blob: df4752836091b129284fa32cad09f601f482f3e0 [file] [log] [blame]
Chris Lattnerd43023a2002-08-02 16:43:03 +00001//===- Dominators.cpp - Dominator Calculation -----------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner081aabc2001-07-02 05:46:38 +00009//
Chris Lattnerd43023a2002-08-02 16:43:03 +000010// This file implements simple dominator construction algorithms for finding
11// forward dominators. Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed. Forward dominators are
13// needed to support the Verifier pass.
Chris Lattner081aabc2001-07-02 05:46:38 +000014//
15//===----------------------------------------------------------------------===//
16
Chandler Carruth5ad5f152014-01-13 09:26:24 +000017#include "llvm/IR/Dominators.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000018#include "llvm/ADT/DepthFirstIterator.h"
Devang Patel5a1bd402007-03-27 20:50:46 +000019#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000020#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000021#include "llvm/IR/Instructions.h"
Chandler Carruth64764b42015-01-14 10:19:28 +000022#include "llvm/IR/PassManager.h"
Dan Gohman4dbb3012009-09-28 00:27:48 +000023#include "llvm/Support/CommandLine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/Support/Debug.h"
Chandler Carruthe509db42014-01-13 10:52:56 +000025#include "llvm/Support/GenericDomTreeConstruction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/Support/raw_ostream.h"
Chris Lattnerc5e0be62004-06-05 00:24:59 +000027#include <algorithm>
Chris Lattner189d19f2003-11-21 20:23:48 +000028using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000029
Dan Gohman4dbb3012009-09-28 00:27:48 +000030// Always verify dominfo if expensive checking is enabled.
Filipe Cabecinhas0da99372016-04-29 15:22:48 +000031#ifdef EXPENSIVE_CHECKS
Serge Pavlov69b3ff92017-01-24 05:52:07 +000032bool llvm::VerifyDomInfo = true;
Dan Gohman4dbb3012009-09-28 00:27:48 +000033#else
Serge Pavlov69b3ff92017-01-24 05:52:07 +000034bool llvm::VerifyDomInfo = false;
Dan Gohman4dbb3012009-09-28 00:27:48 +000035#endif
36static cl::opt<bool,true>
37VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38 cl::desc("Verify dominator info (time consuming)"));
39
Rafael Espindolacc80cde2012-08-16 15:09:43 +000040bool BasicBlockEdge::isSingleEdge() const {
41 const TerminatorInst *TI = Start->getTerminator();
42 unsigned NumEdgesToEnd = 0;
43 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44 if (TI->getSuccessor(i) == End)
45 ++NumEdgesToEnd;
46 if (NumEdgesToEnd >= 2)
47 return false;
48 }
49 assert(NumEdgesToEnd == 1);
50 return true;
Rafael Espindola11870772012-08-10 14:05:55 +000051}
52
Chris Lattnerc385beb2001-07-06 16:58:22 +000053//===----------------------------------------------------------------------===//
Owen Andersonf35a1db2007-04-15 08:47:27 +000054// DominatorTree Implementation
Chris Lattner00f51672003-12-07 00:38:08 +000055//===----------------------------------------------------------------------===//
56//
Owen Anderson84c357f2007-09-23 21:31:44 +000057// Provide public access to DominatorTree information. Implementation details
Chandler Carruthe509db42014-01-13 10:52:56 +000058// can be found in Dominators.h, GenericDomTree.h, and
59// GenericDomTreeConstruction.h.
Chris Lattner00f51672003-12-07 00:38:08 +000060//
61//===----------------------------------------------------------------------===//
62
Benjamin Kramera667d1a2015-07-13 17:21:31 +000063template class llvm::DomTreeNodeBase<BasicBlock>;
Jakub Kuderskib292c222017-07-14 18:26:09 +000064template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
65template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
Owen Anderson41878012007-10-16 19:59:25 +000066
Jakub Kuderski5af07f52017-07-13 20:45:32 +000067template void
68llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree, Function>(
69 DomTreeBuilder::BBDomTree &DT, Function &F);
Jakub Kuderskib292c222017-07-14 18:26:09 +000070template void
71llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree, Function>(
72 DomTreeBuilder::BBPostDomTree &DT, Function &F);
Jakub Kuderski5af07f52017-07-13 20:45:32 +000073
74template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
75 const DomTreeBuilder::BBDomTree &DT);
Jakub Kuderskib292c222017-07-14 18:26:09 +000076template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
77 const DomTreeBuilder::BBPostDomTree &DT);
Rafael Espindola30616362014-02-14 22:36:16 +000078
Chandler Carruthca68a3e2017-01-15 06:32:49 +000079bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
80 FunctionAnalysisManager::Invalidator &) {
81 // Check whether the analysis, all analyses on functions, or the function's
82 // CFG have been preserved.
83 auto PAC = PA.getChecker<DominatorTreeAnalysis>();
84 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
85 PAC.preservedSet<CFGAnalyses>());
86}
87
Rafael Espindola94df2672012-02-26 02:19:19 +000088// dominates - Return true if Def dominates a use in User. This performs
89// the special checks necessary if Def and User are in the same basic block.
90// Note that Def doesn't dominate a use in Def itself!
91bool DominatorTree::dominates(const Instruction *Def,
92 const Instruction *User) const {
93 const BasicBlock *UseBB = User->getParent();
94 const BasicBlock *DefBB = Def->getParent();
Rafael Espindola082d4822012-02-18 19:46:02 +000095
Rafael Espindolaa53c46a2012-03-30 16:46:21 +000096 // Any unreachable use is dominated, even if Def == User.
97 if (!isReachableFromEntry(UseBB))
98 return true;
99
100 // Unreachable definitions don't dominate anything.
101 if (!isReachableFromEntry(DefBB))
102 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +0000103
Rafael Espindola94df2672012-02-26 02:19:19 +0000104 // An instruction doesn't dominate a use in itself.
105 if (Def == User)
Chris Lattner22151ce2009-09-21 22:30:50 +0000106 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +0000107
David Majnemer8a1c45d2015-12-12 05:38:55 +0000108 // The value defined by an invoke dominates an instruction only if it
109 // dominates every instruction in UseBB.
110 // A PHI is dominated only if the instruction dominates every possible use in
111 // the UseBB.
112 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
Rafael Espindola94df2672012-02-26 02:19:19 +0000113 return dominates(Def, UseBB);
114
115 if (DefBB != UseBB)
116 return dominates(DefBB, UseBB);
117
118 // Loop through the basic block until we find Def or User.
119 BasicBlock::const_iterator I = DefBB->begin();
120 for (; &*I != Def && &*I != User; ++I)
Chris Lattner22151ce2009-09-21 22:30:50 +0000121 /*empty*/;
Rafael Espindola082d4822012-02-18 19:46:02 +0000122
Rafael Espindola94df2672012-02-26 02:19:19 +0000123 return &*I == Def;
124}
125
126// true if Def would dominate a use in any instruction in UseBB.
127// note that dominates(Def, Def->getParent()) is false.
128bool DominatorTree::dominates(const Instruction *Def,
129 const BasicBlock *UseBB) const {
130 const BasicBlock *DefBB = Def->getParent();
131
Rafael Espindolaa53c46a2012-03-30 16:46:21 +0000132 // Any unreachable use is dominated, even if DefBB == UseBB.
133 if (!isReachableFromEntry(UseBB))
134 return true;
135
136 // Unreachable definitions don't dominate anything.
137 if (!isReachableFromEntry(DefBB))
138 return false;
Rafael Espindola94df2672012-02-26 02:19:19 +0000139
140 if (DefBB == UseBB)
141 return false;
142
David Majnemer8a1c45d2015-12-12 05:38:55 +0000143 // Invoke results are only usable in the normal destination, not in the
144 // exceptional destination.
David Majnemer0bc0eef2015-08-15 02:46:08 +0000145 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
146 BasicBlock *NormalDest = II->getNormalDest();
147 BasicBlockEdge E(DefBB, NormalDest);
148 return dominates(E, UseBB);
149 }
Rafael Espindola94df2672012-02-26 02:19:19 +0000150
David Majnemer0bc0eef2015-08-15 02:46:08 +0000151 return dominates(DefBB, UseBB);
Rafael Espindola59564072012-08-07 17:30:46 +0000152}
153
154bool DominatorTree::dominates(const BasicBlockEdge &BBE,
155 const BasicBlock *UseBB) const {
156 // If the BB the edge ends in doesn't dominate the use BB, then the
157 // edge also doesn't.
158 const BasicBlock *Start = BBE.getStart();
159 const BasicBlock *End = BBE.getEnd();
160 if (!dominates(End, UseBB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000161 return false;
162
Rafael Espindola59564072012-08-07 17:30:46 +0000163 // Simple case: if the end BB has a single predecessor, the fact that it
164 // dominates the use block implies that the edge also does.
165 if (End->getSinglePredecessor())
Rafael Espindola94df2672012-02-26 02:19:19 +0000166 return true;
167
168 // The normal edge from the invoke is critical. Conceptually, what we would
169 // like to do is split it and check if the new block dominates the use.
170 // With X being the new block, the graph would look like:
171 //
172 // DefBB
173 // /\ . .
174 // / \ . .
175 // / \ . .
176 // / \ | |
177 // A X B C
178 // | \ | /
179 // . \|/
180 // . NormalDest
181 // .
182 //
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000183 // Given the definition of dominance, NormalDest is dominated by X iff X
Rafael Espindola94df2672012-02-26 02:19:19 +0000184 // dominates all of NormalDest's predecessors (X, B, C in the example). X
185 // trivially dominates itself, so we only have to find if it dominates the
186 // other predecessors. Since the only way out of X is via NormalDest, X can
187 // only properly dominate a node if NormalDest dominates that node too.
Adam Nemet4ef096b2017-06-05 16:27:09 +0000188 int IsDuplicateEdge = 0;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +0000189 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
190 PI != E; ++PI) {
191 const BasicBlock *BB = *PI;
Adam Nemet4ef096b2017-06-05 16:27:09 +0000192 if (BB == Start) {
193 // If there are multiple edges between Start and End, by definition they
194 // can't dominate anything.
195 if (IsDuplicateEdge++)
196 return false;
Rafael Espindola94df2672012-02-26 02:19:19 +0000197 continue;
Adam Nemet4ef096b2017-06-05 16:27:09 +0000198 }
Rafael Espindola94df2672012-02-26 02:19:19 +0000199
Rafael Espindola59564072012-08-07 17:30:46 +0000200 if (!dominates(End, BB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000201 return false;
202 }
203 return true;
Chris Lattner22151ce2009-09-21 22:30:50 +0000204}
Dan Gohman73273272012-04-12 23:31:46 +0000205
Chandler Carruth73523022014-01-13 13:07:17 +0000206bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
Rafael Espindola59564072012-08-07 17:30:46 +0000207 Instruction *UserInst = cast<Instruction>(U.getUser());
208 // A PHI in the end of the edge is dominated by it.
209 PHINode *PN = dyn_cast<PHINode>(UserInst);
210 if (PN && PN->getParent() == BBE.getEnd() &&
211 PN->getIncomingBlock(U) == BBE.getStart())
212 return true;
213
214 // Otherwise use the edge-dominates-block query, which
215 // handles the crazy critical edge cases properly.
216 const BasicBlock *UseBB;
217 if (PN)
218 UseBB = PN->getIncomingBlock(U);
219 else
220 UseBB = UserInst->getParent();
221 return dominates(BBE, UseBB);
222}
223
Chandler Carruth73523022014-01-13 13:07:17 +0000224bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
Rafael Espindola59564072012-08-07 17:30:46 +0000225 Instruction *UserInst = cast<Instruction>(U.getUser());
Dan Gohman73273272012-04-12 23:31:46 +0000226 const BasicBlock *DefBB = Def->getParent();
227
228 // Determine the block in which the use happens. PHI nodes use
229 // their operands on edges; simulate this by thinking of the use
230 // happening at the end of the predecessor block.
231 const BasicBlock *UseBB;
232 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
233 UseBB = PN->getIncomingBlock(U);
234 else
235 UseBB = UserInst->getParent();
236
237 // Any unreachable use is dominated, even if Def == User.
238 if (!isReachableFromEntry(UseBB))
239 return true;
240
241 // Unreachable definitions don't dominate anything.
242 if (!isReachableFromEntry(DefBB))
243 return false;
244
David Majnemer8a1c45d2015-12-12 05:38:55 +0000245 // Invoke instructions define their return values on the edges to their normal
246 // successors, so we have to handle them specially.
Dan Gohman73273272012-04-12 23:31:46 +0000247 // Among other things, this means they don't dominate anything in
248 // their own block, except possibly a phi, so we don't need to
249 // walk the block in any case.
250 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
Rafael Espindola59564072012-08-07 17:30:46 +0000251 BasicBlock *NormalDest = II->getNormalDest();
252 BasicBlockEdge E(DefBB, NormalDest);
253 return dominates(E, U);
Dan Gohman73273272012-04-12 23:31:46 +0000254 }
255
256 // If the def and use are in different blocks, do a simple CFG dominator
257 // tree query.
258 if (DefBB != UseBB)
259 return dominates(DefBB, UseBB);
260
261 // Ok, def and use are in the same block. If the def is an invoke, it
262 // doesn't dominate anything in the block. If it's a PHI, it dominates
263 // everything in the block.
264 if (isa<PHINode>(UserInst))
265 return true;
266
267 // Otherwise, just loop through the basic block until we find Def or User.
268 BasicBlock::const_iterator I = DefBB->begin();
269 for (; &*I != Def && &*I != UserInst; ++I)
270 /*empty*/;
271
272 return &*I != UserInst;
273}
274
275bool DominatorTree::isReachableFromEntry(const Use &U) const {
276 Instruction *I = dyn_cast<Instruction>(U.getUser());
277
278 // ConstantExprs aren't really reachable from the entry block, but they
279 // don't need to be treated like unreachable code either.
280 if (!I) return true;
281
282 // PHI nodes use their operands on their incoming edges.
283 if (PHINode *PN = dyn_cast<PHINode>(I))
284 return isReachableFromEntry(PN->getIncomingBlock(U));
285
286 // Everything else uses their operands in their own block.
287 return isReachableFromEntry(I->getParent());
288}
Chandler Carruth73523022014-01-13 13:07:17 +0000289
290void DominatorTree::verifyDomTree() const {
Jakub Kuderski069e5cfa2017-06-30 16:33:04 +0000291 // Perform the expensive checks only when VerifyDomInfo is set.
292 if (VerifyDomInfo && !verify()) {
Jakub Kuderskif9223362017-06-29 17:45:51 +0000293 errs() << "\n~~~~~~~~~~~\n\t\tDomTree verification failed!\n~~~~~~~~~~~\n";
294 print(errs());
295 abort();
296 }
297
Chandler Carruth73523022014-01-13 13:07:17 +0000298 Function &F = *getRoot()->getParent();
299
300 DominatorTree OtherDT;
301 OtherDT.recalculate(F);
302 if (compare(OtherDT)) {
303 errs() << "DominatorTree is not up to date!\nComputed:\n";
304 print(errs());
305 errs() << "\nActual:\n";
306 OtherDT.print(errs());
307 abort();
308 }
309}
310
311//===----------------------------------------------------------------------===//
Chandler Carruth64764b42015-01-14 10:19:28 +0000312// DominatorTreeAnalysis and related pass implementations
313//===----------------------------------------------------------------------===//
314//
315// This implements the DominatorTreeAnalysis which is used with the new pass
316// manager. It also implements some methods from utility passes.
317//
318//===----------------------------------------------------------------------===//
319
Chandler Carruth164a2aa62016-06-17 00:11:01 +0000320DominatorTree DominatorTreeAnalysis::run(Function &F,
Sean Silva36e0d012016-08-09 00:28:15 +0000321 FunctionAnalysisManager &) {
Chandler Carruth64764b42015-01-14 10:19:28 +0000322 DominatorTree DT;
323 DT.recalculate(F);
324 return DT;
325}
326
Chandler Carruthdab4eae2016-11-23 17:53:26 +0000327AnalysisKey DominatorTreeAnalysis::Key;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +0000328
Chandler Carruth64764b42015-01-14 10:19:28 +0000329DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
330
331PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +0000332 FunctionAnalysisManager &AM) {
Chandler Carruth64764b42015-01-14 10:19:28 +0000333 OS << "DominatorTree for function: " << F.getName() << "\n";
Chandler Carruthb47f8012016-03-11 11:05:24 +0000334 AM.getResult<DominatorTreeAnalysis>(F).print(OS);
Chandler Carruth64764b42015-01-14 10:19:28 +0000335
336 return PreservedAnalyses::all();
337}
338
339PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +0000340 FunctionAnalysisManager &AM) {
341 AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
Chandler Carruth64764b42015-01-14 10:19:28 +0000342
343 return PreservedAnalyses::all();
344}
345
346//===----------------------------------------------------------------------===//
Chandler Carruth73523022014-01-13 13:07:17 +0000347// DominatorTreeWrapperPass Implementation
348//===----------------------------------------------------------------------===//
349//
Chandler Carruth64764b42015-01-14 10:19:28 +0000350// The implementation details of the wrapper pass that holds a DominatorTree
351// suitable for use with the legacy pass manager.
Chandler Carruth73523022014-01-13 13:07:17 +0000352//
353//===----------------------------------------------------------------------===//
354
355char DominatorTreeWrapperPass::ID = 0;
356INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
357 "Dominator Tree Construction", true, true)
358
359bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
360 DT.recalculate(F);
361 return false;
362}
363
Adam Nemete340f852015-05-06 08:18:41 +0000364void DominatorTreeWrapperPass::verifyAnalysis() const {
365 if (VerifyDomInfo)
366 DT.verifyDomTree();
367}
Chandler Carruth73523022014-01-13 13:07:17 +0000368
369void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
370 DT.print(OS);
371}
372