-
44 // der the initial sequence of formal parameters that are known to be
45 // passed via registers.
46 unsigned AttrIdx = 0;
47 unsigned InVirtReg, InPhysReg = 0;
48 const Function &F = *MF.getFunction();
49 typedef Function::const_arg_iterator arg_iterator;
50 for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
51 AttrIdx++;
52 const Argument &Arg = *I;
53 Type *ATy = Arg.getType();
54 unsigned Width = 0;
55 if (ATy->isIntegerTy())
56 Width = ATy->getIntegerBitWidth();
57 else if (ATy->isPointerTy())
58 Width = 32;
59 // If pointer size is not set through target data, it will default to
60 // Module::AnyPointerSize.
61 if (Width == 0 || Width > 64)
62 break;
Krzysztof Parzyszek60f0b512016-08-11 18:15:16 +000063 AttributeSet Attrs = F.getAttributes();
64 if (Attrs.hasAttribute(AttrIdx, Attribute::ByVal))
65 continue;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000066 InPhysReg = getNextPhysReg(InPhysReg, Width);
67 if (!InPhysReg)
68 break;
69 InVirtReg = getVirtRegFor(InPhysReg);
70 if (!InVirtReg)
71 continue;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000072 if (Attrs.hasAttribute(AttrIdx, Attribute::SExt))
73 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
74 else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt))
75 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
76 }
77}
78
79
80BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
81 if (Sub == 0)
82 return MachineEvaluator::mask(Reg, 0);
83 using namespace Hexagon;
84 const TargetRegisterClass *RC = MRI.getRegClass(Reg);
85 unsigned ID = RC->getID();
86 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
87 switch (ID) {
88 case DoubleRegsRegClassID:
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +000089 case VecDblRegsRegClassID:
90 case VecDblRegs128BRegClassID:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000091 return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1)
92 : BT::BitMask(RW, 2*RW-1);
93 default:
94 break;
95 }
96#ifndef NDEBUG
97 dbgs() << PrintReg(Reg, &TRI, Sub) << '\n';
98#endif
99 llvm_unreachable("Unexpected register/subregister");
100}
101
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000102namespace {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000103class RegisterRefs {
104 std::vector<BT::RegisterRef> Vector;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000105
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000106public:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000107 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000108 for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000109 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000110 if (MO.isReg())
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000111 Vector[i] = BT::RegisterRef(MO);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000112 // For indices that don't correspond to registers, the entry will
113 // remain constructed via the default constructor.
114 }
115 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000116
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000117 size_t size() const { return Vector.size(); }
118 const BT::RegisterRef &operator[](unsigned n) const {
119 // The main purpose of this operator is to assert with bad argument.
120 assert(n < Vector.size());
121 return Vector[n];
122 }
123};
124}
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000125
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000126bool HexagonEvaluator::evaluate(const MachineInstr &MI,
127 const CellMapType &Inputs,
128 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000129 unsigned NumDefs = 0;
130
131 // Sanity verification: there should not be any defs with subregisters.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000132 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
133 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000134 if (!MO.isReg() || !MO.isDef())
135 continue;
136 NumDefs++;
137 assert(MO.getSubReg() == 0);
138 }
139
140 if (NumDefs == 0)
141 return false;
142
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000143 using namespace Hexagon;
144 unsigned Opc = MI.getOpcode();
145
146 if (MI.mayLoad()) {
147 switch (Opc) {
148 // These instructions may be marked as mayLoad, but they are generating
149 // immediate values, so skip them.
150 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000151 case CONST64:
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000152 break;
153 default:
154 return evaluateLoad(MI, Inputs, Outputs);
155 }
156 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000157
158 // Check COPY instructions that copy formal parameters into virtual
159 // registers. Such parameters can be sign- or zero-extended at the
160 // call site, and we should take advantage of this knowledge. The MRI
161 // keeps a list of pairs of live-in physical and virtual registers,
162 // which provides information about which virtual registers will hold
163 // the argument values. The function will still contain instructions
164 // defining those virtual registers, and in practice those are COPY
165 // instructions from a physical to a virtual register. In such cases,
166 // applying the argument extension to the virtual register can be seen
167 // as simply mirroring the extension that had already been applied to
168 // the physical register at the call site. If the defining instruction
169 // was not a COPY, it would not be clear how to mirror that extension
170 // on the callee's side. For that reason, only check COPY instructions
171 // for potential extensions.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000172 if (MI.isCopy()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000173 if (evaluateFormalCopy(MI, Inputs, Outputs))
174 return true;
175 }
176
177 // Beyond this point, if any operand is a global, skip that instruction.
178 // The reason is that certain instructions that can take an immediate
179 // operand can also have a global symbol in that operand. To avoid
180 // checking what kind of operand a given instruction has individually
181 // for each instruction, do it here. Global symbols as operands gene-
182 // rally do not provide any useful information.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000183 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
184 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000185 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
186 MO.isCPI())
187 return false;
188 }
189
190 RegisterRefs Reg(MI);
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000191#define op(i) MI.getOperand(i)
192#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
193#define im(i) MI.getOperand(i).getImm()
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000194
195 // If the instruction has no register operands, skip it.
196 if (Reg.size() == 0)
197 return false;
198
199 // Record result for register in operand 0.
200 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
201 -> bool {
202 putCell(Reg[0], Val, Outputs);
203 return true;
204 };
205 // Get the cell corresponding to the N-th operand.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000206 auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
207 uint16_t W) -> BT::RegisterCell {
208 const MachineOperand &Op = MI.getOperand(N);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000209 if (Op.isImm())
210 return eIMM(Op.getImm(), W);
211 if (!Op.isReg())
212 return RegisterCell::self(0, W);
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000213 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000214 return rc(N);
215 };
216 // Extract RW low bits of the cell.
217 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
218 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000219 assert(RW <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000220 return eXTR(RC, 0, RW);
221 };
222 // Extract RW high bits of the cell.
223 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
224 -> BT::RegisterCell {
225 uint16_t W = RC.width();
226 assert(RW <= W);
227 return eXTR(RC, W-RW, W);
228 };
229 // Extract N-th halfword (counting from the least significant position).
230 auto half = [this] (const BT::RegisterCell &RC, unsigned N)
231 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000232 assert(N*16+16 <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000233 return eXTR(RC, N*16, N*16+16);
234 };
235 // Shuffle bits (pick even/odd from cells and merge into result).
236 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
237 uint16_t BW, bool Odd) -> BT::RegisterCell {
238 uint16_t I = Odd, Ws = Rs.width();
239 assert(Ws == Rt.width());
240 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
241 I += 2;
242 while (I*BW < Ws) {
243 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
244 I += 2;
245 }
246 return RC;
247 };
248
249 // The bitwidth of the 0th operand. In most (if not all) of the
250 // instructions below, the 0th operand is the defined register.
251 // Pre-compute the bitwidth here, because it is needed in many cases
252 // cases below.
253 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
254
255 switch (Opc) {
256 // Transfer immediate:
257
258 case A2_tfrsi:
259 case A2_tfrpi:
260 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000261 case CONST64:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000262 return rr0(eIMM(im(1), W0), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000263 case PS_false:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000264 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000265 case PS_true:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000266 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000267 case PS_fi: {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000268 int FI = op(1).getIndex();
269 int Off = op(2).getImm();
270 unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
271 unsigned L = Log2_32(A);
272 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
273 RC.fill(0, L, BT::BitValue::Zero);
274 return rr0(RC, Outputs);
275 }
276
277 // Transfer register:
278
279 case A2_tfr:
280 case A2_tfrp:
281 case C2_pxfer_map:
282 return rr0(rc(1), Outputs);
283 case C2_tfrpr: {
284 uint16_t RW = W0;
285 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
286 assert(PW <= RW);
287 RegisterCell PC = eXTR(rc(1), 0, PW);
288 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
289 RC.fill(PW, RW, BT::BitValue::Zero);
290 return rr0(RC, Outputs);
291 }
292 case C2_tfrrp: {
293 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
294 W0 = 8; // XXX Pred size
295 return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
296 }
297
298 // Arithmetic:
299
300 case A2_abs:
301 case A2_absp:
302 // TODO
303 break;
304
305 case A2_addsp: {
306 uint16_t W1 = getRegBitWidth(Reg[1]);
307 assert(W0 == 64 && W1 == 32);
308 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
309 RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
310 return rr0(RC, Outputs);
311 }
312 case A2_add:
313 case A2_addp:
314 return rr0(eADD(rc(1), rc(2)), Outputs);
315 case A2_addi:
316 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
317 case S4_addi_asl_ri: {
318 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
319 return rr0(RC, Outputs);
320 }
321 case S4_addi_lsr_ri: {
322 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
323 return rr0(RC, Outputs);
324 }
325 case S4_addaddi: {
326 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
327 return rr0(RC, Outputs);
328 }
329 case M4_mpyri_addi: {
330 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
331 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
332 return rr0(RC, Outputs);
333 }
334 case M4_mpyrr_addi: {
335 RegisterCell M = eMLS(rc(2), rc(3));
336 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
337 return rr0(RC, Outputs);
338 }
339 case M4_mpyri_addr_u2: {
340 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
341 RegisterCell RC = eADD(rc(1), lo(M, W0));
342 return rr0(RC, Outputs);
343 }
344 case M4_mpyri_addr: {
345 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
346 RegisterCell RC = eADD(rc(1), lo(M, W0));
347 return rr0(RC, Outputs);
348 }
349 case M4_mpyrr_addr: {
350 RegisterCell M = eMLS(rc(2), rc(3));
351 RegisterCell RC = eADD(rc(1), lo(M, W0));
352 return rr0(RC, Outputs);
353 }
354 case S4_subaddi: {
355 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
356 return rr0(RC, Outputs);
357 }
358 case M2_accii: {
359 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
360 return rr0(RC, Outputs);
361 }
362 case M2_acci: {
363 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
364 return rr0(RC, Outputs);
365 }
366 case M2_subacc: {
367 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
368 return rr0(RC, Outputs);
369 }
370 case S2_addasl_rrri: {
371 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
372 return rr0(RC, Outputs);
373 }
374 case C4_addipc: {
375 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
376 RPC.fill(0, 2, BT::BitValue::Zero);
377 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
378 }
379 case A2_sub:
380 case A2_subp:
381 return rr0(eSUB(rc(1), rc(2)), Outputs);
382 case A2_subri:
383 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
384 case S4_subi_asl_ri: {
385 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
386 return rr0(RC, Outputs);
387 }
388 case S4_subi_lsr_ri: {
389 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
390 return rr0(RC, Outputs);
391 }
392 case M2_naccii: {
393 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
394 return rr0(RC, Outputs);
395 }
396 case M2_nacci: {
397 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
398 return rr0(RC, Outputs);
399 }
400 // 32-bit negation is done by "Rd = A2_subri 0, Rs"
401 case A2_negp:
402 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
403
404 case M2_mpy_up: {
405 RegisterCell M = eMLS(rc(1), rc(2));
406 return rr0(hi(M, W0), Outputs);
407 }
408 case M2_dpmpyss_s0:
409 return rr0(eMLS(rc(1), rc(2)), Outputs);
410 case M2_dpmpyss_acc_s0:
411 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
412 case M2_dpmpyss_nac_s0:
413 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
414 case M2_mpyi: {
415 RegisterCell M = eMLS(rc(1), rc(2));
416 return rr0(lo(M, W0), Outputs);
417 }
418 case M2_macsip: {
419 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
420 RegisterCell RC = eADD(rc(1), lo(M, W0));
421 return rr0(RC, Outputs);
422 }
423 case M2_macsin: {
424 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
425 RegisterCell RC = eSUB(rc(1), lo(M, W0));
426 return rr0(RC, Outputs);
427 }
428 case M2_maci: {
429 RegisterCell M = eMLS(rc(2), rc(3));
430 RegisterCell RC = eADD(rc(1), lo(M, W0));
431 return rr0(RC, Outputs);
432 }
433 case M2_mpysmi: {
434 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
435 return rr0(lo(M, 32), Outputs);
436 }
437 case M2_mpysin: {
438 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
439 return rr0(lo(M, 32), Outputs);
440 }
441 case M2_mpysip: {
442 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
443 return rr0(lo(M, 32), Outputs);
444 }
445 case M2_mpyu_up: {
446 RegisterCell M = eMLU(rc(1), rc(2));
447 return rr0(hi(M, W0), Outputs);
448 }
449 case M2_dpmpyuu_s0:
450 return rr0(eMLU(rc(1), rc(2)), Outputs);
451 case M2_dpmpyuu_acc_s0:
452 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
453 case M2_dpmpyuu_nac_s0:
454 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
455 //case M2_mpysu_up:
456
457 // Logical/bitwise:
458
459 case A2_andir:
460 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
461 case A2_and:
462 case A2_andp:
463 return rr0(eAND(rc(1), rc(2)), Outputs);
464 case A4_andn:
465 case A4_andnp:
466 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
467 case S4_andi_asl_ri: {
468 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
469 return rr0(RC, Outputs);
470 }
471 case S4_andi_lsr_ri: {
472 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
473 return rr0(RC, Outputs);
474 }
475 case M4_and_and:
476 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
477 case M4_and_andn:
478 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
479 case M4_and_or:
480 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
481 case M4_and_xor:
482 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
483 case A2_orir:
484 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
485 case A2_or:
486 case A2_orp:
487 return rr0(eORL(rc(1), rc(2)), Outputs);
488 case A4_orn:
489 case A4_ornp:
490 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
491 case S4_ori_asl_ri: {
492 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
493 return rr0(RC, Outputs);
494 }
495 case S4_ori_lsr_ri: {
496 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
497 return rr0(RC, Outputs);
498 }
499 case M4_or_and:
500 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
501 case M4_or_andn:
502 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
503 case S4_or_andi:
504 case S4_or_andix: {
505 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
506 return rr0(RC, Outputs);
507 }
508 case S4_or_ori: {
509 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
510 return rr0(RC, Outputs);
511 }
512 case M4_or_or:
513 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
514 case M4_or_xor:
515 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
516 case A2_xor:
517 case A2_xorp:
518 return rr0(eXOR(rc(1), rc(2)), Outputs);
519 case M4_xor_and:
520 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
521 case M4_xor_andn:
522 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
523 case M4_xor_or:
524 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
525 case M4_xor_xacc:
526 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
527 case A2_not:
528 case A2_notp:
529 return rr0(eNOT(rc(1)), Outputs);
530
531 case S2_asl_i_r:
532 case S2_asl_i_p:
533 return rr0(eASL(rc(1), im(2)), Outputs);
534 case A2_aslh:
535 return rr0(eASL(rc(1), 16), Outputs);
536 case S2_asl_i_r_acc:
537 case S2_asl_i_p_acc:
538 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
539 case S2_asl_i_r_nac:
540 case S2_asl_i_p_nac:
541 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
542 case S2_asl_i_r_and:
543 case S2_asl_i_p_and:
544 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
545 case S2_asl_i_r_or:
546 case S2_asl_i_p_or:
547 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
548 case S2_asl_i_r_xacc:
549 case S2_asl_i_p_xacc:
550 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
551 case S2_asl_i_vh:
552 case S2_asl_i_vw:
553 // TODO
554 break;
555
556 case S2_asr_i_r:
557 case S2_asr_i_p:
558 return rr0(eASR(rc(1), im(2)), Outputs);
559 case A2_asrh:
560 return rr0(eASR(rc(1), 16), Outputs);
561 case S2_asr_i_r_acc:
562 case S2_asr_i_p_acc:
563 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
564 case S2_asr_i_r_nac:
565 case S2_asr_i_p_nac:
566 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
567 case S2_asr_i_r_and:
568 case S2_asr_i_p_and:
569 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
570 case S2_asr_i_r_or:
571 case S2_asr_i_p_or:
572 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
573 case S2_asr_i_r_rnd: {
574 // The input is first sign-extended to 64 bits, then the output
575 // is truncated back to 32 bits.
576 assert(W0 == 32);
577 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
578 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
579 return rr0(eXTR(RC, 0, W0), Outputs);
580 }
581 case S2_asr_i_r_rnd_goodsyntax: {
582 int64_t S = im(2);
583 if (S == 0)
584 return rr0(rc(1), Outputs);
585 // Result: S2_asr_i_r_rnd Rs, u5-1
586 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
587 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
588 return rr0(eXTR(RC, 0, W0), Outputs);
589 }
590 case S2_asr_r_vh:
591 case S2_asr_i_vw:
592 case S2_asr_i_svw_trun:
593 // TODO
594 break;
595
596 case S2_lsr_i_r:
597 case S2_lsr_i_p:
598 return rr0(eLSR(rc(1), im(2)), Outputs);
599 case S2_lsr_i_r_acc:
600 case S2_lsr_i_p_acc:
601 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
602 case S2_lsr_i_r_nac:
603 case S2_lsr_i_p_nac:
604 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
605 case S2_lsr_i_r_and:
606 case S2_lsr_i_p_and:
607 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
608 case S2_lsr_i_r_or:
609 case S2_lsr_i_p_or:
610 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
611 case S2_lsr_i_r_xacc:
612 case S2_lsr_i_p_xacc:
613 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
614
615 case S2_clrbit_i: {
616 RegisterCell RC = rc(1);
617 RC[im(2)] = BT::BitValue::Zero;
618 return rr0(RC, Outputs);
619 }
620 case S2_setbit_i: {
621 RegisterCell RC = rc(1);
622 RC[im(2)] = BT::BitValue::One;
623 return rr0(RC, Outputs);
624 }
625 case S2_togglebit_i: {
626 RegisterCell RC = rc(1);
627 uint16_t BX = im(2);
628 RC[BX] = RC[BX].is(0) ? BT::BitValue::One
629 : RC[BX].is(1) ? BT::BitValue::Zero
630 : BT::BitValue::self();
631 return rr0(RC, Outputs);
632 }
633
634 case A4_bitspliti: {
635 uint16_t W1 = getRegBitWidth(Reg[1]);
636 uint16_t BX = im(2);
637 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
638 const BT::BitValue Zero = BT::BitValue::Zero;
639 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
640 .fill(W1+(W1-BX), W0, Zero);
641 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
642 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
643 return rr0(RC, Outputs);
644 }
645 case S4_extract:
646 case S4_extractp:
647 case S2_extractu:
648 case S2_extractup: {
649 uint16_t Wd = im(2), Of = im(3);
650 assert(Wd <= W0);
651 if (Wd == 0)
652 return rr0(eIMM(0, W0), Outputs);
653 // If the width extends beyond the register size, pad the register
654 // with 0 bits.
655 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
656 RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
657 // Ext is short, need to extend it with 0s or sign bit.
658 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
659 if (Opc == S2_extractu || Opc == S2_extractup)
660 return rr0(eZXT(RC, Wd), Outputs);
661 return rr0(eSXT(RC, Wd), Outputs);
662 }
663 case S2_insert:
664 case S2_insertp: {
665 uint16_t Wd = im(3), Of = im(4);
666 assert(Wd < W0 && Of < W0);
667 // If Wd+Of exceeds W0, the inserted bits are truncated.
668 if (Wd+Of > W0)
669 Wd = W0-Of;
670 if (Wd == 0)
671 return rr0(rc(1), Outputs);
672 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
673 }
674
675 // Bit permutations:
676
677 case A2_combineii:
678 case A4_combineii:
679 case A4_combineir:
680 case A4_combineri:
681 case A2_combinew:
Krzysztof Parzyszek23ee12e2016-08-03 18:35:48 +0000682 case V6_vcombine:
683 case V6_vcombine_128B:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000684 assert(W0 % 2 == 0);
685 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
686 case A2_combine_ll:
687 case A2_combine_lh:
688 case A2_combine_hl:
689 case A2_combine_hh: {
690 assert(W0 == 32);
691 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
692 // Low half in the output is 0 for _ll and _hl, 1 otherwise:
693 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
694 // High half in the output is 0 for _ll and _lh, 1 otherwise:
695 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
696 RegisterCell R1 = rc(1);
697 RegisterCell R2 = rc(2);
698 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
699 return rr0(RC, Outputs);
700 }
701 case S2_packhl: {
702 assert(W0 == 64);
703 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
704 RegisterCell R1 = rc(1);
705 RegisterCell R2 = rc(2);
706 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
707 .cat(half(R1, 1));
708 return rr0(RC, Outputs);
709 }
710 case S2_shuffeb: {
711 RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
712 return rr0(RC, Outputs);
713 }
714 case S2_shuffeh: {
715 RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
716 return rr0(RC, Outputs);
717 }
718 case S2_shuffob: {
719 RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
720 return rr0(RC, Outputs);
721 }
722 case S2_shuffoh: {
723 RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
724 return rr0(RC, Outputs);
725 }
726 case C2_mask: {
727 uint16_t WR = W0;
728 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
729 assert(WR == 64 && WP == 8);
730 RegisterCell R1 = rc(1);
731 RegisterCell RC(WR);
732 for (uint16_t i = 0; i < WP; ++i) {
733 const BT::BitValue &V = R1[i];
734 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
735 RC.fill(i*8, i*8+8, F);
736 }
737 return rr0(RC, Outputs);
738 }
739
740 // Mux:
741
742 case C2_muxii:
743 case C2_muxir:
744 case C2_muxri:
745 case C2_mux: {
746 BT::BitValue PC0 = rc(1)[0];
747 RegisterCell R2 = cop(2, W0);
748 RegisterCell R3 = cop(3, W0);
749 if (PC0.is(0) || PC0.is(1))
750 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
751 R2.meet(R3, Reg[0].Reg);
752 return rr0(R2, Outputs);
753 }
754 case C2_vmux:
755 // TODO
756 break;
757
758 // Sign- and zero-extension:
759
760 case A2_sxtb:
761 return rr0(eSXT(rc(1), 8), Outputs);
762 case A2_sxth:
763 return rr0(eSXT(rc(1), 16), Outputs);
764 case A2_sxtw: {
765 uint16_t W1 = getRegBitWidth(Reg[1]);
766 assert(W0 == 64 && W1 == 32);
767 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
768 return rr0(RC, Outputs);
769 }
770 case A2_zxtb:
771 return rr0(eZXT(rc(1), 8), Outputs);
772 case A2_zxth:
773 return rr0(eZXT(rc(1), 16), Outputs);
774
775 // Bit count:
776
777 case S2_cl0:
778 case S2_cl0p:
779 // Always produce a 32-bit result.
780 return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs);
781 case S2_cl1:
782 case S2_cl1p:
783 return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs);
784 case S2_clb:
785 case S2_clbp: {
786 uint16_t W1 = getRegBitWidth(Reg[1]);
787 RegisterCell R1 = rc(1);
788 BT::BitValue TV = R1[W1-1];
789 if (TV.is(0) || TV.is(1))
790 return rr0(eCLB(R1, TV, 32), Outputs);
791 break;
792 }
793 case S2_ct0:
794 case S2_ct0p:
795 return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs);
796 case S2_ct1:
797 case S2_ct1p:
798 return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs);
799 case S5_popcountp:
800 // TODO
801 break;
802
803 case C2_all8: {
804 RegisterCell P1 = rc(1);
805 bool Has0 = false, All1 = true;
806 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
807 if (!P1[i].is(1))
808 All1 = false;
809 if (!P1[i].is(0))
810 continue;
811 Has0 = true;
812 break;
813 }
814 if (!Has0 && !All1)
815 break;
816 RegisterCell RC(W0);
817 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
818 return rr0(RC, Outputs);
819 }
820 case C2_any8: {
821 RegisterCell P1 = rc(1);
822 bool Has1 = false, All0 = true;
823 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
824 if (!P1[i].is(0))
825 All0 = false;
826 if (!P1[i].is(1))
827 continue;
828 Has1 = true;
829 break;
830 }
831 if (!Has1 && !All0)
832 break;
833 RegisterCell RC(W0);
834 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
835 return rr0(RC, Outputs);
836 }
837 case C2_and:
838 return rr0(eAND(rc(1), rc(2)), Outputs);
839 case C2_andn:
840 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
841 case C2_not:
842 return rr0(eNOT(rc(1)), Outputs);
843 case C2_or:
844 return rr0(eORL(rc(1), rc(2)), Outputs);
845 case C2_orn:
846 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
847 case C2_xor:
848 return rr0(eXOR(rc(1), rc(2)), Outputs);
849 case C4_and_and:
850 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
851 case C4_and_andn:
852 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
853 case C4_and_or:
854 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
855 case C4_and_orn:
856 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
857 case C4_or_and:
858 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
859 case C4_or_andn:
860 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
861 case C4_or_or:
862 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
863 case C4_or_orn:
864 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
865 case C2_bitsclr:
866 case C2_bitsclri:
867 case C2_bitsset:
868 case C4_nbitsclr:
869 case C4_nbitsclri:
870 case C4_nbitsset:
871 // TODO
872 break;
873 case S2_tstbit_i:
874 case S4_ntstbit_i: {
875 BT::BitValue V = rc(1)[im(2)];
876 if (V.is(0) || V.is(1)) {
877 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
878 bool TV = (Opc == S2_tstbit_i);
879 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
880 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
881 }
882 break;
883 }
884
885 default:
886 return MachineEvaluator::evaluate(MI, Inputs, Outputs);
887 }
888 #undef im
889 #undef rc
890 #undef op
891 return false;
892}
893
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000894bool HexagonEvaluator::evaluate(const MachineInstr &BI,
895 const CellMapType &Inputs,
896 BranchTargetList &Targets,
897 bool &FallsThru) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000898 // We need to evaluate one branch at a time. TII::AnalyzeBranch checks
899 // all the branches in a basic block at once, so we cannot use it.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000900 unsigned Opc = BI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000901 bool SimpleBranch = false;
902 bool Negated = false;
903 switch (Opc) {
904 case Hexagon::J2_jumpf:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000905 case Hexagon::J2_jumpfpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000906 case Hexagon::J2_jumpfnew:
907 case Hexagon::J2_jumpfnewpt:
908 Negated = true;
909 case Hexagon::J2_jumpt:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000910 case Hexagon::J2_jumptpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000911 case Hexagon::J2_jumptnew:
912 case Hexagon::J2_jumptnewpt:
913 // Simple branch: if([!]Pn) jump ...
914 // i.e. Op0 = predicate, Op1 = branch target.
915 SimpleBranch = true;
916 break;
917 case Hexagon::J2_jump:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000918 Targets.insert(BI.getOperand(0).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000919 FallsThru = false;
920 return true;
921 default:
922 // If the branch is of unknown type, assume that all successors are
923 // executable.
924 return false;
925 }
926
927 if (!SimpleBranch)
928 return false;
929
930 // BI is a conditional branch if we got here.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000931 RegisterRef PR = BI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000932 RegisterCell PC = getCell(PR, Inputs);
933 const BT::BitValue &Test = PC[0];
934
935 // If the condition is neither true nor false, then it's unknown.
936 if (!Test.is(0) && !Test.is(1))
937 return false;
938
939 // "Test.is(!Negated)" means "branch condition is true".
940 if (!Test.is(!Negated)) {
941 // Condition known to be false.
942 FallsThru = true;
943 return true;
944 }
945
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000946 Targets.insert(BI.getOperand(1).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000947 FallsThru = false;
948 return true;
949}
950
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000951bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
952 const CellMapType &Inputs,
953 CellMapType &Outputs) const {
954 if (TII.isPredicated(MI))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000955 return false;
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000956 assert(MI.mayLoad() && "A load that mayn't?");
957 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000958
959 uint16_t BitNum;
960 bool SignEx;
961 using namespace Hexagon;
962
963 switch (Opc) {
964 default:
965 return false;
966
967#if 0
968 // memb_fifo
969 case L2_loadalignb_pbr:
970 case L2_loadalignb_pcr:
971 case L2_loadalignb_pi:
972 // memh_fifo
973 case L2_loadalignh_pbr:
974 case L2_loadalignh_pcr:
975 case L2_loadalignh_pi:
976 // membh
977 case L2_loadbsw2_pbr:
978 case L2_loadbsw2_pci:
979 case L2_loadbsw2_pcr:
980 case L2_loadbsw2_pi:
981 case L2_loadbsw4_pbr:
982 case L2_loadbsw4_pci:
983 case L2_loadbsw4_pcr:
984 case L2_loadbsw4_pi:
985 // memubh
986 case L2_loadbzw2_pbr:
987 case L2_loadbzw2_pci:
988 case L2_loadbzw2_pcr:
989 case L2_loadbzw2_pi:
990 case L2_loadbzw4_pbr:
991 case L2_loadbzw4_pci:
992 case L2_loadbzw4_pcr:
993 case L2_loadbzw4_pi:
994#endif
995
996 case L2_loadrbgp:
997 case L2_loadrb_io:
998 case L2_loadrb_pbr:
999 case L2_loadrb_pci:
1000 case L2_loadrb_pcr:
1001 case L2_loadrb_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001002 case PS_loadrbabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001003 case L4_loadrb_ap:
1004 case L4_loadrb_rr:
1005 case L4_loadrb_ur:
1006 BitNum = 8;
1007 SignEx = true;
1008 break;
1009
1010 case L2_loadrubgp:
1011 case L2_loadrub_io:
1012 case L2_loadrub_pbr:
1013 case L2_loadrub_pci:
1014 case L2_loadrub_pcr:
1015 case L2_loadrub_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001016 case PS_loadrubabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001017 case L4_loadrub_ap:
1018 case L4_loadrub_rr:
1019 case L4_loadrub_ur:
1020 BitNum = 8;
1021 SignEx = false;
1022 break;
1023
1024 case L2_loadrhgp:
1025 case L2_loadrh_io:
1026 case L2_loadrh_pbr:
1027 case L2_loadrh_pci:
1028 case L2_loadrh_pcr:
1029 case L2_loadrh_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001030 case PS_loadrhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001031 case L4_loadrh_ap:
1032 case L4_loadrh_rr:
1033 case L4_loadrh_ur:
1034 BitNum = 16;
1035 SignEx = true;
1036 break;
1037
1038 case L2_loadruhgp:
1039 case L2_loadruh_io:
1040 case L2_loadruh_pbr:
1041 case L2_loadruh_pci:
1042 case L2_loadruh_pcr:
1043 case L2_loadruh_pi:
1044 case L4_loadruh_rr:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001045 case PS_loadruhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001046 case L4_loadruh_ap:
1047 case L4_loadruh_ur:
1048 BitNum = 16;
1049 SignEx = false;
1050 break;
1051
1052 case L2_loadrigp:
1053 case L2_loadri_io:
1054 case L2_loadri_pbr:
1055 case L2_loadri_pci:
1056 case L2_loadri_pcr:
1057 case L2_loadri_pi:
1058 case L2_loadw_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001059 case PS_loadriabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001060 case L4_loadri_ap:
1061 case L4_loadri_rr:
1062 case L4_loadri_ur:
1063 case LDriw_pred:
1064 BitNum = 32;
1065 SignEx = true;
1066 break;
1067
1068 case L2_loadrdgp:
1069 case L2_loadrd_io:
1070 case L2_loadrd_pbr:
1071 case L2_loadrd_pci:
1072 case L2_loadrd_pcr:
1073 case L2_loadrd_pi:
1074 case L4_loadd_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001075 case PS_loadrdabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001076 case L4_loadrd_ap:
1077 case L4_loadrd_rr:
1078 case L4_loadrd_ur:
1079 BitNum = 64;
1080 SignEx = true;
1081 break;
1082 }
1083
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001084 const MachineOperand &MD = MI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001085 assert(MD.isReg() && MD.isDef());
1086 RegisterRef RD = MD;
1087
1088 uint16_t W = getRegBitWidth(RD);
1089 assert(W >= BitNum && BitNum > 0);
1090 RegisterCell Res(W);
1091
1092 for (uint16_t i = 0; i < BitNum; ++i)
1093 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1094
1095 if (SignEx) {
1096 const BT::BitValue &Sign = Res[BitNum-1];
1097 for (uint16_t i = BitNum; i < W; ++i)
1098 Res[i] = BT::BitValue::ref(Sign);
1099 } else {
1100 for (uint16_t i = BitNum; i < W; ++i)
1101 Res[i] = BT::BitValue::Zero;
1102 }
1103
1104 putCell(RD, Res, Outputs);
1105 return true;
1106}
1107
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001108bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1109 const CellMapType &Inputs,
1110 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001111 // If MI defines a formal parameter, but is not a copy (loads are handled
1112 // in evaluateLoad), then it's not clear what to do.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001113 assert(MI.isCopy());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001114
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001115 RegisterRef RD = MI.getOperand(0);
1116 RegisterRef RS = MI.getOperand(1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001117 assert(RD.Sub == 0);
1118 if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1119 return false;
1120 RegExtMap::const_iterator F = VRX.find(RD.Reg);
1121 if (F == VRX.end())
1122 return false;
1123
1124 uint16_t EW = F->second.Width;
1125 // Store RD's cell into the map. This will associate the cell with a virtual
1126 // register, and make zero-/sign-extends possible (otherwise we would be ex-
1127 // tending "self" bit values, which will have no effect, since "self" values
1128 // cannot be references to anything).
1129 putCell(RD, getCell(RS, Inputs), Outputs);
1130
1131 RegisterCell Res;
1132 // Read RD's cell from the outputs instead of RS's cell from the inputs:
1133 if (F->second.Type == ExtType::SExt)
1134 Res = eSXT(getCell(RD, Outputs), EW);
1135 else if (F->second.Type == ExtType::ZExt)
1136 Res = eZXT(getCell(RD, Outputs), EW);
1137
1138 putCell(RD, Res, Outputs);
1139 return true;
1140}
1141
1142
1143unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1144 using namespace Hexagon;
1145 bool Is64 = DoubleRegsRegClass.contains(PReg);
1146 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1147
1148 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1149 static const unsigned Phys64[] = { D0, D1, D2 };
1150 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1151 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1152
1153 // Return the first parameter register of the required width.
1154 if (PReg == 0)
1155 return (Width <= 32) ? Phys32[0] : Phys64[0];
1156
1157 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1158 // next register.
1159 unsigned Idx32 = 0, Idx64 = 0;
1160 if (!Is64) {
1161 while (Idx32 < Num32) {
1162 if (Phys32[Idx32] == PReg)
1163 break;
1164 Idx32++;
1165 }
1166 Idx64 = Idx32/2;
1167 } else {
1168 while (Idx64 < Num64) {
1169 if (Phys64[Idx64] == PReg)
1170 break;
1171 Idx64++;
1172 }
1173 Idx32 = Idx64*2+1;
1174 }
1175
1176 if (Width <= 32)
1177 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1178 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1179}
1180
1181
1182unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1183 typedef MachineRegisterInfo::livein_iterator iterator;
1184 for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1185 if (I->first == PReg)
1186 return I->second;
1187 }
1188 return 0;
1189}